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Abstract
Aquaponics is an emerging area of agricultural sciences that combines aquaculture and hydroponics in a symbiotic way to

increase crop production. Though it offers a lot of advantages over traditional techniques, including chemical-free and soil-

less farming, its commercial application suffers from some problems such as the lack of experienced manpower. To operate

a stable smart aquaponic system, it is critical to estimate the fish size properly. In this context, the use of dedicated

hardware for real-time aquaponic monitoring can greatly resolve the issue of inexperienced handlers. In this article, we

present a complete methodology to train a deep neural network to perform fish size estimation in real time. To achieve high

accuracy, a novel implementation of swish function is presented. This novel version is far more hardware efficient than the

original one, while being extremely accurate. Moreover, we present a deep learning accelerator that can classify 40 million

fish samples in a second. The dedicated real-time system is about 1600 times faster than the one based on general-purpose

computers. The proposed neuromorphic accelerator consumes about 2600 slice registers on a low-end model of Virtex 6

FPGA series.

Keywords Aquaculture � Deep learning accelerator � Field programmable gate arrays (FPGAs) � Fish size estimation �
Giga operations per second (GOPS) � Smart aquaponics

Introduction

The rapid increase in human population and the associated

shortage of food necessitates the development of advanced

agricultural techniques and solutions. Aquaponics is a

recently-developed agricultural technique that combines

aquaculture and hydroponics in order to resolve the issue of

food crisis. In an aquaponic system, fish excrete their waste

that is transformed into nutrients by nitrifying bacteria,

which in turn are readily absorbed by plants. This symbi-

otic relationship is shown in Fig. 1. A typical smart

aquaponic system (SAS) takes input from sensors which

are responsible for collecting data from the external envi-

ronment. These sensors are generally responsible for

monitoring the pH level, the dissolved oxygen, and a lot of

other parameters taken in and out of the system [34].

Compared with other farming techniques, aquaponics is

considered relatively harmless, since it limits the use of

dangerous chemicals [38]. Moreover, aquaponics promotes

soil-less culture and resolves the issue of water scarcity to a

great extent [5, 38]. This is because aquaponic systems

consume only 2%-10% of the water consumed by tradi-

tional agricultural systems [5, 38]. Despite all these

advantages, only 31% of the aquaponic solutions have been

found to be commercially viable due to poor management

and inexperienced manpower/handlers [38]. For monitor-

ing and controlling the nutrients in an aquaponic system,

deep learning has proven its mettle. Deep learning (DL)
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can predict various parameters such as fish size and water

quality at an early stage, and can help in automatic system

adjustment and upgradation. For example, if a fish is

smaller than the expected size, it can be provided with

more food and healthy nutrition. In this context, various

deep learning models have been proposed to predict water

quality parameters, fish classification, fish size estimation,

feeding decisions, etc. [10, 11, 19, 38, and 42]. Since,

nutrient deficiency can seriously affect the growth of plants

and fishes, it is of critical importance to provide the system

with essential nutrients and supplements. To get a better

understanding of how different elements/supplements such

as potassium and iron can contribute to the overall

improvement in aquaculture, the reader is referred to

[6, 7, 9, 12, 21, and 22].

Aquaponic systems sometimes involve an enormously

large number of environmental parameters that have to be

monitored and controlled all the time, which makes such

systems quite difficult to be handled by inexperienced

humans. This issue of poor management can greatly be

resolved if smart automation techniques are adopted. Such

techniques and systems reduce the need for a huge man-

power and allow better management at a commercial scale.

Smart systems (SSs) in the context of aquaponic systems

refer to small but intelligent electronic devices capable of

performing a huge number of complex operations such as

sensing, monitoring, and control in a minimal amount of

time [38]. This type of automated decision making can

greatly assist in overcoming challenges associated with the

lack of experienced manpower.

