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Stochastic dynamics on product manifolds:

twenty five years after

In memory of Yuri Kondratiev

Alexei Daletskii
Department of Mathematics, University of York, UK

Abstract

We consider an infinite system of stochastic differential equations
in a compact manifold M. The equations are labeled by vertices of
a geometric graph with unbounded vertex degrees and coupled via
nearest neighbour interaction. We prove the global existence and
uniqueness of strong solutions and construct in this way stochastic dy-
namics associated with Gibbs measures describing equilibrium states
of a (quenched) system of particles with positions forming a typical
realization of a Poisson or Gibbs point process in R

d.
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1 Introduction

In 1997, Ukrainian Mathematical Journal published the paper ”Infinite sys-
tems of stochastic differential equations and some lattice models on compact
Riemannian manifolds” by Sergio Albeverio, Yuri Kondratiev and AD [2].
That paper initiated a series of works on stochastic analysis on infinite prod-
uct manifolds, and its applications in statistical mechanics of interacting
particle systems on integer lattices, see [3, 4, 5] and references therein.

In those works, the main object of our study was an infinite system of
stochastic differential equations (SDE) labelled by vertices of the integer lat-
tice Z

d, on a compact Riemannian manifold M. Such a system can be, at
least heuristically, understood as a single SDE on the Cartesian power MZ

d

.
The latter is a compact topological space but it does not possess any struc-
ture of a Hilbert or Banach manifold, which makes it impossible to directly
apply the known theory of SDEs on such manifolds, like in [10], [13]. In the
case where the equations are coupled via nearest neighbours pair interaction,
or, more generally, uniformly bounded interaction, this equation can be con-
sidered and solved in the space of weighted sequences in a Euclidean space
R

n containing M as a subset, with a specially chosen weight sequence. This
weight sequence gives also a possibility to introduce manifold-like structures
on MZ

d

.
On the other hand, the last two decades have witnessed an increasing

interest in the so-called configuration space analysis (beware- this is an am-
biguous term), that is, analysis on the space Γ(Rd) of locally finite subsets
γ of a Euclidean space R

d (or, for that matter, a Riemannian manifold or
metric space), endowed by a Poisson or Gibbs measure, see [7, 8] and e.g.
[19, 20] for more recent developments and literature review.

For a typical configuration γ ∈ Γ and fixed r > 0, the number nx of
elements in the set

γx = γx(r) := {y ∈ γ : |x− y| < r} (1)

is finite but unbounded, in contrast to the case of γ = Z
d, where supx∈Zd nx <

∞. The numbers nx, x ∈ γ, can be interpreted as vertex degrees of the
geometric graph γr with the vertex set γ and x, y ∈ γ connected by an edge
iff |x− y| < r.

A natural question is whether we can construct a reasonable analysis on
the product manifold Mγ instead of MZ

d

. It boils down to considering a
system of SDEs with unbounded number of coupled equations, which cannot
be in general solved in any weighted space with a fixed weight sequence.
In [18, 17, 14, 15], an approach to such systems in Euclidean spaces, both
deterministic and stochastic, has been developed. It implements an extension
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of the classical Ovsyannikov method for ODEs, see e.g. [22], and allows to
prove the existence and uniqueness of global strong solutions in a scale of
expanding Hilbert (or Banach) spaces (Xα)α∈A, where A is an interval and
Xα ⊂ Xβ for α < β. Here Xα is the space of weighted sequences with
elements σx ∈ R

n, indexed by x ∈ γ, and exponential weights e−α|x|. The
price to pay is that the solution with an initial value inXα will live inXβ with
β > α. However, the situation somewhat improves for product manifolds.
Indeed, for compactM we haveMγ ⊂ Xα for any α, which gives a possibility
to prove global well-posedness of the corresponding system of SDEs.

Mathematically, the pair (γ, (σx)x∈γ) is an element of the marked config-
uration space Γ(Rd,M), see e.g. [16, 19, 20, 21] for rigorous definition and
properties of such spaces and their applications in statistical mechanics.

From the physical point of view, (γ, (σx)x∈γ) ∈ Γ(Rd,M) represents a
collection of particles with positions x ∈ R

d and internal parameters (spins)
σx ∈ M, see for example [29], [25, Sec. 11], [12] and [20, 21], in relation
to modelling of non-crystalline (amorphous) substances, e.g. ferrofluids and
amorphous magnets.

2 Preliminaries

2.1 SDE on a compact manifolds

Let M be a compact connected N -dimensional Riemannian manifold. Con-
sider the following (heuristic) stochastic differential equation on M:

dξ(t) = a(ξ(t))dt+B(ξ(t)) ◦ dW (t), ξ(t) ∈ M, t ≥ 0, (2)

where ◦ dW (t) stands for the Stratonovich differential of a Wiener process
W (t) in R

N , a : M → TM and B : M×R
N → TM are, respectively, vector

and operator fields on M, so that B(σ) ∈ L(RN , TσM), σ ∈ M. Here and
in what follows L denotes the space of bounded linear operators. We assume
that a and B belong to C1 and C2, respectively.

