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ABSTRACT

Magnetic sounding using data collected from the Juno mission can be used to provide constraints on Jupiter’s interior. However,
inwards continuation of reconstructions assuming zero electrical conductivity and a representation in spherical harmonics are
limited by the enhancement of noise at small scales. Here we describe new time-independent reconstructions of Jupiter’s internal
magnetic field based on physics-informed neural networks and either the first 33 (PINN33) or the first 50 (PINNS50) of Juno’s
orbits. The method can resolve local structures, and allows for weak ambient electrical currents. Our models are not hampered by
noise amplification at depth, and provide a smooth picture of the interior structure without explicit regularization. We estimate
that the dynamo boundary is at a fractional radius of 0.8. At this depth, the magnetic field is arranged into longitudinal bands,
and strong local features such as the great blue spot appear to be rooted in neighbouring structures of oppositely signed flux.
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1 INTRODUCTION

The Juno mission, launched in 2011 (Bolton, 2010), has revolution-
ized our understanding of Jupiter’s interior through the collection
of both gravity and magnetic measurements in orbit since 2016.
These new data have not only allowed new constraints on the
density structure and zonal flow in the outermost parts of the planet
(Kaspi et al. 2018; Militzer et al. 2022), but have permitted new
reconstructions of the magnetic field to unprecedented resolution
(e.g. Connerney et al. 2017, 2022). These magnetic maps highlight
local features such as the great blue spot, sited within a large-scale
hemispheric field (Moore et al. 2018) which shows evidence of
secular variation (Ridley & Holme 2016; Moore et al. 2019; Bloxham
et al. 2022; Connerney et al. 2022; Sharan et al. 2022), suggesting
rich dynamics within the dynamo region (Bloxham et al. 2024).

In order to infer the structure of Jupiter’s internally generated
magnetic field, global reconstructions are needed that fit a physical
model to the sparse magnetic data set collected on orbital trajectories.
The physical model commonly adopted is that the data are measured
within a region free of electrical currents, and comprise signals domi-
nated by the internally generated field with more minor contributions
from an external magnetic field and unmodelled instrumentation
noise. Typical studies then proceed by subtracting an approximation
to the external field assuming a magnetodisc structure, with estimates
of the parameters (Connerney, Acuna & Ness 1981; Connerney et al.
2020), although the difficulty in adopting an accurate representa-
tion is compounded by its unknown, but likely, time-dependence
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(Ridley & Holme 2016; Moore et al. 2019). The remaining signal
is then fit in a least-squares sense to an analytic description of an
internally generated magnetic field B, based on a potential V, with
B = —VV. Any such magnetic field by construction exactly satisfies
J =0, where J = 1 1V x B is the ambient electrical current, and
the constant p¢ is the permeability of free space. Since the magnetic
field is also divergence-free V - B = 0, these two constraints together
imply that V2V = 0. The potential V is then represented in terms
of solutions to Laplace’s equation, namely spherical harmonics
(truncated to degree N):

N n R n+l1
V=-R>Y > (%) P (cos0)

n=0 m=0

x [gn cos(me) + hy! sin(mg)] , )

where g and h]' are the Gauss coefficients of degree n and
order m, P)" are associated Legendre functions, and R; is Jupiter’s
equatorial radius, 71 492km. Such a representation is the same as
those used for comparable studies of Earth’s magnetic field (e.g.
Alken et al. 2021). Spherical harmonics are not only a natural
mathematical basis for expansion, but they have additional useful
properties such as orthogonality, uniform spatial resolution (Boyd
2001) and have a physical interpretation (for instance, the / = 1
modes represent the dipole component). Such spherical harmonic
reconstructions allow not only spatial interpolation between the Juno
measurements, but also extrapolation into regions unconstrained
by measurements. Radially inwards (i.e. downwards) continuation
under Jupiter’s surface, assuming the same electrically insulating
physics, is of particular interest because it allows inference of the
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dynamo radius, typical values for which are 0.8-0.83 R, (Connerney
et al. 2022; Sharan et al. 2022).