Though commendable work has been carried out in the

development of smart deep learning systems for aquapon-

ics, a major problem surrounding all these systems is that

they are based on software, microcontrollers, or big com-

puters based on Von-Neumann architecture. Since, soft-

ware tools and Von Neumann architectures typically

follow a serial model of execution, their speed is extremely

slow, which limits their use in large-scale commercial

aquaponic systems. For example, in commercial next-

generation aquaponic systems, hundreds of parameters

have to be monitored, controlled, and maneuvered simul-

taneously in order to achieve a balance in the system and to

provide appropriate amount of nutrients to the plants and

fishes. As a result, software-based systems would typically

fail to appropriately do all these tasks in real time (at a high

speed). Moreover, software tools have to be run on big

computers and machines which occupy a large area and are

difficult to manage. This is where the role of dedicated

hardware based on field programmable gate arrays

(FPGAs) and application-specific integrated circuits

(ASICs) comes into play. Dedicated hardware systems

have a much smaller footprint and consume lower power

Fig. 1 A typical smart aquaponic system using deep learning for feedback [34]
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than microcontrollers and computers. As shown in Sect. 5,

the proposed system is 1600 times faster than a typical

CPU-based SAS. FPGAs and ASICs offer greater speed

and parallelism than central processing units (CPUs), since

they contain highly parallel data computing units.

Another big problem in most modern studies is the lack

of available data. Most datasets have a few hundred sam-

ples for system evaluation, which is insufficient to obtain

reliable results. For example, the work in [5] uses only 211

samples for performance evaluation.

Keeping all these issues in mind, we propose a novel,

high-speed and small-footprint smart aquaponic system

based on deep learning for fish size estimation. The system

can monitor and predict the size of fishes in real time; it can

classify a given input sample into one of the eight classes

defined with respect to weight. The throughput of the

system is 40 million samples per second, i.e., the system

can classify 40 million samples in a second.

Materials and methods

This paper presents a novel low-cost, high-throughput,

hardware-based aquaponic monitoring engine (which uses

the proposed algorithm), capable of classifying 40 million

fish samples a second based on fish sizes. Classification

results can be leveraged by experts in the field of agricul-

ture to make further decisions when needed. The proposed

design has been described in Verilog language at the reg-

ister-transfer level (RTL). The main contributions of this

work are mentioned below. A summary of these contri-

butions is given in Fig. 2.

1. To provide a complete methodology to develop an

aquaponic monitoring system that uses deep learning to

indicate the appropriate fish weight category. If the

actual fish weight falls outside the estimated weight

range, it means the aquaponic ecosystem needs appro-

priate modification. The system uses 175,000 samples

to train/test the system, which ensure its operation and

stability. This sample size is way bigger than the sizes

used in most modern studies.

2. Proposal of a novel form of Swish neuron. The

proposed ‘P-Swish’ neuron is not only morphologically

similar to swish, but also yields a similar level of

accuracy. Moreover, the proposed P-Swish neuron is

way more hardware efficient than other swish imple-

mentations, while being extremely accurate. In fact, the

accuracy of P-Swish is better than Swish by about

0.4% (under the specified conditions) on CIFAR-10

dataset.

3. In order to provide greater flexibility to the user, the

system reconfigurable neural layers. These layers allow

multiple types of neurons and the user can choose any

of those in order to achieve high classification accu-

racy. The edge computer achieves around 99.6%

accuracy, which is higher than that achieved by any

other modern DL-based aquaponic system.

4. A novel, real-time aquaponic monitoring system

implemented on a field programmable gate array

(FPGA). It is an edge computer capable of predicting

fish size (weight) on the basis of input parameters. The

proposed edge computer can predict 8 classes (based

on fish weight) using the given data. The throughput of

the system is 40 million samples a second. The

throughput is about 1600 times higher than a typical

CPU-based software system, which makes it suit-

able for use in commercial or semi-commercial

settings.

The rest of this paper is organized as follows. Section 2

presents a review of various modern smart aquaponic

systems and neuromorphic accelerators. It also presents the

problem definition. Section 3 presents the training

methodology for fish size estimation. Section 4 presents

the proposed smart edge computer, i.e., N-AquaRAM. The

Fig. 2 Proposed system: features and components
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results are shown in Sect. 5. Finally, Sect. 6 concludes the

work.

