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S U M M A R Y 

The columnar -flow appro ximation allows the development of computationally efficient nu-
merical models tailored to the study of the rapidly rotating dynamics of Earth’s fluid outer
core. In this paper, we extend a novel columnar-flow formulation, called Plesio-Geostrophy
(PG) by including thermal effects and viscous boundary conditions. The effect of both no-slip
and stress-free boundaries, the latter being a novelty for columnar-flow models, are included.
We obtain a set of fully 2-D evolution equations for fluid flows and temperature where no
assumption is made regarding the geometry of the latter, except in the deri v ation of an ap-
proximate thermal diffusion operator. To test the new PG implementation, we calculated the
critical parameters for onset of thermal convection in a spherical domain. We found that the
PG model prediction is in better agreement with unapproximated, 3-D calculations in rapidly
rotating regimes, compared to another state-of-the-art columnar-flow model. 

Key words: Core; Dynamo: theories and simulations; Numerical approximations and anal-
ysis; Numerical modelling. 

 I N T RO D U C T I O N  

onv ectiv e motions in Earth’s fluid outer core are of paramount importance for understanding the geodynamo mechanisms responsible for
he existence of the geomagnetic field. Given the impossibility of direct observation, numerical geodynamo simulations (Christensen & Wicht
015 ; Wicht & Sanchez 2019 ; Landeau et al. 2022 ), in which the temporal evolution of fluid flows, magnetic fields and temperature are solved
rom a given initial condition, are currently the main tool for studying the dynamics of Earth’s outer core. Ho wever , these kind of simulations
re computationally very expensive, and can only partly access the extreme planetary regimes characterized by very low viscosity, rapid
otation, highly turbulent flows and a vast range of spatio-temporal scales. The dynamical regime of the core is typically characterized by the
kman number, E , the ratio of rotational over viscous timescales and the Reynolds number Re, the ratio of viscous ov er adv ectiv e timescales.
stimates for Earth are E = O(10 −15 ) , Re = O(10 9 ) (e.g. Schaeffer et al. 2017 ), indicating both highly turbulent regimes and the profound

mpact of rotation on the dynamics. Conversely 3-D direct numerical simulations (DNSs) and laboratory experiments of convecti vel y dri ven
ynamics are typically performed in regimes characterized by E � 10 −8 and Re � 10 3 (Kunnen et al. 2010 ; Sheyko 2014 ; Sheyko et al.
016 , 2018 ; ; Schaeffer et al. 2017 ; Rajaei et al. 2018 ; Guervilly et al. 2019 ; Long et al. 2020 ; Cheng et al. 2020 ; Calkins et al. 2021 ),
epending on setup and study scope. 

The limitations of 3-D methodologies have fuelled the search for reduced models, capable of reaching parameter regimes that are
recluded from current DNS approaches. One successful family of models is rooted in the recognition that rotation is expected to be dominant
n the force balance of Earth’s core and other planetary fluid interiors. Geodynamo simulations at pro gressi vel y lower E (Christensen &

icht 2015 ), and aimed at reproducing features derived from geomagnetic field obser vations, fur ther enforce the expectation that, in Earth’
 core, the dynamics is strongly influenced by planetary rotation. Rapidly rotating fluid dynamics is characterized by a large separation in
oth spatial and temporal scales. In particular the vertical scales, along the direction parallel to the rotation axis, tend to be much larger than
long the perpendicular direction (Davidson 2013 ). In enclosed domains, such as a sphere, this results in the formation of Taylor columns,
panning the whole of the vertical extension of the domain. A strong tendency for the formation of such columns has been confirmed in
eodynamo simulations (Christensen & Wicht 2015 ) and is in agreement with estimates of large-scale flows at the top of the core being
rimarily symmetric about the equatorial plane (Holme 2015 ). 

This consideration is the foundation of the models in the class termed columnar-flow models, in which it is assumed that horizontal
otions (i.e. perpendicular to the rotation axis) are invariant along the rotation axis. This leads to a 2-D description of the fluid motions in
C © The Author(s) 2024. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access 
article distributed under the terms of the Creative Commons Attribution License ( https://creati vecommons.org/licenses/b y/4.0/ ), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 725 
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the core, and to numerical models that are computationally cheaper than traditional 3-D ones. In the context of the study of Earth’s core, this
approximation is often called quasi-geostrophic, or QG (e.g. Charney 1948 ; Schaeffer & Cardin 2005a , b ; Canet et al. 2009 ). Ho wever , we
choose to refer to it here as ‘columnar’ (Cardin & Olson 1994 ), to avoid confusion with other flavours of quasi-geostrophic theories used in
the context of planetary interiors (e.g. Julien et al. 2006 ). 

The columnar-flow approximation has proven extremely successful in the study of rapidly rotating conv ectiv e dynamics, where magnetic
effects are neglected (Aubert et al. 2003 ; Calkins et al. 2012 ; Guervilly & Cardin 2016 ; Guervilly et al. 2019 ; Barrois et al. 2022 ). These
studies have proven their ability to simulate highly forced dynamics with a lower computational cost compared to that of 3-D DNS, allowing
access to more planetary-like parameter-regimes. In a full-sphere geometry, where the presence of the inner core is neglected, it has been
shown that the results of columnar-flow models agree well with DNS, when the same rapidly rotating regimes are simulated (Guervilly &
Cardin 2016 ; Guervilly et al. 2019 ). Some reservations remain in spherical shell geometries, where the existence of the inner core leads to
mathematical and physical inconsistencies (Barrois et al. 2022 ). 

