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Academic underachievement refers to school performance which falls below expectations. Focusing

on the pivotal first stage of education, we explored a quantitativemeasure of underachievement using

genomically predicted achievement delta (GPAΔ), which reflects the differencebetweenobserved and

expected achievement predicted by genome-wide polygenic scores. We analyzed the relationship

between GPAΔ at age 7 and achievement trajectories from ages 7 to 16, using longitudinal data from

4175 participants in the Twins Early Development Study to assess empirically the extent to which

students regress to their genomically predicted levels by age 16. We found that the achievement of

underachievers and overachieverswho deviated from their genomic predictions at age 7 regressed on

average by one-third towards their genomically predicted levels. We also found that GPAΔ at age 7

wasaspredictive of achievement trajectories as a traditional ability-based indexof underachievement.

Targeting GPAΔ underachievers might prove cost-effective because such interventions seem more

likely to succeed by going with the genetic flow rather than swimming upstream, helping GPAΔ

underachievers reach their genetic potential as predicted by their GPS. However, this is a hypothesis

that needs to be tested in intervention research investigating whether GPAΔ underachievers respond

better to the intervention than other underachievers. We discuss the practicality of genomic indices in

assessing underachievement.

Underachievement in school is costly to society and to the children who fail
to maximize their potential to flourish1–3. Academic underachievement
refers to school performance that falls below expectations, typically assessed
using previous achievement or tested ability4,5. Identifying underachieving
children enables personalized efforts to help improve their performance.
However, the process of ascertaining a student’s ability, and by extension,
their predicted achievement, can be difficult.While previous achievement is
the best predictor of future achievement, reliance on past observations
delays the identification of underachieving students until they have fallen
significantly behind. Intelligence tests have also been used to predict aca-
demic achievement—in fact, that iswhat theywere originally designed for—
but their prediction early in life, when the scope for effective interventions is
the greatest, is limited (Davey6, p. 657). For example, intelligence assessed at
age 2 or 3 predicts just 4% of the variance in intelligence at age 16, making it
of limited value for prediction early in life, as compared to age 9, which
predicts 20% of the variance at age 167.

The DNA revolution has made it possible to predict individual dif-
ferences in educational achievement fromDNA rather than frommeasures
of ability or previous achievement8. Genome-wide association (GWA)
studies testing the association between hundreds of thousands of DNA
differences across the genome have identified thousands of single-base pair
differences in inherited DNA sequence that are associated with common
disorders and complex traits9. Although the largest effect sizes are extremely
small, often less than 0.1%, the effects of genetic variants associated with a
trait as assessed in GWA studies can be aggregated in genome-wide poly-
genic scores (GPS)10.

A unique feature of GPS is their ability to serve as an early warning
system because inherited DNA differences do not change systematically
after conception and are stable throughout the lifespan. In otherwords, GPS
can be used to predict school achievement just as well from infancy as from
the school years. By comparison, in terms of predicting achievement at the
end of secondary school, achievement tests can only predict from the school
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years; g canpredict in early childhood, but its prediction isweak. In contrast,
the prediction fromGPS is exactly the same whether DNA was obtained at
birth or in adolescence. An additional benefit of GPS is that, unlike
achievement and ability measures, GPS are not subject to training, practice,
or anxiety effects. While polygenic scores cannot serve as diagnostic
instruments on their own (because they are continuous indices of risk), their
use has been proposed for ‘predictive enrichment’- that is identifying which
populations are most likely to benefit from a given treatment11.

Currently, GPS can predict up to 16% of the variance in educational
achievement—a four-fold increase compared to g in infancy7,12. In the
present study, we create a polygenic score based on the latest GWA study of
educational attainment (years of schooling), EA413. The EA4 GPS is cur-
rently the most powerful GPS predictor of education-related traits because
this GWA study included three million participants in its discovery sample
(Okbay et al.13). Although EA4 relies on the crude index of years of
schooling, educational attainment represents the culmination of the edu-
cational process and incorporates all the traits needed for educational suc-
cess, not just g but also personality traits such as conscientiousness and
motivation aswell asmental health. There are other education-relatedGPSs
—for example, for IQ (Savage et al.14), cognitive performance (Lee et al.15),
self-reported math ability (Lee et al.15), and math attainment (Lee et al.15),
which we use in a multi-polygenic score approach16, even though they have
been shown to add little to the predictive power of EA417.

The present paper explores the concept of genomically predicted
achievement delta (GPAΔ), which reflects the difference between children’s
observed academic achievement and their expected achievement as indexed
by the EA4 GPS. Specifically, we explore the extent to which students’
discrepancies between the EA4 GPS and observed achievement at age 7
(GPAΔ) regress towards their genomically predicted levels of achievement
at ages 9, 12, and 16. Construction of these difference scores are described in

Methods. Although the statistical phenomenon of regression to the mean
predicts these GPAΔ achievement trajectories during the school years, our
goal was to track these changes empirically. Moreover, in follow-up ana-
lyses, we intend to investigate the antecedents and sequelae of individual
differences in these GPAΔ trajectories. As a first step in this direction, in the
present paper we present estimates of the heritability of GPAΔ.

