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Abstract: Lithium ion (Li-ion) battery packs have become the most popular option for powering elec-
tric vehicles (EVs). However, they have certain drawbacks, such as high temperatures and potential
safety concerns as a result of chemical reactions that occur during their charging and discharging
processes. These can cause thermal runaway and sudden deterioration, and therefore, efficient
thermal management systems are essential to boost battery life span and overall performance. An
electrochemical-thermal (ECT) model for Li-ion batteries and a conjugate heat transfer model for
three-dimensional (3D) fluid flow and heat transfer are developed using COMSOL Multiphysics®.
These are used within a novel computational fluid dynamics (CFD)-enabled multi-objective opti-
mization approach, which is used to explore the effect of the mini-channel cold plates’ geometrical
parameters on key performance metrics (battery maximum temperature (Tmax), pressure drop (∆P),
and temperature standard deviation (Tσ)). The performance of two machine learning (ML) surrogate
methods, radial basis functions (RBFs) and Gaussian process (GP), is compared. The results indi-
cate that the GP ML approach is the most effective. Global minima for the maximum temperature,
temperature standard deviation, and pressure drop (Tmax, Tσ, and ∆P, respectively) are identified
using single objective optimization. The third version of the generalized differential evaluation
(GDE3) algorithm is then used along with the GP surrogate models to perform multi-objective design
optimization (MODO). Pareto fronts are generated to demonstrate the potential trade-offs between
Tmax, Tσ, and ∆P. The obtained optimization results show that the maximum temperature dropped
from 36.38 to 35.98 ◦C, the pressure drop dramatically decreased from 782.82 to 487.16 Pa, and the
temperature standard deviation decreased from 2.14 to 2.12 K; the corresponding optimum design
parameters are the channel width of 8 mm and the horizontal spacing near the cold plate margin of
5 mm.

Keywords: electric vehicles; Li-ion batteries; electrochemical-thermal model; computational fluid
dynamics; machine learning; multi-objective design optimization

1. Introduction

The worldwide use of internal combustion engine vehicles has resulted in a number
of environmental problems, including greenhouse gas (GHG) emissions, significant air
quality degradation, and negative health effects on humans [1]. Therefore, the automobile
industry is currently shifting towards more environmentally friendly and sustainable
vehicles. Electric vehicles (EVs), specifically battery electric vehicles (BEVs) powered
by low-emission electricity, can significantly decrease GHG emissions and improve air
quality [2].

The majority of batteries used in modern EVs are lithium-ion (Li-ion) ones, which
dominate other battery types, including lead-acid, lithium–sulfur (Li-S), and nickel metal
hydroxide (Ni-MH), due to their higher energy density [3], longer life cycles [4], lower
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self-discharge rates [5], and greater environmental friendliness [6]. However, a major
problem with Li-ion batteries is that they generate a significant amount of heat that can
cause temperatures above the acceptable operating range [7], which can lead to reduced
battery life, performance degradation, and safety concerns due to thermal runaway [8].
Furthermore, it is generally agreed that there should be a maximum temperature variation
of less than 5 ◦C between the cells inside the battery module [8]. Consequently, effective
battery thermal management systems (BTMSs) are needed to keep them running safely
and effectively.

Recently, thermal management has received significant attention across several distinct
fields, including electronics [9], buildings [10], EVs [11], data centers [12], aerospace [13],
medical devices [14], fuel cells [15], etc. For EVs, several types of BTMSs have been
considered, including air cooling systems [16], phase change materials (PCMs) [17], single-
and multi-phase liquid cooling systems [18,19], and hybrids of these [20,21]. Due to their
higher efficiency and cooling capacity, liquid-cooled BTMSs dominate the current EV
market for power battery packs and powertrain systems [18], and, due to the limited
available space in EV batteries, cold plates are generally preferred [22]. Since they rely on
indirect contact cooling, they provide better separation between the battery module and its
surroundings, leading to safer operation [23]. As a result of the micro-channels’ high power
density dissipation capacity—up to 1000 W/cm2 [24]—and their effectiveness in managing
heat fluxes, which range from a few W/m2 to several MW/m2 [25,26], cold plates-based
mini-channels are a promising approach for cooling EV Li-ion batteries within this range.

A number of recent studies have focused on optimizing the mini-channel configu-
rations in cold plates using computational fluid dynamics-enabled surrogate modeling.
Li et al. [27], for example, optimized parallel mini-channel cold plate geometries and
achieved reductions in the maximum temperature difference, temperature standard de-
viation, and pressure drop of 5.7%, 0.82%, and 44.5%, respectively. More recent stud-
ies by Wang et al. [28] optimized a serpentine microchannel cold plate geometry, while
Zhang et al. [29] optimized the channel design parameters for 24 liquid-cooled plate
channel configurations. More complex channel configurations have also been considered.
Li et al. [30], for example, optimized a diamond-type flow channel with six design pa-
rameters, while Dong et al. [31] optimized a cold plate with bionic lotus leaf channels
and design variables such as channel spacing, channel width, channel angle, and mass
flow rate. Liu et al. [32] optimized a bionic leaf vein branch (BLVB) channel cold plate.
Wu et al. [33] optimized BTMS based on a variable heat transfer path cooling plate and
achieved a reduction of temperature difference across the battery surface while slightly
increasing the maximum temperature on the battery surface. Feng et al. [34] optimized a
unique gradient distributed Tesla cold plate and achieved a significant reduction in pressure
drop by 75.7% in Pareto frontier solution compared to the cells’ maximum temperature
difference that varied within a small range (11.2–12.6 ◦C). Sui et al. [35] optimized a cold
plate equipped with hybrid manifold channels and design variables including parallel
channel width, manifold channel width, parallel channel height, and the inlet velocity.

Clearly, accurate modeling of the heat generation with Li-ion batteries is essential for
creating high fidelity heat transfer models in Li-ion BTMSs. Most previous studies either
make the physically unrealistic assumption that the heat generation rate is steady [36] or
use empirical relationships based on a limited series of experiments. Time-dependent heat
generation rate models are preferable, and a number of these have also been proposed,
including the Newman, Tiedemann, Gu, and Kim (NTGK) model [37], the equivalent circuit
model (ECM) [38–40], and the Newman pseudo two-dimensional (P2D) model [41]. The
latter is widely used for physics-based electrochemical-thermal ECT modeling and accounts
for the mobility of lithium ions within the solid electrode particles and the reaction kinetics
at the electrode/electrolyte interfaces [42]. The present study discusses the challenges of
validating the P2D model and in particular its reliance on numerous physical parameters
whose values are uncertain or that have widely ranging values in the literature. Following
validation, the P2D model is used for the first time within a novel CFD-enabled optimization
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methodology for mini-channel cold plates (MCCPs) of Li-ion BTMS to explore trade-offs
between temperature standard deviation, pressure drop, and maximum temperature.