Related Work and Problem Definition

Most (in fact, all) of the smart aquaponic systems (SASs)

are built using large computers and/or microcontrollers

(MCs) [38]. No electronic system or dedicated hardware

chip (built using field programmable gate arrays or appli-

cation-specific integrated circuits) has been designed

keeping aquaponics in view. This is due to the fact that the

development of SASs is a relatively new area of research.

Since, MCs are not very powerful and are not designed for

a specific application, they are extremely slow [3, 26]. Not

only that, they consume a lot of power and are extremely

expensive when manufactured in bulk quantity. In order to

build cost-effective dedicated SASs, it is important to focus

on both algorithms and customized hardware systems

[32, 36]. The efficiency of a hardware system depends

critically on the algorithm, as shown in [32, 33, and 36].

This is why we focus on devising hardware-friendly

algorithms and schemes.

Since, the proposed scheme N-AquaRAM deals with

both algorithm and architecture, we divide this section into

two major parts. The first subsection describes various

smart aquaponic systems and the second subsection dis-

cusses various DL accelerators. After extensive literature

review, we conclude that none of the accelerators is

specifically built for aquaponics.

Deep Learning in Smart Aquaponic Monitoring
Systems

Due to their excellent generalization ability, various

researchers have used deep learning to develop smart

aquaponic modules. Some of the many applications of DL

to solving aquaponic problems are: fish size estimation, fish

detection, prediction of water quality, making feeding

decisions, and plant disease detection. The dynamics of fish

length distribution is a key input for understanding the fish

population dynamics and taking informed management

decisions on exploited stocks. Nevertheless, the length of

landed fish is still (mostly) made by hand. As a result,

length estimation is precise at fish level, but due to the

inherent high costs of manual sampling, the sample size

tends to be small.

In [19], for example, the researchers use multiple cam-

eras and apply convolutional neural networks (CNNs) to

estimate the length of pond fish. The accuracy they achieve

is around 93%. The estimation of fish length and weight is

important in order to properly manage aquaponic systems

and to model stock trends. Similarly, in [13], the authors

make a comparison between various popular CNN

topologies and models such as ResNet50 and VGG19 to

estimate the mass of Pintado real fingerlings. They con-

clude that ResNet50 performs the best for the application

and the dataset under consideration.

Some researchers have experimented with videos as

well. The authors in [11] present a framework for the

automatic detection of fish in underwater videos. The

accuracy they achieve is around 95.47% using ResNet-50

model. The authors in [11] propose a system that can detect

moving live fish in open aquatic environments with about

87.44% accuracy.

The diagnosis of fish diseases is also very important for

developing a healthy aquaponic ecosystem. If a fish is

found to be unhealthy, it can either be removed from the

system or can be provided with better nutrients, else it

would spoil the whole system. In this context, the authors

in [10] propose a system that can diagnose white and red

spots in a fish with about 94.44% accuracy. In [1], the

authors present an image-based machine learning tech-

nique to detect diseased fishes in aquaculture. A survey on

using intelligent techniques to diagnose fish diseases is

presented in [16].

DL can also be used to predict and eventually control

various chemicals and nutrients, moving in and out of the

system. For example, the concentration of oxygen in

aquaponic systems is predicted by the authors using intel-

ligent schemes in [29]. The optimal level of oxygen should

always be present in the system for healthy operation and

the early prediction of oxygen levels in the system can

ensure a stable ecosystem. Other parameters such as the pH

level, ammonia, and temperature may also be predicted or

manipulated using deep neural networks (DNNs) for opti-

mal aquaponic operation. Smart aquaponic systems may

also be used to make appropriate feeding decisions for

fishes and/or plants [42].

Neuromorphic Accelerators

In [30], the authors present a hardware design that predicts

multiple types of epileptic seizures with 95.14% accuracy.

