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Abstract. Conway’s Game of Life is a cellular automaton noted for its rich, complex, and emergent 

behaviour, which seems qualitatively ’lifelike’. It exists within a wider space of different rulesets of 

cellular automata, none of which have been found to display behaviours that seem as rich as 

Conway’s selected example. We present here a set of three quantitative tests for ’lifelike’ 
behaviour, based on the critical brain theory, Shannon’s theory of information entropy and  

integrated information theory, all of which are successfully able to select Conway’s Game of Life 

as an outlier within this set, which is a non-biological analogue to the selection of a habitable 

planet or universe amongst a wider space of similar settings that cannot support the same kinds 

of living systems. 
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1. Introduction 

Life is an exceptionally difficult concept to pin down with specificity and validity. The 

exact parameters of what constitutes life and its distinctive behaviours and attributes 

are subject to immense debate and controversy, and represent one of the most important 

unsolved problems in the interdisciplinary sciences. (Cleland & Cheba. 2010;Cornish- 

Bowden & Cárdenas. 2019; McKay et al. 2004) 

In light of this, those trying to solve this problem may wish to start with a simple 

representation of a lifelike system in order to try and build up from first principles what we 

mean when we say that a behaviour is lifelike, and therefore gain some insight into what 

we mean when we talk, in general, about life. 

John Von Neumann and others created the most basic and influential way to represent 

a simplistic ‘lifeform’; cellular automata, a broad set of variable and versatile programs. 
(von Neumann & Burks. 1966) 

’Automata’ here refers to the idea that the program acts as a simulacrum of a biological 

organism, without itself being biological. Cellular refers to the fact that the particular 

feature of organic systems that the structure of the program emulates is modularity. 

One may think of how a neural network creates a simplified automaton of a brain by 

selecting out of its many possible emulatable characteristics the specific characteristic of 

network structure and emulating this; a cellular automaton is similar in that it essentially 

reduces life to inter-cellular interactions, and emulates only this structure. 

Each cell has some finite number of discrete states as well as some finite set of neigh- 

bours to which it connects, and evolves in discrete generations according to its own state 

and the states of its neighbours. 

1 

mailto:jm441@st-andrews.ac.uk
mailto:t.p.kee@leeds.ac.uk


2 James McCrum & Terence P. Kee 
 

This is an absolutely bare-bones representation of how a living system functions, and yet 

they can be incredibly complex and display emergent behaviour that appears sub- jectively 

lifelike. 

Even more striking than the initial cellular automata of the 1940s – which are relatively 

complicated in structure – is Conway’s Game of Life (Gardner. 1970), developed in the 

1970s by Cambridge student John Conway (Izhikevich et al. 2015), who would go on to 

become one of the most influential mathematicians of the late 20th century, with many 

further accomplishments beyond this. 

Conway’s Game of Life (CGOL) is striking because it is simultaneously one of the simplest 

cellular automata in structure and yet, one of the most complex in behaviour. (Berkelamp 

et al. 2004) (Schiff. 2011). As the name suggests, CGOL is exceptionally subjectively lifelike, 

and yet the basic essence of the program can be boiled down to two short binary strings. 

Each cell has two states, ‘dead’ or ‘alive’, so functions as a bit. Each cell carries out a 

simple logical operation on its 8 neighbours on the simple 2D grid it occupies – referred 

to as its Moore Neighbourhood - and then reacts based on its own state. All it does is count 

how many of its neighbours are alive. If there are two or three live neighbours and it is 

alive, it remains alive. If there are three neighbours and it is dead, it becomes alive. In 

any other case it will be dead in the next generation. 

This is relatively wordy spelled out in English, but if we write out two binary strings, 

one for a live cell and one for a dead cell, where the nth bit corresponds to n live neighbours 

and the state of that bit is 1 if this produces a live cell and 0 if it produces a dead cell, 

it reduces to: 

(0, 0, 1, 1, 0, 0, 0, 0, 0) 

(0, 0, 0, 1, 0, 0, 0, 0, 0) 

In essence you have an incredibly concisely defined artificial ‘genotype’ that nonetheless 

produces a shockingly elaborate phenotype. 

