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. Robot-Related Injuries in the Workplace: An Analysis
: of OSHA Severe Injury Reports

3 Abstract

+ Industrial robots are increasingly commonplace, but research on prototypi-
s cal accidents and injuries has been sparse, hindering evidence-based safety
o strategies. Using Severe Injury Reports (SIRs) from the U.S. Occupational
7 Safety and Health Administration (OSHA), we identified 77 robot-related
s accidents from 2015-2022. Of these, 54 involved stationary robots, resulting
o in 66 injuries, mainly finger amputations and fractures to the head and torso.
10 Mobile robots caused 23 accidents, leading to 27 injuries, mainly fractures
u  to the legs and feet. A two-stage deductive-inductive thematic analysis was
1 performed using text data from the final narratives in the reports to dis-
13 cover patterns in tasks, precipitating mechanisms, and contributing factors.
1 Findings highlight the need for guards and collision avoidance systems that
15 detect individual extremities. Post-contact strategies should focus on miti-

16 gating finger amputations. More structured and detailed narratives in the
17 SIRs are needed.

18 Keywords: Industrial Robot-Related Injuries and Accidents, Occupational
19 Safety and OSHA Reports, Human-Robot Interaction and Injury
20 Prevention
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1. Introduction

One of the principal expressions of the will to automate is the steady in-
crease of robots in the workplace. In 2020, there were approximately 300,000
robots in the United States, a 7% increase from the previous year (Heer,
2020). The International Federation of Robotics has reported a 9% average
annual increase in robot density (robots per worker) in the U.S. since 2014, a
trend driven mostly by the automotive and electronics industry (IFR, 2020).
The U.S. ranks third behind China and Japan in new robot installations per
year (Heer, 2020), and adoption of robots in the workplace is expected to
increase (NIOSH, 2019).

As the integration of powerful robotic technology into the workplace ad-
vances, it has, perhaps inevitably, led to an increase in robot-related fatal-
ities. According to Stowers et al. (2016), the first recorded incident of a
robot-related fatality occurred in 1979 when a person was hit in the head
by a robotic arm at an assembly line in the U.S. Another death occurred
two years later in Japan when a worker was crushed by a robotic arm while
he was repairing it (Stowers et al., 2016). In 1984, an experienced die-cast
operator bypassed a safety system to enter a robot’s work envelope and was
struck from behind and pinned against a pole, which prompted one of the
first publicly available case studies of a robot-related fatality in the U.S.
(Sanderson et al., 1986). A recent study reported 41 robot-related fatalities
in the U.S. between 1992 - 2017 (Layne, 2023). Another study, outside of the
U.S., reported that industrial robots accounted for about 5% of work-related
deaths in South Korea from 2014 — 2018 (Kim et al., 2021).

While these reports and case studies provide insights into fatalities, non-
fatal severe injuries are not as well documented (NIOSH, 2019, 2023). How-
ever, some work has been done. For example, Jiang and Gainer (1987)
analyzed 32 reports from Germany, Japan, and Sweden in the late 1970s
through the mid 1980s, finding that most mishaps involved pinch-point in-
juries of front-line workers caused by poor workplace design. Malm et al.
(2010) analyzed 25 robot-related severe injuries which occurred in Finland
during the period spanning 1987 to 2006. They found that most injuries
involved the hands, and more than half occurred during maintenance or re-
pair operations. Gihleb et al. (2022) found that greater robot exposure in
the US and Germany during the period of 2005 - 2011 was associated with
an overall reduction in the rate of work-related injuries — but not the most
severe injuries.
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These findings notwithstanding, occupational surveillance data on robot-
related injuries in the U.S. has been relatively limited (NIOSH, 2023). Be-
cause of this, the NIOSH Center for Occupational Robotics Research empha-
sizes the need to identify and monitor robot-related injuries and risk factors,
to quantify the burden of occupational injuries using existing data systems,
and to develop new surveillance methods and analytical techniques (NIOSH,
2024). In line with this, more comprehensive data for the US began to be
recorded in 2015 when the Occupational Safety and Health Administration
(OSHA) started requiring employers to report any severe injury that resulted
in a hospitalization (Michaels, 2016).

These Severe Injury Reports (SIRs) are a potential boon to understanding
robot-related accidents because they include written narratives in addition
to coded variables. By augmenting the original codes with information from
the narratives, it becomes easier to identify recurring hazard patterns (Drury
and Brill, 1983). Inspired by a scene synopsis in theater or film, a scenario
describes a prototypical accident in terms of the actors (victims), the props
(products), the scene (environment), and the action (task) (Drury and Brill,
1983; Lincoln et al., 2004). Lincoln et al. (2004) showed that a thematic
analysis could be used to discover patterns by analyzing the tasks, precipi-
tating mechanisms, and contributing factors from narrative reports. One of
the aims of this paper is to identify hazard patterns via thematic analysis of
the final narratives in the SIRs using the categories of Drury and Brill (1983)
and Lincoln et al. (2004).

Accident prediction does not necessarily depend on retrospective analysis
(Grant et al., 2018), and considerable work has already been done to antici-
pate pre-collision scenarios and post-collision injuries in order to develop col-
laborative robots (Vasic and Billard, 2013; Hentout et al., 2019; Villani et al.,
2018; Robelski and Wischniewski, 2016). Collaborative robots, or ”cobots”,
are a type of robot designed to work alongside humans in a shared workspace.
Unlike traditional industrial robots that operate in guarded areas away from
human workers, cobots are built with features and functionalities that allow
them to (more) safely interact with human operators. The ISO/TS 15066
technical specifications for safety of collaborative robots delineates different
types of collaboration, including speed and separation monitoring (SSM) as
a means to prevent collisions, and power and force limiting (PFL) to miti-
gate the severity of post-collision injuries (Kumar et al., 2021). Due to the
dearth of detailed data on robot-related injuries, controls such as PFL have
turned to domains outside of human-robot interaction, such as automobile

3
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crash-testing, for guidance on robot-related injury criteria (Haddadin, 2014).
As a result, the focus has been on injuries to the head, neck, and chest,
with lower extremities excluded due to their assumed reduced relevance for
robotics (Haddadin, 2014). Some researchers contend that automotive in-
jury assessment tools may not be suitable for robotics, because high-speed
collision criteria may not accurately represent lower-speed human-robot in-
teractions (Robla-Gomez et al., 2017). In addition, the focus on the head
and torso to the exclusion of the extremities may not accurately reflect the
empirical distribution of robot-related injuries on the body. More detailed
and differentiated measures of injury severity for human-robot interactions
are needed based on real occupational surveillance data (Haddadin, 2014).