However, the inverse procedure of inferring the magnetic field
from the Juno measurements is ill-posed for two reasons. First is that
due to the non-uniform sampling of magnetic field, some spherical
harmonics (or linear combinations of harmonics) are better con-
strained than others; indeed, there is a large space of combinations of
spherical harmonics that is unresolved by the Juno data (Connerney
etal. 2022). Second is that inwards continuation using (1) involves a
factor of (R;/r)"*? for the spherical radial component of magnetic
field, thus small-scale (large n) fields are amplified preferentially
when evaluating the model at radii r < R;. Because these small
scales are often the least resolved due to leakage from unmodelled
signals, inwards continuation can rapidly be swamped by noise.

There are a variety of ways proposed to fit the Gauss coefficients.
The simplest is to truncate to low degree N, but there is often no
objective way of choosing N. A common approach is to regularize
the expansion, by fitting the coefficients in an optimization process
that penalizes not only the spherical harmonic misfit but also the
complexity of the model (e.g. Moore et al. 2018; Bloxham et al.
2022). This results in models which are principally large-scale, but
with a subjective choice of the mathematical form and weighting of
complexity. Lastly, the coefficients can be fit through a generalized
singular value decomposition approach (Connerney 1981; Conner-
ney et al. 2018, 2022), in which only those combinations of spherical
harmonics that are resolvable by the data are retained, treating head-
on the problem of data sparsity. However, because they are not
explicitly regularized, they are unstable to inwards continuation.

In addition to the spherical harmonic methods described above
best suited to represent global fields, other approaches have been
proposed that are tailored for regional representations. Green’s
functions can connect a localized representation of magnetic field on
a spherical grid to observations, regularizing either using an elastic
net (Moore et al. 2017) or Subtractive Optimally Localized Averages
(Hammer & Finlay 2019). Other approaches for localized magnetic
field representation include Slepian functions (Beggan et al. 2013),
wavelets (Holschneider, Chambodut & Mandea 2003), harmonic
splines (Shure, Parker & Backus 1982), and spherical cap harmonics
(Thébault, Schott & Mandea 2006).

In this paper, we propose a novel representation of Jupiter’s
internal magnetic field based on physics-informed neural networks
(PINNs). Neural networks are mesh-free (that is, are not tied to any
physical grid) and so offer a way of simultaneously representing
both global and local features of a magnetic field. In this sense,
our models offer an alternative hybrid approach between global
spherical harmonics and localized models. Compared to spherical
harmonic approaches, our models give a similar reconstruction on
and above Jupiter’s surface but appear to be more stable under
inwards continuation. In the following sections, we first describe
the data before outlining our PINN approach. We present our new
reconstructions and estimates of the dynamo radius, which we
compare with those from existing methods, and end with a brief
discussion.

2 DATA

Our work is based on vector magnetic field measurements made by
Juno within its first 50 perijoves during the period 2016 to 2023,
which contains the prime mission of orbits 1-33. From these data
we excluded the second perijove (PJ2) due to a spacecraft safe mode
entry (Connerney et al. 2018). The original observations were down-
sampled to a 30 s sampling rate, this being the approximate rotation
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time of the spacecraft, using a mean-value filter. At the small number
of missing data points within each orbit, we average up to the missing
data (even if less than 30 s) and restart our averaging after the missing
data. In order to maximize the internal signal content of the data, we
used only measurements recorded at planetocentric spherical radius
r <4.0R;. The data likely lie within a current-free region, with
external currents confined to a washer-shaped magnetodisc region
(Connerney et al. 2020) with inner-radius about 8R;.

In total, there were 28 011 three-component measurements of the
magnetic field, of periapsis 1.02 R, and taking magnitudes ranging
between approximately 6.5 x 10* to 16 x 10° nT. Fig. 1 shows an
overview of the data used in this work.

