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Abstract

A novel spectral incremental dynamic analysis methodology for analysing
structural response in nonlinear systems with fractional derivative elements
is presented, aligning with modern seismic design codes, like Eurocode
8. Drawing inspiration from the concept of fully non-stationary stochas-
tic processes, the vector of the imposed seismic excitations is characterised
by time and frequency evolving power spectra stochastically compatible
with elastic response spectra of specified damping ratio and ground accel-
eration. The proposed method efficiently determines the nonlinear system
time-dependent probability density functions for the non-stationary system
response amplitude by employing potent nonlinear stochastic dynamics con-
cepts, such as stochastic averaging and statistical linearization. Unlike tra-
ditional incremental dynamic analysis curves found in the literature, the
herein proposed method introduces a three-dimensional alternative counter-
part, that of stochastic engineering demand parameter surfaces, providing
with higher-order statistics of the system response. An additional notewor-
thy aspect involves the derivation of response evolutionary power spectra
as function of spectral acceleration, offering a deeper insight into the un-
derlying system dynamics. Besides its capabilities, the method maintains
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the coveted element of a particularly low associated computational cost, in-
creasing its attractiveness and practicality among diverse applications of en-
gineering interest. Numerical examples comprising the bilinear hysteretic
model endowed with fractional derivative elements subject to an Eurocode
8 elastic design spectrum demonstrate the capabilities and reliability of the
proposed methodology. Its accuracy is assessed by juxtaposing the derived
results with germane Monte Carlo Simulation data.

Keywords: Nonlinear stochastic dynamics; Earthquake engineering; Incremental
dynamic analysis; Fractional derivative; Statistical linearization; Stochastic aver-

aging

1 Introduction

In the realm of structural engineering, encountering diverse nonlinearities is com-
monplace, accentuating the need of meticulously capturing the underlying non-
linear mechanisms dictating structural behaviour [1, 2]. Conventional structural
dynamics predominantly relies on integer-order derivatives and integrals, yet con-
stantly growing demands for more versatile and sophisticated modelling consid-
ering intricate temporal dependencies underscore a logical transition towards ad-
vanced mathematical tools such as fractional calculus [3, 4]. Although fractional
calculus can be historically traced back to the exchanges between L'Hopital and
Leibniz, its practical integration into engineering modelling materialised in the
early twentieth century. Among their numerous applications, fractional calculus’
theoretical concepts have proven beneficial in the field of engineering, where sev-
eral approaches with different advantages and limitations have been developed to
assess the stochastic response of systems endowed with fractional derivative ele-
ments (e.g., [5, 6, 7, 8, 9]). More specifically, fractional models are predominantly
used in civil engineering due to their ability to effectively capture the viscoelas-
tic behaviour of materials over a wide frequency range while requiring only a
limited number of model parameters. In this context, modal analysis resembling
treatments (e.g., [10, 11]), as well as relevant numerical integration schemes (e.g.,
[12]), have been proposed for determining the response of linear structural multi-
DOF systems with fractional order damping when subjected to arbitrary inputs,
such as those resulting from earthquake-induced ground motions. Moreover, a
multitude of research endeavours focusing on seismic isolation, vibration control,
and energy harvesting applications demonstrate the capacity of fractional calculus
to enhance system modelling in various instances of structural engineering interest
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[13,14, 15,16, 17,18, 19, 20, 21, 22, 23, 24, 25]. Indeed, achieving a more realis-
tic representation of engineering dynamical systems often requires the incorpora-
tion of complex nonlinear relationships coupled with the utilisation of fractional
calculus to model structural/material behaviour with higher levels of precision.
Additionally, the mathematical treatment of excitations as non-stationary stochas-
tic processes contributes to a more realistic depiction leading to the establishment
of a robust foundation for formulating realistic structural analysis and design pro-
cedures (e.g., [26, 27, 28, 29, 30, 31]).

The emerging concept of Performance-Based Engineering (PBE) finds appli-
cation in various fields, including civil engineering (for buildings and infrastruc-
ture), mechanical engineering, and other domains where the performance of sys-
tems under consideration is critical. This approach allows for more tailored and
efficient designs that meet specific performance goals rather than adhering strictly
to prescriptive codes and specifications. In addition, it considers the dynamic
and evolving nature of engineering challenges incorporating a thorough consid-
eration of the involved uncertainties (e.g., [32, 33, 34, 35]). In earthquake engi-
neering, Incremental Dynamic Analysis (IDA) is a commonly used method for
determining the functional relationship between the excitation-related variables,
known as intensity measures (IMs), and the system response-related variables,
known as engineering demand parameters (EDPs) in a PBE context [36]. The
outcome of this coupling takes the form of an IDA curve which corresponds to a
specific ground motion record, while each point on the curve is associated with a
distinct scaled ground motion intensity level along with the corresponding mag-
nitude of the structural system response. Note, in passing, that the determination
of this functional relationship is typically associated with a specific computational
cost which can render the process particularly cumbersome (e.g., [37, 38]). Con-
ducting, however, IDA within a fully stochastic framework imposing demands
for higher-order statistical quantities of the response such as the Probability Den-
sity Function (PDF), requires a resource-intensive Monte Carlo Simulation (MCS)
framework that involves the generation of a high number of IDA curves. The latter
is necessary for a robust statistical characterisation of the EDP. Notably, circum-
venting conventional brute force implementation of the IDA methodology under
an MCS context, a number of research efforts has been recently raised utilising
advanced concepts and tools of random vibration theory (e.g., [39, 35]).