From a sample of 4175 genotyped UK individuals, we calculate dif-
ference scores at age 7, and chart their educational trajectories as long-
itudinal slopes at ages 9, 12 and 16.We are interested in the extent to which
children who are underachieving at age 7 experience increases in achieve-
ment, in linewith their genomicpredictions as indexedby theEA4GPS, and
the extent to which overachievers experience a decline in achievement. A
unique feature of the EA4 GPS is that it was created to assess adult educa-
tional attainment so that GPAΔ based on achievement at age 7 represents
the extent towhichachievement at age7differs fromthegenomicprediction
of adult educational attainment. In contrast, traditional indices of under-
achievement use intelligence, a concurrent measure of ability, to assess
predicted achievement.

After calculating GPAΔ, we analyzed our entire sample to investigate
GPAΔ across the full range from underachievement to overachievement, as
shown in Panel A of Fig. 1. We then focused on two subgroups from our
total sample who have extreme GPAΔ scores. The first subsample, which
we will call relative underachievers and overachievers, are those whose
GPAΔ scores are 1 SD below and 1 SD above the GPAΔmean, respectively
(Panel B). We also considered a subset of relative underachievers and
overachievers, which we call absolute underachievers and overachievers,
whose achievement scores are 1 SD below and 1 SD above the achievement
mean (Panel C).

While educational interventions for reversing underachievement
have been moderately successful in improving school performance, a

Fig. 1 | Sample selection of underachievement and overachievement groups.

A depicts the distribution of GPAΔ scores (Achievement – GPS) for our entire

sample. GPAΔ scores are normally distributed around a mean of zero. Negative

GPAΔ scores indicate relative underachievement, while positive GPAΔ scores

indicate relative overachievement B. We call these relative groups because their

achievement scores will vary widely. That is, a student could be in the relative

underachievers group despite having a relatively high achievement score. In C, we

have plotted GPAΔ against age 7 achievement scores. The dashed yellow and blue

lines denote relative underachievers and overachievers, respectively. We select a

subset of underachievers with low achievement scores (red box) and a subset of

overachievers with high achievement scores (green box), which we refer to as

absolute underachievers and absolute overachievers, respectively.
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meta-analysis of 53 studies revealed substantial heterogeneity in effect
sizes of treatment outcomes18. Interventions targeting gifted underachievers
have particularly been unsuccessful19. Interestingly, one of the strongest
moderators of intervention success is age: interventions delivered early in
life are more likely to be successful18. Thus, screening for GPAΔ could
eventually be a valuable early warning system, helping educators identify
underachievers early in development.

Targeting GPAΔ might also prove cost-effective because such
interventions seemmore likely to succeed by going with the genetic flow
rather than swimming upstream8, helping GPAΔ underachievers to
reach their genetic potential as predicted by their GPS. However, this is
a hypothesis that needs to be tested in intervention research investi-
gating whether GPAΔ underachievers respond better to interventions
than other underachievers. Moreover, until a GWA study is done on
GPAΔ per se rather than on educational attainment or achievement,
GPAΔ will require that early school achievement is assessed so that the
difference between GPS (genomically expected achievement) and
observed achievement can be obtained. Nonetheless, it is interesting to
explore the educational trajectories through primary and secondary
school of GPAΔ constructed on the basis of GPS at age 7, which is the
rationale for the present study.

GPAΔ seems impractical now because it requires DNA, genotyping,
and the creation of GPS. However, the rise in direct-to-consumer DNA
testing suggests a future where GPAΔ becomes more accessible. At least
27million people have paid direct-to-consumerDNA testing companies for
this service20, and these companies are increasinglymarketing their product
to encourage parents to test their children21. National and private health
systems are also beginning to use DNA testing to pivot from curing dis-
orders to preventing them8. Once genotyping is available by whatever
means, it will be possible to create GPS for educationally relevant traits, a
process that is becoming routinized22.

Three other introductory issues should be mentioned. First, we
acknowledge that many other factors could be involved in under-
achievement such as motivation, self-regulation, conscientiousness,
and family environment18,23, which could be used together to maximize
prediction. However, the goal of the present paper is to examine the
extent to which underachievement can be usefully defined using
genetics, in the same manner in which it is currently defined using
intelligence. That is, while we acknowledge the importance of other
factors, we are interested in exploring the use of GPS and early
achievement to chart trajectories of underachievement during the
school years. Nonetheless, we compare our results for GPAΔ to those
for underachievement defined using g and assess the extent to which g
and GPAΔ jointly predict achievement.

A second issue is development. Underachievement can emerge at
different stages of development24. For some it may emerge in early
school years, while for others it begins inmiddle school25. In the present
study, we chose to focus on identifying underachievement and over-
achievement in the early school years because we are interested in how
early differences in GPAΔ affect subsequent trajectories in educational
achievement.

A third issue is domain-specific underachievement. Although the
underachievement literature has broadly focused on failures to maximize
potential in general achievement, there has been growing interest in
understanding domain-specific underachievement, particularly within
mathematics and reading26,27. In addition to creating general achievement
indices ofGPAΔ, we also constructed their domain-specific equivalents (i.e.,
English–GPS,Mathematics–GPS), in both cases assessing ability using the
EA4 GPS. Finally, we compared our primary results for GPAΔ to those
using a traditional index of underachievement (i.e., achievement – g), which
we call cogΔ.