1.1. Research Goals

The first goal of this study (Goal 1) was to assess the Severe Injury
Reports (SIRs) in terms of their utility as a resource for safety research and
surveillance, in line with the NIOSH Strategic Plan (NIOSH, 2023). A mixed-
methods approach was employed to quantify the proportion of narratives
containing the data elements of Drury and Brill (1983) and Lincoln et al.
(2004), as well as the inter-rater reliability of the coding process. Our chosen
methods and their pitfalls are discussed, and we propose enhancements to
the SIRs to increase their value to future researchers.

The second goal (Goal 2) was to identify common hazard patterns preced-
ing accidents through thematic analysis. Evidence is presented for tentative
hypotheses about hazard scenarios - the recurrence of specific combinations
of tasks, contributing factors, and precipitating mechanisms - and possible
pre-collision hazard controls are discussed.

The third goal (Goal 3) was to describe the physical consequences of
robot-related accidents, specifically how injuries are distributed across the
body. Utilizing the OIICS codes for injury nature and body part, descriptive
statistics and visualizations are presented for each type of robot and contact
event. The findings are discussed in relation to robot-specific injury criteria
and post-collision mitigation strategies.

2. Methods

2.1. Data Source

The U.S. Occupational Safety and Health Administration (OSHA) has
required employers to report severe work-related injuries since January 1,

4
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2015 (OSHA, 2023). As defined by OSHA, a severe injury is an amputation,
in-patient hospitalization, or loss of an eye (OSHA, 2023). The reports are
freely available for download on the OSHA website (OSHA, 2023). Since the
SIRs only include incidents under federal OSHA jurisdiction, reports from
the 22 states with their own OSH plans covering private sector employees
were not included in the present analysis (OSHA, 2021). The database was
downloaded in November 2022 and included reports from January 1, 2015
through April 30, 2022.

Each report contains a narrative description of the mishap, as well as
Occupational Injury and Illness Classification System (OIICS) codes. There
are four OIICS code categories: Nature of Injury or Illness, Part of Body
Affected, Source (and Secondary Source), and Event (U.S. Department of
Labor, 2012). Definitions of these categories are provided in Table 1.

2.2. Record screening procedure

Figure 1 depicts the flow of information through the different phases of the
screening procedure, which was based on the Preferred Reporting Items for
Systematic reviews and Meta-Analyses (PRISMA) statement (Page et al.,
2021). When the OSHA SIR database was accessed, it contained 73,254
reports. Because there are no robot-specific OIICS codes, the text of the
final narratives was used to identify robot-related injuries. Forty-eight reg-
ular expressions (regex) patterns were developed to identify mentions of
robots (Table A.10). These targeted key terms and included synonyms,
variations, and misspellings, for example, (?\i)robo(t|ts|t’s|ts’)? and
(?\1)rbt|robt|rbot|robutt|robit. This initial search returned 204 re-
ports.

The operational definition of robots is based on ISO 8373: A robot is an
automatically controlled, reprogrammable, multipurpose manipulator, pro-
grammable in three or more axes, cither fixed in place or mobile for use in
industrial automation applications. A mobile robot is defined as a robot able
to travel under its own control, including a mobile platform with or with-
out manipulators. Automated guided vehicles (AGVs), laser guided vehicles
(LGVs) and automated material transfer carts were included in this defini-
tion. Eighty-seven reports remained after non-robots were excluded. False
positives included many instances of all-terrain vehicle (ATV) accidents.

The remaining records were only included if the robot in question was a
primary or secondary source, according to the definitions in Table 1. Ten
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Figure 1: PRISMA flowchart for record screening process



records were excluded on these grounds. Ultimately, 54 unique records in-
volving stationary robots and 23 records for mobile robots were included for
analysis. False positives involved incidents where a robot was present in the
environment and mentioned in passing, but was only incidental to the acci-
dent — it neither directly produced the injury nor generated the source that
produced the injury.

CONCEPTUAL CODES AND DEFINITIONS

a.q The type of broad activity the injured person was

Activity . At
engaged in when the injury occurred

The specific activity engaged in when the injury

occurred providing additional detail

Task

The key element that increased the risk such that
Contributing Factor what is normally completed without incident
resulted in injury

The cause that initiated the chain of events
Precipitating Mechanism  leading to the injury; those mechanisms involved
at the start of the injury event

The object, substance, bodily motion, or exposure
Primary Source that directly produced or inflicted the previously
identified injury or illness

The object, substance, or person that generated the
source of injury or illness or that contributed to the

Secondary Source event or exposure. Not all mishaps involve a
secondary source

Injury Event The principal characteristic of the injury or illness

. Th f th irectly aff h

Injury Nature .e Part of the body directly affected by the nature
of injury
The way the injury or illness was produced or inflicted

Body Part v Wy 12

by the source of injury or illness

Table 1: Conceptual codes (data elements) and their definitions
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2.3. Application of Trustworthiness Criteria for Thematic Analysis

The qualitative analysis was performed by the first two authors. Trust-
worthiness was established via the criteria defined by Guba and Lincoln
(1982), Tobin and Begley (2004), and Nowell et al. (2017). Trustworthiness
is composed of four elements:

Credibility. Credibility is analogous to internal validity (Tobin and Begley,
2004). It addresses the fit between the actual events and the OSHA inves-
tigators’ written accounts, versus the researchers’ interpretations of those
accounts. Credibility is typically established via member checks, where the
researchers confirm their findings by following up with the respondents. In
this case, the authors did not have access to either the investigators or the
victims — only the text itself. Therefore, the authors established credibil-
ity by comparing their interpretations via inter-rater reliability calculations
(described in Section 2.4.1).

Transferability. Transferability is analogous to external validity and concerns
the generalizability of results (Tobin and Begley, 2004). This was achieved
in the Discussion (Section 4) by integrating and comparing present findings
with similar studies, showing how the results align with or diverge from
previous research. In the Results and Discussion, ”thick descriptions” and
extensive quotations are provided to create more context for readers to assess
the transferability of the findings.