3 PHYSICS-INFORMED NEURAL NETWORKS

3.1 Overview

PINNs offer a technique for spatial reconstruction by a neural
network that is constrained not only by data but also physical
laws (Raissi, Perdikaris & Karniadakis 2019; Karniadakis et al.
2021). They are based on multilayer perceptrons, feed-forward
connected neural networks with multiple hidden layers, known
to be universal approximators of any smooth function (Hornik,
Stinchcombe & White 1989), including, as relevant to our case,
both local and global magnetic fields. Unlike other purely data-
driven methods in machine learning, PINNs are not simply trained
on data but also are required to satisfy physical laws encapsulated
by mathematical equations. In this sense, PINNs are interpretable
in a similar way to other traditional numerical methods for solving
PDEs because both satisfy the relevant physics. The application of
PINNSs in planetary magnetic field reconstruction is new, although
recent related studies include magnetic imaging (Dubois et al. 2022),
inference of magnetohydrodynamics within Earth’s core (Li, Lin &
Zhang 2024), mapping of magnetic fields in the solar corona (Jarolim
et al. 2023), and modelling electromagnetic fluids (Mathews et al.
2021).

At the heart of the method is a neural network representation of the
magnetic field, which is then fit to both data and physics constraints
which are written in weak form (that is, fit by a penalization scheme
but not enforced exactly). We work in a planetocentric Cartesian
coordinate system, and write the magnetic field in terms of a vector-
potential: B = V x A which satisfies the fundamental relation V -
B = 0. The three independent components of A, A, Ay, A,, are
expressed as individual feed-forward neural networks, each taking
as input the position rescaled to [—1, 13.

Each network is parametrized by the number of layers, the
number of neurons per layer, and the choice of activation function.
Symbolically each network can be written as a compound function

Ag(r) = N o NET! o NDY(),

with the recursive definition

a=x,y,z, (2)

input: ./\/O?(r) =r,
hidden: MN!(r) = (W' N7'@r)+b), 1<i<L -1,
output: N (r) = WENE(r) + bE, 3)

where r = (x, y, z) are the input Cartesian coordinates (normalized
to [—1, 11%), and W’a and b’a are weight matrices and bias vectors
in the /th layer of the network. The function o is the non-linear
activation function.

We denote the set of tunable parameters (weights and biases) of
the networks by © and the representation of A as Ag(r). Because the
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Figure 1. Illustration of Juno data used in this work. Left: Juno’s global coverage after 50 orbits, showing Juno’s trajectory within radius 2.5 R;; the colours
show the 33 prime mission orbits (blue lines) and the extended mission, orbits 34 onwards (red lines). Upper right: time span and magnitude range per orbit of
Juno magnetic data within radius 2.5 R;. Lower right: orbital position (radius within 2.5 R ) projected on to a background contour map of the spherical radial
component of magnetic field, B,, at r = R reconstructed using model PINN50e. Although we use data within radius 4 R; in this paper, displaying only the
data within radius 2.5 R; highlights the measurements closest to Jupiter’s surface for which the internal field signal dominates.

components of Ag(r) are continuous functions of position, they can
be numerically differentiated (to machine precision) with respect
to r using the chain rule, based on a technique called automatic
differentiation (Baydin et al. 2018). In this way, quantities that are
derived from the vector potential can be computed, namely Be(r) =
V x Agand V x Bg = V(V - Ag) — V?Ap.

A physics-informed model is trained by minimizing an objective
function, which is a combination of loss terms describing the fit to
the data and the equations describing the physics:

L(©) = waLa(©) + w),L,(©), C)

where L, is the data loss and £, is the physics loss. These terms are
weighted by wy and w),, respectively. In our case, the data loss term is
simply a sum over the squared difference between the neural network
prediction of a magnetic field component and the observation itself;
the physics loss is the squared summed magnitude of V x Bg over
a collocation grid:

1 Qe , .

La(®) = & > IBe(ri) — B(riP,
|

L£,(©) =~ > 1(V x Bo) ()P, )
L

where N, and r; are the number and location of the collocation
points used to constrain the physics loss, and N, are the number of
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Juno data used, each of which has location !, and vector value B(r).
We assume the contribution to the data loss from each measurement
is equal for simplicity (following e.g. Bloxham et al. 2022), that is,
each contribution to the sum is unweighted. We note that the data
uncertainty is unlikely to be uniform across the observations but the
only estimate of this error, that of the instrumentation range, likely
underestimates the unmodelled signal error (Moore et al. 2017). We
also make the assumption of equal contribution to the physics loss
from each of the collocation points (although their clustering can
effectively weight certain regions, see later discussion). We note that
in the theoretical limit w, — oo in which the physics-loss is driven
to zero, we would recover the spherical harmonic expansion of (1)
in which the data were fit in a least-squares sense through £;. A
schematic of the PINN is shown in Fig. 2.