We can certainly say that in CGOL we have located a very simplistic representation 

of a life-like system. We can now ask what exactly it has in common with biological life 

- what quantitative traits produce its qualitative ’livingness’? 

One core aspect of CGOL is that it is highly unpredictable. It is in general difficult 

to predict how patterns will evolve, which gives the system some sense of agency and 

independence. The first way to parametrise this unpredictability would be to say that 

the system is displaying criticality. 

Criticality refers to the behaviour of a system very near a phase transition, such that 

small perturbations in the parameter(s) controlling the phase will shift the system to 

and from different phases, resulting in unpredictable behaviour. Familiar examples can 

be found in thermodynamics and in nuclear physics, but also in biology – the human brain 

is a critical system, and it has in fact been hypothesised that such criticality is essential 

to its proper  functioning.  (Tian  et  al.  2022)  Furthermore,  a  key  marker  of  criticality is 

fractality and self-similarity, which is also a key feature of many biological systems. (;Azua-

Bustos & Mart´ınez. 2013 ;Grosu et al. 2023) 

Like living things, CGOL is critical, in that very small changes to an initial condition on 

the board can lead to wildly divergent results; it also displays the corresponding 

‘organic’ fractal patterns. (Alstrøm & Leão. 1994) (Bak et al. 1989) 

Strikingly, CGOL’s criticality directly parallels the brain. The brain alternates between 

phases where neural firing is amplified, leading to propagation and an explosion in the 

number of firing cells, and where it is ignored, leading to decay and a population collapse 

after a timelapse. (Tian et al. 2022) CGOL alternates between phases where an initial 
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small pattern of living cells will grow to cover much of the board, or will disintegrate 

into nothingness, or will stabilise in size. (Wolfram. 1984) 

The second way to discuss CGOL’s wild unpredictability is that it is computationally 

irreducible. 

Computational irreducibility is a concept developed by Wolfram which, unlike critical- 

ity, was first derived from cellular automata like CGOL and then applied to biological 

systems like the brain. (Wolfram. 2002) A computationally  irreducible  system  is  one that 

is unable to be approximated by a simpler system, so cannot be ‘shortcut’, but can 

nonetheless be deterministic in nature. 

CGOL’s computational irreducibility is a byproduct of its Turing Completeness. 

The Turing Completeness property of CGOL is that one can build any computable 

program as a configuration in CGOL and then run said program by allowing the game 

to evolve from that configuration. If one could, given only the state of generation 1 of a 

game, predict the state of generation 10,000 one would be able in general to determine 

the outcome of such a program running. Turing showed that this – the Halting Problem – 

is undecidable. (Turing. 1937) Therefore one cannot ’shortcut’ the system - the only way 

to find the state of generation 10,000 from generation 1 is to evolve all of the intervening 

states in CGOL through. 

Similarly, Wolfram argued that the brain is computationally irreducible, in that one 

could know the exact state of a brain at a given time, but be unable to predict its state 

some time later using any simple algorithm or rule. Even if the brain, he argues, evolves 

deterministically according to some exact computation like CGOL, the only way to find 

the state is to let it evolve through all the in-between states, much as one cannot ‘skip’ 
states in CGOL. He presents this as an argument for free will without non-determinism. 

What’s doubly striking here is that Conway located his specific eponymous game within 

a larger ‘multiverse’ of different games, not all of which are necessarily lifelike in this way, 

and that the reasoning he used to do was deeply tied to both of these models of its be- 

haviour. Conway, as a Cambridge student, was interested in games and cellular automata, 

and wished to create a game that would be ‘universal’ – that is, Turing complete, able 

to simulate any program within its ruleset – and also unpredictable, in that it would 

not be trivial to determine how any given starting configuration will generally play out. 

