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A B S T R A C T 

Magnetic sounding using data collected from the Juno mission can be used to provide constraints on Jupiter’s interior. Ho we ver, 
inwards continuation of reconstructions assuming zero electrical conductivity and a representation in spherical harmonics are 
limited by the enhancement of noise at small scales. Here we describe new time-independent reconstructions of Jupiter’s internal 
magnetic field based on physics-informed neural networks and either the first 33 (PINN33) or the first 50 (PINN50) of Juno’s 
orbits. The method can resolve local structures, and allows for weak ambient electrical currents. Our models are not hampered by 

noise amplification at depth, and provide a smooth picture of the interior structure without explicit regularization. We estimate 
that the dynamo boundary is at a fractional radius of 0.8. At this depth, the magnetic field is arranged into longitudinal bands, 
and strong local features such as the great blue spot appear to be rooted in neighbouring structures of oppositely signed flux. 

Key words: methods: numerical – planets and satellites: individual: Jupiter – planets and satellites: magnetic fields. 
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 I N T RO D U C T I O N  

he Juno mission, launched in 2011 (Bolton, 2010 ), has revolution-
zed our understanding of Jupiter’s interior through the collection
f both gravity and magnetic measurements in orbit since 2016.
hese new data have not only allowed new constraints on the
ensity structure and zonal flow in the outermost parts of the planet
Kaspi et al. 2018 ; Militzer et al. 2022 ), but have permitted new
econstructions of the magnetic field to unprecedented resolution
e.g. Connerney et al. 2017 , 2022 ). These magnetic maps highlight
ocal features such as the great blue spot, sited within a large-scale
emispheric field (Moore et al. 2018 ) which sho ws e vidence of
ecular variation (Ridley & Holme 2016 ; Moore et al. 2019 ; Bloxham
t al. 2022 ; Connerney et al. 2022 ; Sharan et al. 2022 ), suggesting
ich dynamics within the dynamo region (Bloxham et al. 2024 ). 

In order to infer the structure of Jupiter’s internally generated
agnetic field, global reconstructions are needed that fit a physical
odel to the sparse magnetic data set collected on orbital trajectories.
he physical model commonly adopted is that the data are measured
ithin a region free of electrical currents, and comprise signals domi-
ated by the internally generated field with more minor contributions
rom an external magnetic field and unmodelled instrumentation
oise. Typical studies then proceed by subtracting an approximation
o the external field assuming a magnetodisc structure, with estimates
f the parameters (Connerney, Acuna & Ness 1981 ; Connerney et al.
020 ), although the difficulty in adopting an accurate representa-
ion is compounded by its unknown, but likely, time-dependence
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Ridley & Holme 2016 ; Moore et al. 2019 ). The remaining signal
s then fit in a least-squares sense to an analytic description of an
nternally generated magnetic field B , based on a potential V , with
B = −∇ V . Any such magnetic field by construction exactly satisfies
 = 0 , where J = μ−1 

0 ∇ × B is the ambient electrical current, and
he constant μ0 is the permeability of free space. Since the magnetic
eld is also divergence-free ∇ · B = 0, these two constraints together

mply that ∇ 

2 V = 0. The potential V is then represented in terms
f solutions to Laplace’s equation, namely spherical harmonics
truncated to degree N ): 

 = −R J 

N ∑ 

n = 0 

n ∑ 

m = 0 

(
R J 

r 

)n + 1 

P 

m 

n ( cos θ ) 

× [
g m 

n cos ( mφ) + h 

m 

n sin ( mφ) 
]
, (1) 

here g m 

n and h 

m 

n are the Gauss coefficients of degree n and
rder m , P 

m 

n are associated Legendre functions, and R J is Jupiter’s
quatorial radius, 71 492km. Such a representation is the same as
hose used for comparable studies of Earth’s magnetic field (e.g.
lken et al. 2021 ). Spherical harmonics are not only a natural
athematical basis for expansion, but they have additional useful

roperties such as orthogonality, uniform spatial resolution (Boyd
001 ) and have a physical interpretation (for instance, the l = 1
odes represent the dipole component). Such spherical harmonic

econstructions allow not only spatial interpolation between the Juno
easurements, but also extrapolation into regions unconstrained

y measurements. Radially inwards (i.e. downwards) continuation
nder Jupiter’s surface, assuming the same electrically insulating
hysics, is of particular interest because it allows inference of the
© 2024 The Author(s). 
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ynamo radius, typical values for which are 0.8–0 . 83 R J (Connerney
t al. 2022 ; Sharan et al. 2022 ). 