There is evident value in exploring nuanced and more efficient methodologies
to address the challenge of determining the functional relationship between IMs
and EDPs of systems featuring nonlinearity and hysteretic behaviours, particu-
larly when fractional derivative elements are incorporated within a PBE frame-
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work. This paper proposes an approximate spectral incremental dynamic analysis
technique for nonlinear structural systems endowed with fractional derivative ele-
ments subjected to fully non-stationary seismic excitations defined in accordance
with contemporary aseismic codes provisions, such as Eurocode 8 (e.g., [40, 41]).
The proposed approach is developed by resorting to potent nonlinear stochastic
dynamics principles, specifically leveraging the stochastic averaging and the sta-
tistical linearization methodologies. Statistical linearization has been one of the
most versatile methodologies for determining the stochastic response of engineer-
ing systems [42, 43, 44]. It has found a wide range of applications over the last
decades (e.g., [45]), while the standard method has also been extended to account
for systems with singular matrices and constraints (e.g., [46]). The extensive use
of the method is due to the simplicity of its application, as well as to its capacity to
treat a wide variety of systems exhibiting nonlinear and/or hysteretic behaviours.
On the other hand, the stochastic averaging method has demonstrated its effec-
tiveness in deriving vibration response approximate solutions for lightly damped
systems under wide-band random excitations [47, 48, 49]. It has been successfully
used, among others, to predict approximately the response of quasi-integrable
Hamiltonian systems to bounded noise excitations [50]; to analyse strongly non-
linear systems endowed with fractional derivative terms, as well as systems sub-
jected to combined deterministic and stochastic excitations [51, 52, 53]; to study
the dynamics of ships in random seas [54]; to determine the response of non-
linear energy harvesting devices [55]; while a novel stochastic averaging-based
technique has been proposed in [56] to evaluate the response displacement am-
plitude of single-DOF systems. The combination of statistical linearization and
stochastic averaging methodologies facilitates the efficient determination of the
probability density function for the non-stationary response of the nonlinear sys-
tem. The developed methodology introduces a stochastic incremental dynamic
analysis surface that yields reliable higher-order statistics of the system response.
An additional notable feature is the derivation of the response evolutionary power
spectrum as a function of spectral acceleration, providing with a more informative
and comprehensive understanding of the underlying system dynamics at a mini-
mum computational cost. Lastly, the developed method employs an incremental
mechanisation, akin to the one used in the standard implementation of IDA. This
ensures compatibility through the scaling of intensity while aligning with estab-
lished practices, adding to its practicality of adoption in diverse engineering sce-
narios. The herein developed approach can be construed as an extension of the
work in [39] to account for systems with fractional derivative terms subjected to
aseismic code-compliant non-stationary stochastic excitations.
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In the remainder of this paper, Sections 2.1 to 2.3 delve into the mathematical
background that supports the developed framework. Following this, Section 2.4
provides insightful commentary on noteworthy features and the practical applica-
tion of the proposed technique. Section 3 demonstrates the application of the
framework through an illustrative example involving a structural system com-
prising the bilinear hysteretic model endowed with fractional derivative elements
subject to a Eurocode 8 elastic design spectrum. The accuracy of the proposed
technique is assessed by juxtaposing the derived results with pertinent MCS data
obtained from nonlinear response time-history analysis (RHA). Finally, Section 4
succinctly outlines the main conclusions drawn from the present study.

2 Mathematical formulation

This segment details the mathematical intricacies involved in developing the pro-
posed efficient spectral incremental dynamic methodology tailored for nonlinear
structural systems endowed with fractional derivative elements. Special atten-
tion has been devoted to explaining the various simplifications and assumptions
made to enhance numerical efficiency. To ensure that the presentation of the the-
oretical background material remains coherent without sacrificing readability, a
brief introduction on fundamental concepts associated with generating stochastic
processes compatible with Eurocode 8 elastic design spectrum is included in the
following Subsection 2.1.

2.1 Derivation of evolutionary power spectrum compatible with
an assigned elastic design spectrum

Several approaches have been developed in the literature for deriving stochas-
tic process power spectra that are compatible in a stochastic sense with response
spectra defined by aseismic codes; see [57, 58, 59, 60, 61] for some indicative
references. In this section, the most important elements of a computationally effi-
cient approach [41] for the derivation of design spectrum compatible evolutionary
power spectra are included for completeness. Regardless of the specific method
employed for this derivation, it is crucial to emphasise that the evolutionary power
spectrum (EPS) and the associated non-stationary stochastic process serve solely
as mathematical tools to represent the seismic input action. This representation is
defined in terms of an elastic pseudo-acceleration response spectrum, and it plays



a key role in the subsequent review of the proposed coupled stochastic averaging
and statistical linearization step.