In setting up our model, we have made various choices. First
and most obvious is the structure of the network. Although we
did not perform extensive hyperparameter tuning, we found that
defining each neural network to have six hidden layers, 40 neurons
per layer, and swish activation functions allowed us to represent
Jupiter’s magnetic field well with a data misfit comparable to other
methods. The data misfit was larger with smaller networks, and
larger networks did not improve the fit. A less obvious choice is the
structure of the physics loss term. There are two constraints that the
magnetic field should obey: V- B =0 and V x B = 0. The first
condition is a fundamental physical law, whereas the second is an
approximation. We therefore opted to solve for a divergence-free
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Figure 2. Schematic of the PINNs that we use. Three independent neural
networks map position (x, y, z) to the three vector potential components.
This in turn then defines B and consequently the data and physics loss,
whose combination is minimized. Simplified neural networks are shown for
illustration purposes with three layers (one hidden layer) and three neurons
per layer.

vector field via a vector potential, and to then impose the zero-
current constraint in weak form. This also means that any physics-
loss residual can be physically interpreted as an electric current
density. Alternative schemes could include solving for a curl-free
magnetic field B = —VV and then imposing V - B = 0 in weak
form, or imposing both physics constraints and the data fit in weak
form to an otherwise arbitrary vector.

3.2 Training

The network parameters are found by minimizing the total loss L.
At each step of the descent algorithm, model parameters are updated
according to

@(j+1) — @(j) _ n(j)veﬁ(g(j))’ J =1,---,Nyp, (6)

where the derivative of the combined loss function with respect to
each of the parameter values, Vg L, is calculated using backpropaga-
tion (Baydin et al. 2018); /) is the learning rate at the jth iteration,
and Nr is the total number of iterations. An empirical learning-rate
annealing strategy is adopted where

") = 0.002 % 0.8//19%, %)

All neural network models are built with the machine learning
framework TensorFlow (Abadi et al. 2016), and trained with the
built-in Adam optimizer (Kingma & Ba 2015) over Ny = 12000
epochs with batch size 10 000.

To choose the weights and collocation points, we apply two
techniques that improve the original method of Raissi et al. (2019):
dynamic weights (Wang, Teng & Perdikaris 2021) and residual-based
adaptive sampling of the collocation points (Wu et al. 2023).

The dynamic weights method introduced in Wang et al. (2021) is
applied here to balance the gradients of physics and data loss terms
during model training via back-propagation. A fixed value of w, =1
is chosen, while the value of w, changes dynamically as

w =1,
) — max (Ve L,|)
U= o
IVow( L4l

wit = pgu? + 1 - pay, j=1,--- Ny, (8)
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where |Vg wy )£d| denotes the mean absolute value of the gradients
of the data loss term, and we use their recommended value of
B =009.

We also adopt residual-based sampling for the physics loss
term. While uniformly sampled collocation points for the physics-
based term offers a simple approach, recent studies have shown
promising improvements in training accuracy by applying non-
uniform adaptive sampling strategies (Lu et al. 2021; Nabian,
Gladstone & Meidani 2021; Wu et al. 2023). Here we apply a
simplified version of the residual-based adaptive distribution method
described in Wu et al. (2023). For the first 3000 epochs we use a
uniformly sampled set of points in a fixed region, but at epoch 3000
(and every 600 epochs thereafter) we create a probability density
function p(r), based on samples of the physics loss, which we
use to resample the collaboration points, effectively increasing the
local weighting in regions with a high physics loss. The PDF is
defined as

p(r) = Acle(r)[, ©)

with e(r) the physics loss at a collocation point at location r, A, a
normalizing constant, and we choose k = 1.

3.3 Key methodological differences

Having defined our approach, we take stock and highlight the key
differences between our PINN representation and existing recon-
structions based on a spherical-harmonic potential.