In the context of the oscillatory dynamics of Earth’s core, where the presence of magnetic field is important, the columnar-flow
approximation has been shown to be valid on inter-annual to decadal timescales (Jault 2008 ; Gillet et al. 2011 ). On these timescales the
columnar approximation has proven capable of reproducing wave-like dynamics observed in high-quality geomagnetic data from ground- 
and satellite-observations (Gerick et al. 2021 ; Gillet et al. 2022 ). 

The most recent columnar-flow implementations are of hybrid nature, where the momentum equation describes the temporal evolution 
of a 2-D stream-function, but magnetic fields and temperature anomalies are treated in their unapproximated, 3-D for m (Guer villy & Cardin
2016 ; Guervilly et al. 2019 ; Gerick et al. 2021 ; Gillet et al. 2022 ; Barrois et al. 2022 ). While this approach does not require additional
assumptions or complex manipulations of the magnetic field and temperature equations, the mixed nature of the variables solved for, introduces
the need to perform precise vertical integration (see appendix D of Barrois et al. ( 2022 ) for some details). Alternative implementations have
assumed a purely 2-D or columnar-like form for temperature (Guervilly & Cardin 2016 ; Guervilly et al. 2019 ; Barrois et al. 2022 ) or magnetic
fields, (Canet et al. 2014 ; Labb é et al. 2015 ; More & Dumber ry 2017 ; Dumber ry & More 2020 ). While acceptable for the temperature, a
2-D approximation of magnetic fields is likely too restrictive, when compared to the complex geometry of the magnetic field in 3-D dynamo
simulations (Schaeffer et al. 2017 ; Aubert 2019 ; Aubert et al. 2022 ). 

In Jackson & Maffei ( 2020 , hereafter referred to as Paper 1 ) we introduced an alternative columnar-flow formulation, called plesio-
geostrophy (PG), that is designed to include the effect of magnetic fields in a fully 2-D framework that does not require severe assumptions on
the geometry of the magnetic field. This is achieved by describing the Lorentz force only via a series of 2-D magnetic moments, derived via
v ertical inte gration of the original, 3-D magnetic field. The PG momentum equation is different from other columnar-flow implementations,
and is designed to improve on the treatment of the magnetic effects at the CMB. 

The original PG formulation ( Paper 1 ) ignores the effect of thermal heterogeneities and of viscous mechanical boundary conditions. To
include them in the PG equations is the goal of this study. The inclusion of these ingredients is essential in the development of a self-consistent
model capable of simulating the decadal dynamics of Earth’s core in geophysically realistic regimes. We further develop a framework for
the numerical study of core dynamics, as governed by the PG equations. Our method of choice is a fully spectral, grid-free method, novel to
the study of columnar thermal convection. In simple geometries, spectral strategies have been shown to be capable of superior convergence
when compared to local approaches like finite differences (Boyd 2001 ). Our numerical approach allows us to implement both no-slip and
stress-free mechanical boundary conditions, the latter not being commonly used in columnar-flow models. In presence of a solid interface,
such as the CMB, no-slip conditions are strictly more appropriate. Stress-free boundaries, ho wever , have been considered for computational
reasons (Aubert et al. 2017 ; Aubert 2023 ). Within the columnar-flow community, only a weak-form description exists to include stress-free
boundary conditions (Maffei et al. 2017 ), which involves considering an integrated version of the governing equations, such as an energy
norm, as done in, for example, Zhang ( 1994 ). This approach is not well suited for numerical methodologies that are typically used since they
aim at solving the governing equations themselves (i.e. the ‘strong form’). 

The ne wl y deri v ed, hydrothermal PG system will be benchmarked against e xisting 3-D and columnar-flow methodolo gies b y performing
calculations of onset of thermal convection in a full sphere. The problem is a classical one, and has well known numerical (Chandrasekhar
1961 ; Jones et al. 2000 ; Zhang & Liao 2004 , 2017 ; Zhang et al. 2007 , 2017 ), low- E , asymptotic (Roberts 1965 ; Jones et al. 2000 ; Zhang &
Liao 2004 , 2017 ; Zhang et al. 2007 , 2017 ) and columnar-flow solutions (Guervilly & Cardin 2016 ). The exact knowledge of onset values is
a requisite when performing strongly forced simulations of thermal convection, which we will report on in a future publication. 

The paper is structured as follows. In Section 2 , we derive the mathematical modifications required to introduce thermally driven
buoyancy in the PG momentum equation presented in Paper 1 . Ignoring the effect of magnetic fields in the core, we present a system of
equation that describes the evolution of columnar flows in presence of thermal anomalies in an internally heated fluid sphere. The spectral
numerical methodology and the treatment of viscous boundary condition will be developed in Section 3 . For the purposes of this paper, we
focussed on the solution of eigenvalue problems, but the methodology can be extended to time-marching problems. In Section 4 , we present
the results of tests aimed at benchmarking the developments presented in Sections 2 and 3 . In particular, we focus on validating some of the
novel aspects of the PG set of equations (Section 4.1 ), on the calculation of reference solutions aimed at the onset of thermal convection at
very low E (Section 4.2 ) and to the comparison of numerical results with existing 3-D and columnar-flow solutions (Section 4.3 ). We end the
paper with a discussion, in Section 5 . 
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 D E R I VAT I O N  O F  T H E  P G  T H E R M A L  E Q UAT I O N S  