Results
The primary goal of our analyses was to chart the course of GPAΔ at age 7
longitudinally in terms of achievement during the school years at ages 9, 12

and 16. Put simply, we explored the extent to which genomically predicted
achievement discrepancies, calculated at age 7, reduced during the school
years at 9, 12 and 16. We used participants from the Twins Early Devel-
opment Study (TEDS), a nationally representative cohort of twins born
between 1994 and 1996 in England and Wales (see Methods). Descriptive
statistics of all measured variables are presented in Supplementary Table 1.

In overview, after calculating GPAΔ scores, we conducted analyses of
GPAΔ and achievement slopes separately, followed by our main analyses
relating GPAΔ to achievement slopes for the whole sample and for relative
and absolute underachievers and overachievers. We then explored a multi-
GPS approach, separate analyses of English and mathematics, and com-
parisons with cogΔ.

Genomically predicted achievement discrepancies (GPAΔ)

We calculated Genomically-Predicted Achievement Discrepancy
(GPAΔ) scores for each individual at age 7 by subtracting their stan-
dardized genome-wide polygenic score (GPS) from their standardized
observed achievement at age 7 (seeMethods for details on achievement
measures). Polygenic scores are created based on individual SNP effect
size estimates obtained from genome-wide association (GWA) stu-
dies. In the present study, we created a polygenic score based on the
latest GWA meta-analysis of educational attainment (years of
schooling), EA4 (Okbay et al.13). In our study, EA4 has a zero-order
correlation of 0.28 with educational achievement at age 7, 0.26 at age
12 and 0.43 at age 16 (See Supplementary Table 12 for pairwise cor-
relations between all measured variables). Subsequently, we added
four other GPS: IQ (Savage et al.14), cognitive performance (Lee
et al.15), self-reported math ability (Lee et al.15), and math attainment
(Lee et al.15), in a multi-polygenic score approach16 in order to max-
imize genotypic prediction.

Although there are many quantitative genetic analyses of educational
achievement, we are not aware of any genetic analyses of GPAΔ. For this
reason, we conducted twin analyses of GPAΔ using the TEDS twins (see
Methods). GPAΔ at age 7 correlates 0.57 with achievement at age 7, sug-
gesting that they could show somewhat different aetiological influences. In
addition, although GPAΔ subtracts the GPS for educational attainment
from achievement at age 7, it does not necessarily follow that the heritability
of GPAΔwill be low because theGPS correlates only 0.28 with achievement
at age 7 (but 0.43 with achievement on national exams administered
at age 16).

Figure 2 displays twin estimates of additive genetic variance (A),
common or shared environmental variance (C) and non-shared
environmental variance (E). Heritability, the proportion of phenotypic
variance explained by genetic variance, is strikingly high for GPAΔ
(85%), higher than for general achievement itself at age 7 (67%).
Heritabilities are similarly high for GPAΔ based on mathematics alone
(87%) and English alone (85%), which are also higher than mathe-
matics achievement (71%) and English achievement (68%). The last
column in Fig. 2 indicates that the heritability of achievement slopes
(57%) is slightly lower than the heritability of achievement (67%). Twin
intraclass correlations and parameter estimates with confidence
intervals are shown in Supplementary Table 2.

Achievement slopes

We computed achievement composites by averaging standardized teacher-
rated national curriculum scores in math, science, and English at the Key
Stage ages of 7, 9, and 12. For age 16, we obtained GCSE scores, a stan-
dardized examination taken at the end of compulsory schooling in the UK,
to construct our achievement composites (See Methods). To create indivi-
dual scores representing changes in achievement over time, we calculated a
line of best fit using age (7, 9, 12, and 16) as the x-variable and standardized
achievement as the y-variable for each participant separately. The slope
from the resulting line of bestfit, whichwe call achievement slopes, was then
extracted for each participant.We thenmean standardized the achievement
slope variable (mean = 0, SD = 1) in our analyses for ease of interpretation.
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Achievement slopes for individuals whose achievement increases on
average during the school years will be positive, average declines in
achievement will be negative, and students whose achievement shows no
average increase or decrease, perhaps by going up and down over the school
years, will be near zero. Thus, when we refer to achievement slopes (cal-
culated in relation to achievement z-scores for each participant), we are
referring to relative achievement. Prior to running analyseswe first used the
median absolute deviation (MAD) method for outlier removal of achieve-
ment slope scores, described in Eq. (1),

MAD ¼ median xi �median xð Þ
�

�

�

�

� �

ð1Þ

such that xi is an individual observation.