Following the principles outlined in [41], the non-stationary excitation stochas-
tic process #,4(t) consists of two main components: a fully non-stationary seg-
ment j?(t) which is modelled using a real recorded earthquake time-history, and
a time-modulated quasi-stationary corrective segment jg (t) representing a sta-
tionary zero mean Gaussian stochastic process; that is

By(t) = ad/(t) + p(t)iy (1), (1)
where a is the scaling coefficient, and ¢(t) is a time-modulating function such
that [62]

2
(L), t<t
p(t) =14 1, t<t<ty (2)

exp [_6771(75 — tg)] , t > tQ

with t, = t; + T, where t; and t, are the time instants when the Husid function
[63] is equal to 0.05 and 0.95, respectively; 3,, defines the decay of the modulat-
ing function. Lastly, 7§ corresponds to the temporal segment of the strong part of
the imposed seismic action where stationarity can be reasonably assumed. Subse-
quently, the following approximate relationship can be established for the linear
response spectra in question,

S(w,¢ra)) = /a28R(w, ¢ a)? + S5(w, (;a))?, (3)

where S*(w, ¢;a)) and S®(w, (;a)) are the response spectra corresponding to a
quiescent linear oscillator subjected to &/(t) and &5 (t), respectively; a stands for
the imposed level of peak ground acceleration, whereas the scaling coefficient is

. S((‘%Cvag)
a = min {SR(W,C; CLS)} € (0,1]. @)

The nonlinear equation that forms the foundation for relating a damped pseudo-
acceleration response spectrum to a one-sided power spectrum associated with the
stationary corrective segment of the Gaussian kind in the frequency domain (see
Eq. (3)) reads

SS(W07<O§Q(9]) = nxst\/x\o,ms(wo,Co;ag)~ )

In Eq. (5), n,s and A, ,s are the peak factor and the variance of the response pro-
cess 2°(t) of a viscously damped quiescent linear oscillator with natural frequency
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wp and damping ratio ¢, subjected to jj (t). The nth order response spectral mo-
ment of the stationary corrective segment that appears in Eq. (5) reads

00 1
)‘n x 1§03 0) = / "
(0, Go3 ) 0o (wg — w?)? + (2¢owow)?
The peak factor 7,s is related with the concept of first-passage problem [64] and
can be determined by the following semi-empirical expression

G%(w,Go;a))dw.  (6)

Nys (Ts, p) = \/2 In {2,%5 {1 — exp (—5;52 7rln(2,uxs))] }, (7)

where the mean zero crossing rate ji,s and the spread factor d,s of the stationary
corrective segment are defined as

T )\2 S
— =0 2220 (pp) 8
H$ 2T /\O,ws( np) ®)
and
A
Gps = |1 — — 1% 9
i \l )\O,zS)‘ZxS, ( )

respectively. In Eq. (7), the probability p is specifically chosen to be 0.5. This
choice ensures that the generated S°(w, (o; a‘g)) in Eq. (5) can be conceived as the
median damped pseudo-acceleration response spectrum. The interested reader is
directed to [41] for more details. Next, relying on the approximate expression [64]
G®(wo, Gosay) (T L @

—39 —1)+ 7/ G (w, Co; ag)dw (10)

A . ,0) — _
0,x5 (w(b CUa ag) wi 4CO wi Jo
and manipulating Eq. (5) gives
wo
S (wo, Co;ag) = 025w G (wo, Co;ag) (472 — 1) + 77335/0 G5 (w, Co;ag)dw.
0
(11)

Then, approximating numerically the integral based on a frequency domain dis-
cretisation of N frequency points w; = w! + (i — 0.5)Aw, withi = 1,2,..., N
and w; € (w!,wi), yields [65, 66]
G (wi, Goi ag) =
0, w; < wi
S5 (wo,¢0;a0))2 i— ”
wmj%%wifl <( : 0240 g)) o Aw Zkzll Gs(wlﬁ CO’ ag)> ’ wll’ < Wi < wb
(12)

n.s
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Following the determination of the power spectrum G*(w, (o; ag) in the range
(w},w), the simulation of a non-stationary spectrum compatible acceleration
time-history can be obtained resorting to the spectral representation method [67].
That is

N .
#9) (1) = aifi(t) + ¢(1) S \JAGS (iAw, Go; al) Aw cos (iAwt +67) , (13)

i=1

where GZQ ) are independent random phases uniformly distributed in the interval
[0,27), and N, is the number of the considered harmonics. The corresponding
EPS G*5(w, (o, t; a)) of the non-stationary stochastic excitation process i, (t) is
provided in terms of the non-separable EPS G%(w, (o, t; ag) and the time-
modulated separable power spectrum G (w, (; ag) of the corrective term in the
form

GP(w, G, 5 ag) = a*GT(w, o, 1 ag) + @(1)* G (w, Co; ag). (14)

The non-separable EPS G®(w, o, t; ag) can be obtained by various techniques
[68, 69, 70, 71], such as Short-Time Fourier Transform and Wavelets Transform.
To improve the matching between the response spectrum from the simulations and
the target pseudo-acceleration response spectrum, the following iterative scheme

for the corrective term is utilised

(15)

. X S . ,0)2
GS(J)(W, COa ag) — Gs(jfl) (w’ CO; ag) l (wa CO; Clg) ] :

ST (w, Go3 a)?

where S0 (w, Co; ag) is the mean response spectrum of the non-stationary stochas-
tic excitation process i,(t) at a specific level of peak ground acceleration ag in
the jth iteration. For a more detailed presentation as well as a pertinent com-
mentary on the topic, the interested reader may resort to [65, 41]. The nonlinear
stochastic dynamics technique discussed in the following subsections operates in-
dependently from the herein presented approach which only works as a necessary
first numerical step to represent the seismic input action with respect to contem-
porary aseismic codes provisions. This is accomplished through the generation of
evolutionary power spectra characterising the underlying code-compliant stochas-
tic excitation processes appropriately aligned with various levels of peak ground
acceleration.