Similarly, a simple neural network having 4-5 synapses is

designed by researchers in [31]. The network has Gaussian

neurons. The authors, however, do not test their system on

any dataset. A system for digit classification is presented in

[32]. The system is quite efficient, since it uses ReLU/

identity function at all the layers. The system presented in

[33] is able to predict cancer with more than 98.23%

accuracy. The system can classify more than 63 million

samples in one second. The learning engine presented in

[36] can train a neural network for any type of application.

In [34], though the authors present a dedicated hardware

system for spike-based smart aquaponic monitoring, the
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system can handle only eight input features. The system in

[35] implements the Tempotron learning rule for SNNs.

The design in [35] generally takes about four input features

that are then mapped to 48 Gaussian Receptive Fields

(GRFs) for making the prediction. Whether, the network

can take tens of input features–as is required in case of

smart aquaponics–is yet to be seen.

In [15], the authors compare GPU- and FPGA-based

implementations for weed classification tasks. As per

results, the FPGA implementation is about 2.86� faster

and about seven� more power efficient than GPU imple-

mentation. For efficient hardware processing, they down-

sample their input data and use binary weights. Moreover,

they make input images clearer by changing contrast and

brightness. Their system is about 98.83% accurate.

In [17], the authors present two novel methods for

weight initialization (WI) and batch normalization (BN) in

complex binarized neural networks (BNNs). However, the

system is not optimized for agriculture/aquaponics. In [18],

the authors present a network pruning scheme to meet

computational demands and achieve up to 26.4� com-

pression as compared to the best available network with a

minimal loss of accuracy. Similarly, to reduce memory and

computational requirements, the authors in [25] use ternary

values for both weights and activations. However, the

systems in [18, 25] have been designed and tested for

image classification tasks only.

Problem Definition

Most of the smart aquaponic systems are based on software

only and are implemented on a general-purpose computers

or microcontrollers, which is why they have a high

implementation cost and low speed. Moreover, they use

small datasets or achieve low accuracy. Therefore, the goal

is to design a smart aquaponic monitoring system that is

cheap and highly accurate.

Keeping all these issues in view, we first present a

complete deep learning scheme that predicts fish size with

99.6% accuracy. We then present a high-speed, cost-effi-

cient hardware design that can be implemented on a ded-

icated hardware platform (FPGA/ASIC). To achieve high

accuracy, the proposed design has reconfigurable network

layers that allow multiple types of neurons. This system

will assist professionals in making critical feeding deci-

sions and in maintaining a stable SAS.

Proposed Aquaponic Monitoring Scheme

We develop and synthesize a neural network for estimating

fish weight. The fish weight estimation results can then be

sent to a controller that makes feeding decisions. The

network has four layers: one input layer, two hidden layers,

and an output layer. The input layer has been normalized

according to the procedure described in [33].

Neuronal Models

Here, we present the proposed swish implementation, i.e.,

P-Swish. We also give details of an existing neuronal

model thresholded ReLU (T-ReLU), which is a flexible

implementation of the ReLU neuron [40]. The details are

given below.

P-Swish

P-Swish is morphologically similar to the Swish function

presented in [28]. According to multiple experiments,

Swish performs better than ReLU [28]. However, Swish is

extremely costly to compute, since it contains a lot of

complex terms. The derivative of Swish is even more

complex, which makes it unsuitable for hardware imple-

mentations. The proposed Swish implementation P-Swish

can be implemented using an adder, a shifter, and a mul-

tiplier. P-Swish is expressed mathematically in Eq. 1, and

is shown visually in Fig. 3. The derivative of P-Swish is

given in Eq. 2.

Aj ¼
Zj Zj � 2

Zj max½0; ð0:25Zj þ 0:5Þ�
� �

otherwise

8
><

>:
ð1Þ

oAP�Swish
j

oZj
¼

0:5 Zj þ 1
� �

�2\Zj\2

1 Zj � 2

0 otherwise

8
><

>:
ð2Þ

T-ReLU

The T-ReLU model is a modified form of the Flexible

ReLU (F-ReLU) function. F-ReLU is presented in [27].