Associations between GPAΔ scores and achievement slopes

We correlated GPAΔ scores at age 7 with achievement slope scores, which
index trajectories of change in achievement across ages 7, 9, 12 and 16.
Figure 3 shows the normal distributions of GPAΔ and achievement slopes
and a scatterplot of the correlation between them. The correlation was
negative (r(4173) =−0.456, CI95%[−0.480, −0.432], p < 0.001; Fig. 2) and
explained 20.8% of the variance of achievement slopes. This negative cor-
relation indicates that students whose achievement at age 7 was discrepant
fromtheir polygenic scoremoved towards their genomic trajectory at ages 9,
12, and 16. To calculate the extent to which participants regressed towards
their genomically predicted levels, wefirst computed regression percentages
using the formula in Eq. (2),

1�
GPAΔ at age16

GPAΔ at age7

� �

� 100 ð2Þ

and obtained the 5% trimmed mean to account for outliers. We found that
participants, on average, regressed to 38.4% of their genomically predicted
levels of achievement at age 16. In other words, GPAΔ underachievers
progressed more and GPAΔ overachievers progressed less during their
school years.

These results can be understood more readily by focusing on the
extremes of GPAΔ underachievement and overachievement (Fig. 4).When
examining relative and absolute GPAΔ groups, we found that all groups, on
average, regressed substantially towards their genomicallypredicted levels of
school achievement at age 16. By design, the absolute GPAΔ overachievers
and underachievers had more extreme achievement scores than the com-
parable relative GPAΔ groups, but both absolute and relative groups
returned to 28-45% of their predicted levels (Fig. 4). It is noteworthy that
most of the change occurs by age 9, suggesting the importance of the early
school years. See Supplementary Table 1 for descriptive statistics.

To investigate whether our sample is regressing towards their genomic
predictions, as opposed to the achievement mean, we also examined the
trajectories of a subset of children whose achievement was average at age 7
(within 0.5 SD of the mean). We then stratified these children by GPAΔ
deciles. For example, the lowest decile of GPAΔ underachievers at age 7
improved by nearly half a standard deviation by age 16 (top line in Fig. 5).
Conversely, the achievement of the highest decile of GPAΔ overachievers at
age 7 declined by almost half a standard deviation by age 16. See Supple-
mentary Table 3 for means and standard errors by decile.

We then predicted achievement slopes across ages 7, 9, 12, and 16 from
GPAΔ at age 7, controlling for sex, age, and family socio-economic status
(SES).Although sex and age correlate littlewith achievement at age 7 (−0.03
and 0.10 respectively), SES correlates 0.30. To determine the unique con-
tribution of GPAΔ, we performed a hierarchical regression where the initial
model only includedGPAΔ as apredictor (Model 1) and subsequentmodels
added sex, age, and family SES as covariates (see Supplementary Table 4).
The unique variance in achievement slopes explained by GPAΔ (or the
partialR2) dropped from20.8% to 18.5%with the addition of covariates. To
compute the significance of this change, we conducted an F-test comparing
the residual sum of squares of Model 1 and a full model with all covariates
included, which indicated that the full model explained significantly more
variance overall (ΔR2 = 0.038; F(3, 3926) = 66.949, p < 0.001). However, the
minimal changes in R2 suggest that sex, age and family SES do not sub-
stantially mediate the relationship between GPAΔ and achievement slopes
(Supplementary Table 4). We also found SES did not moderate the

Fig. 2 | Twin ACE estimates for GPAΔ and related

traits. Univariate twin model-fitting estimates of

additive genetic variance A, common or shared

environmental variance C and nonshared environ-

mental variance E for GPAΔ and related traits.
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relationship between GPAΔ and achievement slope (β interaction term =
−0.021, CI95% [−0.043, 0.000], p = 0.134), suggesting that the relationship
between GPAΔ scores and achievement trajectories remains stable across
varying SES levels (SupplementaryTable 5).Thesefindings indicate that low
SES does not prevent underachievers at age 7 from reaching their
genomically-predicted academic achievement nor does high SES stop the
decline in achievement for GPAΔ overachievers at age 7.

In addition to these analyses based on EA4 GPS, we also explored the
use of amulti-polygenic score approach to index predicted achievement. To
do this, we ran a 10-fold cross-validation with three repeats in multiple
regressions using five GPS related to cognition (including EA4) to predict

age 7 achievement (Supplementary Table 6). To test for multicollinearity
between predictors, we computed the variance inflation factor (VIF), which
estimates how much the variance of a coefficient is inflated due to colli-
nearity with other predictors (see Methods)28. All predictors of the final
model had VIF values between 1.56 and 4.33, which is below the conven-
tional threshold of 5 (which is used to diagnose ifmulticollinearity is high)29.
Thus, updated GPAΔwere then computed based on a weightedmean of all
five polygenic scores, using parameter estimates from the cross-validation
model, and we compared this multi-GPS GPAΔ against the EA4-only
GPAΔ. We found that the multi-GPS model predicted achievement no
better than the EA4 GPS alone. The zero-order correlation between the

Fig. 4 | Scatterplot of average achievement over

time for relative and absolute GPAΔ groups.

Scatterplot of average achievement over time for

relative and absolute GPAΔ groups (SE mean plot-

ted in error bars). Group means of achievement are

plotted across ages 7, 9, 12, and 16. Absolute over-

achievers regressed to 45.3% of their genomic pre-

diction; relative overachievers regressed 38.9%;

relative underachievers regressed 28.4%; absolute

underachievers regressed 30.6%.