For simplicity, we assume that the diffusion operator B satisfies the equal-
ity

G−1(σ) = B(σ)B∗(σ),

where the operator field G(σ) : TσM →T ∗
σM, σ ∈ M, defines the Rieman-

nian structure in M. Observe that such B always exists. Then the (formal)
generator H of the process ξ is given by the differential expression

Hϕ(σ) =
1

2
∆ϕ(σ) + (∇ϕ(σ), a(σ) + b(σ))TσM

, (3)
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where ϕ ∈ C2(M), (·, ·)TσM
is the scalar product in TσM, ∆ is the Laplace-

Beltrami operator, ∇ and denotes the gradient and b is the Stratonovich
correction term, that is, a vector field defined by

b(σ) =
1

2
tr(B′(σ)B(σ)).

There are at least two ways of rigorous understanding of what a solution
of equation (2) is - one via an SDE on the corresponding orthogonal frame
bundle and another one via an embedding of M into a Euclidean space. It is
known that, for any n ≥ 2N , there exists a smooth embedding φ : M → R

n.
It induces an embedding of the tangent bundle TM ⊂ R

n × R
n, so that

TσM ⊂ R
n, σ ∈ M. Consider the corresponding normal bundle νM with

fibres νσM defined as orthogonal complements of TσM in R
n. It is well-

known ([23]) that there exists ρ > 0 and a neighborhood

Uρ := {(σ, v) ∈ νM : |v| < ρ}

of the zero section (M, 0) of νM, which is diffeomorphic to the neighborhood

Nρ :=
⋃

σ∈M

{y ∈ R
n : |y − σ| < ρ}

of M in R
n.

The set Nρ is called the tubular neighborhood of radius ρ of M in R
n.

We will use it in order to extend coefficients a and B to R
n. Fix ρ̃ < ρ and a

smooth function F : Rn → R with support inNr such that F (σ) = 1, σ ∈ Nρ̃.
Define

ã : Rn → R
n and B̃ : Rn → L(RN ,Rn)

by formulae
ã(z) := a(σz)F (z), B̃(y) = B(σz)F (z),

where (σz, vz) is the image of z ∈ Nρ in Uρ.
We can now consider the SDE

dξ(t) = ã(ξ(t))dt+ B̃(ξ(t)) ◦ dW (t), t ≥ 0,

in the Stratonovich form in R
n. Its rigorous Ito form is

dξ(t) =

(
ã(ξ(t)) +

1

2
tr(B̃′(σ)B̃(σ))

)
dt+ B̃(ξ(t))dW (t), t ≥ 0. (4)

The coefficients of equation (4) are globally Lipschitz. Therefore, it has a
global strong solution ξσ(t), t ≥ 0, for any initial data σ ∈ R

n. The following
result is well-known.
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Theorem 1 [23] For any σ ∈ M, the process ξσ(t), t ≥ 0, does not leave
M. It is independent of the choice of the Euclidean space R

N , tubular neigh-
borhood Nρ and function F .

The process {ξσ(t), t ≥ 0} on M will be called the strong solution of SDE
(2) with initial value σ ∈ M. It defines a Markov semigroup Tt on C(M)
via the standard formula

Ttu(σ) := E (u(ξσ(t))) , t > 0,

with the generator given by formula (3).

2.2 Infinite systems of SDEs on compact manifolds via
embedding in a Hilbert space

In what follows we will use bar to denote sequences of elements of M indexed
by elements of γ, e.g. ξ̄ = (ξx)x∈γ, σ̄ = (σx)x∈γ.

We consider now an infinite system of coupled SDEs in M of the form

dξx(t) = fx(ξ̄(t))dt+ Φx(ξ̄(t)) ◦ dWx(t), x ∈ γ, (5)

where γ ⊂ R
d is a locally finite (countable) set (configuration) and W =

(Wx)x∈γ is a collection of independent Wiener processes in R
N . We assume

that the drift coefficient has the form

fx(σ̄) =
∑

y∈γ
y ̸=x

φxy(σx, σy) + ψx(σx), (6)

where ψx is a C1-vector field on M, the C1 mappings φxy : M×M → TM
are such that φ(σ1, σ2) ∈ Tσ1

M and have finite range, that is, φxy ≡ 0
whenever |x− y| ≥ r for a fixed r > 0, The latter condition implies that, for
any x ∈ γ, the sum in (6) has finite number nx of non-zero elements, where
nx is defined in (1), that is,

nx = # {y ∈ γ : |x− y| < r} . (7)

The diffusion coefficient Φx is supposed to have a simpler ”diagonal” form,
that is,