The F-ReLU model is shown in Eq. 3.

Fig. 3 Proposed swish (P-swish)
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Aj ¼
Zj þ bl Zj � 0

bl Zj � 0

8
><

>:
ð3Þ

As can be seen in Eq. 3, the neuron produces a valid,

nonzero value most of the time, regardless of the condition.

As per reports, if a neuron remains active all the time, it

can consume a large amount of hardware energy [23].

T-ReLU is a function that can overcome some of the

shortcomings of F-ReLU. T-ReLU is given in Eq. 4. It can

be seen from Eq. 4 that the neuron produces a non-zero

value only if the weighted sum crosses a threshold. This

asynchronous behavior can be used to put various neurons

to sleep mode and save energy. The T-ReLU function can

achieve high accuracy, since it is quite flexible and can

change its axis if the parameter a is maneuvered. More-

over, the T-ReLU neuron, just like ReLU, requires only a

comparator for activation. Therefore, T-ReLU is as hard-

ware efficient as ReLU. The T-ReLU neuron is shown in

Fig. 4b.

Aj ¼
Zj Zj � a

0 Zj � a

8
><

>:
ð4Þ

Network Structure

The complete network has four layers: one for inputs, one

for outputs, and two hidden layers for nonlinear computa-

tions. In this article, the ith weight and input are denoted by

Wi and Xi, respectively. The subscript j is for the jth

postsynaptic neuron. The letter b represents the bias, and

the letter Z represents the weighted sum added to a bias.

The un-activated value of a neuron j is represented by Zj.

Zj ¼
X

i

Wi � Xið Þ þ bj ð5Þ

Hidden Layer 1 (HL1)

The incoming weighted sum Z1 is passed through an

actuator. For the first hidden layer, T-ReLU is used for

activation.

A1 ¼
Z1 Z1 � a

0 Z1 � a

8
><

>:
ð6Þ

Hidden Layer 2 (HL2)

The Layer 1 activation vector is then passed as input to

Layer 2 in order to obtain the weighted sum Z2, as shown in

Eq. 7. For HL2, there are four actuators available: identity,

linear sigmoid (LiSi), P-Swish, and T-ReLU. The cus-

tomized LiSi is defined in Eq. 8; the definition has been

borrowed from [36]. The hard sigmoid defined in [39] is

not used, since it involves a multiplier. To allow multiple

neurons in a layer can greatly improve accuracy, since one

type of neurons cannot be suitable for all types of input

data.

Z2 ¼
X

i

Wi � A1ð Þ þ b2 ð7Þ

Aj ¼
1 Zj � 2

max½0; ð0:25Zj þ 0:5Þ� otherwise

8
><

>:
ð8Þ

Output Layer

The output layer has two types of actuators: identity and

HW-efficient sigmoid (HES), proposed in [43]. This is

because the use of sigmoid can be beneficial in case binary

classification is to be performed or the input data distri-

bution suits sigmoid. The HES neurons in the output layer

are activated according to Eq. 9. The complete process is

shown in the form of a flowchart in Fig. 5.

Fig. 4 Various ReLU functions

a Original ReLU b Thresholded

ReLU (T-ReLU)
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A3 ¼

1 Z3 [ 2

Z3 � 0:25ðZ2
3Þ

� �
0:5þ 0:5 0� Z3 � 2

Z3 þ 0:25ðZ2
3Þ

� �
0:5þ 0:5 0� Z3 � 2

0 Z3\� 2

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð9Þ

Proposed Real-Time Aquaponic Monitor

The proposed hardware system can handle up to 30 input

features coming from various sensors such as pH sensor

and oxygen sensor. The system is fully parallel and can

predict eight levels of weight (based on the input data) in a

single clock cycle. The system consists of an input layer,

two reconfigurable hidden layer aquaponic computers, a

reconfigurable output layer computer, and a predictor.