Ho we ver , the in verse procedure of inferring the magnetic field
rom the Juno measurements is ill-posed for two reasons. First is that
ue to the non-uniform sampling of magnetic field, some spherical 
armonics (or linear combinations of harmonics) are better con- 
trained than others; indeed, there is a large space of combinations of
pherical harmonics that is unresolved by the Juno data (Connerney 
t al. 2022 ). Second is that inwards continuation using ( 1 ) involves a
actor of ( R J /r) n + 2 for the spherical radial component of magnetic
eld, thus small-scale (large n ) fields are amplified preferentially 
hen e v aluating the model at radii r < R J . Because these small

cales are often the least resolved due to leakage from unmodelled 
ignals, inwards continuation can rapidly be swamped by noise. 

There are a variety of ways proposed to fit the Gauss coefficients.
he simplest is to truncate to low degree N , but there is often no
bjective way of choosing N . A common approach is to regularize 
he expansion, by fitting the coefficients in an optimization process 
hat penalizes not only the spherical harmonic misfit but also the 
omplexity of the model (e.g. Moore et al. 2018 ; Bloxham et al.
022 ). This results in models which are principally large-scale, but 
ith a subjective choice of the mathematical form and weighting of

omplexity . Lastly , the coefficients can be fit through a generalized
ingular value decomposition approach (Connerney 1981 ; Conner- 
ey et al. 2018 , 2022 ), in which only those combinations of spherical
armonics that are resolvable by the data are retained, treating head- 
n the problem of data sparsity. Ho we v er, because the y are not
 xplicitly re gularized, the y are unstable to inwards continuation. 

In addition to the spherical harmonic methods described abo v e 
est suited to represent global fields, other approaches have been 
roposed that are tailored for regional representations. Green’s 
unctions can connect a localized representation of magnetic field on 
 spherical grid to observations, regularizing either using an elastic 
et (Moore et al. 2017 ) or Subtractive Optimally Localized Averages 
Hammer & Finlay 2019 ). Other approaches for localized magnetic 
eld representation include Slepian functions (Beggan et al. 2013 ), 
avelets (Holschneider, Chambodut & Mandea 2003 ), harmonic 

plines (Shure, Parker & Backus 1982 ), and spherical cap harmonics 
Th ́ebault, Schott & Mandea 2006 ). 

In this paper, we propose a no v el representation of Jupiter’s
nternal magnetic field based on physics-informed neural networks 
PINNs). Neural networks are mesh-free (that is, are not tied to any
hysical grid) and so offer a way of simultaneously representing 
oth global and local features of a magnetic field. In this sense,
ur models offer an alternative hybrid approach between global 
pherical harmonics and localized models. Compared to spherical 
armonic approaches, our models give a similar reconstruction on 
nd abo v e Jupiter’s surface but appear to be more stable under
nwards continuation. In the following sections, we first describe 
he data before outlining our PINN approach. We present our new 

econstructions and estimates of the dynamo radius, which we 
ompare with those from existing methods, and end with a brief
iscussion. 

 DATA  

ur work is based on vector magnetic field measurements made by 
uno within its first 50 perijo v es during the period 2016 to 2023,
hich contains the prime mission of orbits 1–33. From these data 
e excluded the second perijove (PJ2) due to a spacecraft safe mode

ntry (Connerney et al. 2018 ). The original observations were down- 
ampled to a 30 s sampling rate, this being the approximate rotation
ime of the spacecraft, using a mean-value filter. At the small number
f missing data points within each orbit, we average up to the missing
ata (even if less than 30 s) and restart our averaging after the missing
ata. In order to maximize the internal signal content of the data, we
sed only measurements recorded at planetocentric spherical radius 
 ≤ 4 . 0 R J . The data likely lie within a current-free region, with
xternal currents confined to a washer-shaped magnetodisc region 
Connerney et al. 2020 ) with inner-radius about 8 R J . 

In total, there were 28 011 three-component measurements of the 
agnetic field, of periapsis 1 . 02 R J and taking magnitudes ranging

etween approximately 6 . 5 × 10 4 to 16 × 10 5 nT. Fig. 1 shows an
 v erview of the data used in this work. 