Dependability. Dependability is analogous to reliability and refers to whether
the research method is logical, traceable, and clearly documented (Nowell
et al.,; 2017). The authors created an auditable trail of their decisions, which
included the R Markdown notes documenting the data screening procedure,
the code-book documenting the thematic analysis, along with contempora-
neous notes and memos.

Confirmability. Confirmability is analogous to objectivity and is concerned
with establishing that the results are clearly derived from the data and not the
researchers’ imaginations or biases (Tobin and Begley, 2004). We therefore
provided as much raw data as possible in the form of actual text extracts to
support our conclusions.
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2.4. Thematic Analysis

To address Goal 2, identifying common hazard patterns preceding ac-
cidents, a thematic analysis was performed using Dedoose 9.2. Thematic
analysis is ”a method for identifying, analyzing, organizing, describing, and
reporting themes found within a data set” (Braun and Clarke, 2006). A
theme " captures something important about the data in relation to the re-
search question, and represents some level of patterned response or meaning
within the data set” (Braun and Clarke, 2006). In this study, themes refer to
patterns within the higher-level conceptual categories (a.k.a. data elements)
of Task, Contributing Factor, Precipitating Mechanism, etc. defined in Lin-
coln ct al. (2004), which were established a priori before the analysis began
(see Table 1).

A two-stage deductive-inductive coding approach was performed (Fereday
and Muir-Cochrane, 2006). The deductive stage began with a set of a priori
conceptual codes (Table 1) which were applied to the data. The inductive
stage involved abstracting new categories (themes) that were not pre-defined.

2.4.1. First-Stage Deductive Coding Procedure

The first two authors began by independently and systematically parsing
each narrative report, highlighting selections of text (referred to as excerpts)
and applying a conceptual code to each excerpt according to the procedure
described by Guest et al. (2012). Ultimately, 342 coded excerpts were gen-
erated by Rater A and 337 by Rater B. Table 2 shows an example of one
report, and how the text was excerpted and coded by the two raters. Not
every narrative contained enough information for every code to be applied,
and the two raters did not always agree on how to excerpt and code the text.
Before moving on to the inductive second-stage of the analysis, we ensured
there was "good” agreement between the raters.

This was done by calculating inter-rater reliability (IRR) via Cohen’s
Kappa (Cohen, 1960; De Vries et al., 2008). Cohen’s Kappa applies to a
situation where two or more judges independently assign mutually exclusive
nominal categories to a set of independent items. It indexes the proportion
of agreement after chance agreement is removed from consideration (Cohen,
1960). In our case, the judges were Raters A and B, and the mutually ex-
clusive nominal categories were the conceptual codes in Table 1. A straight-
forward IRR calculation was thwarted because the items (excerpts) were not
actually independent — each rater created their own set of excerpts. Using



ID: 2016099119

Source: Extruding, injecting, forming, molding machinery, unspecified (3530)

Secondary Source: NA (NA)

Event: Caught in running equipment or machinery during regular operation (6412)
Nature: Cuts, lacerations (132)
Part of Body: Finger(s), fingernail(s), unspecified (4420)

Final Narrative: An employee entered a robot cell through an opening used to

remove sand. As the employee attempted to adjust the casting, the saw caught and
cut the employee's finger. An interlocked gate was in place at the time.

Conceptual Code

An employee employee Victim
robot cell; An
robot cell interlocked gate was Environment
in place at the time
regular operation regular operation Activity
As the employ(.ee attempted to adjust
attempted to adjust X Task
. the casting
the casting
through an opening
used to remove sand; An N/A ibuting F
interlocked gate was in St atton
place at the time.
entered a robot cell
N/A through an opening Precipitating Mechanism

used to remove sand

the saw caught and cut
the employee’s finger

Table 2: Example of one record showing coded excerpts as part of the first-stage deductive

coding

caught and cut

10

Injury Event
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Table 2 as an example, Rater A excerpted ” An employee” to be coded as Vic-
tim, while Rater B excerpted "employee”. On a semantic level, both raters
agreed on the victim, but the two text strings did not match. To obtain a
score, 20% of each Rater’s excerpts were sampled, stratified by conceptual
code category, then randomized and given to the other rater to code. This
resulted in two point estimates of Kappa — one for Rater A given a sample
of Rater B’s excerpts, k4, and for Rater B given a sample of Rater A’s
excerpts, kpja. No formal hypothesis testing was done with these estimates.
They were used to guide discussion and resolve any discrepancies in how the
definitions in Table 1 were interpreted and applied. The entire deductive
coding procedure had to be repeated before "good” agreement was finally
achieved.

”Good” agreement ultimately depends on the context and judgement of
the researchers, and there are a variety of standards proposed by different
authors. Fleiss (1971) suggests that .60 to .74 is "good”, and .75 to 1.0 is
"excellent”.  Landis and Koch (1977) propose that values between 0.61 to
0.80 represent "substantial agreement” and 0.81 to 1.0 is "almost perfect”
agreement. Cicchetti (1994) suggest that values below .70 are unacceptable,
between [.70 and .79] are fair; between [.80 and .89] are good, and greater
than .90 are excellent. We therefore established a cutoff of 0.70 for this
analysis.

2.4.2. Second-Stage Inductive Coding Procedure

Thematic analysis can be used for a wide range of epistemologies (Now-
ell et al., 2017). Developed for constructivist paradigms in the social sci-
ences, theme discovery and mixed-methods can be applied to both post-
positivist and interpretivist epistemologies (Ryan and Bernard, 2003). A
post-positivist stance was taken here, where it was assumed that the haz-
ard patterns which preceded the accidents did indeed constitute an objective
truth "out there”, although the authors recognized that only successive ap-
proximations of that truth could be made (Blandford et al., 2016).

Stage two was a bottom-up, data-driven, inductive process where themes
organically emerged from the data without pre-existing conceptual codes.
The authors followed the procedure in Braun and Clarke (2006):

1. Generating initial codes: Fach rater independently reviewed the ex-
cerpts in each category from the from the previous stage, parsing them
one at a time, and abstracting from each specific excerpt one or more
tentative codes.

11
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2. Searching for themes: The initial codes were grouped into clusters,
along with their excerpts and complete narratives. This was done in-
teractively using manual tools such as whiteboards and sticky notes,
but ultimately Dedoose was used to create the code-book.