There are three weight memories, one for each layer. The

top level diagram of the complete system is shown in

Fig. 6. It is to be kept in mind that the dataset under con-

sideration has only eight features, but the hardware design

can accommodate up to 30 features. This is to allow the use

of more features for better accuracy and more intelligent

design in future.

Structure of Memory Banks

Every layer in the design has a weight memory, divided

into banks. A memory bank in the weight memory stores

all weights corresponding to a neuron in the immediate

layer. Every memory element in a memory bank is multi-

plied by a neuronal value coming from the preceding layer.

Fig. 5 Flowchart of the operation

Fig. 6 Complete structure of the N-AquaRAM
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In Fig. 7, the ith element of the preceding layer is denoted

by A0i, where the subscript i is an integer value. Similarly,

the ith neuron in the next layer is represented by HNi.

NeuroAqua Computers (NACs) - Hidden Layer 1

The full-resolution inputs coming from the preceding layer

are multiplied by the corresponding weights. In case of first

hidden layer, inputs are normalized values of the features

obtained from external sensors.

The products are then summed up using an adder tree

and the final sum is applied as input to the actuator, which

is responsible for activating a neuron. The structure of a

hardware T-ReLU is shown in Fig. 8. In Fig. 8, the com-

parator ‘CMP’ is responsible for comparing the incoming

voltage value against a threshold. If the voltage is greater

than the threshold, the voltage sum is passed on to the

subsequent NAC, else zero voltage is passed.

NeuroAqua Computers - Hidden Layer 2

The actuated values coming from the first layer are mul-

tiplied by the corresponding weights. In case of first hidden

layer, inputs are normalized values of the features obtained

from external sensors.

The products are then summed up using an adder tree

and the final sum is applied as input to the reconfigurable

actuator (RA), whose structure is shown in Fig. 9. The

activated values are then sent to the subsequent NAC. The

selection of a particular neuron is made by the Neuron

Selector (NS), input by the user. The NS is a 2-bit input

used to select a neuron among the four available options:

identity function, proposed swish (P-Swish), ReLU, and the

linear sigmoid (LiSi).

Since, the distribution of data varies from application to

application, the use of RA makes the system more flexible.

For example, in some cases, the use of ReLU results in a lot

of dead neurons, since it completely cancels out the neg-

ative input region [20]. In such cases, the use of a swish-

like function can help keeps neurons from becoming

completely dead.

Since the reconfigurable actuator is quite complex, it is

not used in the first layer of the proposed engine. This is

because its use in the early layers increases critical path

delay and makes it difficult for the subsequent layers to

handle heavy amounts of data. The production of heavy

data in the first layer means that the subsequent layers

should have high data bandwidth, otherwise they would not

be able to handle anything and data would be lost. The loss

of data implies an unstable system and degradation of

accuracy.

Interestingly, the data produced by LiSi can be used to

create P-Swish and no special hardware is required as such.

The output produced by LiSi is simply multiplied by the

incoming voltage to create P-Swish. This reusability of

data and components makes the proposed system more

hardware-friendly. This type of reusability is not possible if

the neurons proposed in [43] are used: the authors in [43]

proposed two different models for Swish and Sigmoid and

hence, require many extra components to be realized on the

same chip.

Output-Layer NeuroAqua Computers

The structure of output-layer NACs is shown in Fig. 10.

The full-resolution inputs coming from the preceding layer

are multiplied by the weights corresponding to output

neurons. There are two types of actuators available in the

output layer: identity actuators (IAs) and sigmoidal actu-

ators (SAs). Sigmoidal actuators are suitable for binary

classification and the IAs are used for multi-class

Fig. 7 Structure of memory banks

Fig. 8 Internal structure of an HL1 (T-ReLU) actuator
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classification. The un-activated (non-softmax) voltage

values at the output layer are termed logits.

The softmax function is not used in the proposed sys-

tem, since it is very expensive to compute [43]. The

unactuated logits—coming directly out of the output—are

enough to obtain high accuracy [32]. Logits can be used

even with cross entropy function. All one has to do is

enable the option from logits ¼ True in Tensorflow

(Python) [32]. Moreover, softmax is beneficial only if it is

to be combined with cross entropy function or if it is

required to obtain/visualize losses at the output. It does not

have any impact on accuracy or backpropagation as such.