He noted that he devised many prototype games over the course of 18 months, and dis- 

carded them all. He found them uninteresting, because they were highly predictable – 

initial patterns tended to either very predictably grow, or very predictably disintegrate. 

(Izhikevich et al. 2015) 

Although he did not phrase it in these terms, what Conway was searching for here 

was a critical system – one that is not in the phase of ‘population decay’ or ‘population 

growth’, but at an unpredictable liminal point between these. He eventually found this, 
and also a Turing complete system - another related desire of his for his game - in ‘Life’. 
(See fig 1a). 

Although we cannot know what all of the rulesets Conway tested exactly were, we 

can easily define a space of rulesets that are similarly simple and adjacent to CGOL by 

simply modifying the population values in the Moore Neighbourhood that produce life or 

death. In practice that means that any two pair of nine-length binary strings can define a 

ruleset, which gives 218 possible configurations. These are referred to as Lifelike Cellular 

Automata (LCA). 

Now that we have defined a very simple representation of a living system, and a number 

of directly comparable representations that are not as strongly associated with life, we can 

ask how, exactly, CGOL objectively differs, in order to gain insight into how biological 

life differs from abiotic systems. 
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Figure 1. a) the ’Glider’, a simple pattern in CGOL that carries information across the board,  
allowing for Turing Completeness. b) A set of random starting configurations in CGOL allowed to 
freely evolve; the difficulty in predicting when a given configuration will die out is a collorary  of 
the Halting Problem. c) A set of maximally entropic ’soups’ of 50% life probability in CGOL  
converging to an equilibrium; Flammenkamp’s value of this is shown in red. d) The convergence 
of all but the most heavily populated soups to the Flammenkamp value. 

 

2. Methodology 

We here define three objective tests to which we submit any LCA in order to compare 

it to CGOL. 

Test 1) Given some set of initial starting conditions, what is the standard deviation of 

final population size compared to that of CGOL? 

Test 2) Given a maximally disordered starting system, what is the disorder of the final 

system? 

Test 3) What is the integration parameter, Φ, of this system? 

We already know from Conway’s own anecdotal account (Izhikevich et al. 2015) that 

many cellular automata – although not necessarily LCAs – have highly similar population 

values from a wide variety of different starting conditions, unlike CGOL, which is highly 

divergent from even minor variations in starting condition. So the first test serves as an 

easy way to compare the criticality/computational irreducibility of a system relative to 

CGOL. Starting from some set of different starting configurations, how distinct are the 

final population sizes after some number of generations? (See fig 1b). 

The second test is based on the basic observation that biological systems are highly self-

organising and tend to exist far from thermodynamic equilibrium; the idea that a defining 

separation between living and non-living things is ‘anti-entropy’ was popularised by 

Schrodinger in the 1940s, and so we can use it as another comparison of CGOL to its close 

counterparts in livingness. (Schrodinger. 1944) 

For this test, we consider that a discrete grid system like CGOL has the definable 

macrostate parameter of overall population of living cells, with the microstates being the 

specific cells that are alive or dead. The maximally disordered state with respect to this 

parameter would be a system where each cell has a 50% chance of being alive or dead. 

(Macii & Poncino. 1996) (Landauer. 1961) (Shannon. 1948) 

In Life-enthusiast parlance, a setup where each cell shares the same probability of being 

a ’live’ cell is called a ‘soup’. It is already known that CGOL has a self-organising effect 
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on soups of a wide range of probabilities, such that the grid drifts towards a population 

value with a much lower entropy over time. (Eppstein. 2010) (Flammenkamp. 2004) 

(See appendix 1, and fig 1c and 1d). This is, like unpredictability, a strikingly lifelike 

behaviour. So we can ask if other LCAs also do this. 

The third test is based on a new application of the neuroscience idea of Integrated 

Information Theory (IIT). (Tononi et al. 2016) 

We have already seen that CGOL displays brain-like characteristics, such as criticality, 

fractality, and emergent complexity. We therefore turn to IIT, which provides a means 

of parametrising the resemblance to the brain of some non-organic system. 