3. Reviewing themes: The clusters of coded excerpts (i.e., the emerging
themes), were considered in the larger context of their narratives and
the entire corpus. Adjustments were made based on the two criteria of
internal homogeneity and external heterogeneity: data within themes
should cohere together meaningfully, while there should be clear and
identifiable distinctions between them (Braun and Clarke, 2006).

4. Defining and naming: This was to delineate and clearly articulate the
defining characteristics of each emerging theme and to assign it a de-
scriptive name.

Steps 2 - 4 were repeated until we judged the themes fit the data well and
the process became one of fine-tuning, at which point we stopped (Braun

and Clarke, 2006).

2.5. Re-Coding OIICS Codes for Injury Analysis

Low-level OIICS codes for Body Part were grouped into higher hierar-
chical levels to facilitate sense-making: The new code head comprised the
original codes for head, nose, neck, and face. Torso comprised the abdomen,
ribs, chest, lungs, back, whole body, and internal. Arm comprised forearm,
upper arm, arm, shoulder, collarbone, and elbow. Hand comprised the wrist
and hand. Finger comprised the finger. Pelvis comprised hip and pelvis.
Leg comprised leg, lower leg, and knee. Foot comprised ankle, toes, and foot.

When multiple injuries occurred within the same incident, the OSHA
investigators, being limited to only one Nature and Body Part field, were
forced to code the incident as ”"Multiple body parts, n.e.c.” ("not elsewhere
classified”). In most cases when there were multiple injuries, we were able
to use information in the narrative text to code them individually. When
multiple instances of the same Nature occurred to the same Body Part (e.g.,
three fractures to the left tibia), we counted it as a single injury.

12
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3. Results

3.1. Inter-Rater Reliability and the Utility of Narrative Reports

The initial inter-rater reliability test revealed low agreement for Environ-
ment, Contributing Factors, and Precipitating Mechanisms. Close inspection
of the test results showed that what Rater B labeled as ”environment,” Rater
A often categorized as a ”contributing factor.” Similarly, classifications by
Rater A as ”contributing factor” were frequently coded by Rater B as ”task,”
”environment,” or ”precipitating mechanism.”

Table 3: Prevalence of conceptual codes within the corpus of records, and IRR values after
the initial and final round of deductive coding. A minimum value of 0.70 was required
before proceeding to the inductive stage.

Rater A|B Rater B|A
Code Prevalence Initial Final Initial | Final
Victim 100% 1.00 1.00 1.00 1.00
Environment 30% 0.32 1.00 0.92 1.00
Activity 60% 0.72 0.94 0.79 0.88
Task 86% 0.77 0.91 0.70 0.72
Contributing Factor 14% 0.54 0.82 0.22 0.90
Precipitating Mechanism 58% 0.28 0.82 0.58 0.80
Injury Event 91% 0.82 0.96 0.85 0.92
Pooled - 0.70 0.93 0.78 0.89

Upon reviewing the results and discussing the discrepancies together, it
became clear that the primary issue was the coding level: semantic/explicit
versus latent /interpretive. Rater B’s approach was more conservative, fo-
cusing strictly on the text’s explicit content. In contrast, Rater A engaged
in deeper interpretation, attempting to infer broader meanings and implica-
tions. For example (Table 2), Rater A interpreted the mere mention of an
"interlocked gate” in a report as significant in itself, implying an attempt to
communicate the insufficiency of guarding mechanisms. Conversely, Rater B
classified it under ”environment,” noting that no failure of any safety sys-
tem was explicitly mentioned in the text. After these discussions, the entire
corpus was re-coded by the two raters, with Rater A shifting to a more
conservative, explicit coding style. Although Table 3 and Table 2 indicate
persistent disagreements in the Final coding, the final scores improved to
indicate "good” or "excellent” agreement for all categories.

The brevity of the narratives contributed to the raters’ coding discrep-
ancies. The median word count was 36, with an inter-quartile range of [29,

13
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48] and a total range of [17, 90]. Not all reports were complete with all the
data elements (conceptual codes) from Table 1. Table 3 shows the prevalence
of each conceptual code across the corpus of reports. For example, a Con-
tributing Factor was able to be coded in 14% of the reports; details about
the Environment in 30%; and a Precipitating Mechanism in 58%.

3.2. Thematic Analysis of Hazards

The thematic analysis was only performed for the conceptual categories
of Task, Precipitating Mechanism, and Contributing Factor. Excerpts from
the other categories did not contain enough information for analysis (e.g.
Victim was almost always simply ”the employee” with a few exceptions that
will be mentioned in Section 4.3.3.

Table 4 details the themes for stationary robots, along with a count of the
number of occurrences, and selected examples excerpts. Troubleshooting was
the most common theme among Tasks, followed by setups, and maintenance.
There is no U.S. regulatory definition of "maintenance”, but it is usually
defined as keeping equipment in proper condition in a routine, scheduled,
or anticipated fashion (OSHA, 2003). Troubleshooting therefore represents
unplanned upkeep, when an employee takes action to correct an incipient
problem. Sudden motion of the robot while the person was in its working
envelope was the most common precipitating mechanism, and the cause of the
motion was often unexplained in the report. Excerpts of contributing factors
were sparse, but they often mentioned that the equipment was guarded, not
guarded, or not locked out.

In contrast to what was observed for stationary robots, regular opera-
tion was the most common theme of Task for mobile robots, followed by
troubleshooting (Table 5). Entering a robot’s path, unbeknownst to the em-
ployee, was the most common precipitating mechanism, followed by vehicular
collisions.
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Troubleshooting

Setup and Inspection

Maintenance and Cleaning

Regular Operation

Trainning

Precipitating Mechanisms

Sudden Unexplained

Troubleshooting Entry

User Input

Accidental Entry

Sudden Release of Energy

Trip

Example Excerpts

N=14

N=13

N=10

N=14

N=7

Contributing Factors

Guarded

Un-Guarded

Not Locked Out

Malfunction

= Entered a robot cell to determine why the robot stopped working
= Attempting to clear slag from a welding tip

= Installing a robotic welder and finishing the cement grouting around
the workstation

= Trying to change over the robot settings

= Loading a weld fixture into a weld robot cell

= Adjusting the lower pin alignment on a robotic cell stationary welder
* Removing lint from a monitor behind a robot
* Replacing suction cups on an end-of-arm tool

= Reaching to move a paver into a conveyor system
= Observing a robot stacking lumber onto pallets for shipment

= Training a new employee on how to operate a robotic welder

= The robot became energized
» The machine actuated while his left hand was in it

= An employee entered a robot cell through an opening used to
remove sand. As the employee attempted to adjust the casting [...]