Predictor

The predictor is responsible for indicating the classified

output. It does so by comparing values coming at the

output neurons. The neuron that produces the maximum

value corresponds to the classified output.

Results

In this section, we compare the proposed work with other

contemporary works in terms of hardware efficiency and

algorithmic accuracy. We also mention all the conditions

Fig. 9 Internal structure of a reconfigurable actuator (RA)
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under which the evaluation was carried out. The dedicated

hardware system is compared with the CPU-based system

as well in terms of speed.

Benchmarks and Test Conditions

The network has been trained using Python on a personal

computer. The inference is carried out on a Virtex 6 FPGA.

The system is described in Verilog and uses 7 bits for

weights and biases. The system classifies a given input

sample into one of the eight categories, based on fish size.

Every category corresponds to a certain range. If the esti-

mated weight is extremely small, the first output neuron

should be activated. Similarly, if the expected weight is

extremely large, the last output neuron should be activated.

The same goes for other weight sizes. All these ranges are

shown in Table 1.

The dataset that has been used for performance evalu-

ation of the N-AquaRAM is available from [4]. The com-

plete dataset consists of 12 files (more than 1 million

samples). However, we use only one file, which is enough

for a fair evaluation. The data file used in this study con-

sists of 175,000 samples, out of which 150,000 have been

used for training. The remaining samples have been used

for testing. For evaluation of the proposed P-Swish neuron,

CIFAR-10 is also used. CIFAR-10 is a dataset that uses ten

output classes, where every class corresponds to a unique

object (car, bike, etc.) [14]. The convolutional neural net-

work (CNN) used for CIFAR-10 has the following topol-

ogy: 4C3-4C3-2P2-8C3-DO0:2-8C3-2P2-16C3-DO0:2-

16C3-2P2-DO0:2-FC128-DO0:2-FC10.

Table 2 presents the test conditions and hyper-parameter

values used for evaluating the aquaponic system. For

hyper-parameter tuning, we use grid search [45].

Fig. 10 Internal structure of the output layer (Reconfigurable) actuators

Table 1 Weight range corresponding to size

Label (size) Weight range (g)

Smallest 3.36–50.88

Smaller 52.34–99.40

Small 113.80–142.20

Medium 198.44

Large 207.85–236.08

Larger 254.90–295.90

Largest 297.00–328.75

Heaviest 357.80–394.66
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Evaluation of the Proposed Neuron Models

The T-ReLU function is 99.59% accurate, whereas the

original ReLU function is 99.54% accurate. T-ReLU

clearly performs better than the original ReLU on the

dataset under consideration. Not only that, the T-ReLU is

as HW-efficient as ReLU, since both require only a com-

parator for operation.

Now, we compare P-Swish with the original swish. Both

swish and P-Swish exhibit the same level of accuracy, i.e.,

99.6% on the aquaponic dataset. On CIFAR-10, P-Swish is

about 0.4% more accurate than the original Swish under

the given conditions. Though we do not make big claims,

we may safely conclude that the proposed P-Swish function

is almost as accurate as the original Swish function.

However, P-Swish is far more HW-efficient than the

original swish, as shown in Table 3. The original form of

swish contains a lot of exponential terms and divisions,

both in the forward and the backward pass. Since, the

proposed P-Swish performs well and does not contain any

complex term in the backward pass, it is quite suitable even

for on-chip learning.

Performance Evaluation and Comparisons

The proposed system yields an accuracy of 99.6%. A

comparison of N-AquaRAM with various modern DL-

based aquaponic monitoring schemes in terms of accuracy

is shown in Table 4.

The proposed system is evaluated on both CPU and

FPGA (Virtex 6). The FPGA implementation is about 1600

times faster than the CPU implementation. The results

obtained from hardware evaluation are shown in Table 5.