As initially conceived, IIT was intended to measure consciousness, which it equates 

to the qualia of self-awareness. This is a highly controversial and convincingly disputed 

theory. (Doerig et al. 2019) (Merker et al. 2022) 

It may, however, be possible to reinterpret Φ, the ‘consciousness parameter’, as a 

‘livingness parameter’, if we reason that systems that are highly self-connected will tend 

to more closely resemble living systems, as these systems are able to self-regulate and 

to recover from damage more effectively in a manner selected for by evolution. This is 

by far the most speculative of the three tests. Φ can be seen as a measurement of the 

extent to which a system is indivisible, such that it cannot be defined merely as the 

sum of its parts. We test it here as a measurement of lifelike behaviour, using the PyPhi 

implementation. (Mayner et al. 2018) 

Given that we already know that CGOL was selected by a human observer – Conway 

– as especially lifelike and interesting out of the set of different cellular automata, if these 

tests are able to correctly isolate CGOL as an outlier from the broader LCA set, then 

they can be said to be able to successfully parametrise the human intuition of ‘livingness’. 
 

3. Sampling 

100 of the 218 different LCAs were randomly selected by independently randomly 

generating binary strings in the range from 0 to 29 for the living and dead cell rulesets. 

There are a number of different conventions in the literature used to refer to cellular 

automata of the lifelike class. Here, we use a novel one in which each cellular automaton is 

specified uniquely by a pair of decimal numbers between 0 and 29, where the two numbers 

are the decimal representations of their binary rules trings. For example, CGOL is written 

96/32, which is just the decimal representation of 001100000 / 000100000. 

The full list of 100 LCAs used in this study for the first two tests, named  in  this notation, 

is given in Appendix 2. 

Each LCA was uniquely defined in two independent ways; on a box grid, where cells 

on, for example, the top left edge of the grid, have no neighbours above or to the left; 

and on a toroidal grid, where cells on the top left edge of the grid neighbours cells on the 

bottom right edge of the grid. A toroidal grid wraps back on itself and maps to a torus 

– a box grid maps to a chess or Go board (the latter of which was used by Conway in 

his initial experiments). 

For Test 1, five distinct ‘soups’, with each cell having 50% probability of being alive 

or dead, were randomly generated, evolved for 100 generations, then had their final 

population taken. This was carried out on both box and toroidal grids, both with 2048 

by 2048 cells overall. 

For Test 2, all of the 216 different configurations of a binary 4 by 4 grid were tested as 

the initial central square of a 25 by 25 grid, and again evolved for 100 generations, both on 

box and torus. 

For Test 3, only a 2 by 2 toroidal grid was used for each ruleset. This has 16 possible 
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× 

× 

configurations, but only a few of these will give valid Φ values. At this stage it is necessary 

to justify the use of such a relatively small system for testing using IIT. 

For the third test, a given ruleset first had to be conceptualised as a system of logic gates, 

which could then be converted into a Transition Probability Matrix (TPM). This TPM is 

the raw input of this ruleset into the IIT algorithm, and is an array of dimensions n  2n, 

where n is the number of nodes in the system. For a square grid of side length s, n = s2. 

This is inputted alongside the Connectivity Matrix (CM), which encodes the relevant grid 

structure, and has dimensions n × n. 

Just as these input values grow exponentially in size as the number of cells considered 

grows, the runtime of the PyPhi algorithm will also grow exponentially, going as O(n 

53n). Furthermore, each distinct valid configuration of a set of cells - of which there are 

at maximum 2n - will have its own distinct Φ value. 

In practice, therefore, it was found that a maximum of n = 4, or a 2 by 2 grid, was 

the largest feasible sample that could be studied for each ruleset. 

 

 
 

Figure 2. Network  diagrams  of  a  box  grid  (left)  and  a  toroidal  grid  (right).  Note  that  cells in 
the right image connect to cells on the opposite side of the ’grid’, producing many more 
interconnections. 