 PHYSI CS-I NFORMED  N E U R A L  N E T WO R K S  

.1 Ov er view 

INNs offer a technique for spatial reconstruction by a neural 
etwork that is constrained not only by data but also physical
aws (Raissi, Perdikaris & Karniadakis 2019 ; Karniadakis et al. 
021 ). They are based on multilayer perceptrons, feed-forward 
onnected neural networks with multiple hidden layers, known 
o be universal approximators of any smooth function (Hornik, 
tinchcombe & White 1989 ), including, as rele v ant to our case,
oth local and global magnetic fields. Unlike other purely data- 
riven methods in machine learning, PINNs are not simply trained 
n data but also are required to satisfy physical laws encapsulated 
y mathematical equations. In this sense, PINNs are interpretable 
n a similar way to other traditional numerical methods for solving
DEs because both satisfy the rele v ant physics. The application of
INNs in planetary magnetic field reconstruction is new, although 
ecent related studies include magnetic imaging (Dubois et al. 2022 ),
nference of magnetohydrodynamics within Earth’s core (Li, Lin & 

hang 2024 ), mapping of magnetic fields in the solar corona (Jarolim
t al. 2023 ), and modelling electromagnetic fluids (Mathews et al.
021 ). 
At the heart of the method is a neural network representation of the
agnetic field, which is then fit to both data and physics constraints
hich are written in weak form (that is, fit by a penalization scheme
ut not enforced exactly). We work in a planetocentric Cartesian 
oordinate system, and write the magnetic field in terms of a vector-
otential: B = ∇ × A which satisfies the fundamental relation ∇ ·

B = 0. The three independent components of A , A x , A y , A z , are
xpressed as individual feed-forward neural networks, each taking 
s input the position rescaled to [ −1 , 1] 3 . 

Each network is parametrized by the number of layers, the 
umber of neurons per layer, and the choice of acti v ation function.
ymbolically each network can be written as a compound function 

 α( r ) = ( N 

L 
α ◦ N 

L −1 
α · · ·N 

0 
α )( r ) , α = x , y , z, (2) 

ith the recursive definition 

input: N 

0 
α ( r ) = r , 

idden: N 

l 
α( r ) = σ ( W 

l 
αN 

l−1 
α ( r ) + b l α) , 1 ≤ l ≤ L − 1 , 

output: N 

L 
α ( r ) = W 

L 
αN 

L −1 
α ( r ) + b L α , (3) 

here r = ( x , y , z) are the input Cartesian coordinates (normalized
o [ −1 , 1] 3 ), and W 

l 
α and b l α are weight matrices and bias vectors

n the lth layer of the network. The function σ is the non-linear
cti v ation function. 

We denote the set of tunable parameters (weights and biases) of
he networks by � and the representation of A as A � 

( r ). Because the
MNRAS 533, 4058–4067 (2024) 
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M

Figure 1. Illustration of Juno data used in this work. Left: Juno’s global co v erage after 50 orbits, showing Juno’s trajectory within radius 2 . 5 R J ; the colours 
show the 33 prime mission orbits (blue lines) and the extended mission, orbits 34 onwards (red lines). Upper right: time span and magnitude range per orbit of 
Juno magnetic data within radius 2 . 5 R J . Lower right: orbital position (radius within 2 . 5 R J ) projected on to a background contour map of the spherical radial 
component of magnetic field, B r , at r = R J reconstructed using model PINN50e. Although we use data within radius 4 R J in this paper, displaying only the 
data within radius 2 . 5 R J highlights the measurements closest to Jupiter’s surface for which the internal field signal dominates. 
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omponents of A � 

( r ) are continuous functions of position, they can
e numerically differentiated (to machine precision) with respect
o r using the chain rule, based on a technique called automatic
ifferentiation (Baydin et al. 2018 ). In this way, quantities that are
erived from the vector potential can be computed, namely B � 

( r ) =
 × A � 

and ∇ × B � 

= ∇ ( ∇ · A � 

) − ∇ 

2 A � 

. 
A physics-informed model is trained by minimizing an objective

unction, which is a combination of loss terms describing the fit to
he data and the equations describing the physics: 

 ( � ) = w d L d ( � ) + w p L p ( � ) , (4) 

here L d is the data loss and L p is the physics loss. These terms are
eighted by w d and w p , respectively. In our case, the data loss term is

imply a sum o v er the squared difference between the neural network
rediction of a magnetic field component and the observation itself;
he physics loss is the squared summed magnitude of ∇ × B � 

o v er
 collocation grid: 