2.2 Determination of the equivalent linear system

The equation of motion of a stochastically excited quiscent single-degree-of-freedom
(SDOF) system with fractional derivative elements is given by

B(t) + 6DG(t) + g(t, x, ) = i4(1), (16)

where z(t) denotes the system response displacement and a dot over a variable
corresponds to differentiation with respect to time. Further, g(¢,z, ) is a non-
linear function representing the hysteretic behaviour of the system and Df ,x(t)
denotes the Caputo fractional derivative of order o defined as [72]

o _ 1 toa(r)
Dierlt) = /0 T 17)

where 0 < o < 1, and I'(+) is the Gamma function. f is a damping coefficient
givenby 3 = 2(ws~, with wy and ¢, denoting the natural frequency and damping
ratio of the corresponding linear oscillator, respectively. Finally, &,(¢) is a non-
stationary stochastic seismic acceleration process, whose EPS GF* (w, o, t; ag) is
compatible with a target pseudoacceleration response spectrum S(w, (p; ag).

Next, the nonlinear fractional SDOF system in Eq. (16) is linearised by re-
sorting to a combination of the stochastic averaging and statistical linearization
methodologies [73, 30]. In this context, assuming that the system is lightly damped,
its response follows a pseudo-harmonic behaviour, such that [47]

x(t) = A(t) cos(w(A)t + ¥(t)) (18)

and

#(t) = —w(A)A(E) sin(w(A)t + (1)) (19)

In Egs. (18) and (19), A(t) and v (¢) denote the system response amplitude and
phase, respectively, whereas w(A) corresponds to the amplitude-dependent nat-
ural frequency. Given the pseudo-harmonic response assumption, A(t) and v(t)
are considered as approximately constant over one cycle of oscillation, since they
are slowly-varying quantities with respect to time [47]. Analytical expressions for
the response amplitude and phase are derived by manipulating Egs. (18) and (19).
These are [74]

A2(t) = 22(1) + (j&) (20)



and '
Y(t) = —w(A)t — arctan (55(75) , (21)

respectively.

Next, an amplitude-dependent linearisation of the nonlinear fractional SDOF
system in Eq. (16) is applied [42]. The latter is re-written for simplicity in the
form

&(t) + Bot(t) + ho(t, z, Dy, ) = #y(t), (22)
where
ho(t, z, Dy v, @) = BDg,x(t) + g(t, v, %) — Boi(t) (23)

and By = 2(pwy 1s a damping coefficient. In passing, it is noted that the interme-
diate step in Eq. (22) is adopted to facilitate the treatment of the fractional order
term during the linearisation process [73, 30]. An equivalent linear system is then
defined as

() + (Bo + B(A)) @ (t) + w?(A)w(t) = i), (24)
where (A) and w(A) denote the amplitude dependent equivalent linear damping

and stiffness elements. Subsequently, forming the difference between Egs. (22)
and (24) and minimising it in the mean square sense yields [73, 75, 30]

1

BA) = o A+ wlf(A) sin <O‘2”> _ B, 25)

and ]
w?(A) = ZF(A) + Bw®(A) cos (o;w) : (26)

where 1 2
S(4) = —— /0 2(Acos ¢, — Aw(A) sin ¢) sin pdo, 27)

and 1 o
F(A) = ;/0 2(Acos ¢, —Aw(A) sin @) cos ¢d o, (28)

with ¢(t) = w(A)t + ¥(t).

Considering then that A(t) defines a non-stationary stochastic process, it can
be deduced that the amplitude-dependent equivalent elements given by Egs. (25)
and (26) define also a set of non-stationary stochastic processes. Therefore, ap-
plying the expectation operator to Egs. (25) and (26) leads to the corresponding
time-varying mean values [74]. These are evaluated by

Balt) = [~ BAR(A, A 29)
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and -
W2 (1) = /0 GA(A)p(A, D)dA, (30)

eq

respectively, where p(A,t) denotes the non-stationary response amplitude PDF.
Clearly, the evaluation of the time-varying equivalent elements in Eqgs. (29) and
(30) depends on the computation of p(A, t). For this, motivated by the Rayleigh
form of the linear SDOF system stationary response amplitude PDF [76], a cor-
responding expression was proposed in [74] for nonlinear systems subjected to
evolutionary stochastic excitation. The latter has been further extended in [30] to
account for nonlinear SDOF systems endowed with fractional derivative elements.
It is given by

sin(§) A (sin(5) A
p(At) = —=5 e | C(t) : (31

wy Ye(t

where ¢(t) denotes a time-dependent coefficient to be determined. The determina-
tion of ¢(t) is attained by resorting to a stochastic averaging treatment of Eq. (24).
Specifically, substituting Eq. (31) into the associated Fokker-Planck equation

TGES(, .a0
Op(A, 1) =—6{<—;(50+66q(t))14+ G (weq (1), t )>p(A,t)}

ot BA 202 (1) A
L0 (RG"(e(t50) pAT) | 0 (7G5 (et
'U&& 2,0 M~+8A< 2,0) ““N

(32)

and manipulating leads to

o n () \ TGP (weg(c(1)), oy 1 a2)
&(t) = —(Bo + Beg(clt)))elt ( = RACO) . (33)

Eq. (33) is a deterministic first-order nonlinear ordinary differential equation,
which can be readily solved by the Runge—Kutta numerical integration scheme.
Hence, computing ¢(¢) leads to the computation of the response amplitude PDF in
Eq. (31), which in turn yields the equivalent linear elements in Egs. (29) and (30).