The paper is organized as follows. Section 2 describes the numerical simulation
methodology that covers the physical problem, the electrochemical, coupled electrochemical-
thermal battery, and conjugate heat transfer models along with their associated governing
equations, modeling parameters, and boundary conditions. Section 3 presents a comprehen-
sive validation and verification of the numerical methods and the mesh sensitivity studies.
The surrogate-enabled optimization methodologies are described in Section 4. Section 5
presents a comprehensive set of optimization results and optimized designs. Conclusions
are drawn in Section 6.

2. Numerical Simulation Methodology
2.1. Physical Problem

The basic components of the 20 Ah and 3.3 V prismatic pouch cell investigated in the
present work are graphite for the anode, lithium iron phosphate (LiFePO4) for the cathode,
and a carbonate-based electrolyte. The cell specifications are given in Table 1 [43].

Table 1. The specifications of the 20 Ah LiFePO4 pouch cell [43].

Specification Value Unit

Material for electrolyte Carbonate based -
Material for anode Graphite -

Material for cathode LiFePO4 -
Battery cell thickness (tb ) 7.25 mm
Battery cell width (Wb ) 160 mm
Battery cell height (Hb ) 227 mm
Battery cell volume (Vb ) 2.63 × 10−4 m3

Mass of the cell 496 g
Nominal voltage 3.3 V

Nominal cell capacity 20 Ah
Number of cycles Min. 300, approx. 2000 Cycles
Internal resistance 0.5 mΩ
Nominal energy 65 Wh
Discharge power 1200 W
Energy density 247 Wh/L
Specific energy 131 Wh/kg
Specific power 2400 W/kg

Operating temperature −30 to 55 ◦C
Storage temperature −40 to 60 ◦C

Figure 1a shows a schematic diagram of a single unit cell along with the dimensions.
The corresponding cross-sectional view of this cell is shown in Figure 1b. When a Li-
ion battery cell is being charged and discharged, lithium ions are extracted and inserted
into the solid particles of the positive and negative porous electrodes. They migrate
between the positive and negative electrodes, as well as the separator region, due to a
concentration gradient [44]. Many physical and chemical processes are involved, including
the diffusion of Li ions (intercalation and de-intercalation) within active solid electrode
particles, electrochemical reactions at the solid–electrolyte interfaces, diffusion of Li ions
in the liquid electrolytes, and the generation of heat during the battery operation. In
the current work, five of the aforementioned pouch battery cells are arranged in a series
to create a battery module. As shown in Figure 2, the battery cells are cooled by using
aluminum cold plates, which are composed of parallel straight minichannels organized
in a manner where each cold plate is placed between two consecutive cells. Figure 2 also
displays the geometrical details of the cold plate half domain and the simulated battery
module, where the symmetry is exploited to reduce the computational time.
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2.2. Numerical Analysis of the Electro-Chemical Model

Due to the importance of accounting accurately for the time-dependent electro-
chemical heat generation with the battery module, the pseudo two-dimensional electro-
chemical thermal (P2D-ECT) model is used. This is based on the Newman electrochemical
(EC) model and has been shown to be successful in simulating cell performance [45]. The
model has two dimensions, x and r. The x value represents the dimension along the cell
thickness direction, which encompasses the thicknesses of the negative electrode, separator,
and positive electrode. It mimics mass and charge transfer within the solid-phase elec-
trodes, liquid electrolytes, and the charge-transferring reaction at the electrode-electrolyte
interface. The value r is related to the radius of solid-phase particles. This is used for
solving diffusion equations using spherical coordinates within the solid-phase particles.
The main assumptions of the P2D-ECT model are summarized in Table 2.

Table 2. The main assumptions of this P2D-EC model.

Assumption Description

Simultaneous charge and mass
conservation in electrolyte and

electrodes [46]

In a closed cell system, mass conservation applies to the
ionized lithium in the electrolyte, and simultaneous
charge conservation occurs due to the unit charge
carried by the lithium ion. The same conservation

principles that apply to the electrolyte also apply to
the electrode.

Porous-electrode theory [47]
Both the electrolyte and electrode phases are modeled as
a continuous medium, indicating that both the phases

are assumed to exist at all points in space.

Space dependence
All equations in the EC model are solved as a function of
the cell thickness (x), except for the diffusion in the solid
phase, which is expressed in spherical coordinates (r).

Concentrated solution theory [48]

In the electrolyte region, the mass and charge
conservation equations are defined using the concepts of

concentrated solution theory. This theory becomes
particularly applicable in concentrated solutions where

the diffusing species interact with each other.

Spherical-shaped particles
The diffusion equation, which represents mass

conservation in the solid phase, is solved using spherical
coordinates to determine the Li surface concentration.

The main governing equations for mass and charge conservations in both solid and
liquid-electrolyte phases and the Butler–Volmer equation, along with their corresponding
boundary conditions, are described below.

2.2.1. Governing Equations in the Porous Electrodes (Anode and Cathode)

The governing equations for positive and negative porous electrodes can be repre-
sented by mass and charge conservation in the solid phase, mass and charge conservation
in the liquid electrolyte, and electrochemical reactions that take place at the solid–electrolyte
interface–the Butler–Volmer equation. This complex coupled system of equations is de-
scribed next.

• Mass and charge conservation in the solid phase:

Fick’s second law in a spherical coordinate system describes the mass balance of
Li-ions in an intercalation particle of electrode active material as follows [49]:

∂Cs,i

∂t
=

Ds,i

r2
i

∂

∂ri

(
r2

i
∂Cs,i

∂ri

)
, (1)
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For constant charge/discharge current, the boundary conditions of Equation (1) are as
follows [50]:

Ds,i
∂Cs,i

∂ri
= 0 at ri = 0, (2)

Ds,i
∂Cs,i

∂ri
= −Ji at r = Ri, (3)

where i = p; n indicates whether the equation is solved for the positive or negative
porous electrode. Ds, i is the solid phase diffusion coefficient (m2/s), and Cs,i is the Li-ion
concentration in the intercalation particle (mol/m3). ri refers to the radial coordinate along
the intercalation particle (m). Ri refers to the intercalation particle’s radius (m). Ji is the
molar flux of lithium ions at the surface ( mol/m2·s

)
.