Fig. 3 | Scatterplot of GPAΔ scores and achievement slopes. Scatterplot for the

correlation of−0.456 between GPAΔ scores (calculated as observed achievement –

GPS) at age 7 and achievement slopes for each individual across ages 7, 9, 12 and 16

with marginal densities plotted in blue. Positive achievement slopes indicate

increases in achievement over time, while negative slopes indicate decreases in

achievement over time.
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multi-GPS GPAΔ and achievement slopes was −0.430 (CI95% −0.453,
−0.404, p < 0.001) as compared to −0.456 for EA4 alone (CI95%-0.480,
−0.432], p < 0.001), with overlapping confidence intervals. This is likely
because prediction was optimized for achievement at age 7, compared to
educational attainment, which captures factors related to both childhood
and later age achievement. For this reason, we did not use the multi-GPS
model in subsequent analyses.

Associations between GPAΔ scores and achievement slopes

separately for English and mathematics

The previous analyses used combined scores in English, mathematics, and
science to create achievement slopes. Here, we consider English and
mathematics individually. We created achievement slopes separately for
English and its associated GPAΔ (English - GPS) and separately for
mathematics and its associated GPAΔ (mathematics – GPS) (Supplemen-
tary Tables 7 and 8). Science was not assessed in the National Curriculum
at age 7.

In both instances, we continued using the EA4 GPS to index ability.
Figure 6 shows scatterplots between domain-specific underachievement
and their respective achievement slopes. The magnitude of the zero-order
correlations was similar to those for overall achievement. The correlations
were also similar for English and mathematics but significantly lower for
English [r =−0.416, (CI95%[−0.440, −0.390], p < 0.001)] than for mathe-
matics [r =−0.478, (CI95%[−0.501, −0.454], p < 0.001)].

Comparison with general cognitive ability (g)

How do these findings for GPAΔ at age 7 compare to those for the tradi-
tional index based on the discrepancy between achievement and g (cogΔ;
achievement – g)?We found that cogΔ at age 7 correlated 0.377withGPAΔ
(CI95%[−0.345,−0.408], p < 0.001), which suggests that results for the two
measures could differ. The first difference we observed was their heritability

estimates. In contrast to the strikingly highheritability of 85% forGPAΔ, the
heritability of cogΔ was only 34.3% (95% CI: 0.240−0.444; Supplementary
Table 1).

Contrary to our hypothesis, our genomic index, GPAΔ at age 7, pre-
dicted as much of the variance in achievement slopes as cogΔ at age 7. For
GPAΔ, the semi-partial R2 was 0.185 (CI95%[0.164, 0.206], p < 0.001) after
adjustment for SES, sex, and age. For cogΔ, the semi-partial R2 was
0.145 ðCI95%[0.122, 0.169], p < 0.001). The confidence intervals between the
two R2 were overlapping, indicating that they do not differ significantly.
Both regressions were directionally similar, suggesting that individuals
regressed to their predicted levels of achievement for bothGPAΔ and cogΔ.

The correlation of 0.377 between GPAΔ and cogΔ suggests that they
could add independently to the prediction of achievement slopes.We tested
their complementarity in amultiple regressionof the twoΔmeasuresas they
predict achievement slopes and found that together the measures predicted
substantially more variance in achievement slopes: R2 ¼ 0:261, as com-
pared to 0.185 for GPAΔ and 0.145 for cogΔ. In addition to their increased
joint prediction, bothΔmeasures significantlypredictedachievement slopes
independent of one another. The standardized beta for GPAΔ was−0.351
and the beta for cogΔ was −0.262. Full regression results are included in
Supplementary Table 9 and descriptive statistics are shown in Supple-
mentary Table 10.

Discussion
In the present study, we found that students’GPAΔ at age 7 was associated
with their longitudinal achievement trajectories. GPAΔ underachievers,
aligningwith their genomic predictions, showed an increase in achievement
over time, while GPAΔ overachievers experienced a decrease in achieve-
ment over time. For instance, absolute GPA underachievers at age 7 had an
average grade of -2 SD at age 7 but by age 16 had achieved an average grade
of -1.42 SD—a half standard deviation increase.We acknowledge that these

Fig. 5 | Achievement trajectories byGPAΔ decile.Achievement trajectories among

children at ages 7, 9, 12, and 16, grouped by GPAΔ decile (N = 1981). This subset

contains participants whose achievement scores at age 7 fall within 0.5 standard

deviations of the mean. In the graph, individual data points represent the mean

achievement scores for each GPAΔ decile group at the specified ages. The lines

drawn through these points represent the linear regression lines of best fit for

each group.
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patterns are to be expected theoretically on the basis of regression to the
mean, as could any attempt to assess underachievement as a shortfall of
achievement in relation to predicted achievement such as discrepancies
between achievement and ability. Our goal was to chart empirically the
course of trajectories of achievement across the school years.We found that
underachievers regress 31% back to their genomically predicted trajectory
by the end of compulsory schooling.We found thatGPAΔpredicts an equal
amount of variance in achievement slopes compared to cogΔ, across both
general and domain-specific achievement. Surprisingly, the two Δ are
complementary, jointly predicting 26% of the variance in achievement
slopes.