 

 

 

4. Results 

All three tests were successfully able to select CGOL as an outlier in the LCA set, thus 

parametrising an intuitive sense of livingness, with very similar results on both box and 

torus grids for the first two tests. 

CGOL was unusual in how low entropy its final state is after evolution from a maximum 

entropy 50% state, although most LCAs did tend to move away from thermodynamic 

equilibrium as they evolved, and it was not the lowest entropy of all states, which can be 

attributed partially to the fact that the minimum entropy state of a CA grid is empty, so 

that any predictably exploding or decaying ruleset will tend to produce a stronger anti- 

entropic effect by this metric. (Figure 3). This was also true on a much longer timescale. 

(Figure 4). 

As expected, CGOL had a higher standard deviation of final population than the majority 

of other rulesets tested. (Figure 5). This means that given all the possible initial ‘seeds’ of 
different possible fillings of the 16 central cells, most rulesets evolved them in relatively 

predictable and convergent ways, unlike CGOL and a few other outliers, which evolved in 

divergent and chaotic fashion. 

It was also found that some rulesets displayed a surprising correspondence between ash 

and seed density. Of the 100 rulesets, the mean population density of soup after 100 

generations – averaged over five runs – was within —0.3— % of the mean population density 

of a patch of 16 randomly generated cells – averaged over all its possible config- 
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urations – for 64. By way of comparison, this difference was around 7% for CGOL. It is 

unclear why this is the case. 

Finally, the minimum, mean, and maximum Φ value of CGOL across its valid config- 

urations was distinctly lower than the corresponding average value of the other LCAs 

tested (Figure 6). 

This is interesting, as going by a naive implementation of the algorithm as originally 

conceived in IIT, higher Φ would correspond to a greater ’consciousness’, or in this case 

livingness. However, connecting back to the idea of criticality, increasing the Φ of a real  
brain beyond a certain point would correspond to supercriticality, and in fact would 

represent a state of epileptic seizure. (Hesse & Gross. 2014) This actually supports the 

idea that CGOL exists at a critical point within the space of LCA, neither having too 

high of a Φ value or too low. 

A strange result of Test 3 was that configurations that were simply rotations or mirror- 

ings of each other would sometimes give different outputs from the IIT algorithm (Figure 

6). It’s unclear why this is. 

 

 
 

Figure 3. For both a box and a torus grid, the final value towards which the population density  
of ’soups’ - ash density - is left-shifted for CGOL relative to the mean of 100 other rulesets, 
indicating a lower entropy equilibrium. 

 

 

 

 

Figure 4. A set of different rulesets are allowed to evolve from soup to ash. The lowest line is 
CGOL, which is clearly again moving towards a lower entropy equilibrium than its counterparts. 
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Figure 5. The divergence of different initial configurations is much higher - right-shifted - for 
CGOL than for the mean of other rulesets on both a torus and box. 

 

 

 
Figure 6. The a) minimum, b) mean, and c) maximum phi values of the different valid config- 

urations of a 2 by 2 grid were all smaller for CGOL than for most other LCAs. d) The different 
configurations (white = dead, black = live) of a 2 by 2 grid and their outputs from the IIT 
algorithm for the CGOL ruleset. 

 

5. Discussion 

We may think of Conway’s Game of Life as simply one world, amongst many possible 

worlds of the same kind. 

We can analogise its special place within the LCA ruleset to the special place that Earth 

occupies amongst known planets, or the special place that our ‘fine-tuned’ universe may 

theoretically occupy within a wider multiverse. (Goff. 2024) 

It is the configuration of a specific set of parameters that is most conductive to what 

we may call life. If the physical constants of our universe were slightly different, then 

life could not exist – indeed, atoms could not exist. Equally, if some currently not fully 

characterised set of parameters of planet Earth – stellar type, planetary distance, satellite 

size – were different, Earth would be a dead world. 

Lifelike cellular automata are controlled by a similar set of highly sensitive parameters, 

such that changing any one of the crucial 18 bits can mean the difference between a very 

rich and qualitatively interesting system and the kind of system that Conway dismissed 

as too uninteresting to bother playing with. 