Finally, the equivalent elements given by Eqs. (25) and (26) are approximately
constant over one cycle of oscillation, due to their slowly-varying in time nature.
Therefore, it can be proved that [77]

Spal(wy ) = /0 S (w, t|A)p(A, £)dA, (34)
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where - o
G (w7 C(J? t; CLg>

(wW(A4) —w?)? + (wB(A))?
corresponds to the response EPS of a linear oscillator possessing natural frequency
equal to w(A) and damping element equal to 5(A). In this context, combining
Egs. (34) and (35) with Egs. (25), (26) and (31), the joint time-frequency response
EPS S,.(w, 1) is expressed as a function of the EPS G**(w, (o, t; aJ) of the non-
stationary stochastic excitation process &, (¢).

Spe(w, t|A) =

(35)

2.3 Proposed methodology for code-compliant stochastic incre-
mental dynamic analysis

Many engineering systems of genuine interest can be effectively represented as
SDOF systems, as noted in [42]. In this context, a quiescent nonlinear SDOF
system endowed with fractional derivative elements is considered in the ensuing
analysis. The system is base-excited by a response spectrum compatible acceler-
ation stochastic process Z,(¢) whose dynamic behaviour is governed by Eq. (16).
The non-stationary acceleration process #,(t) is characterised in the frequency do-
main by an associated EPS G¥%(w, (o, t; ag) compatibly defined with Eurocode 8
provisions. An incremental mechanisation analogous to the one used in standard
IDA technique is employed herein, where ag operates as the scaled image of the
excitation magnitude. In the present study, the selected EDP is that of the time-
dependent response displacement amplitude A(t) at the most critical time instant
tin. The t;, stands for the time instant when the parameter ¢(¢) found in Eq. (33)
reaches its maximum value leading p(A, ¢;,; ag) in Eq. (31) to get its most broad-
band form. In this regard, the response amplitude PDF at ¢;, with respect to a
specific level of the scaled excitation ag is given by

p(A ti; a)) = Sin(a;)AeXP (Sin (Cg) a ) : (36)

g _wé_o‘c(tm) wy™® 2c(tin)

Generating p(A, t;,; ag) for each scaled level of excitation ag enables the efficient
determination of the stochastic IDA response amplitude PDF surface, encompass-
ing valuable higher order statistics within a fully probabilistic perspective. By
manipulating Eqgs. (34) and (36), we obtain the response power spectrum with
respect to a specified level of excitation ag at the most critical time instant ¢;,

GES(wa COa tma GS)

Guelertint) = [ = ot 3 (A P A i A 6D

g
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Eq. (37) defines G, (w, tin; ag) as the system response EPS for a time instant
t;» under a specific ground acceleration level ag at a minimum computational
cost. The aforementioned relation facilitates the determination of the effective
response power spectrum, showcasing evolutionary traits as a function of spectral
acceleration. Specifically, the mechanisation of the proposed spectral incremental
dynamic analysis methodology to determine the stochastic response EDP-based
IDA and the response EPS-based IDA surfaces comprises the following steps:

1. The excitation EPS G¥%(w, (o, t; a)) is derived in a stochastically compat-
ible manner with a given elastic pseudo-acceleration response spectrum of
specified damping ratio and scaled ground acceleration ag.

2. Following the proposed stochastic averaging and linearisation method shown
in Section 2.2, the maximum value ¢, (t;,) and the corresponding time in-
stant ¢,,, are determined by Eqgs. (29), (30) and (33).

3. The response EDP PDF and the response EPS at ¢;, for a specific level of
excitation ag are determined by Eqgs. (36) and (37), respectively.

4. Steps 1 to 3 are repeated for the scaled images of the excitation ag to deter-
mine the stochastic response EDP-based IDA and the response EPS-based
IDA surfaces.

2.4 Discussion on attributes of the proposed methodology

This discussion delves into various notable aspects, including advantages, limi-
tations and potential practical applications of the proposed spectral incremental
dynamic analysis methodology. In comparison to existing state-of-the-art ap-
proaches in the literature, the proposed stochastic dynamics methodology ex-
hibits several noteworthy features: (i) accommodating nonlinear structural sys-
tems with hysteretic behaviour; (ii) addressing complex and more sophisticated
modelling requirements resorting to fractional calculus concepts; (iii) modelling
ground motion as a vector of code-compliant fully non-stationary stochastic pro-
cesses, avoiding challenges associated with selecting and scaling suites of earth-
quake records. Note, in passing, that this issue remains controversial in the rel-
evant literature [78]; (iv) reducing bias by not relying on a limited number of
subjectively selected seismic motion records; (v) determining higher-order statis-
tics through the response EDP-based IDA surface, rather than solely estimating
mean and standard deviation currently being the norm in the literature; (vi) be-
ing computationally efficient compared to nonlinear RHA for compatible ground
motion records. Note that a reliable statistical description of an EDP is normally
associated with a resource-intensive MCS framework involving the generation of
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a high number of IDA curves; (vii) providing with a response EPS-based IDA
surface which enables the monitoring of the dynamic character of the structural
system. Specifically, the nonlinear characteristics are identified through a dual-
faceted approach, encompassing both the stochastic response EPS-based surface
and the time-variant equivalent linear elements. This foundation underpins a sys-
tem identification framework, providing insights into both the frequency and time
domain. An element which could be especially useful for a number of reasons
such as tracking the system nonlinear character as well as tracing moving reso-
nance phenomena (e.g., [79, 80, 30]). Note that this significant operation cannot
be determined following typical nonlinear RHA. Relevant remarks should be pro-
vided regarding potential limitations in the method’s expected level of accuracy
for highly nonlinear and low-performance scenarios. The combination of stochas-
tic averaging and statistical linearization methodologies may compromise accu-
racy in such cases. Notably, the method imposes no restrictions on the excitation
process, except for the Gaussian assumption [42].