e consider a fully fluid sphere of radius r o . To describe the physics within the sphere, we make use of both a cylindrical coordinate system
 s, φ, z) and a spherical one ( r, θ, φ) . The centre of the sphere is defined as s = z = 0 and r = 0 , respecti vel y. The sphere rotates around a
otation axis aligned with the vertical direction ˆ z , at a rate �. The fluid inside the sphere is Boussinesq and characterized by constant values
f thermal expansion coefficient α, kinematic viscosity ν, thermal dif fusi vity κ and reference density ρ0 . The fluid is subject to a radial
ravitational field g = −γ r , where γ is a positive constant and r is the radial vector in spherical coordinates. We consider a reference state
haracterized by the fluid at rest and a conducting temperature profile characterized by ∇T s = −χr , where χ is a positive constant, caused
y a uniform distribution of internal volumetric heating in the sphere. 

The non-dimensional equations describing the evolution of velocity, u , temperature perturbation, T and dynamic pressure, p, are: 

∂u 

∂t 
= −( u · ∇) u − 2 ̂ z × u − ∇ p + RaE 

2 T r + E∇ 

2 u (1) 

∂T 

∂t 
= −u · ∇T + 

1 

P r 
u · r + 

E 

P r 
∇ 

2 T (2) 

 · u = 0 , (3) 

here we introduced the Ekman, E , Rayleigh, Ra and Prantdl, P r , numbers: 

E = 

ν

�r 2 o 

, R a = 

γαχr 6 o 

νκ
, P r = 

ν

κ
. (4) 

n the above we non-dimensionalized measuring time in terms of the rotation timescale �−1 , length-scales in terms the core radius r o , and
emperature in terms of χr 2 0 νκ−1 . The non-dimensionalization adopted in this work is as in Zhang & Liao ( 2004 , 2017 ), while the definitions
f E , Ra and P r (eq. 4 ) are the same as in Jones et al. ( 2000 ). This choice is not unique. Most notabl y, dif ferent authors adopt different
efinitions of Ra, E and of the non-dimensionalizations for time and temperature (Roberts 1968 ; Busse 1970 ; Jones et al. 2000 ; Zhang &
iao 2004 ; Guervilly & Cardin 2016 ; Zhang & Liao 2017 ), and indeed we used a different temperature scale in Paper 1 that lead to a different

orm of the Navier–Stokes equation and a different definition of the Rayleigh number. In thermal convection studies it is common to measure
ime in units of the viscous timescale r 2 0 /ν (Jones et al. 2000 ; Guervilly & Cardin 2016 ), instead of the rotational timescale adopted in this
ork and in, for example Busse ( 1970 ) and Zhang & Liao ( 2004 ). We adopt the latter as it results in a non-dimensional momentum eq. ( 1 )

hat allows to easily isolate inviscid dynamics by setting E to zero. 
The governing eqs ( 1 )–( 3 ) are complemented with fixed-temperature: 

T | r= 1 = 0 , (5) 

nd non-penetration: 

 r | r= 1 = 0 , (6) 

oundary conditions. In the presence of viscosity additional mechanical boundary conditions are required. As is customary, we consider
ither no-slip: 

 θ | r= 1 = u φ | r= 1 = 0 , (7) 

r stress-free: 

∂ 

∂r 

(u θ

r 

)∣∣∣∣
r= 1 

= 

∂ 

∂r 

(u φ

r 

)∣∣∣∣
r= 1 

= 0 . (8) 

.1 PG momentum equation 

he columnar-flow approximation is implemented by making use of the following ansatz (Schaeffer & Cardin 2005a , b ): 

 ( s, φ, z) = 

1 

H 

∇ × ( � ̂  z ) − sz 

H 

2 
u s ̂  z = 

1 

s H 

∂� 

∂φ
ˆ s − 1 

H 

∂� 

∂s 
ˆ φ − z 

H 

3 

∂� 

∂φ
ˆ z , (9) 

here �( s, φ) is a 2-D stream-function and H = 

√ 

1 − s 2 is the half-height of the sphere at a distance s from the rotation axis. The
bove ansatz results in incompressible flows satisfying non-penetration condition (eq. 6 ) at the outer boundary. That is, u r = 0 at r = 1 or,
qui v alentl y, at z = ±H . The prescription ( eq. 9 ) is now the standard in columnar-flow formulations (Schaeffer & Cardin 2005a , b ; Labb é
t al. 2015 ; Schaeffer et al. 2016 ; Guervilly & Cardin 2016 ; Maffei et al. 2017 ; Guervilly et al. 2019 ; Gerick et al. 2020 , 2021 ; Barrois et al.
022 ). In the context of thermal convection, ansatz (eq. 9 ) has been corroborated by 3-D calculations. In fig. 5 of Gillet & Jones ( 2006 ) it
s shown that in 3-D, asymptotic calculations both the z−independence of the horizontal flow and the linear z−dependence of the vertical
elocity, are well justified at the onset of thermal convection. Furthermore, the 3-D numerical calculations of turbulent convection in a full
phere presented in Guervilly et al. ( 2019 ), illustrate that the horizontal flo ws sho w a remarkable degree of vertical invariance. In spherical
hells, non-linear calculations show that thermal winds can partially disrupt the vertical invariance of the horizontal flows (Barrois et al.
022 ), ho wever , a high deg ree of columnarity is still obser v ed outside the tangent c ylinder. 
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To obtain an equation that describes the temporal evolution of � we follow the PG methodology outlined in Paper 1 . The main difference
between the PG and other columnar-flow formulations lies in the order in which the differential and integration operations are applied to
the momentum eq. ( 1 ). The common deri v ation (Cardin & Olson 1994 ) proceeds by first taking the curl of the momentum equation, which
leads to the vorticity equation, in which the pressure gradient has been eliminated. The vertical component (i.e. the axial vorticity equation)
is then integrated along the vertical direction. Introducing ansatz (eq. 9 ) in the resulting equation leads to an evolution equation for the
stream-function � (Schaeffer & Cardin 2005a , b ). Within the PG framework, the vertical integration is taken before the curl operation. As
shown in Paper 1 , the rationale for doing so is to retain full control of surface terms arising from non-vanishing magnetic field contributions at
the CMB. 1 Further manipulations are then required to eliminate pressure terms from the final equation. Eventually one obtains the following
equation for the non-zonal (i.e. not-axysimmetric) velocity component: [