These findings suggest that GPAΔ can help identify underachievers in
the early school years,with the rationale ofmaximizing their achievementby
personalizing their education.We emphasize their achievement because the
goal is for each student toachieve their potential, not the unrealistic goal that
all children achieve the highest level of performance. As noted earlier, tar-
geting GPAΔ as an early-warning system seems likely to be efficacious. In
other words, targeting students underachieving genomically might bemore
effective than attempting to improve performance of all children. However,
we reiterate that this a hypothesis that needs to be tested in intervention

research investigating whether GPAΔ underachievers respond better to the
intervention than other underachievers. Along these same lines, interven-
tions that are effective inboosting theperformanceofGPAΔunderachievers
might be less effective in preventing the decline of GPAΔ overachievers.
Again, this is a hypothesis that needs to be tested in intervention research,
which could lead to interventions designed specifically for GPAΔ
overachievers.

At present, GPAΔ at age 7 could only be used to identify under-
achievers and overachievers in the early school years once their achievement
has been assessed. We propose, however, that if a GWA study of school
achievement were to be conducted (implying the availability of genotypes
and school achievement data), then it would be possible to perform aGWA
analysis ofGPAΔ aswell as school achievementper se.AGPSderived froma
GWA study of GPAΔ could be created early in life before school achieve-
ment is assessed, which would enable early intervention to prevent GPAΔ
underachievement and tomaintainGPAΔoverachievementbefore children
start school. Our finding of extremely high heritability (85%) for GPAΔ
should encourage GWA analyses of GPAΔ.

When considering the finding that school achievement increasingly
resembles genomic predictions with age, there are several ways this result

Fig. 6 | Scatterplot for domain-specific GPAΔ and

achievement slopes. Scatterplots separately for

English A and mathematics B GPAΔ scores and

achievement slopes.
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can be interpreted. One possibility is that the influence of genetics increases
with age. However, this seems unlikely because the heritability of educa-
tional achievement does not increase with development30 (see Supple-
mentary Table 1). The variance explained by GPS, however, does increase
with age, likely because achievement measures at later ages increasingly
approximate the target phenotype of the EA4 GWA study, educational
attainment, which can only be assessed in adulthood. GCSEs are more
strongly correlatedwith EA4 compared to earlier achievement scores at ages
7, 9, and 12 because they are administered at the end of compulsory
schooling. Therefore, one possibility for why students increasingly resemble
their genomic predictions is that achievementmeasures aremore correlated
with EA4 at later ages. In the case of cogΔ, we also find that students’
achievement regresses towards levels predicted by their intelligence scores at
age 7. Intelligence at age 7 correlates at 42 with intelligence at age 167, while
EA4 correlates around 0.40 with achievement at age 16, suggesting both
should be equally predictive of ability at age 16.

Indeed, this is what we find: GPAΔ and cogΔ are equally predictive of
achievement slopes, despite being correlated 0.4 with one another. The
imperfect correlation between the two Δ measures could be attributed to
theirmeasurement of distinct (but complementary) aspects of school ability.
GPAΔ, represented by a GPS of educational attainment, encompasses
cognitive and school-specific non-cognitive effects, whereas g solely cap-
tures cognitive abilities.Wefind that, jointly, the twomeasures predictmore
variance in achievement slopes (26%) than GPAΔ (19%) or cogΔ
(15%) alone.

For both GPAΔ and cogΔ, the range of individual differences in
trajectories through the school years should be noted—about 85% of the
variance in achievement slopes is not explained by either index.
Interestingly, GPAΔ was able to predict achievement slopes in general
achievement, English, and math to a similar degree. This finding
illustrates the generality of educational attainment assessed by the EA4
GPS, despite being a measure downstream from school achievement.
We are extending the present work to consider the antecedents and
sequalae of individual differences in GPAΔ.

Our study also found that SES does not moderate the relationship
between achievement slopes and GPAΔ, suggesting that underachieving
students from low-SES backgrounds are not any slower in returning to their
genomically predicted levels of achievement compared to their high-SES
counterparts. Conversely, high SES does not act as a protective factor in
preventing overachievers from experiencing declines in their achievement.
However, it is worth mentioning that SES is higher in the relative under-
achievers group and lower in the relative overachievers group. One possi-
bility is thathigh family SESmayalleviate thepressure for students todowell
in school, making them believe they will progress to higher education
regardless, or have parental support to fall back on31. We refrain from
discussing the role of SES in underachievement and overachievement, as
this and other explanations would be speculative.

There are several limitations to our study. Given that we examine
longitudinal data across nine years, it is unsurprising that some participants
are lost due to attrition. To maximize sample size, we selected participants
who had observations across any 3 out of the possible 4 years. Other lim-
itations include our inability to control for classroom and school effects and
our use of teacher assessments. However, classroom and school effects are
surprisingly small after taking SES into account and our teacher assessments
are based on National Curriculum rating guidelines and correlate highly
with standardised test scores (see Methods).