(i) Potential-based methods fit data in a weak form (by least
squares) to physics imposed in a strong form (assuming an internal
potential field representation with exactly zero electric current den-
sity). This is quite different in a PINN, where both data and physics
are fit in a weak form, which makes them particularly eftective
in problems when the data and physics are imperfectly known
(Karniadakis et al. 2021), as for Jupiter. Instead of assuming that
J = 0 and seeking a fit to an internally generated magnetic field, we
penalize the mean-squared electrical current density J which allows,
for example, weak non-zero electric currents if the data require
them. We therefore allow for some uncertainty in the current-free
approximation.

(i) We do not (and indeed cannot) separate internal and exter-
nal fields as we fit the PINN to the fundamental physical law,
rather than to an analytic solution which assumes the location of
source.

(iii) The spatial representation between the two approaches is
quite different. A spherical harmonic representation, an analytic
solution to Laplace’s equation, is defined by a set of Gauss co-
efficients, whose globally resolved wavelength is approximately
27 /(N + 1/2), where N is the maximum degree (Backus, Parker &
Constable 1996). In contrast, a neural network is a meshless
method that has no physical grid, and can define both local
and global solutions. It is defined by a set of weights and
biases.

(iv) Spherical harmonic methods often require regularization;
we do not use any explicit spatial regularization in our method.
Although there is a curl in the physics loss which ostensibly penalizes
small scales (due to the spatial derivative), actually the physics loss
penalizes deviations from a potential field. Potential fields, satisfying
exactly the physics constraint V x B = 0, can have arbitrarily small
lateral scales (by taking the spherical harmonic degree arbitrarily
high). In our PINN, the only regularization is by our choice of
network size.

MNRAS 533, 4058-4067 (2024)
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4 RESULTS

4.1 The PINN models

We create four time-independent PINN models, based on either
the first 33 (PINN33i, PINN33e) or 50 Juno orbits (PINNS50i,
PINNS50e). We deliberately distinguish between models internal
to Jupiter (denoted by the character ‘i’) which inwards continue
into r < R, the data observed in r > R;, and those external to
Jupiter (denoted by the character ‘e’) which interpolate data within
the same exterior region in which Juno measurements are made
r > R;. Models PINN50e, PINN33e were made first, using 300 000
collocation points within the region 1 < r/R; < 4. Models PINN50i
and PINN33i were then constructed, using 40 000 collocation points
within the region 0.8 < r/R; < 1; for these models the data loss
term was replaced by a term describing matching in all three vector
components to either PINN50e or PINN33e on » = R, at 80000
randomly located points. Although mildly oblate, Jupiter is assumed
spherical for simplicity.

Fig. 3 illustrates the typical training diagnostics of our models as
a function of epoch (i.e. iteration), here using the PINN50e model.
The upper left panel shows the overall loss: dynamic loss refers to (4)
with w, = 1 and dynamic wy; loss refers to (4) with w, = w; =1
whose individual contributions are shown in the upper right panel.

1074 —— Dynamic Loss

———2655

104

100 4

Loss

10-14

10-24

0 2000 4000 6000 8000 10000 12000

Epoch

102 4

1014

Dynamic Weight

10°4

4000 6000 8000 10000 12000
Epoch

0 2000

=4
— 0.00100 |

The dynamic weight w, is shown in the lower left panel, with the
learning rate in the lower right panel. From the (randomized) initial
parameters, the loss decreases by about 103 in each component to a
converged final state.