L d ( � ) = 

1 

N d 

N d ∑ 

i 

| B � 

( r i d ) − B ( r i d ) | 2 , 

 p ( � ) = 

1 

N p 

N p ∑ 

i 

| ( ∇ × B � 

) ( r i p ) | 2 , (5) 

here N p and r i p are the number and location of the collocation
oints used to constrain the physics loss, and N d are the number of
NRAS 533, 4058–4067 (2024) 
uno data used, each of which has location r i d and vector value B ( r i d ).
e assume the contribution to the data loss from each measurement

s equal for simplicity (following e.g. Bloxham et al. 2022 ), that is,
ach contribution to the sum is unweighted. We note that the data
ncertainty is unlikely to be uniform across the observations but the
nly estimate of this error, that of the instrumentation range, likely
nderestimates the unmodelled signal error (Moore et al. 2017 ). We
lso make the assumption of equal contribution to the physics loss
rom each of the collocation points (although their clustering can
f fecti vely weight certain regions, see later discussion). We note that
n the theoretical limit w p → ∞ in which the physics-loss is driven
o zero, we would reco v er the spherical harmonic expansion of ( 1 )
n which the data were fit in a least-squares sense through L d . A
chematic of the PINN is shown in Fig. 2 . 

In setting up our model, we have made various choices. First
nd most obvious is the structure of the network. Although we
id not perform e xtensiv e hyperparameter tuning, we found that
efining each neural network to have six hidden layers, 40 neurons
er layer, and swish acti v ation functions allowed us to represent
upiter’s magnetic field well with a data misfit comparable to other
ethods. The data misfit was larger with smaller networks, and

arger networks did not impro v e the fit. A less ob vious choice is the
tructure of the physics loss term. There are two constraints that the
agnetic field should obey: ∇ · B = 0 and ∇ × B = 0 . The first

ondition is a fundamental physical law, whereas the second is an
pproximation. We therefore opted to solve for a divergence-free
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Figure 2. Schematic of the PINNs that we use. Three independent neural 
networks map position ( x , y , z) to the three vector potential components. 
This in turn then defines B and consequently the data and physics loss, 
whose combination is minimized. Simplified neural networks are shown for 
illustration purposes with three layers (one hidden layer) and three neurons 
per layer. 
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ector field via a vector potential, and to then impose the zero-
urrent constraint in weak form. This also means that any physics-
oss residual can be physically interpreted as an electric current 
ensity. Alternative schemes could include solving for a curl-free 
agnetic field B = −∇V and then imposing ∇ · B = 0 in weak 

orm, or imposing both physics constraints and the data fit in weak
orm to an otherwise arbitrary vector. 

.2 Training 

he network parameters are found by minimizing the total loss L .
t each step of the descent algorithm, model parameters are updated 

ccording to 

 

( j+ 1) = � 

( j ) − η( j ) ∇ � 

L ( � 

( j ) ) , j = 1 , · · · , N T , (6) 

here the deri v ati ve of the combined loss function with respect to
ach of the parameter values, ∇ � 

L , is calculated using backpropaga-
ion (Baydin et al. 2018 ); η( j ) is the learning rate at the j th iteration,
nd N T is the total number of iterations. An empirical learning-rate 
nnealing strategy is adopted where 

( j ) = 0 . 002 ∗ 0 . 8 j/ 1000 . (7) 

ll neural network models are built with the machine learning 
rame work TensorFlo w (Abadi et al. 2016 ), and trained with the
uilt-in Adam optimizer (Kingma & Ba 2015 ) o v er N T = 12 000
pochs with batch size 10 000. 

To choose the weights and collocation points, we apply two 
echniques that impro v e the original method of Raissi et al. ( 2019 ):
ynamic weights (Wang, Teng & Perdikaris 2021 ) and residual-based 
daptive sampling of the collocation points (Wu et al. 2023 ). 

The dynamic weights method introduced in Wang et al. ( 2021 ) is
pplied here to balance the gradients of physics and data loss terms
uring model training via back-propagation. A fixed value of w p = 1
s chosen, while the value of w d changes dynamically as 

w 

(1) 
d = 1 , 

ˆ w 

( j ) 
d = 

max ( |∇ � 

L p | ) 
|∇ � 

w 

( j ) 
d L d | 

, 

 