− ∂ 

∂s 

(
s 

H 

∂ 

∂s 

)
+ 

1 

H 

(
β

2 
− 1 

s 

)
∂ 2 

∂φ2 

]
∂� 

∂t 
= 

s 

2 H 

(
F A + F C + RaE 

2 F T + E F V 

)
. (10) 

The zonal component of the velocity is not considered in this study. In the above, β = H 

−1 d H/ ds = −s/H 

2 is the slope of the spherical
boundary and the terms on the right-hand side are calculated from each term f (including inertia) appearing in the momentum eq. ( 1 ) via the
following formula: 

F = 

dH 

ds 

[
−2 f φ | 0 − 1 

s 

∂ 

∂φ
˜ f z 

]
+ ̂  z · ∇ × [ f e ] , (11) 

where f φ | 0 denotes the φ component of f = ̂  s f s + 

ˆ φ f φ + ̂  z f z e v aluated at z = 0 and f e = ̂  s f s + 

ˆ φ f φ indicates its equatorial components. The
overline and tilde operators denote, respecti vel y the vertical, symmetric integral operator, 

� = 

∫ H 

−H 
� dz, (12) 

and the vertical, asymmetric integral operator, 

˜ � = 

∫ H 

−H 
sgn ( z) � dz = 

∫ H 

0 
� dz −

∫ 0 

−H 
� dz, (13) 

where � ( s, φ, z) is a 3-D function, with general dependence on the vertical coordinate z , and sgn ( z ) is the sign of z : sgn ( z ) = 1 for z > 0 and
sgn ( z) = −1 for z < 0 . Throughout the paper, we also make use of the vertical averaging operation: 

〈 � 〉 = 

1 

2 H 

∫ H 

−H 
� dz = 

1 

2 H 

� . (14) 

In eq. ( 10 ), F A , F C , F T and F V indicate the PG forcing derived from, respectively, the non-linear advection term, the Coriolis force, buoyancy
and viscous dissipation. Note that the definition of these terms does not include the non-dimensional pre-factors, which appear explicitly in
eq. ( 10 ). This is done to easily accommodate different pre-factors that arise from different non-dimensionalizations. The derivation that leads
to the PG momentum eq. ( 10 ) results in the pressure term cancelling out, as desired ( Paper 1 ). 

Under non-penetration boundary conditions (eq. 6 ), the Coriolis term takes the following form: 

F C = −4 
s 

H 

u s , (15) 

while the viscous and advection terms are calculated directly via formula ( 11 ). For the viscous term, this gives: 

F V = 

{
dH 

ds 

[
−1 

s 

∂ 

∂φ
˜ ( ∇ 

2 u z ) − 2 ( ∇ 

2 u ) φ(0) 

]
+ ̂  z · ∇ × [ ( ∇ 

2 u ) e ] 

}
. (16) 

The latter term has a non-trivial structure when written in terms of � that we do not give explicitly. Some mathematical manipulation aimed
at simplifying the F A and F V terms are given in appendices A and B of Paper 1 . 

By replacing f = T r in eq. ( 11 ) one readily obtains: 

F T = −1 

s 

∂ 

∂φ

[
dH 

ds 
˜ zT + s T 

]
(17) 

and two ne w, 2-D v ariables emerge that describe the temperature field: ˜ zT and T . Next, we consider these ne w thermal v ariables. Note that
the quantity ̃  zT does not contain information on the equatorially antisymmetric temperature, because of the z factor. Using the definition (eq.
13 ) for the antisymmetric integration we obtain: 

˜ zT = 

∫ H 

−H 
sgn ( z ) z T dz = 

∫ H 

−H 
| z | T dz , 

where | z| = sgn ( z) z denotes the absolute value of z. Therefore both ˜ zT and T are symmetric moments of the temperature field, but they
weight the T contribution to the vertical integral dif ferentl y along the vertical direction. 
1 Note the following mistakes in Paper 1 : a sign error in the third terms of both lines in eq. (4.2); the factor cos θ on the right-hand side of eq. (4.5) should be 
cos −1 θ . 
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.2 PG thermal equations 

volution equations for the thermal quantities T and ̃  zT , introduced in the buoyancy term (eq. 17 ), can be derived from the 3-D temperature
q. ( 2 ). We briefly illustrate the deri v ation of the evolution equation for T . Applying the symmetric integral operator eq. ( 12 ) to the temperature
q. ( 2 ) one obtains: 