= Arock fell onto the conveyor. The employee attempted to remove
the rock[...]

= An employee was trying to change over the robot settings on a
pneumatic welding machine when a coworker pressed a button [...]

= When an employee turned the control on the robotic extruder machine
to auto [...]

= She stepped back into an unguarded robotic material handler
= His foot entered the service pit of an adjunct active robotic welder

» When he manually released the clamp, it closed on his left pinky

= Tripped and fell over the plug and cord to a Xenex robot

= The active welder was guarded at the time of the incident.
= The area was guarded with light curtains at the time of the inciden

= The machine was unguarded at the time.

= The system was not de-energized at the time of the incident
= The cell’s robot was not locked out during cleaning operations

= The sensor on the gate malfunctioned and allowed the robot to operate

Table 4: Stationary robots themes. N is the number of unique reports.
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MOBILE ROBOTS

Regular Operation

Troubleshooting

Setup

Maintenance and Cleaning

Precipitating Mechanisms

Accidental Entry

Collision

Sudden Release of Energy

Spontaneous Restart
Trip

Sudden Unexplained

Example Excerpts

N=3

N=3

N=2

= The employee put the LGV in manual, got off the machine
= Driving a forklift to be parked
= Operating a remote-controlled tree trimming robot

= About to move a cart that was blocking an automated guided vehicle
from its designated stop

= Working on an automatic guided vehicle (AGV) that had stalled

= Moving laser guided vehicles (LGV) due to a jam up

= Stacking a unit of corrugated sheets

= Walking across the floor

= Pulling an irregular cart full of heavy bulk packages out of an automated
guided vehicle

* Removing a gearbox from the frame of a laser-guided truck
= Cleaning a charging pad for robotic machines<bReplacing a broken
clevis and bolt

= His foot entered the path of an automated material transfer cart

= He was sitting on the catwalk with his legs hanging over the edge, when
an automated transfer car system traveled beneath the catwalk

= As the employee was exiting the charging pad, he placed his right arm
and hand outside the charging pad area to push off

= Cargo on the second employee’s AGV struck a car on the injured
employee’s AGV train.
= The AGV swung around and collided with another AGV

= After removing the last two bolts holding the gearbox to the frame, the
gearbox fell

= When the employee moved the cylinder to inspect it, the cylinder
released in the upward position

= The employee kicked the sensor to stop the LGV in auto. The LGV reset after
15 seconds and started up again

= Tripped over the hitch of a stationary robot

= The cart started to move

Table 5: Mobile robot themes. N is the number of unique reports.
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3.3. Fvents and Injuries

Table 6 shows the joint distribution of Injury Nature and Body Part. For
stationary robots, amputations of the finger are the most frequent specific
injury (N=25, 38%) followed by fractures affecting various bones in the arm
(N=4, 6%), torso (N=4, 6%), and head (N=3, 5%). Thirty-two injuries
(48%) involved the fingers and hands; 19 (29%) involved the head, torso,
and pelvis; and 13 (20%) involved the arms, legs, and feet. Amputations
are the most frequent type of injury (N=25, 38%), followed by fractures
(N=20, 30%), and lacerations (N=8, 12%). Other injury types such as burns,
contusions, and electrocutions contribute less frequently with a combined
total of 13 cases (20%).

For mobile robots, fractures of the leg are the most common specific injury
with 9 cases (33%), followed by soreness of the torso, fractures of the pelvis,
and fractures of the foot, each with 3 cases (11% each). Four injuries (15%)
involved the fingers and hands; 8 (30%) involved the torso and pelvis; and
15 (56%) involved the arms, legs, and feet. Fractures are the most common
injury (N=17, 63%), followed by soreness (N=4, 15%). Less frequent were
amputations, avulsions, contusions, crushings, and lacerations, each with 1
or 2 reported instances, totaling 6 cases (22% combined).
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Table 6: Joint distribution of injury types and body parts for stationary and mobile robots.

Arm  Finger Foot Hand Head Leg NEI Pelvis Torso

Stationary Robots

Amputation 0 25 0 0 0 0 0 0 0
Avulsion 1 0 0 0 0 0 0 0 0
Burn 1 0 0 0 1 0 0 0 0
Concussion 0 0 0 0 1 0 0 0 0
Contusion 1 0 0 0 1 0 0 0 2
Electrocution 0 0 0 1 0 0 0 0 0
Fracture 4 1 1 2 3 2 1 2 4
Hernia 0 0 0 0 0 0 0 0 1
Laceration 0 3 2 0 1 1 0 0 1
NEI 0 0 0 0 0 0 1 0 0
Puncture 0 0 0 0 0 0 0 0 1
Soreness 0 0 0 0 1 0 0 0 0
Mobile Robots

Amputation 0 1 0 0 - 0 - 0 0
Avulsion 0 0 0 0 - 1 - 0 0
Contusion 0 0 0 0 - 0 - 1 0
Crushing 0 0 0 0 - 0 - 0 1
Fracture 0 0 3 2 - 9 - 3 0
Laceration 1 0 0 0 - 1 - 0 0
Soreness 0 0 0 1 - 0 - 0 3

Table 7 shows the counts of events and injuries for stationary and mobile
robots. The most frequently occurring events for stationary robots were
being pinched by an effector or fixture (N=17), pinned against a stationary
object (N=15), or struck but not subsequently pinned (N=14). For mobile
robots, pinning against a stationary object (including other mobile robots)
accounted for the majority of events (N=14), followed by being struck (N=5).
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THEMES

Example Excerpts
Stationary Robots

q N=17
Pinched 118

. N=15

Pinned 1-19

N=14

Struck 1-18

Caught in Moving Parts I}’ _=33
: N=1

Explosion I-2

Fall Due to Trip 11\1:21
N=1

Unknown -2
Exposure to Electricity I}’ :11
Overexertion I}I:=11

Mobile Robots

. N=14

Pinned I-16

N=5

Struck 1=7

Caught in Moving Parts I}’ ;11
Fall Due to Trip If :11
Overexertion I}I :11

Struck by Falling Object

==
"oy

_—

Table 7: Injury Events for stationary and mobile robots.