3 Illustrative application

The bilinear hysteretic force-deformation law is a common approach to emu-
late the behaviour of structural systems and members to seismic forces (e.g.,
[81, 16, 66, 42, 82, 1]). In this section, a bilinear hysteretic oscillator with frac-
tional derivative elements subject to Eurocode 8 elastic pseudo-acceleration re-
sponse spectra serves as the numerical example to demonstrate and validate the
reliability of the proposed stochastic dynamics methodology. The obtained results
are compared and found in good agreement with corresponding outcomes derived
by nonlinear RHA in an MCS-based context. The imposed Eurocode 8 elastic
design spectra are shown in the Appendix A.

3.1 Bilinear hysteretic SDOF system under code-compliant evo-
lutionary stochastic seismic excitation

The equation of motion for a SDOF system featuring nonlinearity through a bi-
linear hysteretic model and incorporating fractional derivative elements is under
consideration. The system’s restoring force is expressed as

gt x(t), &(t)) = vka(t) + (1 = y)kzyz(1), (38)
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with

2,2(t) = #{1 = D(E(1)D(=(t) — 1) — D(—a(D)B(—2(t) = 1)}, (39)

where ®(-) denotes the Heaviside step function; «y is the post-yield to pre-yield
stiffness ratio; z is an auxiliary state and x,, is the yielding displacement.

Considering Eqgs. (25) and (26), the amplitude-time-dependent equivalent
damping 5(A(t)) and natural frequency w(A(t)) are given by

saw) = ¢ _de“(’;‘?“(A) T i (G) -k @
and 1 Fy(A
w?(A(t)) = wp lfy + (_VA?O() + Bw*(A) cos (Oé;)] , 41)
where B i
SolA(t)) = { () A @)
Fo(A()) = { . A= bsm2n)] P (43)
and cos(A) = 1 — 2,

Next, considering the non-stationary response amplitude PDF in Eq. (31) and
ensemble averaging Egs. (40) and (41), the time-dependent equivalent linear prop-
erties for the bilinear SDOF system with fractional derivative elements are given
by [30, 16]

Bulelt) == o+ ) [ e (R A Y as

() b T\ )
4%7&3_ L e <_w( & 2c<t>> di .
and
elt) =4 - (1= {oxp (- 2T ) - SEL
x/:(A—;sm(QA))Aexp< 81:11(&5: = t)> } 45)
) [ 28D o
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respectively.

3.2 Determination of the stochastic response-based IDA sur-
faces

The Eurocode 8 elastic pseudo-acceleration design spectrum S(w, (; ag) for soil
type B serves as the baseline input spectrum. Additionally, the non-stationary at-
tributes of the excitation are modelled using the recorded time history from the El
Centro site during the SOOE (NS) component of the Imperial Valley earthquake
on May 18, 1940. Scaled excitations are determined as ag = ¢ x[0.10,0.20, 0.40,
0.60,0.80, 1.00, 1.20], where ¢ represents the acceleration of gravity. Further,
Fig. 1 shows the generated EPS G**(w, (o, t; a)) compatible with a Eurocode 8
type B design spectrum S(w, (o; aj) for a) = 0.20g and for a) = 0.40g. The fol-
lowing parameter values have been used for the bilinear oscillator: wy = 10 rad/s,
Go = 0.05, @ = 0.5, v = 0.2 and z, = 0.03 m. The methodology outlined in
Sections 2.1 to 2.3 enables the efficient determination of the stochastic response
EDP-based IDA and the response EPS-based IDA surfaces at a considerably low
computational cost. Notably, the time instances ¢;, vary based on the scaled im-
age of the ground acceleration ag, following the criterion of the maximum value
Cmaz (tin) in step 2.

Next, Fig. 2 shows the generated time-dependent response amplitude PDF
p(A,t) based on Egs. (31) and (33) for a seismic excitation level ag = 0.40g.
To assess the achieved level of accuracy, comparisons with pertinent MCS data
are included and shown in Fig. 3. Specifically, utilising the spectral representa-
tion method [83], an ensemble of 10, 000 acceleration time histories is generated,
compatible with the reference response spectrum corresponding to the specific
scaled image of the excitation ag. Subsequently, the governing equation of motion
Eq. (16) subject to the above ensemble of accelerograms is numerically solved by
resorting to an L1-algorithm [15]. Next, the response amplitude PDF p(A, t;,,; ag)
at critical time instants ¢;,, when the response variance indicated parameter reaches
its maximum value ¢,,,.(;,) is selected as the EDP. In Figs. 4(a) and 4(b), the re-
sponse amplitude PDFs p(A, t; ag) at two separate time instants, namely ¢, and
t; for scaled images of peak ground acceleration are compared with relevant out-
comes derived from MCS. The ¢,, denotes the time instant when the excitation gets
its highest value. In this regard, ¢, = 1.80s while ¢;, for different scale images of
accelerations 0.10g, 0.40¢, 0.60g are equal to 2.66s, 2.28s and 2.34s, respectively.
As expected, t;, > 1, indicating the reasonable existence of an output/input lag
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Fig. 1. (a) Generated power spectrum G*(w, (s = 0.05; a® = 0.20g) correspond-
ing to the stationary process i (); (b) Excitation EPS G*%(w, (o, t; a) = 0.20g)
compatible with an Eurocode 8 type B design spectrum S(w,{y = 0.05; a[g) =
0.209); (c) Generated power spectrum G (w, (o = 0.05; a® = 0.40g) correspond-
ing to the stationary process i} (t); (d) Excitation EPS G*%(w, (o, t; a) = 0.40g)

compatible with an Eurocode 8 type B design spectrum S(w, (s = 0.05; ag =
0.40g).