∂ T 

∂t 
= −

∫ H 

−H 
u · ∇T dz + 

1 

P r 

∫ H 

−H 
u · r dz + 

E 

P r 

∫ H 

−H 
∇ 

2 T dz. 

he first two terms on the right-hand side can be manipulated thanks to the simple z dependence of u under the columnar-flow ansatz (eq. 9 ).
n particular the advection term can be expanded as: ∫ H 

−H 
u · ∇T dz = 

∫ H 

−H 

[
u s 

∂T 

∂s 
+ u φ

1 

s 

∂T 

∂φ
+ u z 

∂T 

∂z 

]
dz 

= u s 

∫ H 

−H 

∂T 

∂s 
d z + u φ

∫ H 

−H 

1 

s 

∂T 

∂φ
d z − su s 

H 

2 

∫ H 

−H 
z 
∂T 

∂z 
d z. (18) 

he first integral on the right-hand side is expanded using Leibniz integration rule: ∫ H 

−H 

∂T 

∂s 
d z = 

∂ 

∂s 

∫ H 

−H 
T d z − d H 

d s 
( T | H + T | −H ) = 

∂ T 

∂s 
+ 

s 

H 

( T | H + T | −H ) , 

nd the third one via integration by parts: ∫ H 

−H 
z 
∂T 

∂z 
d z = 

( zT ) | H − ( zT ) | −H −
∫ H 

−H 
T d z = H 

( T | H + T | −H ) − T . 

n the above, T | ±H refers to the temperature fluctuation T , e v aluated at the surface of the sphere, z = ±H . Inserting these last two identities
n eq. ( 18 ) we find that the surface terms cancel each other out. The advection terms therefore is entirely expressed as a function of u and T :∫ H 

−H 
u · ∇T dz = u e · ∇ e T + 

su s 

H 

2 
T . 

n evolution equation for ̃  zT is obtained applying the asymmetric integral operator ( eq. 13 ) to the temperature eq. ( 2 ) and using manipulations
imilar to the ones illustrated above. Without further manipulating the dif fusi ve terms, we obtain the following equations: 

∂ T 

∂t 
= −u e · ∇ e T − su s 

H 

2 
T + 

1 

P r 

4 

3 
s H u s + 

E 

P r 
∇ 

2 T , (19) 

∂ ̃  zT 

∂t 
= −u e · ∇ e ̃  zT − 2 u s 

s 

H 

2 ̃
 zT + 

1 

P r 

1 

2 
s H 

2 u s + 

E 

P r 
˜ z∇ 

2 T , (20) 

here ∇ e is the component parallel to the equatorial plane. Note that no assumption on the geometry of the 3-D variable T have been made
o far. 

The diffusion terms can be expanded by use of Leibniz integration rule. For example, the term ∇ 

2 T is: ∫ H 

−H 
∇ 

2 T dz = 

∫ H 

−H 

1 

s 

∂ 

∂s 

[
s 
∂T 

∂s 

]
d z + 

∫ H 

−H 

1 

s 2 
∂ 2 T 

∂φ2 
d z + 

∫ H 

−H 

∂ 2 T 

∂z 2 
d z 

= 

1 

s 

[
∂ 

∂s 

∫ H 

−H 
s 
∂T 

∂s 
d z − s 

d H 

d s 

(
∂T 

∂s 

∣∣∣∣
H 

+ 

∂T 

∂s 

∣∣∣∣
−H 

)]
+ 

1 

s 2 
∂ 2 T 

∂φ2 
+ 

(
∂T 

∂z 

∣∣∣∣
H 

− ∂T 

∂z 

∣∣∣∣
−H 

)
= 

1 

s 

{ 

∂ 

∂s 

[ 

s 
∂ T 

∂s 
− s 

d H 

ds 
( T | H + T | −H ) 

] 

− s 
d H 

ds 

(
∂T 

∂s 

∣∣∣∣
H 

+ 

∂T 

∂s 

∣∣∣∣
−H 

)} 

+ 

1 

s 2 
∂ 2 T 

∂φ2 
+ 

(
∂T 

∂z 

∣∣∣∣
H 

− ∂T 

∂z 

∣∣∣∣
−H 

)
= 

1 

s 

∂ 

∂s 

[ 

s 
∂ T 

∂s 

] 

− 1 

s 

∂ 

∂s 

[
s 

d H 

ds 
( T | H + T | −H ) 

]
− d H 

ds 

(
∂T 

∂s 

∣∣∣∣
H 

+ 

∂T 

∂s 

∣∣∣∣
−H 

)

+ 

1 

s 2 
∂ 2 T 

∂φ2 
+ 

(
∂T 

∂z 

∣∣∣∣
H 

− ∂T 

∂z 

∣∣∣∣
−H 

)
By collecting the deri v ati ves of the variable T and by recognising that: 

− d H 

ds 

(
∂T 

∂s 

∣∣∣∣
H 

+ 

∂T 

∂s 

∣∣∣∣
−H 

)
+ 

(
∂T 

∂z 

∣∣∣∣
H 

− ∂T 

∂z 

∣∣∣∣
−H 

)
= 

1 

H 

(
∂T 

∂r 

∣∣∣∣
H 

+ 

∂T 

∂r 

∣∣∣∣
−H 

)
, 
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we obtain the following: 

∇ 

2 T = ∇ 

2 
e T −

1 

s 

∂ 

∂s 

[
s 

d H 

ds 
( T | H + T | −H ) 

]
+ 

1 

H 

(
∂T 

∂r 

∣∣∣∣
H 

+ 

∂T 

∂r 

∣∣∣∣
−H 

)
. 