( j+ 1) 
d = βw 

( j ) 
d + (1 − β) ̂  w 

( j ) 
d , j = 1 , · · · , N T , (8) 
here |∇ � 

w 

( j ) 
d L d | denotes the mean absolute value of the gradients 

f the data loss term, and we use their recommended value of
= 0 . 9. 
We also adopt residual-based sampling for the physics loss 

erm. While uniformly sampled collocation points for the physics- 
ased term offers a simple approach, recent studies have shown 
romising impro v ements in training accurac y by applying non-
niform adaptive sampling strategies (Lu et al. 2021 ; Nabian, 
ladstone & Meidani 2021 ; Wu et al. 2023 ). Here we apply a

implified version of the residual-based adaptive distribution method 
escribed in Wu et al. ( 2023 ). For the first 3000 epochs we use a
niformly sampled set of points in a fixed region, but at epoch 3000
and every 600 epochs thereafter) we create a probability density 
unction p( r ), based on samples of the physics loss, which we
se to resample the collaboration points, ef fecti vely increasing the
ocal weighting in regions with a high physics loss. The PDF is
efined as 

( r ) = A ε | ε( r ) | k , (9) 

ith ε( r ) the physics loss at a collocation point at location r , A ε a
ormalizing constant, and we choose k = 1. 

.3 Key methodological differences 

aving defined our approach, we take stock and highlight the key
ifferences between our PINN representation and existing recon- 
tructions based on a spherical-harmonic potential. 

(i) Potential-based methods fit data in a weak form (by least 
quares) to physics imposed in a strong form (assuming an internal
otential field representation with exactly zero electric current den- 
ity). This is quite different in a PINN, where both data and physics
re fit in a weak form, which makes them particularly ef fecti ve
n problems when the data and physics are imperfectly known 
Karniadakis et al. 2021 ), as for Jupiter. Instead of assuming that
J = 0 and seeking a fit to an internally generated magnetic field, we
enalize the mean-squared electrical current density J which allows, 
or example, weak non-zero electric currents if the data require 
hem. We therefore allow for some uncertainty in the current-free 
pproximation. 

(ii) We do not (and indeed cannot) separate internal and exter- 
al fields as we fit the PINN to the fundamental physical law,
ather than to an analytic solution which assumes the location of 
ource. 

(iii) The spatial representation between the two approaches is 
uite different. A spherical harmonic representation, an analytic 
olution to Laplace’s equation, is defined by a set of Gauss co-
fficients, whose globally resolved wavelength is approximately 
 π/ ( N + 1 / 2), where N is the maximum degree (Backus, Parker &
onstable 1996 ). In contrast, a neural network is a meshless
ethod that has no physical grid, and can define both local

nd global solutions. It is defined by a set of weights and
iases. 
(iv) Spherical harmonic methods often require regularization; 

e do not use an y e xplicit spatial regularization in our method.
lthough there is a curl in the physics loss which ostensibly penalizes

mall scales (due to the spatial deri v ati ve), actually the physics loss
enalizes deviations from a potential field. Potential fields, satisfying 
xactly the physics constraint ∇ × B = 0 , can have arbitrarily small
ateral scales (by taking the spherical harmonic degree arbitrarily 
igh). In our PINN, the only regularization is by our choice of
etwork size. 
MNRAS 533, 4058–4067 (2024) 
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 RESU LTS  

.1 The PINN models 

e create four time-independent PINN models, based on either
he first 33 (PINN33i, PINN33e) or 50 Juno orbits (PINN50i,
INN50e). We deliberately distinguish between models internal

o Jupiter (denoted by the character ‘i’) which inwards continue
nto r ≤ R J the data observed in r > R J , and those external to
upiter (denoted by the character ‘e’) which interpolate data within
he same exterior region in which Juno measurements are made
 > R J . Models PINN50e, PINN33e were made first, using 300 000
ollocation points within the region 1 ≤ r/R J ≤ 4. Models PINN50i
nd PINN33i were then constructed, using 40 000 collocation points
ithin the region 0 . 8 ≤ r/R J ≤ 1; for these models the data loss

erm was replaced by a term describing matching in all three vector
omponents to either PINN50e or PINN33e on r = R J at 80 000
andomly located points. Although mildly oblate, Jupiter is assumed
pherical for simplicity. 

Fig. 3 illustrates the typical training diagnostics of our models as
 function of epoch (i.e. iteration), here using the PINN50e model.
he upper left panel shows the o v erall loss: dynamic loss refers to ( 4 )
ith w p = 1 and dynamic w d ; loss refers to ( 4 ) with w p = w d = 1
hose individual contributions are shown in the upper right panel.
NRAS 533, 4058–4067 (2024) 

igure 3. Training diagnostics from training model PINN50e. Upper left: compa
omponent contributions to the data loss and the physics loss. Lower left: the dynam
he dynamic weight w d is shown in the lower left panel, with the
earning rate in the lower right panel. From the (randomized) initial
arameters, the loss decreases by about 10 3 in each component to a
onverged final state. 