17



dependent on the magnitude of the excitation as well as the performed degree of
system nonlinearity. In passing, it is noted that the corresponding time instants ¢;,,
differ with respect to the scaled image of the ground acceleration ag.
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Fig. 2. Response amplitude PDF p(A,t;a) = 0.40g) by the proposed analyt-
ical method compatible with an Eurocode 8 type B design spectrum S(w,( =
0.05; ag): (a) 3D view; (b) planar view.

Further, following the proposed spectral incremental dynamic methodology,
the stochastic response EDP-based IDA surface is shown in Figs. 5(a) and 5(b).
The accuracy of the proposed technique is assessed by juxtaposing the derived
results with germane MCS data shown in Figs. 6(a) and 6(b). Considering the
approximations involved in the proposed approach, it can be clearly stated that
the obtained results are in good agreement with the MCS-based estimates. The
response EPS-based IDA surface is shown in Figs. 7(a) and 7(b). It is noted that
exceeding an intensity threshold signals a gradual transition from elastic into the
plastic region. The noted break, which is expressed with a transition to lower
values of frequency, is indicative of the system stiffness degradation. It is note-
worthy that the proposed stochastic dynamics method provides with an insight
into the underlying dynamic character of the system; this significant operation
cannot be determined following typical nonlinear RHA.

Furthermore, a fractional bilinear oscillator with a different nonlinear factor
parameter value compared to the previous example is considered. The correspond-
ing parameter values for the target system are the same as in the previous case,
except for v = 0.5. Similarly, using the proposed spectral incremental dynam-
ical methodology, the response amplitude PDFs p(A, t,;a’) and p(A,t;,;a’) at

P> g g
two distinct time instants ¢, and t;,, for scaled images of peak ground acceler-
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Fig. 3. Response amplitude PDF p(A, t; ay = 0.40g) by the MCS method (10, 000
realisations) compatible with an Eurocode 8 type B design spectrum S(w,( =
0.05; ag): (a) 3D view; (b) planar view.
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Fig. 4. Response amplitude PDF p(A, t; ag) at separate time instants compat-
ible with Eurocode 8 type B design spectrum S(w,( = 0.05; ag) for different
scaled images of ground accelerations ag = 0.10¢, 0.40g, 0.60g; comparison be-
tween proposed methodology and MCS-based estimates (10, 000 realisations): (a)
p(A,t;a)) atty; (b) p(A,t;ay) at t,.
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Fig. 7. Response EPS stochastic IDA surface of a bilinear hysteretic SDOF system
with fractional elements: (a) 3D view; (b) planar view

ation are shown in Figs. 8(a) and 8(b), respectively. A comparison with MCS
data (10, 000 realisations) is performed to demonstrate the noted good levels of
accuracy. In this case, t;, for different acceleration scales 0.10g, 0.40g, 0.60¢ are
2.72s,2.32s,2.34s, which occur later than ¢,. This input/output lag indicates the
presence of nonlinearity. Next, the stochastic response EDP-based IDA surfaces
of the target system using the proposed methodology and the MCS method are
shown in Figs. 9 and 10, respectively. The results obtained by the proposed analyt-
ical method are in good agreement with the MCS data. Additionally, the response
EPS-based IDA surface of the target system is shown in Fig. 11. The transition of
results considering the frequency content of the EPS, indicates that the system’s
behaviour gradually shifts from the elastic to the plastic range with increasing ex-
citation acceleration, signifying relevant stiffness degradation. In this case study
the noted stiffness degradation is kept in lower levels as compared to the case of
(wo = 10 rad/s, (o = 0.05, a = 0.5, v = 0.2) due to the updated value of
which corresponds to a system with a weaker nonlinear character.

Lastly, to illustrate the effects of nonlinearity, Figs. 12(a) and 12(b) present the
time-variant equivalent linear natural frequencies w,,(t) and damping ratios (.,(t)
at t;,, for the case studies of the target system discussed above for nonlinear factors
v = 0.2 and 0.5, respectively; see Eqs. (44) and (45) where (. (t:,) = %é(tn)")
Specifically, stronger nonlinear response due to marching towards higher exci-
tation IM leads to heavier damped equivalent oscillators shifted towards lower
frequencies for both cases. In agreement with the above argument, the range
of equivalent linear elements in Fig. 12(a) which is associated with a system
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corresponding to higher degree of nonlinearity is higher than the one noted in
Fig. 12(b).
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Fig. 12. Time-variant equivalent linear natural frequency and damping ratio at ¢;,
for the target system (wy = 10 rad/s, (, = 0.05, a = 0.5) with different nonlinear
factors corresponding to different scales of the imposed excitation: (a) v = 0.2;
(b) v = 0.5.