Charge conservation in the solid phase of the electrode region is governed by the
generalized Ohm’s law [46]:

is,i = −σs,i∇∅s,i, (4)

where is,i is the current density in the solid phase of the electrode (A/m2) and ∅s,i is the
solid phase potential (V). σs,i is the electrical conductivity of the solid phase in the electrode
(S/m). This value can be corrected to the effective value for both positive and negative
electrodes σs, p , σs, n and can generally be expressed as follows [51]:

σs, p
e f f= σs,p ϵs, p, σs, n

e f f= σs,n ϵs,n, (5)

where ϵs, p, ϵs,n are the volume fractions of the solid phase active material in the positive
and negative electrodes, respectively. The fundamental relation between the mass flux of
Li ions and the solid phase current is given by Faraday’s law [46]:

∇·is,i = Fas,i Ji, (6)

where F is the Faraday constant (96, 485 coulomb/mol). as, i is the solid–electrolyte interfa-
cial area per unit volume (1/m) and is given by [52]:

as,i =
3·εs

Ri
(7)

Integrating Faraday’s and Ohm’s laws establishes a link between the solid phase
potential in the electrode and the rate of reaction [46]:

−σs,i∇2∅s,i = Fas,i Ji, (8)

As the current enters the battery cell at x = 0 and leaves at x = L, the boundary
conditions are as follows:

−σs,n

(
∂∅s

∂x

)
x=0

=
I
A

, −σs,p

(
∂∅s

∂x

)
x=L

=
I
A

, Iapp =
I
A

, (9)

L = lp + ls + ln, (10)

I, the total current passing through the cell, is positive for the charge process and
negative for the discharge process (A). Iapp is the applied current density of the battery
(A/m2), and A is the electrode plate area (m2). lp, ln, and ls represent the lengths of the
positive electrodes, negative electrodes, and separator, respectively ( µm). An alternate
boundary condition for the solid potential is as follows:

∅s|x=0 = 0. (11)
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At the electrodes–separator interface (x = ln and x = ln + ls), charge transport occurs
through the liquid electrolyte. Thus, the solid phase current is zero at these interfaces:(

∂∅s

∂x

)
x=ln

=

(
∂∅s

∂x

)
x=ln+ls

= 0. (12)

• Mass and charge conservation in the electrolyte (liquid phase):

Mass conservation in the electrolyte is described by [46] as follows:

εe,i
∂Ce,i

∂t
= ∇·

(
εe,iDe,i

e f f∇Ce,i

)
+
(
1 − t+

)
as,i Ji −

ie,i

F
∇·t+, (13)

Because Li ions do not enter or exit the cell, the boundary condition for the Li-ion
mass conservation equation is zero mass flux at the boundaries of the current collector [46]:(

∂Ce,i

∂x

)
x=0

=

(
∂Ce,i

∂x

)
x=L

= 0, (14)

where εe,i refers to the volume fraction of the electrolyte phase in the electrode (note:
εe,i + εs,i + ε f ,i = 1, where ε f ,i is the volume fraction of the filler material in the electrode).
Ce,i is the electrolyte’s Li-ion concentration ( mol/m3), and t+ is the electrolyte’s Li-ion
transport number. ie,i is the current density in the electrolyte ( A/m2). De,i

e f f is the effective
diffusivity of the electrolyte (m2/s) and is obtained via the following:

De,i
e f f = De,iϵe,i

β, (15)

where De,i is the diffusivity of the electrolyte (m2/s), and β is the Bruggeman porosity
exponent. Charge conservation in the electrolyte is governed by the concentrated solution
theory and is expressed as follows [46]:

ie,i = −σe,i
e f f∇∅e,i + σe,i

e f f 2RT
F
(
1 − t+

)(
1 +

∂ln f
∂lnCe,i

)
∇lnCe,i, (16)

The insulation boundary conditions are set at the cell’s two ends (x = 0 and x = L),
indicating that current enters and exits the cell through solid particles in contact with
current collectors [46]: (

∂∅e,i

∂x

)
x=0

=

(
∂∅e.i

∂x

)
x=L

= 0, (17)

where ∅e is the electrolyte phase potential (V). R is the universal gas constant (8.3143 J/(mol·K)).
T is the temperature (K). ∂ln f

∂lnCe,i
is the activity dependence of the electrolyte. σe,i

e f f is the
effective electrolyte electrical conductivity in the porous electrode (S/m) and is given by
the following:

σe,i
e f f = σe,iϵe,i

β, (18)

where σe,i is the electrolyte electrical conductivity (S/m).
The following equations are also needed to model charge and mass conservation in a

porous electrode [53,54]:
Iapp = ie + is, (19)

∇·is,i +∇·ie,i = 0, (20)

∇·is,i= Fas,i Ji= −as,iin, (21)

∇·ie,i =Fas,i Ji= as,iin, (22)

where in represents local current density at the particle surface ( A/m2).
• Electrochemical reactions at the solid–electrolyte interface:
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The rate of the electrochemical reactions on the surface of the solid electrode particles
is generally governed by the Butler–Volmer equation, which combines both charge-mass
conservation equations and is written as follows [48]:

in = io

{
exp

[
∝a F
RT

ηi

]
− exp

[
− ∝cF

RT
ηi

]}
, (23)

where io is the exchange current density ( A/m2) and is given by the following [43]:

io = io,re f ,i

(
Ce,i

Ce,re f ,i

)∝a(
Cs,max,i − Cs,e,i

Cs,max,i − Ce,re f ,i

)∝a(
Cs,e,i

Ce,re f ,i

)∝c

, (24)

Ce,re f ,i =
Cs,max,i

2
, (25)

∝a and ∝c are transfer coefficients for the anode and cathode, respectively. io,re f ,i is the
reference exchange current density ( A/m2). Ce,re f ,i is the electrolyte reference concentration
(mol/m3). Cs,max refers to the maximum Li-ions concentration in the intercalation particles
(mol/m3), and Cs,e,i is the Li concentration at the surface of the intercalation particles
(mol/m3). ηi is the local surface overpotential (V) and is expressed as follows [55,56]:

ηi = ∅s,i − ∅l,i − ∆∅s, f ilm − Eeq,i, (26)

∆∅s, f ilm,i = R f ilm,i I, (27)

where ∆∅s, f ilm,i is the voltage drop across the film resistance (V), and R f ilm,i represents
the film resistance (Ω m2). Eeq,i is the open-circuit potential (equilibrium potential) (V),
which is dependent on the temperature (T) and state of charge (SOC) of the electrodes. It is
expressed as follows:

Eeq,i = Eeq,i, re f + (T − Tre f )

[
dEeq

dT

]
i
, (28)

where Tre f is the reference temperature and Eeq,i, re f is the open circuit potential under the
reference temperature Tre f .

2.2.2. Governing Equations in the Liquid Electrolyte (Separator)

The conservation equations for mass and charge in the separator, when only the
electrolyte is present, approximately match with similar equations governing electrolyte
behavior in the porous electrode. Because there is no reaction in the separator zone,
Equation (13) simply becomes as follows [46]:

εsep
∂Ce

∂t
= ∇·

(
Dsep∇Ce

)
, (29)

Since all current passes through the separator zone, Equation (16) has the following
form in the separator [46]:

Iapp = − σsep∇∅e + σsep
2RT

F
(
1 − t+

)(
1 +

∂ln f
∂lnCe

)
∇lnCe, (30)

The acronym sep, which appears in the two equations above along with physical
parameters, refers to the separator zone.