Φx(σ̄) = B(σx),

where B is as in (2).
Moreover, we assume that the first derivatives of φxy and ψx are bounded

uniformly in x, y ∈ γ. For instance,

φxy = φ1r(|x− y|), (8)
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where 1r is the indicator of the open ball of radius r in R
N and φ ∈ C1(M×

M, TM), and ψx = ψ, a fixed C1 vector field on M, for all x, y ∈ γ.
We will now construct an extension of the mappings φxy to the Euclidean

space R
n, similar to Section 2.1. Define

φ̃xy(z1, z2) = φxy(z1, z2)F (z1)F (z2), ψ̃x(z1) = ψx(z1)F (z1), z1, z2 ∈ R
n,

where (σk, vk) is the image of zk ∈ Nr in Ur, k = 1, 2. It is clear that the
mappings φ̃xy : R

n × R
n → R

n are globally Lipschitz. Similar to (6), set

f̃x(σ̄) =
∑

y∈γ
y ̸=x

φ̃xy(σx, σy) + ψ̃x(σx), Φ̃x(σ̄) = B̃(σx).

We can now rewrite system (5) in the form of the following single (heuris-
tic) SDE in the space of sequences (Rn)γ := {σ̄ = (σx)x∈γ, σx ∈ R

n}:

dξ̄(t) = f̃(ξ̄(t))dt+ Φ̃(ξ̄(t)) ◦ dW (t), (9)

where f̃(σ̄) =
(
f̃x(σ̄)

)
x∈γ

, Φ̃(σ̄) is an infinite block-diagonal matrix with di-

agonal elements Φ̃x(σ̄), x ∈ γ, and W (t) = (Wx(t))x∈γ. To give this equation
a rigorous meaning and solve it, we need to restrict it to a Hilbert or Banach
subspace of (Rn)γ. A natural idea, explored in [2, 5, 3], is to use the Hilbert
space of weighted l2 sequences

Xp̄ :=

{
σ̄ ∈ (Rn)γ :

∑

x∈γ

|σx|
2
px <∞

}
,

where p̄ = (px)x∈γ ∈ l1 is a fixed weight sequence, that is, px > 0 and∑
x∈γ px <∞. Consider also the standard l2 space

H :=

{
σ̄ ∈ (Rn)γ :

∑

x∈γ

|σx|
2
<∞

}
(10)

and introduce the spaceHS(H,Xp̄) of Hilbert-Schmidt operatorsH → Xp̄. It

is clear that the embedding H ⊂ X p̄ is Hilbert-Schmidt and therefore Φ̃(σ̄) ∈

HS(H,Xp̄). Here we identify Φ̃(σ̄) with a liner operator H → Xp̄ acting as
(
Φ̃(σ̄)ū

)
x
:= Φ̃x(σ̄)ūx, x ∈ γ.

Observe now that for any weight sequence p̄ ∈ l1 we have the embedding

Mγ ⊂ Xp̄.

The space Mγ endowed by the metric ρp̄ induced from Xp̄ will be denoted
by Mγ

p̄ . The following facts were proved in [3]:
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• metric space Mγ
p̄ is complete; its topology coincides with the product

topology of Mγ;

• all metrics ρp̄, p̄ ∈ l1, are equivalent;

• the convergence inMγ
p̄ coincides with the component-wise convergence;

• Mγ
p̄ is not a Hilbert manifold in the proper sense; in particular, it does

not admit a tubular neighborhood in Xp̄.

We can now revisit system (5) and equation (9). The following result was
proved in [2], see also [5, 3].

Theorem 2 Assume that γ = Z
d. Then:

(1) there exists a weight sequence p̄ ∈ l1 such that the map

f̃ : Xp̄ → Xp̄

is of the C1
b class; moreover, the map

Φ̃ : Xp̄ → HS(H,Xp̄)

is of the C2
b class for any weight sequence p̄ ∈ l1;

(2) equation (9) has a unique strong solution Ξ(t), t > 0, in Xp̄;

(3) for any initial data Ξ(0) ∈ Mγ the solution Ξ(t) does leave Mγ and
generates a Markov process in Mγ.

Remark 3 In the aforementioned papers, somewhat more general drift co-
efficients were considered. Namely, it was allowed to have the form

fk(σ̄) =
∑

Λ⊂Fk(Zd)

φΛ(σΛ), k ∈ Z
d,

where Fk(Z
d) is the collection of all finite subsets of Zd containing k and

φΛ ∈ C1(MΛ), σΛ := σ̄ ↾MΛ. The main requirement in this case is that

sup
k∈Zd

∥fk∥ <∞,

which obviously holds for f of the form (6).
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Remark 4 The structure of the set γ is not important for the result above.
It can be easily extended to the case of general γsuch that

sup
x∈γ

nx <∞. (11)

The latter condition is crucial. If it fails, the coefficients of equation (9) will
not be Lipschitz continuous in any fixed weighted space Xp̄. However, under
certain conditions, they will satisfy more general Lipschitz condition in an
appropriate scale of Hilbert spaces. That will allow us to solve equation (9)
using the generalization of the Ovsyannikov method developed in [18, 17, 14,
15].