= The robotic welder pinched the employee’s fingertip

« It closed on his left pinky

= His left ring finger was caught and amputated in the hydraulic clamp
= The machine actuated while his left hand was in it

= A robotic arm pinned an employee’s head to a CNC machine

= Got caught between a welding parts machine and a robot

= Crushed/pinned the employee’s right foot against the barrier guard
= The robotic arm struck and pinned the employee

= Pinching the employee’s right little finger against the tire rim

= Struck in the head by a robotic arm
= The handler caught her left leg
= The robot swung and hit the employee

= A drive belt and pulley caught the employee’s right index finger
= An employee [...] contacted the blades

= An explosive device fell from the machine to the floor and detonated

= Tripped and fell

= Received an electrical shock to his left hand while removing a metal cover

= After removing the last two bolts holding the gearbox to the frame, the
gearbox fell

= When the employee moved the cylinder to inspect it, the cylinder
released in the upward position

= The cart ran into him, pinning him against a structural pole
= Pinched between the LGV and conveyor

= Trapping the employee between the two LGVs

= Smashed and broken between the two vehicles

= Struck by an automated guided vehicle
= The equipment ran over and fractured his right ankle

= Caught between the top of the stroke cylinder shaft and the hood base

= Caught between the top of the stroke cylinder shaft and the hood base

= Suffered a lower back injury

= The gearbox fell and struck the employees’ feet

reports, and I is the total number of injuries.
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Figure 2 shows the distribution of injuries across the body for the most
prevalent event types — strikes, pins, and pinches. For stationary robots,
strikes are distributed approximately uniformly across the body, whereas pins
occur mostly by the fingers, torso, and head, while pinches are predominantly
of the fingers. For mobile robots, strikes and pins occur mostly at the legs.
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Figure 2: Counts of injuries across the body. The numbers, circle diameter, and colors
reflect the raw counts (not normalized by area). The combined counts include all events,
not just struck, pinned, and pinched.
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4. Discussion

4.1. Narrative reports and robot-specific coding

The final narratives varied significantly in length and content. Excessive
brevity or irrelevant details led to missing data elements (Table 3) diminish-
ing the SIRs’ value in understanding the causal relationships between robotics
technologies and worker injuries. However, these reports did provide valuable
context about tasks and (to a lesser extent) precipitating mechanisms.

There was also notable variation in the OIICS codes for Sources and
Events. For Sources, the variation reflected different robot applications, with
welding machinery being predominant. However, these codes lacked specifics
about the robot’s make, model, and configuration, and did not even indicate
that the source was a robot, thus necessitating the search of final narratives
for key words. This omission hinders the identification and categorization
of robot-related accidents, potentially widening the surveillance gap for new
robotics technologies. For Events, the variation indicated a need for more
specific codes for robot-related accidents. For instance, almost all of the
reports were able to be re-coded with robot-specific contact events: struck,
pinched, and pinned, or what Haddadin et al. (2009) called unconstrained im-
pacts, clamping in the robot structure, and constrained impacts, respectively.
Introducing robot-specific event codes would introduce consistent language
and enable better comparisons across studies.

4.2. Comparison with Previous Research

The present study and Malm et al. (2010) revealed similar patterns of
injury across the body, with partial amputations of the fingers being the
most common, followed by fractures to the head and torso. The theme of
[sudden] and unexpected actuation (Table 4) and being pinned (Table 7) is
also consistent with the findings of Malm et al. (2010) and Jiang and Gainer
(1987).However, variations in categorizations between studies make detailed
comparisons difficult and speak to the need for standardized definitions in
future research as mentioned above.

The results of this study and the work of Malm et al. (2010), Layne
(2023), and Kim et al. (2021) highlight troubleshooting and setup as activi-
ties during which the majority of accidents occurred. In contrast, Jiang and
Gainer (1987) found that most accidents involved "line workers” and very
few involved maintenance personnel, suggesting a possible shift in risk over
time. This idea is supported by Layne (2023), who found that maintenance
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was mentioned more often during the period of 2005-2017 compared with the
earlier years of 1992-2004, although he does not make a distinction between
maintenance and troubleshooting. Taken together, this suggests that haz-
ard controls for non-routine operations are inadequate, and that more effort
should be focused there.

4.8. Pre-contact hazard controls

The themes in Tables 4 and 5 suggest several several engineering and ad-
ministrative controls for both stationary and mobile robots. Some of these
are already used in practice, or have already been put forward in the ISO/TS
15066 technical specification for collaborative robots. Nonetheless, this dis-
cussion may shed light on the possible prioritization of controls or suggest
additional considerations for existing control implementations.

4.3.1. Design modifications for safety

Contributing factors of ”"guarded”, and precipitating mechanisms of ”ac-
cidental entry”, "user input”, and sudden actuation suggest that many ac-
cidents might be ”prevented through design” (NIOSH, 2014); for example,
by not requiring a person to enter a robot’s working envelope to access its
controls, or by designing robot grippers so that they can be installed and
adjusted without putting one’s fingers or hands inside, or by incorporating
locking devices such as electromagnetic brakes to prevent the sudden release
of mechanical or pneumatic energy (Plooij et al., 2015). Jiang and Gainer
(1987) estimated that about half of accidents were attributable to poor work-
place design, but without more detailed narratives we hesitate to make any
quantitative estimates.

Machine guards are an element of workplace design that is meant to pre-
vent entry into a work envelope or to detect when entry has occurred (Spell-
man and Whiting, 1999). In the robotics context, guards include cages with
door switches to detect entry; light curtains to detect breaches of un-caged
sections of the perimeter; pressure pads to detect a person’s presence; and
LiDAR and computer-vision to detect human bodies and measure proximity
(Kumar et al., 2021).

Themes of accidental entry, troubleshooting entry, guarded, and un-guarded
(Table 4) suggest inadequate guarding such that person’s entire body or even
Just a single body part was able to enter a robot’s working envelope. In some
reports the implication was that guards were intentionally circumvented. In-
adequate guarding was the tenth most common OSHA violation in 2020
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(Grainger, 2021). Jiang and Gainer (1987) found that 45% of their reports
involved inadequate guarding, and Malm et al. (2010) found it was 80%. Be-
cause of the low code frequency for contributing factor (Table 3) we cannot
make any strong quantitative claims about this data.