2.3. Numerical Analysis of the Coupled Electrochemical-Thermal Battery Model

A three-dimensional (3D) coupled electrochemical-thermal (ECT) model of the Li-ion
battery cell is developed using COMSOL Multiphysics 6.0. The electrochemical model
is used to calculate the average heat generation rate (

.
qt) during the electrochemical reac-
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tions, which is an essential input for the thermal model. At the same time, the average
temperature (T) that is obtained from the thermal model acts as the initial condition for
the electrochemical model, constructing an iterative solution procedure that takes into
consideration the impact of temperature changes on the electrochemical reactions.

The general energy conservation equation for a single battery cell is given by the following:

ρbCpb
∂T
∂t

= ∇·(Kb∇T) +
.
qt − Qa, (31)

where Kb, ρb, and Cpb are the thermal conductivity, density, and specific heat of the battery
cell, respectively. Qa is the convective heat transfer from the surfaces surrounded by the
ambient air given by Newton’s law of cooling:

Qa = ha Aa(TW − Ta), (32)

where ha, Aa, TW , and Ta are the convective heat transfer coefficient, area of battery surfaces
exposed to the air, battery surface temperature exposed to air, and ambient temperature,
respectively.

.
qt represents the total heat generation rate per unit volume of the battery and

can be written as follows:

.
qt =

.
qPE +

.
qNE +

.
qSEP +

.
qCC,i, (33)

where
.
qPE,

.
qNE,

.
qSEP, and

.
qCC,i are the heat generation rates at the positive electrode,

negative electrode, separator, and current collectors, respectively (W/m3). Each of the two
variables,

.
qPE and

.
qNE, has three heat generation terms: reversible heat generation (

.
qrev),

polarization heat generation (
.
qpol), and ohmic heat generation (

.
qohm). The latter two terms

are referred to as the irreversible heat generation (
.
qir). The equations for each of these terms

are given by the following [57,58]:

.
qrev,i = Fas,i JiT

∂Eeq,i

∂T
, (34)

.
qpol,i = Fas,i Ji(∅ s,i − ∅l,i − Eeq,i

)
, (35)

.
qohm,i = σs,i

e f f
(

∂∅s,i

∂x

)2
+ σe,i

e f f
(

∂∅e,i

∂x

)2
+

2RT(1 − t+)
F

∂

∂x

(
σe,i

e f f ∂(ln Ce,i)

∂x

)
∂∅e,i

∂x
, (36)

.
qSEP = σe,sep

e f f
(

∂∅e

∂x

)2
+

2RT(1 − t+)
F

∂

∂x

(
σe,sep

e f f ∂(ln Ce)

∂x

)
∂∅e

∂x
, (37)

.
qCC,i = σcc,i

(
∂∅s,i

∂x

)2
, (38)

It is assumed that the contribution from the film resistance resistive heating term is
not included in the polarization heat generation rate. The heat generation from the positive
and negative current collectors will be identified in the positive and negative tabs and can
be further represented by the following [43]:

σcc,i

(
∂∅s,i

∂x

)2
=

I2

σcc,i
K L

A
= I2·ρcc,i.K L

A
, (39)

where σcc,i is the electrical conductivity for the positive and negative current collectors. K L
A

is the gain term used to express the compensation for the tabs’ junction resistance (1/m),
where the junction resistance is the main source of heat in the tabs. ρcc,i is the resistivity
of the positive and negative tab, (Ω m). The resistivity expressions and temperature
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dependency parameters used in the current study are given in Table 3 based on the various
temperature ranges.

Table 3. Resistivity expressions based on the various temperature ranges [43].

Temperature Range (K) Resistivity (Ω m)

1.0–19.5 1.091612 × 10−12 − 1.10726 × 10−13 × T + 3.696901 × 10−14 × T2 − 2.781934 × 10−15 × T3 +
1.008733 × 10−15 × T4

19.5–50.6 −3.323487 × 10−11 + 7.29041 × 10−12 × T − 4.771551 × 10−13 × T2 + 1.071535 × 10−14 × T3

50.6–200.0 1.0445563 × 10−10 − 3.988929 × 10−11 × T + 1.061978 × 10−12 × T2 − 2.337666×10−15 × T3

200.0–933.0 −1.037048 × 10−8 + 1.451201 × 10−10 × T − 8.192563 × 10−14 × T2 + 6.619834×10−17 × T3

Finding the correct set of battery parameters is one of the main challenges with battery
modeling because manufacturers usually do not reveal these details in their specification
sheets, and determining these parameters is a difficult and time-consuming process that calls
for a variety of characterization and analytical methods [42]. As a common procedure within
the battery modeling community, parameter sets are usually sourced from literature, albeit
their sources are not always known [59]. The material properties and electrochemical and
thermal parameters of the Li-ion battery cells used in the numerical simulations are listed
in Table 4. Since some of the parameters needed to specify the problem are missing in the
literature, these have been obtained through private communication with Mevawalla et al. [43];
the rest were obtained from their original publication. The applied current density for the
P2D model, Iapp = I/A, can be calculated by knowing the electrode plate area A [59–61].
However, in this work, the applied current density Iapp = 119 A/m2 at high C-rate (4C)
has been obtained via a private communication with Mevawalla et al. [43].

Table 4. Li-ion battery parameters [43].

Parameter Symbol Value Unit

Initial electrolyte Li-ions concentration Ce,0 2100 mol/m3

Electrolyte reference concentration Ce,ref 1000 mol/m3

Initial Li-ions concentration in the intercalation particle for
negative electrode Cs,n,0 30,500 mol/m3

Initial Li-ions concentration in the intercalation particle for
positive electrode Cs,p,0 1900 mol/m3

Maximum Li-ions concentration in the intercalation particle for
positive electrode Cs,max,p 21,190 mol/m3

Maximum Li-ions concentration in the intercalation particle for
negative electrode Cs,max,n 31,507 mol/m3

Thickness of positive electrode lp 183 µm

Thickness of separator ls 52 µm

Thickness of negative electrode ln 100 µm

Intercalation particle’s radius for positive electrode Rp 8 × 10−6 m

Intercalation particle’s radius for negative electrode Rn 5.5 × 10−6 m

Electrolyte phase volume fraction, positive electrode ϵe,p 0.54 -

Electrolyte phase volume fraction, negative electrode ϵe,n 0.6 -

Volume fraction for separator ϵsep 1 -

Electrode phase volume fraction, positive electrode ϵs,p 0.39 -

Electrode solid phase volume fraction, negative electrode ϵs,n 0.379 -

Filler volume fraction for positive electrode ϵf,p 0.07 -

Filler volume fraction for negative electrode ϵf,n 0.021 -
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Table 4. Cont.