2.3 Ovsyannikov method and existence of solutions in
a scale of Hilbert spaces

In this section we introduce the general framework we will be using in order to
solve system (5) in the case where condition (11) fails, that is, supx∈γ nx = ∞,
following [18, 17, 14, 15]. Let us consider a family B of Banach spaces Bα

indexed by α ∈ A := [α∗, α
∗] with fixed 0 ≤ α∗, α

∗ < ∞, and denote by
∥·∥Bα

the corresponding norms.

Definition 5 The family B is called a scale if

Bα ⊂ Bβ and ∥u∥Bβ
≤ ∥u∥Bα

for any α < β, u ∈ Xα,

where the embedding means that Bα is a dense vector subspace of Bβ.

We will use the following notations:

B :=
⋃

α∈[α∗,α∗)
Bα, B :=

⋂
α∈(α∗,α∗]

Bα.

Definition 6 For two scales B1, B2 (with the same index set) and a con-
stant q > 0 we introduce the class GLq(B1,B2) of (generalized Lipschitz)
maps g: B1 → B2 such that

(1) g(B1,α) ⊂ B2,β for any α < β;

(2) there exists constant L > 0 such that

∥g(u)− g(v)∥B2,β
≤

L

|β − α|1/q
∥u− v∥B1,α

(12)

for any α < β and u, v ∈ B1,α.
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We will write GLq(B) := GLq(B1,B2) if B1 = B2 =: B.

Remark 7 g ∈ GLq(B1,B2) generates a map B1 → B2.

Observe that (12) implies the linear growth condition

∥g(u)∥B2,β
≤

K

|β − α|1/q

(
1 + ∥u∥B1,α

)
, u ∈ B1,α,

for some constant K and any α < β. Without loss of generality we assume
that K = L.

In what follows, we will use the following three main scales:

(1) the scale X of separable Hilbert spaces Xα;

(2) the scale H of spaces

Hα ≡ HS(H, Xα) := {Hilbert-Schmidt operators H → Xα} , (13)

for a fixed separable Hilbert space H;

(3) the scale Zp
T of Banach spaces Zp

α,T of progressively measurable random
processes u : [0, T ] → Xα with finite norm

∥u∥Zp
α,T

:= sup
t∈[0,T ]

(
E ∥u(t)∥pXα

)1/p
,

defined on a suitable filtered probability space (Ω,F ,F, P ).

Consider the SDE

du(t) = f(u(t))dt+ Φ(u(t))dW (t), t ∈ [0, T ] (14)

with initial condition u0, where W (t), t ≤ T, is a fixed cylinder Wiener
process in H (cf. (13)) defined on a suitable probability space (Ω,F ,F, P ),
with coefficients acting in the scale X for a fixed p ≥ 2.

The following theorem was proved in [14].

Theorem 8 (Existence and uniqueness) Assume that f ∈ GLq(X) and
Φ ∈ GLq(X,H), q > 2 and u(0) = u0 ∈ Xα, α ∈ A. Then, for any T > 0,
the following holds:

(1) equation (14) has a unique strong solution u ∈ Z2
α∗,T ;

(2) u ∈ Z
p
β,T for any p ∈ [2, q) and β > α;
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(3) u has a continuous modification that satisfies (14);

(4) for any β > α we have

||u||Zp
β
≤ E(p)

(
c(T ), β − α, q−1

)
(1 + ||u0||Zp

α
)p ,

where

E(p)(t, ε, q) := 1 +
∞∑

n=1

tn

εqn
nqn

(n!)1/p
<∞

and c(T ) = ap max(T, T 1/2), ap > 0;

(5) formula

Ttϕ(σ) = E (ϕ(u(t)) |u(0) = σ ) , σ ∈ Xα, t ≥ 0, (15)

defines a strongly continuous semigroup in Cb(Xα+), where Xα+ :=⋂
β>αXβ is endowed by the projective limit topology (which makes it a

Polish space).

We shall now replace condition (12) by a stronger condition.

Definition 9 For two scales B1, B2 (with the same index set) and a con-
stant q > 0 we introduce the class GC1

q(B1,B2) of maps g: B1 → B2 such
that

(1) g(B1,α) ⊂ B2,β for any α < β; and

(2) g : B1,α → B2,β is strongly differentiable and there exists constant L > 0
such that

∥g′(u)v∥B2,β
≤

L

|β − α|1/q
∥v∥B1,α

(16)

for any α < β and u, v ∈ B1,α. Here g′(u) ∈ L(B1,α, B2,β) is the
derivative of g.

It is clear that condition (16) implies (12). It also implies that g′(u) ∈
GLq(B1,B2), as a linear operator B1,α → B2,β.