We now comment on model diagnostics, both in terms of the
ata loss and physics loss. Since both of these are defined external
o Jupiter, we base our discussion on PINN33e and PINN50e. Fig.
 shows the final data loss, in terms of an orbital comparison of
he difference between the Juno data and four models: PINN33e,
INN50e, and two recent spherical harmonic models JRM33 ( N =
8) (Connerney et al. 2022 ) and the Baseline model of Bloxham
t al. ( 2022 ) with N = 32. These recent models have been chosen
ecause although they are both based on the first 33 orbits, they differ
n how the spherical harmonics are fitted: JRM33 uses an approach
ased on singular value decomposition, whereas the Baseline model
ses regularization. Both of these studies adopt a magnetodisc
pproximation to the external field (Connerney et al. 2022 ) which
e include alongside the spherical harmonic representation of the

nternal field; the PINN models represent both internal and external
eld. The models based only on the prime orbits (1–33, excluding
): PINN33e, JRM33, and Baseline show a comparable absolute
ms error per orbit. Noteably the PINN models do not achieve a
uch impro v ed fit to the data, compared to JRM33 and Baseline,
rison between mean squared dynamic and total loss; upper right: individual 
ic weight w d as a function of training epoch; lower right: the learning rate. 
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Figure 4. Orbital comparison of the discrepancy between various reconstructions of Jupiter’s magnetic field: PINN33e, PINN50e, JRM33, and Baseline, with 
the Juno data. On each orbit, the error is quantified by taking the root mean squared value of the vector difference between the reconstructed magnetic field and 
the Juno measurements, similar to the data-loss term. We show the (upper) absolute value of this error, and (lo wer) relati ve v alue, E 2 , of this error compared to 
the rms observed magnitude over the orbit. The dashed line delineates the prime from the extended mission. 
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espite being able to resolve an arbitrary external field. This suggests
hat the model misfit is dominated by unmodelled sources such as
nstrumentation error. For the majority of orbits, PINN33e has an 
rror less than JRM33, with a few exceptions such as orbits 3 and
2. Over the first 33 orbits as a whole, the rms error for JRM33
s 680.5 nT, compared with 465.0 nT for Baseline and 519.7 nT
or PINN33e. Applied to the data from orbits 34–50, these models 
 xhibit a discrepanc y with the measurements which grows with time,
roviding additional evidence for Jupiter’s secular variation. Model 
INN50e has a slightly higher rms error of 599.2 nT for orbits 1–33,
ut fits the data for orbits 34–50 much better because it has been
rained in part on these data. 

Fig. 5 shows the physics-loss by contours of the magnitude of
lectrical current density | J | on selected radii. For radii r > R J , the
agnitude of the current density of the PINN50e model is about 10 −8 

 m 

−2 , increasing with decreasing radius to about 10 −6 A m 

−2 at r =
 . 8 R J . The current density includes a signature from not only any
xternal electrical currents, but also electromagnetic structures which 
re numerically fa v oured because they allow a good fit to the data.
stimates of the current density associated with a simple magnetodisc 
odel are about 10 −9 A m 

−2 at r = 5 R J (Connerney 1981 ), which is
onsistent with our values in r > R J . The increase of | J | by 100 from
 = 4 to r = 0 . 8 is principally explained by the increase in magnetic
eld strength by a similar factor due to proximity to the dynamo
ource. Structurally, at large radii, | J | appears dominated by weak
mall-scale numerical artefacts; ho we ver, as the radius decreases, | J |
ecomes dominated by gradients in B , focused at locations where 
he magnetic field is largest. The PINN models are not designed to
atisfy J = 0 everywhere, and we deem that the ambient currents 
re acceptably small. 