We now comment on model diagnostics, both in terms of the
data loss and physics loss. Since both of these are defined external
to Jupiter, we base our discussion on PINN33e and PINN50e. Fig.
4 shows the final data loss, in terms of an orbital comparison of
the difference between the Juno data and four models: PINN33e,
PINNS5Oe, and two recent spherical harmonic models JRM33 (N =
18) (Connerney et al. 2022) and the Baseline model of Bloxham
et al. (2022) with N = 32. These recent models have been chosen
because although they are both based on the first 33 orbits, they differ
in how the spherical harmonics are fitted: JRM33 uses an approach
based on singular value decomposition, whereas the Baseline model
uses regularization. Both of these studies adopt a magnetodisc
approximation to the external field (Connerney et al. 2022) which
we include alongside the spherical harmonic representation of the
internal field; the PINN models represent both internal and external
field. The models based only on the prime orbits (1-33, excluding
2): PINN33e, JRM33, and Baseline show a comparable absolute
rms error per orbit. Noteably the PINN models do not achieve a
much improved fit to the data, compared to JRM33 and Baseline,
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Figure 3. Training diagnostics from training model PINN50e. Upper left: comparison between mean squared dynamic and total loss; upper right: individual
component contributions to the data loss and the physics loss. Lower left: the dynamic weight wy as a function of training epoch; lower right: the learning rate.
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Figure 4. Orbital comparison of the discrepancy between various reconstructions of Jupiter’s magnetic field: PINN33e, PINN50e, JRM33, and Baseline, with
the Juno data. On each orbit, the error is quantified by taking the root mean squared value of the vector difference between the reconstructed magnetic field and
the Juno measurements, similar to the data-loss term. We show the (upper) absolute value of this error, and (lower) relative value, E3, of this error compared to
the rms observed magnitude over the orbit. The dashed line delineates the prime from the extended mission.

despite being able to resolve an arbitrary external field. This suggests
that the model misfit is dominated by unmodelled sources such as
instrumentation error. For the majority of orbits, PINN33e has an
error less than JRM33, with a few exceptions such as orbits 3 and
32. Over the first 33 orbits as a whole, the rms error for JRM33
is 680.5 nT, compared with 465.0 nT for Baseline and 519.7 nT
for PINN33e. Applied to the data from orbits 34-50, these models
exhibit a discrepancy with the measurements which grows with time,
providing additional evidence for Jupiter’s secular variation. Model
PINNSOe has a slightly higher rms error of 599.2 nT for orbits 1-33,
but fits the data for orbits 34-50 much better because it has been
trained in part on these data.

Fig. 5 shows the physics-loss by contours of the magnitude of
electrical current density |J| on selected radii. For radii » > R, the
magnitude of the current density of the PINN50e model is about 1078
A m™2, increasing with decreasing radius to about 107 Am=2 atr =
0.8R;. The current density includes a signature from not only any
external electrical currents, but also electromagnetic structures which
are numerically favoured because they allow a good fit to the data.
Estimates of the current density associated with a simple magnetodisc
model are about 107°Am~2 at r = 5R; (Connerney 1981), which is
consistent with our values inr > R;. The increase of |J| by 100 from
r = 4 tor = 0.8 is principally explained by the increase in magnetic
field strength by a similar factor due to proximity to the dynamo
source. Structurally, at large radii, |J| appears dominated by weak
small-scale numerical artefacts; however, as the radius decreases, |J|
becomes dominated by gradients in B, focused at locations where
the magnetic field is largest. The PINN models are not designed to

satisfy J = 0 everywhere, and we deem that the ambient currents
are acceptably small.

We now use our models to image Jupiter’s interior structure:
we base our discussion on our PINNS5Oi and PINN33i models
which use the PINN methodology to inwards extrapolate. The
structure of JRM33, Baseline, and PINNSOi at radii r/R; =
1,0.95, 0.9, 0.85, 0.8 is shown by contours of radial field in Fig. 6.
On r = R, the models are almost indistinguishable in terms of
physical structure, but as the radius decreases, the magnetic field
strength increases and the length-scales decrease. The instability of
inwards continuation in the spherical harmonic models is readily
apparent by the prevalent fine-scaled signal, particularly in the
azimuthal direction. The (unregularized) JRM33 model in particular
has a lot of small-scaled structure in the Southern hemisphere which
is absent in the other smoother models. Although this signal is
likely noise owing to the general instability of inwards continuation,
we cannot rule out that in this specific case it actually represents
resolved small-scale features due to the absence of any regularization.
Of the three models, PINN50i is smoothest and remains relatively
free of longitudinal small scales; consequently the features at depth
are easier to identify. Of the three models, JRM33 has no spatial
regularization at all, PINNS50i has penalized physics and no explicit
regularization, and the Baseline model is regularized through penal-
ized horizontal derivatives of the radial field at r = 0.9R ;. We show
the Baseline model at a range of radii although it is only regularized at
a single radius; this is a different presentation to Moore et al. (2018)
in which they show similar models but regularized on each specific
radius shown. At r = 0.9R,, the PINN50i model and Baseline show