Assume now that f ∈ GC1
q(X), Φ ∈ GC1

q(X,H) and let u ∈ Z2
α∗,T be the

unique solution of equation (14). Let us fix a vector field h : Xα → Xα and
consider the equation

dη(t) = a(t)η(t)dt+ A(t)η(t)dW (t), η(0) = h(u(0)), (17)
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where a(t) := f ′(u(t)) and A(t) := Φ′(u(t)). Then a(t) ∈ GLq(X) and B(t) ∈
GLq(X,H), uniformly in t. Thus there exists the unique strong solution
η(t) ∈ Xβ, t > 0, of (17), for any β > α. Standard arguments similar to
those in [18] show that

η(t) = u′h(t),

where u′h(t) is the square mean derivative of the solution u(t) w.r.t. the initial
condition along vector field h.

Theorem 10 Formula (15) defines the operator

Tt : C
1
b (Xβ) → C1

b (Xα)

for any α < β, and we have the estimate

∥Ttϕ∥C1

b
(Xα)

≤ E(p)
(
c(T ), β − α, q−1

)
∥ϕ∥C1

b
(Xβ)

. (18)

Proof. Follows from Theorem 8 applied to the system (14), (17) considered
as a single equation in the scale (Xα ×Xα)α∈A.

3 Well-posedness of a system of SDEs on a

graph with unbounded vertex degrees

In order to be able to apply the theory of the previous section to system (5),
we need the following condition on the configuration γ.

Condition 11 There exist constants q > 2 and a ≡ a(γ, r, q) > 0 such that

nx ≤ a (1 + |x|)1/q (19)

for all x ∈ γ, where nx is defined in (7), cf. (1).

Remark 12 Condition (19) holds if γ is a typical realization of a Poisson
or Gibbs (Ruelle) point process in X. For such configurations, the following
stronger (logarithmic) bound holds:

nx(γ) ≤ c(γ) [1 + log(1 + |x|)]1/2 rd,

see e.g. [30] and [26, p. 1047]. Thus (19) holds for any q > 0.

11



The solution of equation (9) will live in the scale of Hilbert spaces

Xα :=



σ̄ ∈ (Rn)γ : ∥σ̄∥α :=

√∑

x∈γ

|σx|
2
e−α|x| <∞



 ,

α ∈ A = [α∗, α
∗], where the parameters α∗,α

∗ > 0 are chosen in an arbitrary
way and fixed. In the notations of Section 2.2, these spaces correspond to
weight sequences p̄α = (e−α|x|)x∈γ, that is, Xα = Xp̄α . We consider the corre-
sponding spaces GC1

p(X) and GC1
p(X,H) with H defined in (10), cf. Definition

6. Observe that W (t) := (Wx(t))x∈γ is a cylinder Wiener process in H.

Lemma 13 We have f̃ ∈ GC1
p(X) and Φ̃ ∈ GC1

p(X,H).

Proof. The proof is similar to the proof of Lemma 5.4 in [14].

Now we can return to the discussion of system (5). We can write it in the
form (9) as in Section 2.2 and apply the results of Section 2.3. Recall that
we have the embedding Mγ ⊂ Xα for any α > 0.

Theorem 14 Consider equation (9) with initial condition σ and assume that
σ̄ ∈ Mγ. Than it has a unique strong solution ξ̄(t) ∈ Mγ, t > 0. This solu-
tion has a continuous modification that satisfies (5), in the sense of Section
2.1. Formula

Ttϕ(σ̄) = E
(
ϕ(ξ̄(t))

∣∣ξ̄(0) = σ̄
)

(20)

defines a strongly continuous Markov semigroup in C(Mγ). Its generator H
has the form

Hϕ(σ̄) =
1

2

∑

x∈γ

∆xϕ(σ̄) +
∑

x∈γ

(f(σ̄),∇xϕ(σ̄))TσxM
.

Proof. We have σ̄ ∈ Mγ ⊂ Xα∗ . It follows directly from Theorem 8 that
equation (9) has a unique strong solution ξ̄ ∈ Z

p
β for any β > α∗. The

components ξx(t) of this solution do not leave manifold M and thus satisfy
system (5).

This result implies of course that, for each x ∈ γ, equation (5) has a
path-continuous strong solution, which is unique in the class of progressively
measurable square-integrable processes.

Remark 15 For a configuration γ as in Remark 12, the statement of the
theorem above holds for any p ≥ 2.
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4 Gibbs measures, Dirichlet forms and stochas-

tic dynamics

In this section, we use the results above to construct stochastic dynamics
associated with a Gibbs measure ν on Mγ. This is a stochastic process Ξ
that leaves ν invariant, and the corresponding semigroup coincides with the
semigroup generated by the Dirichlet form of ν, see [9]. We will construct Ξ
as a solution of system (5) with the drift given by the logarithmic derivative
of ν. To make the paper self-contained, we start with a definition of Gibbs
measures on Mγ.