Notably, unlike those analogue cases, we have very little idea how these parameters exactly 

relate to the behaviour of the system. We are aware of how, for example, the 
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Earth’s position relative to the Sun affects its living systems, and so can look for planets  

with similar positioning. We know that altering physical constants in certain ways would 

result in certain kinds of universes. While Wolfram has produced a classification system for 

different kinds of cellular automata, even Conway was only able to find the class he was 

looking for by trial and error. We do not understand – and it may be unknowable – how 

exactly one should want to configure the 18 bits to create a non-CGOL ruleset that seems 

highly living, or, indeed, how to reliably produce lifelike rulesets in other cellular 

automaton systems. 

However, we can, in essence, identify ‘biosignatures’ that mark out habitable rulesets. 
Because we know that CGOL is a qualitatively lifelike system, we can hypothesise that it 

will have certain quantitatively lifelike traits, and then search for these traits across the 

space. In this study, we have identified three such abstract biosignatures – criticality, anti- 

entropic behaviour, and interconnectivity. The first two were definitively able to separate 

CGOL from similar rulesets; the third requires further study, but seems promising in this 

very early stage. 

This is instructive both in the development of new ways to locate habitable, or in- 

habited, planets and worlds, and also in the use of non-biological systems as more than 

simply an analogue to a living system. CGOL is an excellent example of many differ- 

ent physical processes, and indeed, it is an excellent example of a kind of non-biological 

life in its own right. Its similarities are more than just surface deep; it has quantitative 

properties in common, not just a qualitative resemblance. 

Further research is needed to characterise more of the lifelike ruleset of cellular au- 

tomata, as well as to run similar tests on other cellular automata outside of this ruleset. 

Other rich and interesting rulesets may be found in this way, and the underlying markers 

of such systems understood more clearly. Furthermore, the tests for criticality and inte- 

gration in addition to far-from-equilibrium behaviours can be applied to a wider variety 

of systems than relatively simple cellular automata, which stand here as a case in point 

to testify to their usefulness. 
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7. Appendix I 

The Flammenkamp value of the attractor of soup population density for the CGOL 

ruleset - 2.87115% - is strangely close to Euler’s number, e. This is not the only similar value 

for CGOL that is close to this constant. 

If we start with a 50% population density grid and run one iteration of Conway’s Game 

of Life, the population density will generally be around 27%. This experimental result 

can also be predicted using this equation: 
P = 1 B(3, 8, 1 ) + 1 B(2, 8, 1 ) + 1 B(3, 8, 1 ) 

      

2 2 2 2 2 2 

P =  1 (0.21875) + 1 (0.10938) + 1 (0.21875) = 0.27344 
   

2 2 2 

Recursively applying this equation with a starting value of 0.5 for CGOL gives a 

limiting value of approximately 1 . 

 
8. Appendix II 

 
448/131 221/151 333/329 398/165 153/487 080/280 323/000 244/130 292/361 509/212 
286/117 234/381 002/484 369/366 347/116 480/505 053/364 132/413 404/024 477/354 
411/168 203/496 405/247 218/059 098/413 242/341 074/170 500/368 096/139 325/193 
438/370 148/278 066/044 253/355 174/493 494/194 134/122 119/237 012/244 289/185 
453/222 358/008 069/440 051/481 036/369 438/040 202/411 234/500 483/389 187/478 
338/404 116/491 450/322 266/128 446/449 150/337 376/054 160/192 183/374 331/314 
161/043 454/031 387/367 317/008 302/403 209/486 312/113 052/268 261/323 370/443 
191/163 267/315 325/077 162/274 473/160 146/127 361/250 347/476 293/350 480/474 
426/167 186/307 071/104 292/148 181/411 020/296 308/456 501/212 287/279 446/388 
134/028 342/320 095/121 495/188 478/281 229/273 433/387 479/485 484/024 153/350 

Table 1. Rulesets used in this paper. 