Parameter Symbol Value Unit

Electrical conductivity of the solid phase for positive electrode σs,p 91 S/m

Electrical conductivity of the solid phase for negative electrode σs,n 100 S/m

Electrolyte electrical conductivity σe σe(C/Ce,ref) S/m

Solid phase diffusion coefficient for positive electrode Ds,p 3.2 × 10−13 m2/s

Solid phase diffusion coefficient for negative electrode Ds,n

1.452 ×
10−13exp

[
6.803×104

8.314 ×
(

1
318 − 1

TD2

)]
TD2 =

min(393.15, max(T, 223.15) )

m2/s

Diffusivity of the electrolyte De 7.5 × 10−11 m2/s

Maximum negative electrode state of charge 0.98 -

Minimum negative electrode state of charge 0 -

Maximum positive electrode state of charge 0.9 -

Minimum positive electrode state of charge 0.01 -

Thermal conductivity for positive electrode K pos 1 W/m·K

Thermal conductivity for negative electrode K neg 1 W/m·K

Heat capacity at constant pressure for positive electrode Cp, pos 881 J/kg·K

Heat capacity at constant pressure for negative electrode Cp, neg 750 J/kg·K

Density for positive electrode ρp 3600 kg/m3

Density for negative electrode ρn 2300 kg/m3

Reference exchange current density for positive electrode io,ref,p 20 A/m2

Reference exchange current density for negative electrode io,ref,n 25 A/m2

Applied current density of the battery
(

A/m2 ) Iapp 119 A/m2

Activity dependence of the electrolyte ∂ln f±
∂lnCe

0 -

Transfer coefficient for anode ∝a 0.5 -

Transfer coefficient for cathode ∝c 0.5 -

Li-ion transport number for electrolyte t+ 0.363 -

Film resistance on negative electrode Rfilm,n 0.02 Ωm2

Bruggeman porosity exponent β 1 -

Universal gas constant R 8.3143 J/(mol·K)

Faraday’s constant F 96,485 coulomb/mol

Nominal capacity of cell C 20 Ah

Minimum stop voltage Vmin 2.0 V

Maximum stop voltage Vmax 4.1 V

Reference temperature Tref 298 K

Initial temperature TInitial 22.88 ◦C

Tab thickness ttab 0.02 mm

Density for battery material ρb 2055.2 kg/m3

Specific heat for battery material Cpb 1399.1 J/kg·K

Thermal conductivity for battery material Kb 0.8972 W/m·K

2.4. Conjugate Heat Transfer Modeling

A three-dimensional (3D) conjugate heat transfer model that simulates heat conduction
in the solid and convective heat transfer to the cooling fluid (water) and surrounding air
is used to simulate the performance of the minichannel cold plate cooling system. The
continuity and momentum equations of the water within the cold plate minichannels are
given by the following:
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∂ρw

∂t
+∇·(ρw·Uw) = 0, (40)

∂(ρ w Uw)

∂t
+∇·(ρw·UwUw) = −∇Pw + µw ∇2Uw, (41)

where ρw, µw , Pw, and Uw are the density, viscosity, pressure, and velocity of the water,
respectively. The energy conservation equations for the water and cold plate are given by
the following:

∂(ρwCpwTw)

∂t
+∇·

(
ρwCpwUwTw

)
= ∇·(Kw ∇Tw), (42)

∂(ρ PCpPTP

)
∂t

= ∇·(KP ∇TP)−Qa, (43)

where Cpw and Tw are the heat capacity and temperature of the water, respectively. ρP, CpP,
KP, and TP are the density, heat capacity, thermal conductivity, and temperature of the cold
plate, respectively. Table 5 is a list of all relevant boundary conditions and assumptions
used in the conjugate heat transfer model. The physical parameters and temperature
dependency expressions for the cooling fluid (water), cold plate, and battery tab used in
the current study are given in Table 6.

Table 5. The boundary conditions of the conjugate heat transfer model.

Locations Fluid Conditions Thermal Conditions

Inlet Laminar and fully developed flow
Mass flow rate

( .
m = 3 g/s) Temperature (Tin = 25 °C )

Outlet The pressure outlet boundary condition (Po = 0 ) In the normal direction, the temperature
gradient is zero. Outflow –n.q = 0

Interface surface No-slip flow Uw = 0 −KP
∂TP
∂n |r = −Kw

∂Tw
∂n |r

TP,r = Tw,r

Incompressible flow ∂ρw
∂t + ρw∇·Uw = 0 ρ (density) = constant -

Gravity force Gravity is not considered. ρw·g = 0 -

Free convection boundary conditions U = 0 ha = 5W/m2·K
Ta = 22.88 °C

Radiation heat transfer U = 0 The radiation heat transfer (Qrad) is neglected (Qrad = 0 ).

Symmetrical plane of the battery pack Half of the battery module is considered (Figure 2).

Table 6. The physical parameters for battery tab, cooling fluid, and cold plate, respectively.

Temperature Range (K) Density (kg/m3)

Tab [43]

20.0–130.0 2734.317 − 0.02751647 × T + 0.001016054 × T2 − 1.700864 × 10−5 × T3 +
5.734155 × 10−8 × T4

130.0–933.0 2736.893 − 0.006011681 × T − 7.012444 × 10−4 × T2 + 1.3582 × 10−6 × T3 −
1.367828 × 10−9 × T4 + 5.177991 × 10−13 × T5

Specific heat capacity (J/kg·K)

100.0–320.0 −290.416126 + 11.1810036 × T − 0.0412540099 × T2 + 7.11275398 × 10−5 × T3 −
4.60821994 × 10−8 × T4

320.0–933.0 595.658507 + 1.51302896 × T − 0.00207006538 × T2 + 1.30360846 × 10−6 × T3

Thermal conductivity (W/m·K)

0.0–14.0 3895.7 × T + 203.42 × T2 − 56.434 × T3 + 2.0664 × T4

14.0–50.0 49, 148.0 − 2950.9 × T + 63.175 × T2 − 0.46605 × T3

50.0–82.0 15, 117.0 − 626.0 × T + 10.348 × T2 − 0.078676 × T3 + 2.2917 × 10−4 × T4

82.0–297.0 913.09 − 12.076 × T + 0.080875 × T2 − 2.3988 × 10−4 × T3 + 2.6487 × 10−7 × T4

297.0–933.0 39.646 + 1.684 × T − 0.0054134 × T2 + 8.4313 × 10−6 × T3 − 6.537 × 10−9 ×
T4 + 2.002 × 10−12 × T5



Energies 2024, 17, 4575 13 of 26

Table 6. Cont.