An absolutely fair comparison seems impossible, since the

platforms, datasets, and underlying test conditions are

different. However, it is evident that the proposed system is

comparable to other modern works. The maximum clock

frequency at which the proposed hardware engine can

operate is around 40 MHz. Since, the system is fully par-

allel and requires only one clock cycle to infer a sample,

the throughput of the system is around 40 million samples

per second. The proposed system consists of 215 synapses.

One synaptic operation consists of an addition and a mul-

tiplication. If we take into account the biases and neuronal

activations, the system (running at 40 MHz) can carry out

more than 18 giga operations per second (GOPS).

The work in [8] uses a small (toy) dataset with 25 binary

input pixels and one neuron for binary (X and O) classi-

fication; two samples are used for training. The authors do

not mention the system throughput explicitly. However, it

is safe to assume that the maximum TP is far less than

1:9� 106 samples per second. This is because the maxi-

mum operating frequency of the system is around 189 MHz

and the time period requires to compute a sample is 100

ms. Moreover, the discretization step is 0.001. The work in

[30] predicts epilepsy; it uses a small number of features

and three output classes. No dataset is used in [31]; the

authors just demonstrate the efficiency of hardware radial

basis function. Though the work in [32] achieves high

Table 2 Hyper-parameter values and test conditions

Parameter Value

Learning rate (g) Default (0.001)

Batch size Default (32)

Optimizer Adam

Loss function Cross entropy

Output coding One hot

Test samples 20%

#Epochs 20

Table 3 Hardware efficiency comparison between various swish

implementations

Iter #Add #Mult #Divi #Exp

Swish FW 1 1 1 1

H. Swish FW 1 3 0 0

P-Swish FW 1 1 0 0

Swish BW 3 3 1 1

H. Swish BW 1 1 0 0

P-Swish BW 1 0 0 0

Iter., iteration; FW, forward; Add., addition; Mult., multiplication;

Divi., division; Exp., exponentials

Table 4 Accuracy comparisons–smart aquaponic systems

Accuracy Application

[10] 94.44% Fish disease det

[13] 67.08% Fingerl. size est

[42] 95% Feeding int. est

[37] 96.50% Plant det

[24] 97.80% Fish length est

[44] 92.60% Plant det

[44] 98.70% Plant det

[2] 87% Fish size est

Prop. 99.60% Fish size est.

Est., estimation; Det., detection; Int., intensity
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throughput, the accuracy is around 94.28%, which is lower

than that of the proposed system. In fact, the system has not

been tested for any aquaponic model. The system in [33]

has been designed for classifying cancerous samples.

Though the systems in [30, 31, 33, and 41] consume

only a small number of registers and look-up tables, they

all require a large number of DSP48 elements that come

prefabricated on an FPGA. Moreover, these are not as

accurate as the proposed system. The proposed design does

not use any DSP48 element and consumes only a small

amount of resources.

Conclusions

This article presents a methodology to train smart aqua-

ponic monitoring system using deep learning algorithms in

order to achieve high accuracy, and a hardware-based

smart aquaponic system that has a very low cost and is

quite speedy. The work presents a novel neuron model

P-Swish that is not only accurate but hardware efficient

also. Such dedicated hardware devices occupy an extre-

mely small amount of area when compared with typical

general-purpose computers. This feature facilitates the

deployment of cheap and low-power devices in digital

agriculture sector.

The system achieves 99.6% accuracy in just a few

training iterations. Moreover, this is one of the first works

on smart aquaponics that uses more than 100,000 samples

for training and testing. The hardware engine can process

about 40 million samples per second (SPS), while con-

suming only a small amount of hardware resources, making

it suitable for high-end Aquaponics 4.0 industrial applica-

tions. Lastly, the system presented in this article is just to

give an idea of how useful the dedicated hardware devices

are for smart aquaponics. In future, we intend to design a

hardware system that can predict multiple fish/plant fea-

tures. We may also use P-Swish along with convolutional

neural networks to process complex image data.
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