4.1 Definition of Gibbs measures

We are interested in Gibbs measures describing equilibrium states of a (quenched)
system of particles with positions γ ⊂ X = R

d and spin space M, defined
by pair and single-particle potentials Wxy : M×M → R such that Wxy ≡ 0
if |x− y| < r, and Vx : M → R, respectively, x, y ∈ γ. We assume for
simplicity that, for all x, y ∈ X, Wxy = W1r(|x− y|), cf. (8), and Vx = V

for some W ∈ C2(M×M) and V ∈ C2(M).
There are at least two ways of explaining what the corresponding Gibbs

measure is. The first one is the standard Dobrushin-Lanford-Ruelle (DLR)
approach used in statistical mechanics [24, 27], where Gibbs measures (states)
are constructed by means of their local conditional distributions (constituting
the so-called Gibbsian specification). The second approach, more functional
analytical, is based on the integration by parts formula, see [28, 1, 6, 4].

We start with a brief outline of the DLR approach. Let F(γ) be the
collection of all finite subsets of γ ∈ Γ(X). For any η ∈ F(γ), σ̄η = (σx)x∈η ∈
Mη and z̄γ = (zx)x∈γ ∈ Mγ define the relative local interaction energy

Eη(σ̄η |z̄γ ) =
∑

{x,y}⊂η

Wxy(σx, σy) +
∑

x∈η
y∈γ\η

Wxy(σx, zy).

The corresponding specification kernel Πη(dσ̄γ |z̄γ ) is a probability measure
on Mγ of the form

Πη(dσ̄γ|z̄γ) = µη(dσ̄η|z̄γ)⊗ δz̄γ\η(dσ̄γ\η),

where
µη(dσ̄η|z̄γ) := Z(z̄γ)

−1exp [−Eη(σ̄η |z̄γ )]
⊗

x∈η

e−V (σx)dσx

13



is a probability measure on Mη. Here Z(z̄γ) is the normalizing factor and
δz̄γ\η(dσ̄γ\η) is the Dirac measure on Mγ\η concentrated on z̄γ\η. The family
{Πη(dσ̄η|z̄γ), η ∈ F(γ), z̄γ ∈ Mγ} is called the Gibbsian specification (see
e.g. [24, 27]).

A probability measure ν on Mγ is said to be a Gibbs measure associated
with the potentials W and V if it satisfies the DLR equation

ν(B) =

∫

Mγ

Πη(B|z̄)ν(dz̄), B ∈ B(Mγ), (21)

for all η ∈ F(γ). For a given γ ∈ Γ(X), by G(Mγ) we denote the set of all
such measures. It is known that G(Mγ) ̸= ∅, see e.g. [24].

To explain the second approach, we start with the following observation.
Let FC1(Mγ) := ∪η∈F(γ)C

1(Mη) and FV ect1(Mγ) :=
⋃

η∈F(γ) V ect
1(Mη)

be the classes of cylinder continuously differentiable real-valued functions
and vector fields on Mγ, respectively. For any cylinder vector field Z ∈
FV ect1(Mγ), any measure ν ∈ G(Mγ) satisfies the following integration by
parts (IBP) formula:

∫

Mγ

∑

x∈γ

(∇xϕ(σ) , Zx(σ))xν(dσ) = −

∫

Mγ

βν
Z(σ)ϕ(σ)ν(dσ). (22)

Here βν
Z ∈ FC1(Mγ) is defined by the formulae

βν
Z(σ) =

∑

x∈γ

[(βν
x(σ) , Zx(σ))x + div Zx(σ)]

and
βν
x(σ) = ∇σx

Ux(σ), Ux :=
∑

y∈γ
y ̸=x

Wxy + Vx. (23)

The vector field βν := (βν
x)x∈γ ∈ FV ect1(Mγ) is called the (vector) logarith-

mic derivative of ν. The IBP formula (22) for Gibbs measures from G(Mγ)
is well-known in the case of γ = Z

d, see [4]. For a general γ ∈ Γ(Rd), it can
be proved in a similar way, using the DLR equation (21) and integration by
parts formula for measures Πη(dσ̄|z̄).

Moreover, it is known that, for γ = Z
d, the class G(Mγ) can be char-

acterized by (22), that is, any measure on Mγ satisfying the integration by
parts formula with logarithmic derivative given by (23) is a Gibbs measure of
the class G(Mγ), see [4] for the proof, which is based on the ideas of earlier
works [28, 1, 6] and is likely to work for a general γ ∈ Γ(Rd), too.

14



4.2 Dirichlet forms and stochastic dynamics

Consider a measure ν ∈ G(Mγ) and define the pre-Dirichlet form

E(ϕ, ψ) =
1

2

∫

Mγ

∑

x∈γ

(∇xϕ(σ̄) ,∇xψ(σ̄))Tσ̄xMν(dσ̄), ϕ, ψ ∈ FC2(Mγ).