A general limitation of genomic research concerns ethnicity.
Although we argue that GPS provide an unbiased estimate of ability
with regards to training and practice effects, they do not evade the
clutches of cultural bias. GWA studies have largely included northern
European ancestries and the predictive power of GPS is attenuated in
populations with different ancestries32,33. In our study, we included only
those who identified themselves as having European ancestry meaning
our results likely represent the upper-bound of prediction for other
ancestries. While the ethical issues of using genomics for prediction has

been extensively covered34,35, our focus in the present study is on the
scientific and practical aspects of predicting underachievement.

The current study explored empirically the extent to which under-
achievement and overachievement could usefully be defined using genomic
data. To accomplish this, we devised an index calledGenomically-Predicted
Achievement Discrepancy (GPAΔ) by subtracting a GPS for adult educa-
tional attainment from educational achievement at age 7.We demonstrated
that students who exhibited achievement-GPS discrepancies at age 7 on
average regressed a third of the way back to their genomically predicted
levels of achievement at ages 9, 12, and 16.

Methods
Sample

At its conception, TEDS recruited over 16,000 twin pairs born between
1994-1996 using national birth records (Rimfeld et al.36). Ethical approval
for this study was received from King’s College London Ethics Committee.
The present study used a sub-sample of twins who contributed to data
collection between 7–16 years of age. Namely, we used data collected during
four waves, which correspond to the four key stages of education in the UK:
7, 9, 12, and 16. Although the total sample size varies at each wave due to
attrition and budgetary constraints (for example, at age 9 only two of four
yearly cohorts could be assessed), the sample continues to remain repre-
sentative of the UK general population36. We genotyped up to 10,346
individual participants: 2666 MZ twins (one member per twin pair was
genotyped), 4337DZ twins (onemember per twin pair), 3320DZ co-twins,
and23 twins of unknownzygosity.Of the availableparticipants,we included
those who self-identified as having European ancestry, and excluded those
who reported having a serious medical condition, leaving a sample size of
N = 9694. Lastly, to capture longitudinal trajectories, we stipulated that all
participants needed a minimum of three achievement observations across
any three of the four ages, resulting in a final sample size of N = 4175.

Genotyping

DNA for 12,500 individuals in the TEDS sample was extracted from saliva
and buccal cheek swab samples and hybridized to one of two SNP micro-
arrays (Affymetrix GeneChip 6.0 or Illumina HumanOmniExpressExome
chips). Standard quality control (QC) steps were undertaken to remove low
quality samples: samples were removed from subsequent analyses on the
basis of call rate (<0.98), suspected non-European ancestry, heterozygosity,
and relatedness other than dizygotic twin status. SNPs were excluded if the
minor allele frequency was smaller than 0.5%, if more than 2% of genotype
data were missing, or if the Hardy Weinberg p-value was lower than 10�5.
Non-autosomal markers and indels were removed. Association between
SNPand theplatform, batch, plate orwell onwhich sampleswere genotyped
was calculated; SNPs with an effect p-value < 10�4 were excluded. A total
sample size of 10,346 (including 7026 unrelated individuals and 3320
additional dizygotic co-twins) remained after QC. For detailed description
of subsequent phasing, imputation, and genomic principal component
generation, see ref.37.

Measures

• NationalCurriculumlevels at ages7, 9, and12:WeusedUKNational
Curriculum (NC) teacher-assessed grades at ages 7, 9, and 12. These
marks are based on externally provided tests and tasks provided by the
National Foundation for Educational Research (NFER) and the
Qualifications and Curriculum Authority (QCA) (NFER: http://www.
nfer.ac.uk/index.cfm;QCA: http://www.qca.org.uk), which adhere to a
standardized UK National Curriculum rubric. At age 7 and 9 the
curriculum is rated on a 5-point scale, and at age 12 on a 9-point scale,
with higher values representing higher achievement. NC data and
genotypeswere available for age 7 (M= 2.14, SD = 0.52,N = 6740), age
9 (M = 3.01, SD = 0.58, N = 3206), and age 12 (M= 4.41, SD = 0.89,
N = 4554). Achievement data were available for English, math, and
science. We standardized these scores and computed their mean to
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establish a composite measure of general achievement. At age 7, the
composite was computed using English andmath, as science data were
not available. Subsequent data obtained from the National Pupil
Database (NPD) show that teacher-rated assessments correlated
r = 0.80 with exam scores, while GCSE grades collected by TEDS
correlated between > 0.95 and 0.99 with NPD records38.

• General Certificate of Secondary Education at age 16: The General
Certificate of Secondary Education (GCSE) is a standardized exam-
ination taken at the end of compulsory schooling, usually at age 16. In
the present study, we used the core subjects, consisting of English,
science, and math, to construct achievement composites. The grades
system ranges from 4 (G; minimum pass grade) to 11 (A*; highest
possible grade). We standardized these scores and computed their
mean to establish a composite measure of general achievement, ana-
logous to our NC measures. GCSE data was available for 7347 geno-
typed participants (M = 8.92, SD = 1.22).