MNRAS 533, 4058-4067 (2024)

20z Joquiedas /| uo 1sanb Aq 09Z0€.L/8S0Y/¥/EES/I0IME/SEIuW /W00 dno-ojwapese//:sdny woly papeojumoq



4064

P. W. Livermore et al.

_:1

IJI (Almz) at r=0.80 Rj le—

0.0

_:I

IJI (Afmz) atr=1‘5onj 1e 8

0.0

-
i 2.4

|j| (A/m?) atr=1.00 R, le—

_:I

0.0 : 210 315 4.20
|j| (A/m?) at r=4.00 R, 1le—8

0.0

Figure 5. The magnitude of current density |J| from PINN50e and PINN50i shown on illustrative radii (r/R; = 0.8, 1, 1.5, 4) on a Mollweide projection with

the central meridian at a longitude of 180° west (System III coordinates).

good agreement although there is still evidence of small scales in the
Baseline model; the signature of these small scales increases beneath
this radius.

At r < 0.85R;, our PINN50i model indicates that the field is
arranged into longitudinal bands of positive flux, with a strong
band at high latitude and weaker bands near the equator. Many
of the strong patches of flux have adjacent oppositely signed
counterparts, as can be seen in particular around the root of
the great blue spot. These reversed patches of magnetic field
are also present in the Baseline model, and could either be a
real feature or due to aliasing from the secular variation, recall-
ing that our PINN models are time-independent over the Juno
era. The hemispheric structure is also striking, with almost all
the magnetic structure of the field being confined north of the
equator.

4.2 Estimates of Jupiter’s dynamo radius

Magnetic field reconstructions can be used to infer the location
of the dynamo region, by identifying the radius at which the
Lowes—Mauersberger spectrum of the magnetic field (Mauersberger
1956; Lowes 1974) is flat, assuming that the dynamo is a white-
noise source of magnetic field. Although this assumption has been
validated for Earth, it is not obviously applicable to giant plan-
ets, particularly as the smooth conductivity profiles (e.g. French
et al. 2012) suggest that the edge of the dynamo is likely not
as spatially abrupt as the core-mantle-boundary is in the Earth.
Nevertheless, we use this simple diagnostic to compare the dynamo
radius estimates from the PINN models with other recent models.

MNRAS 533, 4058-4067 (2024)

Inference of the dynamo radius relies on the spherical harmonic
representation of the magnetic field (1) from which the spectrum is
derived as

RJ (2n+4) n 5 5
=m+1 (7> D (e + (H)?, (10)
m=0

whose profile with n depends on the radius r.

In the following text, we focus attention on the PINN50 models.
In order to find the radius where the spectrum is flat, we have two
options, noting that both involve extrapolating inwards away from
the observed region (r > R ). Firstis analytic continuation assuming
exactly zero electrical current density, where we project the field
at r = R; using PINN5Oe (or, equivalently PINN50i, because the
models produce the same magnetic field at this radius) on to (1)
and use the inherent radial dependence within (10). This approach is
most similar to previous studies seeking to find the dynamo radius.
Secondly, we can use PINN extrapolation based on the PINNS50i
model, in which the electrical current density is penalized but not
forced to be zero. At each radius » < R, we project the magnetic
field on to (1) and then use (10). In either case, we find the Gauss
coefficients by performing a least-squares fit on to the internal
field representation (1) using all three components of magnetic
field and a dense spatial grid, which removes any external field
contribution.