The integration by parts formula (22) implies that E is closable and gener-
ates the classical Dirichlet form associated with ν, see [9]. Its generator in
L2(Mγ, ν) is the Friedrichs extension of an operator defined on FC2(Mγ) by
the expression

Hνϕ(σ̄) = −
1

2

∑

x∈γ

∆xϕ(σ̄)−
1

2

∑

x∈γ

(βν
x(σ̄),∇xϕ(σ̄))Tσ̄xM

. (24)

It generates the semigroup

T ν
t := e−tHν , t ≥ 0, in L2(Mγ, ν).

Let us now consider system (5) with fx = 1
2
βν
x . It satisfies conditions of

Theorem 14, with φxy(z1, z2) = ∇z1Wxy(z1, z2), x ̸= y, and ψx(z) = ∇V (z).
Thus, according to Theorem 14, it has the unique strong solution ξ(t), t >
0, on Mγ, and Markov generator of the process ξ coincides with Hν on
FC2(Mγ). However, the latter fact does not, in general, imply that the L2

semigroup T ν coincides on C(Mγ) with Markov semigroup (20). The lacking
ingredient here is the uniqueness of the L2 semigroup generated by the pre-
Dirichlet operator

(
Hν ,FC2(Mγ)

)
, which we prove in the next section.

4.3 Uniqueness of the stochastic dynamics

Theorem 16 For any Gibbs measure µ ∈ G(Mγ), the pre-Dirichlet operator
(Hµ,FC2(Mγ)) is essentially self-adjoint in L2(Mγ, µ).

Proof. The proof uses the parabolic criterion of self-adjointness [11] and is
an adaptation of the scheme of [2] to our framework.

We introduce the notation Wxx := Vx and approximate potentials Wxy

and Wxx = Vx by smooth functions W n
xy ∈ C∞(M2) such that W n

xy ≡ 0 if
|x− y| < r, and W n

xx ∈ C∞(M), respectively, so that
∥∥W n

xy −Wxy

∥∥
C2

≤ e−dxye−n, n ∈ N,

for all x, y ∈ γ, where dxy := max(|x| , |y|) Similar to (23), set

Un
x :=

∑

y∈γ
dxy≤n

W n
xy and βn

x = ∇xU
n
x .
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Observe that βn
x = 0 if |x| > n.

For any n ∈ N, we define the differential operator

Hnu(σ̄) = −
1

2

∑

x∈γ

∆xu(σ̄)−
1

2

∑

x∈γ

(βn
x (σ̄) ,∇xu(σ̄))x

on the domain FC2(Mγ) ⊂ L2(Mγ, µ).
According to the parabolic criterion of self-adjointness [11], the follow-

ing two conditions are sufficient for the essential self-adjointness of operator
(Hµ,FC2(Mγ)) in L2(Mγ, µ):

(i) for any n ∈ N and v ∈ FC2(Mγ), the Cauchy problem

d

dt
un(t) +Hnun(t) = 0, t ∈ [0, 1] , un(0) = v, (25)

has a strong solution un(t) ∈ FC2(Mγ);

(ii) we have the convergence

∫ 1

0

∥(Hµ −Hn) un(t)∥L2(Mγ ,µ) dt→ 0, n→ ∞. (26)

It is clear that, for any fixed n ∈ N and v ∈ FC2(Mγ), Cauchy problem
(25) is finite-dimensional. Therefore there exists its classical solution un(t) ∈
FC2(Mγ), which is a C1 function of t. Therefore Condition (i) holds.

In order to prove the convergence (26), we fix n ∈ N and consider the
SDE system

dξnx (t) = anx(ξ
n(t))dt+Bx(ξ

n
x (t)) ◦ dWx(t), ξ

n
x (0) = σx ∈ M, t ≥ 0, (27)

where anx(σ̄) = βn
x (σ̄)− b(σx), x ∈ γ.

System (27) is essentially finite dimensional and thus the existence of its
strong solution follows from the general theory of SDEs on compact man-
ifolds. However, we would like to obtain a uniform in n estimate of the
solution. For this, we observe that the corresponding extended coefficients
ãn belong to the class GCq(X) with some constant L independent of n ∈ N.
Denote by ξ̃n(t) the solution the corresponding SDE and let and T n

t be the
corresponding semigroup acting in the scale X. Then the uniform estimate

∥T n
t ṽ∥C1

b
(Xα)

≤ E(p)
(
c(T ), β − α, q−1

)
∥ṽ∥C1

b
(Xβ)

, α < β,
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holds for any n ∈ N, cf. (18). Thus the derivative of the function ûn(t) = T n
t ṽ

in the direction of a vector field h : Xα → Xα satisfies the estimate

|û′n(t, σ̄)h(σ̄)| ≤ C ∥ṽ∥C1

b
(Xβ)

∥h(σ̄)∥Xα
.