Similar manipulations lead to the following form for the dif fusi ve term in eq. ( 20 ): 

˜ z∇ 

2 T = ∇ 

2 
e ̃

 zT + 

1 

s 

∂ 

∂s 

[
s 2 ( T | H + T | −H ) 

] + 

(
∂T 

∂r 

∣∣∣∣
H 

+ 

∂T 

∂r 

∣∣∣∣
−H 

)
+ 2 T | 0 − ( T | H + T | −H ) . 

Therefore, the diffusion terms in the above equations are not closed in the T and ˜ zT variables, and an approximate form needs to be found.
We use the following argument: given the columnar nature of the flow, we expect the vertical variations in temperature to be weak compared
to the equatorial ones. We therefore assume that the vertically averaged Laplacian of temperature to be well approximated by the Laplacian
of the vertically averaged temperature: 

〈∇ 

2 T 〉 � ∇ 

2 
e 〈 T 〉 . (21) 

Note that eq. ( 21 ) is a strict equality if T is a 2-D variable, with no vertical dependence. Substituting eq. ( 14 ) in eq. ( 21 ) leads to the following
approximate form: 

∇ 

2 T � H ∇ 

2 
e 

( 

T 

H 

) 

(22) 

A similar argument for ˜ z∇ 

2 T is less rigorous, but assuming that the temperature has weak variations along the vertical direction, and
using eq. ( 13 ), yields the following: 

˜ z∇ 

2 T � H 

2 ∇ 

2 
e 

( ˜ zT 

H 

2 

)
. (23) 

We therefore use eq. ( 22 ) and eq. ( 23 ) to approximate the dif fusi ve terms in eqs ( 19 ) and ( 20 ). The validity of these approximations is assessed

in Section 4.1.2 . Note that, intuiti vel y, it is tempting to approximate the diffusion terms as ∇ 

2 T � ∇ 

2 T and ˜ z∇ 

2 T � ∇ 

2 ˜ zT . Ho wever , as we
show in Section 4.1.2 , these aesthetically appealing substitution results in pathological behaviour at s = 1 . 

2.3 Linearized equations 

In the remainder of the paper we focus our attention on the solution to the linearized version of the PG equations derived above. In particular we
consider small perturbations around a background state defined by a fluid at rest and a conductive ther mal g radient. By neglecting non-linear
terms in the PG eqs ( 10 ), ( 19 ) and ( 20 ) we obtain the linearized system: [

− ∂ 

∂s 

(
s 

H 

∂ 

∂s 

)
+ 

1 

H 

(
β

2 
− 1 

s 

)
∂ 2 

∂φ2 

]
∂� 

∂t 
= 

s 

2 H 

(
F C + RaE 

2 F T + E F V 

)
, (24) 

∂ T 

∂t 
= 

1 

P r 

4 

3 
s H u s + 

E 

P r 
H ∇ 

2 
e 

( 

T 

H 

) 

, (25) 

∂ ̃  zT 

∂t 
= 

1 

P r 

1 

2 
s H 

2 u s + 

E 

P r 
H 

2 ∇ 

2 
e 

( ˜ zT 

H 

2 

)
. (26) 

In the above we made use of the approximations ( 22 ) and ( 23 ). 
Non-penetration (eq. 6 ) and fixed-temperature (eq. 5 ) require the following boundary conditions at s = 1 : 

� | s= 1 = T 
∣∣
s= 1 = 

˜ zT 
∣∣
s= 1 = 0 . (27) 

Stress-free or no-slip boundary conditions are implemented as detailed in Section 3.3 . Finally, we require regularity at the origin of the
coordinate system, s = 0 (Lewis & Bellan 1990 ). 

3  N U M E R I C A L  M E T H O D  

3.1 Variables expansion 

To solve the linear system ( 24 )–( 26 ), we use the following expansion to describe the spatio-temporal evolution of �, T and ̃  zT : 

�( s, φ, t) = 

N ∑ 

j= 1 
c m 

j � 

m 

j ( s) e i mφ+ λt , (28) 

T ( s, φ, t) = 

N ∑ 

j= 1 
a m 

j T 
m 

j ( s) e i mφ+ λt , (29) 
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˜ zT ( s, φ, t) = 

N ∑ 

j= 1 ̃
 a m 

j 
˜ zT 

m 

j ( s) e i mφ+ λt . (30) 

n the above, m is the azimuthal wavenumber, c m 

j , a 
m 

j , ̃  a m 

j , are the expansion coefficients, and N is the maximum values for j considered
n the e xpansion. Giv en the linear nature of eqs ( 24 )–( 26 ), the problem is decoupled in the azimuthal wavenumber and there is no need to
onsider a sum over m in expansions ( 28 )–( 30 ). 