Temperature Range (K) Density (kg/m3)

Cooling fluid
(Water) [62]

Density (kg/m3)

273.15–293.15 0.000063092789034 × T3 − 0.060367639882855 × T2 + 18.9229382407066
× T − 950.704055329848

293.15–373.15 0.000010335053319 × T3 − 0.013395065634452 × T2 + 4.969288832655160
× T + 432.257114008512

Specific heat capacity (J/kg·K)

273.15–553.75 12, 010.1471 − 80.4072879 × T + 0.309866854 × T2 − 5.38186884
× 10−4 × T3 + 3.62536437 × 10−7 × T4

Thermal conductivity (W/m·K)

273.15–553.75 −0.869083936 + 0.00894880345 × T − 1.58366345 × 10−5 × T2 +
7.97543259 × 10−9 × T3

Viscosity (Pa·s)

273.15–413.15
1.3799566804 − 0.021224019151 × T + 1.3604562827 × 10−4 × T2 −

4.6454090319 × 10−7 × T3 + 8.9042735735 × 10−10 × T4 − 9.0790692686 ×
10−13 × T5 + 3.8457331488 × 10−16 × T6

Cold plate
(Aluminum) [62]

413.15–553.75 0.00401235783 − 2.10746715 × 10−5 × T + 3.85772275 × 10−8 × T2 −
2.39730284 × 10−11 × T3

Density (kg/m3)

2700

Specific heat capacity (J/kg·K)

900

Thermal conductivity (W/m·K)

238

In this paper, the performance of the BTMS is evaluated using important practical
metrics [63], namely the maximum temperature of the battery cells ( Tmax), the temperature
standard deviation ( Tσ), and the pressure drop of the water in the minichannels ( ∆P).
These are given, respectively, by the following:

Tmax = Max(T), (44)

Tσ =

√√√√∫A (T − Tav)
2dA∫

A dA
, Tav =

∫
A TdA∫
A dA

, (45)

∆P = Pin − Po, (46)

where the Tav and A are the average temperature and area of the battery cells, respectively.
Pin and Po are the inlet and outlet pressures of the water. After the battery cells have fully
discharged, Tmax, Tσ, and ∆P values are calculated at the minimum voltage (stop voltage)
of 2 V, the point at which heat generation peaks.

3. Numerical Validation and Verification
3.1. Conjugate Heat Transfer Modeling

The first validation is against a recent numerical result obtained by Liu et al. [64]
for the BTMS based on case 1 including 8.0 Ah prismatic LiFePO4 Li-ion batteries cooled
by minichannel cold plates. This uses a much simpler empirical method for specifying
the heat generation rate based on an empirical polynomial heat generation rate expres-
sion based on experiments for a 9 C discharge rate [65]. Their BTMS layout is shown in
Figure 3. Figure 3a depicts the BTMS, where each cold plate is inserted between consec-
utive battery cells; Figure 3b shows the BTMS’s bottom view; and Figure 3c displays the
configuration, boundary conditions, and geometrical parameters for half of the domain of
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a single battery unit and serpentine minichannel cold plate configuration, where symmetry
has been exploited. The water inlet temperature and velocity range are set at 30 ◦C and
(0.1 ≤ Uin ≤ 0.5) m/s, respectively. The polynomial heat generation rate fitting equation is
given in Equation (47).

.
qgen = 319.6 − 2719.0(SOC) + 15, 148.5(SOC)2 − 43, 018.3(SOC)3+

63, 645.5(SOC)4 − 46, 817.9(SOC)5 + 13, 527.5(SOC)6,
(47)

where the heat generation is estimated in (kW/m3), and (SOC), the cell state of charge, is
denoted by the following:

SOC = 1 − I·t/C (48)

where I, C are the discharge current and nominal capacity of the battery, respectively, and t
represents the discharge time.
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A CFD model of this configuration has been developed in COMSOL 6.0 using a
free-tetrahedral mesh of (266,901) elements and time steps of 2 s. The results were eval-
uated in terms of the maximum battery temperature over the water inlet velocity range
(0.1 ≤ Uin ≤ 0.5) m/s. Figure 4 shows excellent agreement between the present model and
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the numerical results obtained by Liu et al. [64], with a mean absolute percentage error
(MAPE) of 0.02%. MAPE is computed using Equation (49):

MAPE =
1
N

N

∑
i=1

|Calculated value − Actual value|
Actual value

∗ 100% (49)

where (N) is the number of evaluated points.
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Figure 4. Comparison of the numerical results obtained for the maximum battery temperature with
Liu et al. [64].

The simulation of the BTMS based on an empirical polynomial heat generation rate
takes around 32 minutes to complete on a Dell computer running Windows 10 with a 12th
Gen Intel(R) Core (TM) i7-1270P 2.20 GHz processor and 32.0 GB of RAM.

3.2. P2D-ECT Modeling

Only a small number of previous studies of BTMS have attempted Li-ion battery cool-
ing with coupling between the electro-chemical heat generation processes and the MCCPs
cooling system, due to difficulties in determining many of the key modeling parameters for
commercial Li-ion batteries [42,66] and the computational challenges of solving the coupled
equations. The experimental and numerical results obtained by Mevawalla et al. [43] are
used here to validate the heat generation rate predicted by the present ECT model. Specifi-
cally, a single 20 Ah LiFePO4 Li-ion pouch battery cell without a cold plate is simulated at a
high discharge rate of 4C using a free tetrahedral mesh of (10,032) elements. Comparisons
are shown in Figures 5 and 6 for the discharge voltage profile and the average surface
temperature on both sides of the cell. Once again, there is generally good agreement with
the results of Mevawalla et al. [43].
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Figure 5. Comparison of discharge voltage profiles between the present observations and the
experimental and numerical observations of Mevawalla et al. [43].
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Figure 6. Comparison of average battery surface temperature between the present observations and
the experimental and numerical observations of Mevawalla et al. [43].

The effect of mesh density on the numerical solutions is now considered using unstruc-
tured free tetrahedral meshes. A constant mass flow rate of 3× 10−3 kg/s is applied in each
minichannel, and the numerical results are obtained when the 20 Ah Li-ion battery cells
are fully discharged at 4C and at a minimum stopping voltage of 2.0 V. The geometrical
dimensions of the BTMS are shown in Figure 2, where a symmetry condition is used to
reduce computational time. Results are given in Table 7, showing how the number of
elements affects the maximum temperature in the Li-ion batteries and the pressure drop in
the minichannel cold plates.



Energies 2024, 17, 4575 17 of 26

Table 7. Grid sensitivity results.

Number of
Elements Tmax (◦C) ∆P (Pa) PRETmax (%) PRE∆P(%)

1.07 × 106 36.010 780.98 1.164 0.946

2.42 × 106 35.997 772.66 1.199 2.001

3.63 × 106 36.386 782.82 0.131 0.712

5.38 × 106 36.477 787.39 0.118 0.133

5.94 × 106 36.434 788.44 0.000 0.000

The percentage relative error (PRE) of results on each mesh with respect to those on
the finest mesh are calculated using Equation (50):

PRE(%) =

∣∣∣∣∣Pi − P5.94×106

P5.94×106

∣∣∣∣∣× 100 (50)

P is the numerical solution of the evaluated values of the physical parameters (Tmax
and ∆P) for a given number of elements (i). The BTMS model with 3.63 × 106 elements
is used for the simulation presented below, as it offers an appropriate balance between
computational time and simulation accuracy.

The coupled system of P2D-ECT and conjugate heat transfer model equations are
solved using COMSOL Multiphysics 6.0 with a 5 s time step and a relative tolerance of
0.001. Each simulation takes around 15 h on the University of Leeds Advanced Research
Computing (ARC4) HPC system.