Observe that the restriction of ûn(t) to Mγ coincides with the solution un(t).
Then, for σ̄ ∈ Mγ, we obtain the estimate

|u′n(t, σ̄)h(σ̄)| ≤ C ∥ṽ∥C1

b
(Xβ)

∥h(σ̄)∥Xα
. (28)

In particular, consider a collection h = (hx)x∈γ of mappings hx : Mγx → TM

such that hx(σ̄) ∈ Tσx
M and consider h with its x-components hx = h̃x,

where h̃x is the extension of h to (Rn)γx . Then, applying (28), we see that

∣∣∣∣∣
∑

x∈γ

(∇xun(t, σ̄), h(σx))TσxM

∣∣∣∣∣

2

≤ C2 ∥ṽ∥2C1

b
(Xβ)

∑

x∈γ

e−α|x| |hx(σ̄)|
2
TσxM

.

We can now come back to the proof of (26). We have

|(Hµ −Hn) un(t, σ̄)|
2 =

∣∣∣∣∣
∑

x∈γ

(βx(σ̄)− βn
x (σ̄),∇xun(t, σ̄))TσxM

∣∣∣∣∣

2

≤ C2 ∥ṽ∥2C1

b
(Xβ)

∑

x∈γ

e−α|x| |βx(σ̄)− βn
x (σ̄)|

2
TσxM

. (29)

Taking into account formulae (23), we obtain the inequality

|βx(σ̄)− βn
x (σ̄)|TσxM

=

∣∣∣∣∣∣

∑

y∈γ

∇xWxy −
∑

y∈γ, dxy≤n

∇xW
n
xy

∣∣∣∣∣∣
TσxM

≤
∑

y∈γ, dxy≤n

∣∣∣∣∣
∑

y∈γ

∇xWxy −∇xW
n
xy

∣∣∣∣∣
TσxM

+
∑

y∈γ, dxy>n

|∇xWxy|TσxM

Then

sup
σ̄∈Mγ

|βx(σ̄)− βn
x (σ̄)|TσxM

≤ e−n
∑

y∈γ,ρ(x,y)<r

e−dxy +

+ sup
σ̄∈Mγ

∑

y∈γ, dxy>n

|∇xWxy|TσxM
≤ nxe

−n + cnxδ(|x| > n),
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where c := ∥W∥C2(M2) + ∥V ∥C2(M). So

sup
σ̄∈Mγ

|βx(σ̄)− βn
x (σ̄)|

2
TσxM

≤ 2n2
xe

−2n + 2c2n2
xδ(|x| > n)

and

sup
σ̄∈Mγ

∑

x∈γ

e−α|x| |βx(σ̄)− βn
x (σ̄)|

2
TσxM

≤ e−2n
∑

x∈γ

n2
xe

−α|x| + 2c2
∑

x∈γ,|x|>n

n2
xe

−α|x|. (30)

Let us now prove that
∑

x∈γ n
2
xe

−α|x| <∞. We have

∑

x∈γ

n2
xe

−α|x| ≤
∑

m∈N

e−αm
∑

x∈γ,|x|≤m

n2
x ≤

∑

m∈N

e−αm max
x∈γ,|x|≤m

nx × n0(m),

where n0(m) is the number of elements of γ in the ball B(m) of radius
m centered at 0. For any m, this ball can be covered by kmd balls of ra-
dius r, for some constant k independent of m, which implies that n0(m) ≤
cmd maxx∈γ,|x|≤m nx. Taking into account estimate (19), we obtain

∑

x∈γ

n2
xe

−α|x| ≤
∑

m∈N

e−αmkmd

(
max

x∈γ,|x|≤m
nx

)2

≤ ka2
∑

m∈N

e−αmmda2 (1 +m)2/q <∞,

which, together with (30), implies that

sup
σ̄∈Mγ

∑

x∈γ

e−α|x| |βx(σ̄)− βn
x (σ̄)|

2
TσxM

→ 0, n→ ∞.

So we have from (29)

sup
σ̄∈Mγ

|(Hµ −Hn) un(t, σ̄)| → 0, n→ ∞,

which implies (26) and completes the proof. ■

Corollary 17 There exists a unique strongly continuous semigroup of self-
adjoint operators in L2(Mγ, ν) such that the restriction of its generator on
FC2(Mγ) is given by formula (24). This semigroup coincides on C(Mγ)
with Markov semigroup (20).
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[6] S Albeverio, Yu. Kondratiev, M. Röckner: Ergodicity for the stochastic
dynamics of quasi-invariant measures with applications to Gibbs states,
J.Funct.Anal., 149, 415-469 (1997).

[7] S. Albeverio, Yu. G. Kondratiev, and M. Röckner, Analysis and geom-
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configuration spaces: The Gibbsian case, J. Funct. Anal. 157 (1998),
242–291.
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