We now use our models to image Jupiter’s interior structure: 
e base our discussion on our PINN50i and PINN33i models 
hich use the PINN methodology to inwards extrapolate. The 

tructure of JRM33, Baseline, and PINN50i at radii r/R J = 

 , 0 . 95 , 0 . 9 , 0 . 85 , 0 . 8 is shown by contours of radial field in Fig. 6 .
n r = R J the models are almost indistinguishable in terms of
hysical structure, but as the radius decreases, the magnetic field 
trength increases and the length-scales decrease. The instability of 
nwards continuation in the spherical harmonic models is readily 
pparent by the pre v alent fine-scaled signal, particularly in the
zimuthal direction. The (unregularized) JRM33 model in particular 
as a lot of small-scaled structure in the Southern hemisphere which
s absent in the other smoother models. Although this signal is
ikely noise owing to the general instability of inwards continuation, 
e cannot rule out that in this specific case it actually represents

esolved small-scale features due to the absence of any regularization. 
f the three models, PINN50i is smoothest and remains relatively 

ree of longitudinal small scales; consequently the features at depth 
re easier to identify. Of the three models, JRM33 has no spatial
egularization at all, PINN50i has penalized physics and no explicit 
egularization, and the Baseline model is regularized through penal- 
zed horizontal deri v ati ves of the radial field at r = 0 . 9 R J . We show
he Baseline model at a range of radii although it is only regularized at
 single radius; this is a different presentation to Moore et al. ( 2018 )
n which they show similar models but regularized on each specific
adius shown. At r = 0 . 9 R , the PINN50i model and Baseline show
MNRAS 533, 4058–4067 (2024) 
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M

Figure 5. The magnitude of current density | J | from PINN50e and PINN50i shown on illustrative radii ( r/R J = 0 . 8 , 1 , 1 . 5 , 4) on a Mollweide projection with 
the central meridian at a longitude of 180 o west (System III coordinates). 
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ood agreement although there is still evidence of small scales in the
aseline model; the signature of these small scales increases beneath

his radius. 
At r ≤ 0 . 85 R J , our PINN50i model indicates that the field is

rranged into longitudinal bands of positive flux, with a strong
and at high latitude and weaker bands near the equator. Many
f the strong patches of flux have adjacent oppositely signed
ounterparts, as can be seen in particular around the root of
he great blue spot. These reversed patches of magnetic field
re also present in the Baseline model, and could either be a
eal feature or due to aliasing from the secular variation, recall-
ng that our PINN models are time-independent o v er the Juno
ra. The hemispheric structure is also striking, with almost all
he magnetic structure of the field being confined north of the
quator. 

.2 Estimates of Jupiter’s dynamo radius 

agnetic field reconstructions can be used to infer the location
f the dynamo region, by identifying the radius at which the
owes–Mauersberger spectrum of the magnetic field (Mauersberger
956 ; Lowes 1974 ) is flat, assuming that the dynamo is a white-
oise source of magnetic field. Although this assumption has been
alidated for Earth, it is not obviously applicable to giant plan-
ts, particularly as the smooth conductivity profiles (e.g. French
t al. 2012 ) suggest that the edge of the dynamo is likely not
s spatially abrupt as the core-mantle-boundary is in the Earth.
evertheless, we use this simple diagnostic to compare the dynamo

adius estimates from the PINN models with other recent models.
NRAS 533, 4058–4067 (2024) 
nference of the dynamo radius relies on the spherical harmonic
epresentation of the magnetic field ( 1 ) from which the spectrum is
erived as 

 n = ( n + 1) 

(
R J 

r 

)(2 n + 4) n ∑ 

m = 0 

( g m 

n ) 
2 + ( h 

m 

n ) 
2 , (10) 

hose profile with n depends on the radius r . 
In the following text, we focus attention on the PINN50 models.

n order to find the radius where the spectrum is flat, we have two
ptions, noting that both involv e e xtrapolating inwards a way from
he observ ed re gion ( r > R J ). First is analytic continuation assuming
xactly zero electrical current density, where we project the field
t r = R J using PINN50e (or, equi v alently PINN50i, because the
odels produce the same magnetic field at this radius) on to ( 1 )

nd use the inherent radial dependence within ( 10 ). This approach is
ost similar to previous studies seeking to find the dynamo radius.
econdly, we can use PINN extrapolation based on the PINN50i
odel, in which the electrical current density is penalized but not

orced to be zero. At each radius r < R J , we project the magnetic
eld on to ( 1 ) and then use ( 10 ). In either case, we find the Gauss
oefficients by performing a least-squares fit on to the internal
eld representation ( 1 ) using all three components of magnetic
eld and a dense spatial grid, which remo v es an y e xternal field 
ontribution. 