• General Cognitive Ability at age 7: To measure general cognitive
ability, twins were assessed via telephone on four tests: Conceptual
Grouping, Similarities, Vocabulary and Picture Completion39,40. We
standardized these scores and computed their mean to establish a
composite measure of general cognitive ability (g). These telephone-
based assessments have been shown to correlate with in-person
assessments, reaching r = 0.72 after range correction (Petrill et al.41).

• Family SES: At first contact, parents of the TEDS participants com-
pleted a questionnaire by post, which included questions aboutmother
and father employment levels, mother and father educational levels,
andmother’s ageonbirthoffirst child. SESwas calculatedusing amean
of the five variables, and standardized. Data was available for 9156
genotyped participants.

Statistical analyses

The study was preregistered (https://osf.io/xhb2s/) in relation to the design,
methods, measures and general analyses and hypotheses. Although our
results are consistent with the hypotheses, our analyses that we report here
went well beyond our initial plans and therefore we are choosing to report
our findings as exploratory rather than confirmatory.

Outlier removal.We used themedian absolute deviation (MAD)method
for outlier removal of achievement slope scores, as this approach is robust
against deviations from normality42. Scores exceeding three times the
MAD were considered outliers and removed. MAD is defined in Eq. (1).

Genome-wide polygenic scores (GPS). We employed LDPred2, a
Bayesian method that corrects for local linkage disequilibrium, to com-
pute GPS for all genotyped participants. For an in-depth explanation of
GPS construction in TEDS, see37. All GPS were residualized against chip
type, batch, and their first ten principal components. Our core analyses
were done using summary statistics sourced from EA4, the largest GWA
study of educational attainment (Okbay et al.13). Due to data access
restrictions, the EA4 summary statistics used in this study have been
computed without 23andMe participants, with a sample size of
N = 765,283. Thus, the participants used to compute the summary sta-
tistics for EA4 have nearly identical participant overlap with the previous
GWAS of educational attainment, EA315. For our multi-polygenic score
analyses, we also made use of GPS for IQ14, cognitive performance15, self-
reported math ability15, and math attainment15.

Identifying Underachievement. Identifying academic under-
achievement and overachievement is challenging due to variability in
identification methods. These methods often lack agreement, suggesting
that distinct populations might be labeled as underachievers by different
researchers (Jackson & Jung43; White et al.44). The most conservative
approach is to ensure that ability-achievement discrepancies are suffi-
ciently large to rule out measurement error. This is done, for example, by
requiring underachievers to surpass a certain ability threshold (+1 SD)

while falling below another achievement threshold (−1 SD). However,
this approach tends to disproportionately identify gifted individuals as
underachievers and fails to consider those with average or even below-
average abilities45. Furthermore, by dichotomizing underachievement, it
is unable to distinguish the extent of one’s underachievement, which is a
continuum4.

To overcome these issues, we employ a difference-score approach in
which standardized predicted achievement, as indexed by a GPS, is sub-
tracted from standardized observed achievement. This results in a con-
tinuous scale representing a spectrum from underachievement to
overachievement. Under this model, negative scores indicate under-
achievement, that is, the student’s GPS exceeds their achievement. Con-
versely, positive values indicate overachievement, which refers to
achievement exceeding expectations. We wanted to challenge prior con-
ceptions by incorporating both underachievers and overachievers under a
general phenotype indexing individual differences in achievement-ability
discrepancies throughout the continuum, as well as considering the
underachieving and overachieving extremes of the distribution. Our ratio-
nale for using a difference-score approach rather than residualizing
achievement for GPS (as is also commonly done) is described previously.
However, residualized scores yield similar results (Supplementary Table 11
and Supplementary Figs. 1 and 2).

Multi-polygenic score analyses. For our multiple polygenic score
analyses16, we ran a 10-fold cross-validationwith three repeats inmultiple
regressions using the five previously mentioned GPS related to cognition
(including EA4) to predict age 7 achievement using the caretR package46.
We trained our model to maximize prediction at age 7 achievement,
because GPS is being used as a proxy for ability/expected achievement at
that age. When comparing correlations, we used a confidence interval
procedure to estimate the direction and magnitude of the effect, with the
cocor R package47,48. To test for multicollinearity in the final cross-
validation model, we computed the variance inflation factor for all pre-
dictors using the car R package49.

Twindesign. The twin design was used to estimate univariate heritability
across GPAΔ and related traits. Twins offer a natural experiment in
disentangling the effects of genes and environment through our a priori
knowledge of their genetic similarity:MZ twins share 100%of their genes,
while DZ twins on average share 50% of their genes. Using this
assumption, alongside several others such as the equal environment
assumption (which states that MZ and DZ twins are exposed to shared
environments to similar degrees), it is possible to estimate the effects of
additive genetic (A), shared environmental (C), and non-shared envir-
onmental (E) variance on phenotypic variance using model-fitting
approaches10. We used the R package OpenMx for all model-fitting
analyses50.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data used in this study come from the Twins Early Development Study
(TEDS). Researchers can apply for access to TEDS data for academic pur-
poses through the creation of a Data Access agreement. The full data access
policy can be found at the following link: https://www.teds.ac.uk/
researchers/teds-data-access-policy.

Code availability
The corresponding author will share the code upon request.
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