4. Multi-Objective Design Optimization of Cold Plate Minichannels

The validated P2D-ECT model is used within a surrogate-enabled optimization strategy
to explore and optimize the minichannel geometry within a cold plate cooling system. The
key objectives to be minimized are the maximum temperature, Tmax, the standard deviation
of the temperature, Tσ, and the pressure drop, ∆P. The design variables are the variables x1
and x2 in Figure 2, relating to the channel width and horizontal spacing near the margin of
the cold plate, respectively, and take the limits 3 ≤ x1 ≤ 8 and 5 ≤ x2 ≤ 25, respectively.

Optimal Latin hypercube sampling is used to generate 20 design of experiment (DoE)
points within the design space at which the P2D-ECT model is run to compute Tmax, Tσ, and
∆P. The performances of two different surrogate modeling approaches are assessed. The
first uses Gaussian radial basis functions (RBFs). The RBFs surrogate modeling approach
is a very simple and effective approach [67,68] based on surrogate model approximations
f̂ j(x) for each objective function f j at every design point, x, in terms of the n DoE points

(xi =
[

x(i,1), x(i,2)
]
) of the form [69]:

f̂ j(x) ≈
n

∑
i=1

λiψ(r( x, xi)) =
n

∑
i=1

λiψ∥x − xi∥, ψ∥x − xi∥ = e−β·∥x−xi∥2
, 1 ⩽ i ⩽ n, (51)

Note that these depend on a single hyper-parameter, β, j refers to objective functions
(Tmax, Tσ, and ∆P), and n is the number of design of experiment points. The λi values are
the RBF weights that ensure that the surrogate model is interpolative, so that f̂ j(xi) = f j(xi)
at every DoE point xi for 1 ⩽ i ⩽ n. Leave-one-out cross validation (LOOCV) is used to
optimize the hyperparameter β with respect to the mean square error (MSE). The MSE
metric is a widely used metric that represents the average squared difference between the
predicted and actual values. It is given by the following:

MSE =
1
n

n

∑
i=1

(
fi − f̂i

)2
(52)
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where n represents the number of observations, and fi, f̂i are the actual and predicted
values for the objective function, respectively.

After the optimal value of β has been determined, the vector of weights can be
determined via the following:

λ = ψ(r)−1· f̂ (x) (53)

The second approach uses Gaussian process (GP) regression, which is widely used
in ML applications [70] due to its flexibility and ability to predict uncertainties. GP is a
powerful and popular ML method that offers the potential to estimate errors on a sound
mathematical basis. It also works well for surrogate modeling of small datasets [71–73].
The GP model is comprised of two terms: the mean µ(x) and a random variable called
Z(x), which represents variance σ2 [74]:

F(x) = µ(x) + Z(x) where Z(x) ∼ N
(

0, σ2
)

(54)

The correlation matrix is given by the RBF kernel, a function of the distance between
their corresponding points in a sampling plan (x(i) and x(j)) [75]:

Σij = σ2exp

−
nd

∑
l=1

(
x(i)l − x(j)

l

)2

2αl
2

 (55)

where nd represents the number of the design variables, and αl is the length scale parameter
in the lth coordinate direction. The Python GPy (v1.10.0) library in Python is used.

Multi-objective design optimization MODO performs a trade-off analysis to generate
Pareto fronts, which provide the best possible balance among all conflicting objectives.

5. Results and Discussion
5.1. Hyperparameters Calibration

Hyperparameter calibration is essential for each objective function of each ML model.
Figure 7 displays the MSE tuning curves for Tmax and ∆P for the Gaussian RBF using LOOCV.

Energies 2024, 17, x FOR PEER REVIEW 19 of 28 
 

 

Multi-objective design optimization MODO performs a trade-off analysis to generate 
Pareto fronts, which provide the best possible balance among all conflicting objectives.  

5. Results and Discussion 
5.1. Hyperparameters Calibration 

Hyperparameter calibration is essential for each objective function of each ML model. 
Figure 7 displays the MSE tuning curves for 𝑇௫ and ∆𝑃 for the Gaussian RBF using 
LOOCV.  

  
(a) (b) 

Figure 7. The MSE tuning curves for the β hyper parameter: (a) 𝑇௫; (b) ∆P. 

The maximum log likelihood strategy [74] is used to determine the hyperparameters 
of the GP models. These are presented in Table 8. 

Table 8. Configuration parameters for the GP ML approach. 

Objective Function No. of Restarts Optimizer Length Scale (𝜶) Length Scale Range 𝑇௫ 10 2 (1 × 10−2, 1 × 102) ∆𝑃 25 2 (1 × 10−2, 1 × 102) 𝑇ఙ 10 2 (1 × 10−2, 1 × 102) 

Table 9 displays the MSE for each calibrated surrogate model. The GP model is best. 

Table 9. LOOCV MSE for each ML model. 

ML Model RBF GP 𝑇௫ 0.043 1.40 × 10ି 𝑇ఙ 0.001 8.18 × 10ି଼ ∆𝑃 0.001 0.004 

5.2. Single-Objective Optimization 
The surrogate models shown in Figure 8 are similar; however, the MSEs for the ob-

jective functions shown in Table 9 indicate that the GP model is more accurate. The single 
objective optimizations are straightforward, and the optima lie on the design space 
boundary. Those for the GP model are given in Table 10. Note that when ∆𝑃  is mini-
mized, 𝑇௫  and 𝑇ఙ are relatively large, indicating that it will be beneficial and interest-
ing to perform multi-objective optimization. 

  

Figure 7. The MSE tuning curves for the β hyper parameter: (a) Tmax; (b) ∆P.

The maximum log likelihood strategy [74] is used to determine the hyperparameters
of the GP models. These are presented in Table 8.
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Table 8. Configuration parameters for the GP ML approach.

Objective Function No. of Restarts Optimizer Length Scale (α) Length Scale Range

Tmax 10 2 (1 × 10−2, 1 × 102)

∆P 25 2 (1 × 10−2, 1 × 102)

Tσ 10 2 (1 × 10−2, 1 × 102)

Table 9 displays the MSE for each calibrated surrogate model. The GP model is best.

Table 9. LOOCV MSE for each ML model.

ML Model RBF GP

Tmax 0.043 1.40 × 10−7

Tσ 0.001 8.18 × 10−8

∆P 0.001 0.004

5.2. Single-Objective Optimization

The surrogate models shown in Figure 8 are similar; however, the MSEs for the
objective functions shown in Table 9 indicate that the GP model is more accurate. The
single objective optimizations are straightforward, and the optima lie on the design space
boundary. Those for the GP model are given in Table 10. Note that when ∆P is minimized,
Tmax and Tσ are relatively large, indicating that it will be beneficial and interesting to
perform multi-objective optimization.
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Table 10. Single objective optimization using the GP model.