The radial functions � 

m 

j ( s) , T 
m 

j ( s) and ̃  zT 
m 

j ( s) are defined as follows 

 

m 

j ( s) = s m H 

3 P 

(3 / 2 ,m ) 
j−1 (2 s 2 − 1) . (31) 

T 
m 

j ( s) = s m H 

3 P 

(3 ,m −1 / 2) 
j−1 (2 s 2 − 1) , (32) 

˜ zT 
m 

j ( s) = s m H 

4 P 

(4 ,m −1 / 2) 
j−1 (2 s 2 − 1) , (33) 

here P 

( α,β) are Jacobi polynomials. The above definitions satisfies boundary conditions ( 27 ) and regularity at the origin. The specific α and
parameters of the Jacobi polynomials P 

( α,β) are chosen so that the radial basis satisfy the following orthogonality conditions: ∫ 1 

0 
� 

m 

i ( s) � 

m 

j ( s) 
s 

H 

3 
ds ∝ δi j (34) ∫ 1 

0 
T 

m 

i ( s ) T 
m 

j ( s )ds ∼
∫ 1 

0 

˜ zT 
m 

i ( s ) ̃  zT 
m 

j ( s )ds ∝ δi j , (35) 

ith proportionality factors that can be calculated from the orthogonality relationships of the Jacobi polynomials. 
The stream-function expansion ( 31 ) is moti v ated b y the solution to the inviscid inertial-wave eigenvalue problem, obtained by inserting

q. ( 28 ) in the linear eq. ( 24 ), and setting Ra = E = 0 . The resulting problem has an analytical solution ( Paper 1 ) described by the eigenmodes
eq. 31 ) with eigenvalues: 

m 

j = i ω 

m 

j = −i 
m 

j(2 j + 2 m + 1) + m/ 2 + m 

2 / 4 
. (36) 

hese inertial modes form a complete basis set and satisfy the first of orthogonality conditions (eq. 34 ). Note that for other columnar-flow
odels the solution to the inviscid inertial-mode problem is still defined by eq. ( 31 ), but the eigenvalues have a different expression depending

n the implementation (Maffei et al. 2017 ). 

.2 Matrix–vector f orm ulation 

 set of equations for the coefficients c m 

j , a 
m 

j , ̃  a m 

j is obtained by considering the weak form of eqs ( 24 )–( 26 ). The weak form of a differential
quation can be constructed by multiplying the original form of the equation (its ‘strong form’) by a chosen test function and integrating in
pace (see Chaskalovic & Chaskalovic 2008 , chapter 1). For example, in Zhang ( 1994 , 1995 ), Zhang & Liao ( 2004 ) and Zhang et al. ( 2007 )
he strong form of the momentum eq. ( 1 ) is multiplied by the complex conjugate of the velocity field itself, u 

∗. Note that the coefficients
 

m 

j , a 
m 

j , ̃  a m 

j could be found via a collocation method (as done in e.g. Barrois et al. 2022 ), rather than a weak-form approach. The advantage
f using the latter, also called ‘variational’ approach, is the ability to implement no-slip or stress-free boundary conditions in an asymptotic
ense, allowing to find a velocity solution that is the sum of the inviscid solution plus a small viscous perturbation (Zhang 1994 , 1995 ; Zhang
 Liao 2004 ; Zhang et al. 2007 ; Maffei et al. 2017 ). In our case, the weak-form approach also allows us to consider the stress-free condition

ver the entirety of the spherical boundary (see Section 3.3.2 ). Conversely, considering the strong form of the PG momentum equation (eq.
0 ), w ould allo w to appl y the stress-free condition onl y on the s = 1 boundary of the equatorial disc. We obtain the weak-form version of
he PG equations by inserting expansions ( 28 )–( 30 ) in the linear eqs ( 24 )–( 26 ) and by multiplying the resulting equations by the complex
onjugate of, respecti vel y � 

m 

i ( s ) e i mφ , T 
m 

i ( s ) e 
i mφ and ˜ zT 

m 

i ( s) e i mφ . Upon integration over the equatorial disk in s and φ we obtain a set of
quations that can be succinctly written in the following matrix form: 

N · c = ( � + E G ) · c + RaE 

2 
(
B · a + 

˜ B · ˜ a 
)
, (37) 

C · a = 

1 

P r 
R · c + 

E 

P r 
M · a , (38) 

˜ C · ˜ a = 

1 

P r 
˜ R · c + 

E 

P r 
M · ˜ a . (39) 

n the above, c , a and ̃  a are 1-D arrays containing the coefficients c m 

j ( t ) , a 
m 

j ( t ) and ̃  a m 

j ( t ) ; N , C and ̃  C are the left-hand side mass matrices;
 is the Coriolis matrix and G is the viscosity matrix; B and ̃  B are the buoyancy matrices; R and ˜ R are the thermal advection matrices; M

nd ˜ M are the thermal diffusion matrices. We discuss below the form of each of these matrices. 
Under proper normalization of the basis functions (eqs 31 –33 ) the mass matrices N , C and ̃  C are all equal to a unit matrix of size N × N .

or the C and ̃  C this simply follows from the orthogonality relations (eq. 35 ); the orthogonality of the matrix N follows from recognizing that
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the normal mode solution eqs ( 31 )–( 36 ) satisfies the following equation: 

λm 

j 

[
− d 

ds 

(
s 

H 

d 

ds 

)
− 1 

H 

(
β

2 
− 1 

s 

)
m 

2 

]
� 

m 

j ( s) = 

s 

2 H 

( F C ) 
m 

j = −i m 

2 s 

H 

3 
� 

m 

j ( s) , (40) 

so that the orthogonality eq. ( 34 ) implies orthogonality of the mass term via: 

N i j = 

∫ 2 π

0 

∫ 1 

0 
� 

m 

i ( s) 

[
− d 

ds 

(
s 

H 

d 

ds 

)
− 1 

H 

(
β

2 
− 1 

s 

)
m 

2 

]
� 

m 

j ( s) d s d φ

= −2 i m 

λm 

j 

∫ 2 π

0 

∫ 1 

0 
� 

m 

i ( s) 
s 

H 

3 
� 

m 

j ( s) d s d φ = 

1 

λm 

j 

� 

np 
i j . 