This fact indicates that the magnitude of nonlinearity affects the equivalent
linear elements, as determined using the stochastic averaging and statistical lin-
earization method. As expected, higher nonlinearity in the system leads to softer
behaviour and results in a larger range for the corresponding equivalent linear
elements.

3.3 Discussion on the impact of the fractional order in the sys-
tem behaviour

In this section, the impact of the fractional order in the behaviour of the system
under consideration is discussed. As test bed, the initial bilinear system with
parameter values wy = 10 rad/s, (o = 0.05 and v = 0.2 is studied. In this context,
as shown in Figs. 13(a) to 13(d), by increasing the value of the fractional order
from o = 0.2 to a = 0.8, meaning adding more damping to the system, results
in a decreasing trend for the magnitudes of the corresponding generated response
EPS. This kind of behaviour is clearly depicted considering the pertinent response
EPS peaks. In addition, conclusions around the impact of the fractional order in
the stiffness/stiffness degradation of the system can be drawn from Figs. 13(a) to
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13(d). As it is reasonably expected, increasing the fractional order of the system
from a = 0.2 to « = 0.8, leads to less stiff systems, thus, the corresponding
frequencies where the generated EPS present their peaks show a small tendency
marching towards lower values.
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Fig. 13. Response EPS stochastic IDA surface of a bilinear hysteretic SDOF
system (wg = 10rad/s, {, = 0.05, v = 0.2) for various Values of the fractional
order: (a) a =0.2; (b)) a=0.4; (c) a =0.6; (d) a =

The nonlinear character of the system is monitored through a twofold mech-
anism which involves the stochastic response EPS-based surface as well as the
time-variant equivalent linear elements which lay the foundation for a system
identification character of the proposed methodology offering pertinent informa-
tion in the frequency as well as in the time domain.

25



4 Concluding remarks

In this paper, a novel spectral IDA methodology has been developed for nonlin-
ear structural systems featuring fractional derivative elements and subjected to a
seismic excitation vector consistently aligned with contemporary aseismic codes
provisions. In this regard, an incremental mechanisation akin to the one used in
normal IDA ensures the necessary compatibility for pertinent structural engineer-
ing applications. Specifically, resorting to the concept of non-stationary stochastic
processes, the imposed seismic excitation vector is provided in the form of evolu-
tionary power spectra stochastically compatible with elastic pseudo-acceleration
response spectra of specified damping ratio and scaled ground acceleration. Har-
nessing the potential of an efficient combination of the stochastic averaging and
the statistical linearization methodologies, the response amplitude PDFs are de-
termined in a competent and effective manner. Contrary to the current norm in the
literature, the proposed stochastic dynamics methodology provides with the re-
sponse EDP-based IDA surface. This leads to the computation of reliable higher-
order statistics of the selected EDP, rather than simple estimates only of the mean
and standard deviation. Notably, a particularly interesting attribute of the pro-
posed methodology pertains to the derivation of the associated response EPS as a
function of spectral acceleration. This is an important aspect as it performs struc-
tural behaviour monitoring considering excitation intensity, whereas it provides
with an insight into the underlying dynamic character of the system. The nonlin-
ear characteristics are identified through a dual-faceted approach, encompassing
both the stochastic response EPS-based surface and the time-variant equivalent
linear elements. This foundation underpins a system identification framework,
providing relevant insights into both the frequency and time domain. Notably,
monitoring the dynamic character of a structural system is unattainable following
typical nonlinear RHA. Lastly, the associated low computational cost enhances its
utility in various related performance-based engineering applications.

Regarding the limitations of the proposed framework, since the statistical lin-
earization method is one of its critical components, considering the Gaussian as-
sumption of the system response is inevitable [42]. Considering also that the
system response follows a pseudo-harmonic behaviour prevents the application
of the proposed framework to systems exhibiting strongly non-Gaussian response
behaviours or systems with multiple static equilibrium positions [30]. Further,
extending the proposed framework for the study of multi-DOF systems is also
rather indirect, thus, it is identified as a potential field for future research. While
alternative linearization techniques could be explored for addressing multi-DOF
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systems, such approaches would primarily yield lower-order response statistics. In
contrast, a key advantage of the proposed stochastic dynamics scheme lies in its
ability to derive higher-order response statistics, which are crucial for accurately
capturing the non-stationary character of the nonlinear response and generating
the EDP-based IDA as well as the EPS stochastic IDA surfaces.

A numerical example featuring a bilinear model with fractional derivative el-
ements demonstrates the methodology’s reliability, while comparisons with MSC
data validate the accuracy of the proposed code-compliant spectral IDA stochastic
dynamics technique.
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A Eurocode 8 design spectrum

The Eurocode 8 defines the elastic pseudo-acceleration response spectrum for lin-
ear oscillators with damping ratio ¢ and natural period 7" = 27 /w through the
following expressions [40]

S[i+Z£@m-1), 0<T<Ty
2.5577,T Ty <T<T,
_ 0 T
S(T7 C) - ag X 255nT%€D, TD S T S TE ) (46)
STEe (250 + =2 (1 - 2.5n)|, Tp <T <Tp
SZelo, Tr <T
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where

10
=,/—— >0.55, 47
U] 5rC > (47)

with ag denoting the peak ground acceleration, S denoting a soil-dependent am-
plification factor, and 'z, T, Tp, T'r and T corresponding to soil-dependent cor-
ner periods. For soil type B: S = 1.20,1T = 0.15,T¢c = 0.5, Tp = 2.0,Tg =
5.0,TF = 10.
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