However, the results underscore that any guard, whether conventional
or fenceless, must consider not only a person’s entire body but especially
individual body parts such as hands and feet. This could involve, for example,
climinating gaps in light curtains and cages, cven if those gaps seem to be
in ostensibly inconsequential places such as along the floor. Sensors such as
cameras, pressure plates, LIDAR, etc. should be calibrated to detect not just
an entire human body, but merely a single extremity such as an arm or leg.

4.8.2. Collision avoidance systems

Most reports involved a contact event of some kind (Table 7). Speed and
separation monitoring (SSM) is a term used in collaborative robotics that
refers to stopping or slowing the robot’s motion based on a person’s proxim-
ity (Kumar et al., 2021). The means by which proximity is measured includes
computer-vision-based systems (intrinsic or extrinsic), LiDAR scanners, ul-
trasonic sensors, infrared sensors, pressure mats, and light curtains (Kumar
et al., 2021; Rodriguez-Guerra et al., 2021). The results of this study show
that collisions can and do occur when only a single body part, such as an arm
or a leg, enters a robot’s working envelope or path. Therefore, as with ma-
chine guards, any SSM or collision-avoidance system should be able to track
and recognize not only entire human bodies, but individual body parts. For
mobile robots especially, engineers implementing any collision avoidance sys-
tem should consider that hazards may not appear only on the roadway where
they ”should” appear, but may include workers kneeling on the ground next
to the robot, or individual body parts protruding into its path from above or
the side, or oversized cargo on another vehicle. The case reports in NIOSH
(2019) also involved scenarios of this kind, and Layne (2023) makes a similar
call for better collision avoidance systems, writing ”Further innovations in
sensors and Al are required to increase recognition of objects for collision
avoidance”. Wearable transponders or remote-controlled emergency stops
may also be an effective solution. Advanced driver assistance and crash mit-
igation systems (Klomp et al., 2019; Austin et al., 2023), such are already in
use or under development in the automotive industry, may have prevented
some of the collisions in Table 5.
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4.8.8. Administrative controls

Failure to lockout/tagout (LOTO) or de-cnergize contributed to two of
the four stationary robot reports that listed contributing factors (Table 4).
The themes of maintenance and cleaning (Table 4) also suggest failure to
LOTO or adhere to safety protocols, although in most cases this was not ex-
plicitly stated. Malm et al. (2010) attributed 60% of accidents to insufficient
warnings or instructions, and noted that dangerous working methods due to
inadequate training or supervision were common. Jiang and Gainer (1987)
also found that "human error” such as not following procedures, accounted
for 33% of accidents. Layne (2023) also writes that ”Incidents involving tra-
ditional industrial robots can be most effectively prevented through ensuring
compliance with the guarded areas of the robotic cell or cage, with emphasis
on complete power shutdown and lockout tagout during nonroutine opera-
tions.” Failure to LOTO was the sixth-most common OSHA violation in 2020
(Grainger, 2021), and compliance with the LOTO standard prevents 50,000
severe injuries per year (OSHA, 2002). Failure to LOTO suggests an inade-
quacy of the employers in developing or enforcing energy control programs,
or failure of employees to follow established protocols. In the latter case,
the roles of safety culture, leadership, and production pressure on individual
safety behaviors should not be underestimated (Griffin and Hu, 2013; Guo
et al., 2016).

The temporary status of the victim was mentioned in two final narra-
tives. Non-standard work arrangements accounted for 5% to 40% jobs in
the United States in 2015 (Nicholson, 2015). Temporary workers face higher
injury risks and poorer illness outcomes than regular employees (Howard,
2017), probably due to their limited job experience and knowledge of haz-
ards (Benavides et al., 2006), and they may hesitate to voice concerns due
to their non-standard status (Howard, 2017). Their injuries are often under-
reported (Picchio and van Ours, 2017). Given this, when it comes to human
behavior around robots, engineers should strive to develop engineering con-
trols (rather than administrative controls) that anticipate the inexperience
and socio-organizational pressures that might lead to risky behaviors.

4.4. Post-contact hazard controls

Injuries to the upper and lower extremities, although less life-threatening
compared to injuries to the head and torso, can have life-long economic,
physical, and psychological consequences (Read et al., 2004; Van Eerd et al.,
2016). The burden of traumatic hand and finger injuries in particular can
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be especially severe. People with finger amputations have a resultant dis-
ability that diminishes their ability to work and perform daily tasks (Giladi
et al., 2014), and they often develop anxiety disorders, major depression,
pain syndromes, and adjustment problems (Grob et al., 2008).

Automotive-based injury indices such as the Abbreviated Injury Scale
(AIS) and Head Injury Criterion (HIC) have provided guidance for robotic
power-and-force-limiting (PFL) based on injury tolerances for the head and
torso (Robla-Gomez et al., 2017; Haddadin, 2014). These indices diminish
the significance of injuries to the extremities because they were designed for
the prediction of survival and not subsequent quality of life (Read et al.,
2004). Given that head and torso injuries accounted for only 1/3 of the to-
tal, new robot-specific injury indices that focus on the extremities, especially
the fingers and hands, may be beneficial. Cadaver studies may be helpful in
developing robot-specific injury indices that focus on the extremities, espe-
cially the fingers and hands. One example is Carpanen et al. (2019) which
provides empirical injury tolerances for the metacarpophalangeal (MCP) and
proximal interphalangeal (PIP) joints of the hand.

4.5. Limitations and future work

There are three main limitations of this study. First, the dataset is com-
pletely U.S.-centric. it is quite possible that systematic legal, cultural, and
socio-organizational differences in countries such as Germany, Japan, and
China may have an effect on the quantity, nature, and categorization of
robot-related accidents and their causes.

Second, the number of incidents reported here are almost certainly a
lower-bound for three reasons. First, the data does not account for several
categories of workers and workplaces that fall outside of federal OSHA’s juris-
diction, including self-employed workers, immediate family members of farm
employers, and workplaces covered by other federal agencies such as the Mine
Safety and Health Administration, the Federal Aviation Administration, the
Federal Railroad Administration, and states with their OSHA-approved plan.
Second, injuries are probably under-reported by 50% even within the states
that were included (Michaels, 2016). Third, the lack of specific robot-related
OIICS codes meant that the narrative reports had to be relied on to identify
robot-related events. It is possible that many more robot-related accidents
occurred where the robot was described as a "machine” or "welder” in the
report, and thus eluded identification. The introduction of robot-specific
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source and event OIICS codes would facilitate more precise identification
and categorization of reports (see Section 4.1).