The upper part of Fig. 7 shows a comparison of the Gauss
coefficients for the PINN50 model (either PINN50e or PINNS50i),
JRM33, and Baseline at r = R;. They are all very similar at large-
scales (small n, m), in accordance with the similarity of their physical
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B.at r=0.80 R,

Figure 6. The radial component of Jupiter’s magnetic field on various spherical radii inside Jupiter’s surface. The plots are shown on a Mollweide projection
with the central meridian at a longitude of 180° west (System III coordinates). The left column shows the JRM33 model, N = 18 (Connerney et al. 2022), the
middle column shows the Baseline model, N = 32 (Bloxham et al. 2022), and the right column shows the model PINN50i.

representation at r = R, (Fig. 6). The spherical harmonic model
JRM33, with no regularization, has higher power at small scales
(n,m > 20) than the other two models. The PINN50 model has
no explicit regularization either, but small-scale features appear to
be penalized with a noteable decrease in power at small scales
n,m > 20, somewhat mirroring the result of the explicit damping
applied in the Baseline model.

The middle panel of Fig. 7 shows the Lowes—Mauersberger
spectrum as a function of degree n for JRM33, Baseline, PINN50e
(coloured lines: analytic continuation), and PINNS50i (black symbols:
PINN extrapolation). The maximum degree of 35 for the PINN
models is chosen arbitrarily, with the representation of the PINN
models in terms of spherical harmonics achieved using least squares
projection as described above. At r = R; the spectral power for
degrees 2—-18 agrees well between the models and falls off expo-
nentially with n. The power in the dipole is higher than a simple

profile predicts. As the radius is decreased the profile flattens as
the smaller scales become more prominent. Above degree 18, the
three analytically continued models diverge, with JRM33 having
the most power at high degree. Of the three models, the Baseline
model (which is the only model with explicit regularization) has
the least power at small-degree. Comparing the analytic and PINN
extrapolation methods, although they agree on » = R; by construc-
tion, for r < R; and degrees higher than about 18 they diverge,
with the PINN extrapolated models having smaller power at high
degree.

We quantify the slope of the spectrum by fitting a straight line to
log,, R, for degrees 2—18. The lower panel of Fig. 7 shows the slope
variation with radius for four models analytically inwards continued
using (10); the extrapolated PINN models give very similar results.
On making the assumption that the slope is zero at the source we
infer that the dynamo radius is about r = 0.8 R;, in approximate
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Figure 7. Upper panel: Gauss coefficients of PINN50e/i at r = Ry, JRM33, and Baseline. Middle panel: Lowes—Mauersberger spectrum of three inwards

analytically continued models (coloured lines): PINN50e (N = 35), JRM33 (N =
from PINN extrapolation using PINNS5O0i in r < R (squares: 0.80R; triangles: O
analytically continued models: JRM33, Baseline, PINN33e, and PINNS50e.

agreement with other studies (e.g. Connerney et al. 2022; Sharan
et al. 2022).

5 DISCUSSION AND CONCLUSIONS

‘We have presented reconstructions of Jupiter’s magnetic field, based
on data from Juno within the framework of a PINN. Our reconstruc-
tions have a similar misfit to the data compared with other spherical
harmonic methods, and produce a similar structure of magnetic field
on Jupiter’s surface. However, using a meshless method, and only
weakly constraining the (poorly known) physics, our models are not
apparently hostage to the typically enhanced noise with decreasing

MNRAS 533, 4058-4067 (2024)

30), and Baseline (N = 32); the black symbols show similar spectra obtained

.85R ). Lower panel: spectral slope (fit to degrees 2—18) with radius for four

radius despite not using any explicit spatial regularization. This is
possible because the PINN allows unmodelled signal to be mapped
to (arguably unphysical but small) electrical currents rather than to
the internal field, stabilizing inwards continuation. Compared with
spherical harmonic-based methods, we produce a smoother image
at depth of the localized interior magnetic field, making specific
features easier to identify and interpret. We do not claim however
that our models are more accurate than other reconstructions, as there
is no physics-based justification for preferring smoother models over
more complex models.

The fact that most of the structure in Jupiter’s field appears
confined to the Northern hemisphere perhaps makes neural networks
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a particularly effective modelling tool. Even at modest resolution,
neural networks are able to very well represent local structures,
compared to spherical harmonics which are inherently global. Future
applications of the PINN method include quantifying the secular
changes close to Jupiter’s dynamo region, and applications to other
planets.
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