Objective
Function

Global
Minima x1 (mm) x2 (mm) Tmax (◦C) ∆P (Pa) Tσ (K)

Tmax (◦C) 35.98 8.00 5.00 35.98 487.1 2.121

∆P (Pa) 470.4 8.00 25.00 36.81 470.4 2.296

Tσ (◦C) 2.107 5.93 5.00 36.18 714.8 2.107

5.3. Multi-Objective Optimization

Three two-dimensional Pareto fronts are constructed using the GP surrogate mod-
els within a generalized differential evolutionary algorithm (GDE3) [76] available in the
pymoode Python package (v0.2.6). Li et al. [77] found that the GDE3 surpasses many
different multi-objective optimization algorithms in terms of accuracy and chose it for their
optimization study. The GDE3 algorithm setting parameters are listed in Table 11.

Table 11. Basic GDE3 algorithm setting parameters.

Parameter Value

Variant “DE/rand/1/bin”

Maximum number of generations 200

Size of the population in each generation 50

Crossover parameter (Cr) 0.7

Scale factor or mutation parameter (F) (0.0, 1.0)

The Pareto front for ∆P against Tmax is shown in Figure 9, and its accuracy is verified by
comparing some of the optimal points against corresponding CFD predictions in Table 12.
An excellent agreement is observed, with the % error being <0.1 in all cases. Figure 10
provides the Pareto front for Tσ against Tmax. Figure 11 provides the Pareto front for Tσ

against ∆P. These are useful for demonstrating the available compromises that designers
can strike between the competing objectives. For instance, in Figure 9, decreasing Tmax
from 36.8 K to 36.0 K would result in ∆P increasing from 470 Pa to 487 Pa. However, the
increase in Tmax from around 36.0 to 36.2 in Figure 10 causes Tσ to drop from about 2.122 K
to 2.107 K.
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Table 12. Validation of the objective functions at selected Pareto points with their corresponding CFD
results, as seen in Figure 9.

Points
Design Variables (mm) Tmax (◦C) ∆P (Pa) Error %

x1 x2 Pareto CFD Pareto CFD Tmax ∆P

P1 8.000 7.232 36.010 36.074 485.300 485.190 0.178 0.023

P2 8.000 12.144 36.127 36.133 481.200 481.620 0.017 0.087

P3 8.000 14.227 36.200 36.236 479.459 479.350 0.099 0.023

P4 8.000 18.690 36.407 36.393 475.723 476.820 0.038 0.231

P5 8.000 22.371 36.627 36.653 472.638 473.110 0.071 0.100

P6 8.000 24.710 36.790 36.783 470.675 471.400 0.018 0.154
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Figure 10. Pareto curve of Tσ vs. Tmax, obtained using the GP ML approach.
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Finally, Figure 12 displays the 3D Pareto-optimal surface that is used to analyze trade-
offs between the three competing objectives, Tσ, ∆P, and Tmax. The 3D Pareto-optimal
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surface’s accuracy is again verified by comparing a subset of the optimal points with corre-
sponding CFD predictions, as shown in Table 13. The candidate point is chosen from among
all non-dominated solutions and is located in the lower left corner of the pareto-optimal
surface (See Figure 12). Table 14 shows a comparison between the optimum candidate
design and the original (Benchmark) design of the BTMS. It also shows the performance
enhancement, with the maximum temperature decreasing from 36.38 to 35.99 ◦C, the pres-
sure drop dropping significantly from 782.82 to 494.41 Pa, and the temperature standard
deviation reducing from 2.14 to 2.12 K.
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8 8.000 23.335 36.692 36.696 471.83 471.92 2.2744 2.2700 0.011 0.019 0.192
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Table 14. The final optimization results of the BTMS.

Acronym Bound Benchmark
Design

Optimum
Candidate

Design

Design variables x1 (mm)
x2 (mm)

(3–8)
(5–25)

5.5
15.0

8.00
5.00

Objective
functions

Tmax (◦C)
∆P (Pa)
Tσ (K)

Minimization
Minimization
Minimization

36.38
782.82

2.14

35.98
487.16

2.12

6. Conclusions

In this paper, a novel high-fidelity numerical simulation and MODO optimization
methodology is developed and applied to the analysis and optimization of BTMS for Li-ion
battery packs in electric vehicles for the first time. It is very important to simulate the
complex, electro-chemical heat transfer mechanisms to provide accurate predictions of the
time-dependent heat transfer generation and voltage profile in Li-ion battery packs. The
present study has shown that this is very challenging due to the number of parameters,
many of which are uncertain or missing in the literature, which need to be accounted for,
and these simulations are computationally expensive, significantly increasing the time
required for optimization studies. To aid future studies, the present study has provided a
comprehensive and unambiguous list of the required modeling parameters.

Numerical simulation of the BTMS is carried out successfully using coupled P2D,
3D ECT, and conjugate heat transfer models that have been carefully validated against
experimental and numerical data provided in references [28,49]. The coupled P2D-3D ECT
modeling approach is used for the first time within a novel Gaussian process regression-
enabled optimization methodology for Li-ion battery cooling using cold plates. The GP
modeling is simple and effective to use and when combined with the GDE multi-objective
algorithm allows the compromises, which can be achieved using cold plates, between the
key objectives of battery maximum temperature (Tmax), temperature standard deviation
(Tσ), and pressure drop (∆P) to be explored. The trade-offs between Tmax, ∆P, and Tσ are
shown effectively using 2D Pareto fronts and a 3D Pareto-optimal surface. These multi-
dimensional Pareto fronts can be used by designers to help them make more scientific
decisions based on a careful analysis of the best options when dealing with conflicting
objectives. For example, choosing design 2 over design 1 in Table 13 results in a temperature
standard deviation that is lowered from 2.1212 to 2.1080 K, which is advantageous for a
uniform temperature distribution. However, it significantly increases the pressure drop
from 487.16 to 630.30 Pa and marginally boosts the battery’s maximum temperature from
35.983 to 36.113 ◦C. As a result, there are fewer concerns about battery safety, and more
energy is required to pump the cooling water. The optimized BTMS provides better thermal
efficiency and reduced pressure drop. The optimal candidate design provides the following
improvements over the benchmark design: the battery’s maximum temperature drops
from 36.38 to 35.98 ◦C, its standard temperature deviation decreases from 2.14 to 2.12 K,
and the pressure drop dramatically decreases from 782.82 to 487.16 Pa. The corresponding
optimum design parameters of the candidate point are the channel width of 8.00 mm and
the horizontal spacing near the cold plate margin of 5.00 mm.

In future work, the modeling methodology developed here can be exploited in a
range of different EV BTMSs based on liquid, boiling, and phase change materials. For
example, continuing on from previous studies on heat sink cooling in electronics, there is a
great scope of innovation in the design and optimization of minichannel designs within
cold plates that could achieve substantial reductions in the magnitudes of the maximum
temperature, temperature variations, and pressure drops with liquid-cooled cold plate-
based BTMS. It would also be very interesting to combine the output of the research within
a lifecycle assessment methodology where other key sustainability objectives, such as CO2
consumption, are optimized alongside the thermal and hydraulic objectives.
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