Third, the present analysis can only be as good as the data on which it is
based. The missing data elements (see Section 4.1) did not enable a detailed
reconstruction of all incidents. Therefore, the themes presented in this study
should be considered hypothetical (in the scientific sense) and subject to
testing and re-evaluation should better data become available. Future work
might cross reference the scenarios here with past case studies. Chi et al.
(2009) and Chi and Lin (2018) could be used for methodological inspiration,
as they also analyzed narrative reports to identify hazard scenarios and used
more sophisticated safety engineering techniques such as fault-tree analysis.
Variability in the narrative reports of the SIRs highlights the potential benefit
of a semi-structured reporting format, ensuring consistent and comprehensive
capture of incident details. Additionally, integrating multimedia data into
SIRs, such as images or videos, might provide a clearer context of the incident
scene, aiding in analysis.

An area warranting further exploration is human factors studies, with a
focus on situation awareness (Endsley, 2015) and individuals’ mental models
of robot actions. Some reports hinted at a potential lack of situation aware-
ness or perhaps a misunderstanding of robot’s ”intentions” and capabilities.
Examining the mental models that individuals form about robot behavior
could shed light on their decisions and actions around robots. Enhancing
these mental models, alongside improving situation awareness, might offer
avenues for refining safety protocols and training. Finally, machine learning
techniques such as natural language processing might be employed to search
for and code the narrative reports, decreasing the workload of the researchers
and enabling inferential statistical analysis rather than the descriptive ap-
proach provided here.
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Appendix A. Appendix
Appendiz A.1. Coding

Table A.8: Original OIICS codes for Event with researchers’ re-coding shown in bold

Event Description

- Pinched

6412 Caught in running equipment or machinery during regular operation

6410 Caught in running equipment or machinery, unspecified

6411 Caught in running equipment or machinery during maintenance, cleaning
6419 Caught in running equipment or machinery, n.e.c.

533 Contact with hot objects or substances

6233 Struck by object falling from vehicle or machinery-other than vehicle part
642 Compressed or pinched by shifting objects or equipment

- Pinned

6411 Caught in running equipment or machinery during maintenance, cleaning
640 Caught in or compressed by equipment or objects, unspecified

6412 Caught in running equipment or machinery during regular operation

6419 Caught in running equipment or machinery, n.e.c.

- Pinned by mobile robot

642 Compressed or pinched by shifting objects or equipment

2441 Pedestrian struck by vehicle propelled by another vehicle in nonroadway area
2721 Part of occupant’s body caught between vehicle and other object in nonroadway transport incident
2734 Fall or jump from and struck by same vehicle in normal operation, nonroadway
6211 Caught between rolling powered vehicle and other object

6229 Struck by rolling object or equipment-other than powered vehicle, n.e.c.
640 Caught in or compressed by equipment or objects, unspecified

6412 Caught in running equipment or machinery during regular operation

- Struck

6412 Caught in running equipment or machinery during regular operation
9999 Nonclassifiable

620 Struck by object or equipment, unspecified

6411 Caught in running equipment or machinery during maintenance, cleaning
6419 Caught in running equipment or machinery, n.e.c.

- Struck by mobile robot

6219 Struck by powered vehicle-nontransport, n.e.c.

629 Struck by object or equipment, n.e.c.

- Other

6411 Caught in running equipment or machinery during maintenance, cleaning
640 Caught in or compressed by equipment or objects, unspecified

511 Direct exposure to electricity
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Table A.9: Original OIICS codes for Source with researchers’ re-coding shown in bold

Code Description

- Robot

3594  Welding machinery

30 Machinery, unspecified

392 Product assembly machinery, n.e.c.

9999  Nonclassifiable

3799  Special process machinery, n.e.c.

3499  Material and personnel handling machinery, n.e.c.

4211 Clamps, couplings

3796  Painting, priming, metal coating machinery

3732  Packaging, wrapping, bundling machinery

3730  Packaging, bottling, wrapping machinery, unspecified

3532  Extruding machinery

3530  Extruding, injecting, forming, molding machinery, unspecified
3493  Stacking machinery

799 Tools, instruments, and equipment, n.e.c.

350 Metal, woodworking, and special material machinery, unspecified
340 Material and personnel handling machinery, unspecified

40 Parts and materials, unspecified

- Mobile robot

3499  Material and personnel handling machinery, n.e.c.

8629  Industrial vehicle, material hauling and transport-powered, n.e.c
8621  Forklift, order picker, platform truck-powered

3325  Kilns

3199  Agricultural and garden machinery, n.e.c.

340 Material and personnel handling machinery, unspecified

30 Machinery, unspecified
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Table A.10: Search Terms for Identifying Robots. Likely misspellings were included in the

regex patterns but are not shown here.

Terms for Stationary Robots

| Terms for Mobile Robots

Automated Industrial Equipment
Automated System

Automatically Controlled Manipulator
Industrial Automaton
Mechatronic System

Mobile Manipulator

Multi-Axis Manipulator
Multi-Purpose Automated Machinery
Programmable Automation Device
Programmable Mechanical Device
Reprogrammable Machine

Robot

Robotesque

Robotic

Roboticism

Roboticist

Roboticization

Roboticize

Robotic-like

Robotization

Robotize

Self-Moving Automaton
Self-Propelled Machine

AGV (Autonomous Guided Vehicle)
AMR (Automated Mobile Robot)
ATV (Automated Transport Vehicle)
Automated Forklift

Automated Guided Vehicle
Automated Material Transfer Cart
Automated Track

Automated Transfer Car
Automated Vehicle

Automatic Guided

Autonomous Vehicle

Driverless

Intelligent Mobile

Laser Guided Truck

LGV (Laser Guided Vehicle)
Mobile Manipulator

Mobile Robot

Programmable Mobile

Remote Controlled

Robotic Cart

Robotic Vehicle

Self Driving

Self Navigating

Track-Based

UGV (Unmanned Ground Vehicle)
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