The upper part of Fig. 7 shows a comparison of the Gauss
oefficients for the PINN50 model (either PINN50e or PINN50i),
RM33, and Baseline at r = R J . They are all very similar at large-
cales (small n , m ), in accordance with the similarity of their physical
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Figure 6. The radial component of Jupiter’s magnetic field on various spherical radii inside Jupiter’s surface. The plots are shown on a Mollweide projection 
with the central meridian at a longitude of 180 o west (System III coordinates). The left column shows the JRM33 model, N = 18 (Connerney et al. 2022 ), the 
middle column shows the Baseline model, N = 32 (Bloxham et al. 2022 ), and the right column shows the model PINN50i. 
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epresentation at r = R J (Fig. 6 ). The spherical harmonic model
RM33, with no regularization, has higher power at small scales 
 n, m ≥ 20) than the other two models. The PINN50 model has
o explicit regularization either, but small-scale features appear to 
e penalized with a noteable decrease in power at small scales 
, m ≥ 20, somewhat mirroring the result of the explicit damping 
pplied in the Baseline model. 

The middle panel of Fig. 7 shows the Lowes–Mauersberger 
pectrum as a function of degree n for JRM33, Baseline, PINN50e 
coloured lines: analytic continuation), and PINN50i (black symbols: 
INN extrapolation). The maximum degree of 35 for the PINN 

odels is chosen arbitrarily, with the representation of the PINN 

odels in terms of spherical harmonics achieved using least squares 
rojection as described abo v e. At r = R J the spectral power for
egrees 2–18 agrees well between the models and falls off expo- 
entially with n . The power in the dipole is higher than a simple
rofile predicts. As the radius is decreased the profile flattens as
he smaller scales become more prominent. Abo v e de gree 18, the
hree analytically continued models diverge, with JRM33 having 
he most power at high degree. Of the three models, the Baseline
odel (which is the only model with e xplicit re gularization) has

he least power at small-degree. Comparing the analytic and PINN 

xtrapolation methods, although they agree on r = R J by construc-
ion, for r < R J and degrees higher than about 18 they diverge,
ith the PINN extrapolated models having smaller power at high 
egree. 
We quantify the slope of the spectrum by fitting a straight line to

og 10 R n for degrees 2–18. The lower panel of Fig. 7 shows the slope
ariation with radius for four models analytically inwards continued 
sing ( 10 ); the extrapolated PINN models give very similar results.
n making the assumption that the slope is zero at the source we

nfer that the dynamo radius is about r = 0 . 8 R J , in approximate
MNRAS 533, 4058–4067 (2024) 
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M

Figure 7. Upper panel: Gauss coefficients of PINN50e/i at r = R J , JRM33, and Baseline. Middle panel: Lowes–Mauersberger spectrum of three inwards 
analytically continued models (coloured lines): PINN50e ( N = 35), JRM33 ( N = 30), and Baseline ( N = 32); the black symbols show similar spectra obtained 
from PINN extrapolation using PINN50i in r < R J (squares: 0 . 80 R J ; triangles: 0 . 85 R J ). Lower panel: spectral slope (fit to degrees 2–18) with radius for four 
analytically continued models: JRM33, Baseline, PINN33e, and PINN50e. 
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greement with other studies (e.g. Connerney et al. 2022 ; Sharan
t al. 2022 ). 

 DISCUSSION  A N D  C O N C L U S I O N S  

e have presented reconstructions of Jupiter’s magnetic field, based
n data from Juno within the framework of a PINN. Our reconstruc-
ions have a similar misfit to the data compared with other spherical
armonic methods, and produce a similar structure of magnetic field
n Jupiter’s surface. Ho we ver, using a meshless method, and only
eakly constraining the (poorly known) physics, our models are not

pparently hostage to the typically enhanced noise with decreasing
NRAS 533, 4058–4067 (2024) 
adius despite not using any explicit spatial regularization. This is
ossible because the PINN allows unmodelled signal to be mapped
o (arguably unphysical but small) electrical currents rather than to
he internal field, stabilizing inwards continuation. Compared with
pherical harmonic-based methods, we produce a smoother image
t depth of the localized interior magnetic field, making specific
eatures easier to identify and interpret. We do not claim ho we ver
hat our models are more accurate than other reconstructions, as there
s no physics-based justification for preferring smoother models o v er

ore complex models. 
The fact that most of the structure in Jupiter’s field appears

onfined to the Northern hemisphere perhaps makes neural networks
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 particularly ef fecti ve modelling tool. Even at modest resolution, 
eural networks are able to very well represent local structures, 
ompared to spherical harmonics which are inherently global. Future 
pplications of the PINN method include quantifying the secular 
hanges close to Jupiter’s dynamo region, and applications to other 
lanets. 
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