Noting definition eq. ( 17 ) of the buoyancy term F T , the buoyancy matrices B and ̃  B have the following shape: 

B i j = −
∫ 2 π

0 

∫ 1 

0 
i m� 

m 

i ( s ) 
s 

2 H 

T 
m 

j ( s ) ds dφ, 

˜ B i j = 

∫ 2 π

0 

∫ 1 

0 
i m� 

m 

i ( s ) 
s 

2 H 

2 ̃
 zT 
m 

j ( s ) ds dφ. 

The entries of the thermal matrices R , ˜ R , M and ˜ M are obtained in a similar fashion. 
Finally, the entries of the � and G depends on whether we consider no-slip or stress-free boundary conditions and is consider in the next

Section. 

3.3 Viscous boundary conditions 

So far we have only considered non-penetration of the flow at the boundary of the sphere. In the presence of viscosity, additional mechanical
boundary conditions are needed. In particular, we consider either no-slip (eq. 7 ) or stress-free (eq. 8 ). In either case, we cannot directly apply
the conditions on the velocity field (eq. 9 ), since a condition applied on z = ±H will propagate along the entire fluid column. The result
would be a too restrictive description of the flo ws allo wed in the domain. As was done in Maffei et al. ( 2017 ), we assume that flows in the
bulk of the domain are represented via eq. ( 9 ) and that small viscous corrections can be parametrized via the inclusion of thin boundary layers
that develop in the presence of viscosity. In both cases the total velocity field, v is expanded as: 

v = u + u 1 , (41) 

where u is the interior flow described via the columnar flow formalism (eq. 9 ) and satisfying only non-penetration condition ( eq. 6 ) at the
boundary and u 1 is a correction that ensures that the total flow satisfies eq. ( 7 ) or eq. ( 8 ) through the development of viscous boundary
layers. For low values of E , it is expected that || u 1 || � || u || in the interior of the domain (where || u || indicates the L 2 norm of the vector u ).
Within the boundary layers, || u 1 || � || u || and u 1 has generally a non-columnar structure. Its effect on the columnar flows u , however, can be
described by correction ter ms, propor tional to E in the stress-free case (see for example Liao et al. 2001 ) and E 

1 / 2 in the no-slip case (see for
example Kudlick 1966 ), that can be expressed entirely as a function of the interior, columnar flow u . 

3.3.1 No-slip condition 

No-slip correction factors can be deri ved b y neglecting the effect of buoyancy and non-linear advection terms in the momentum eq. ( 1 ). When
all velocity components vanish at the CMB (eq. 7 ) the interior flow, of the form (eq. 9 ), must be matched to a boundary layer flow that is only
significant in a thin layer, the thickness of which is proportional to E 

1 / 2 . A secondary interior flow is then induced, the leading order of which
is a radial flow called Ekman pumping (Greenspan 1968 ). In the case of columnar flows, the Ekman pumping takes the following form [see
appendix C in Schaeffer ( 2004 )]: 

u 1 r | ±H = 

E 

1 / 2 

2 
√ 

H 

[
− s 

2 H 

u φ − 5 

2 

s 

H 

2 
u s − H 

(
ω z − s 

H 

2 

∂u s 

∂φ

)]
, (42) 

where ω z = ˆ z · ∇ × u is the axial vorticity and the v elocity components ( u s .u φ, u z ) abov e are defined via the columnar flow ansatz (eq. 9 ).
Note that this definition is strictly valid for low-frequency motions. This simplifying assumption is justified by noting that the oscillation
frequency of hydrodynamic, quasi-geostrophic inertial motions is the lowest among all the possible 3-D solutions (Zhang et al. 2001 ). The
Ekman pumping correction (eq. 42 ) is widely used in the columnar-flow literature (e.g. Schaeffer & Cardin 2005a , b ; Guervilly & Cardin
2016 ; Guervilly et al. 2019 ; Barrois et al. 2022 ) and it is typically adopted to model boundary terms arising from the vertically averaging
procedure of the momentum equation. Here we follow an analo gous methodolo gy and specialize it to our PG formulation. We apply formula
( 11 ) with f = −2 ̂ z × v , where v is the total flow ( eq. 41 ). Without assuming a columnar shape for v and relaxing the non-penetration boundary
condition (eq. 6 ), the Coriolis term takes the following, general form: 

F C = −4 
s 

H 

v s | 0 + 

2 

H 

( v r | H + v r | −H ) . (43) 
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he details of the deri v ation can be found in Appendix A . Given that, in the interior v � u and that u r | ±H = 0 , we finally obtain: 

F C = −4 
s 

H 

u s + 

2 

H 

( u 1 r | H + u 1 r | −H ) , (44) 

here u 1 r | ±H is gi ven b y formula ( 42 ). The second term of the above definition constitutes the correction factor for the no-slip boundary
onditions, and it is proportional to E 

1 / 2 , as expected. 
The viscous term, F V , under no-slip conditions is given by the form (eq. 16 ), directly calculated from the interior flow u . 
Inserting eqs ( 44 ) and ( 16 ) in the momentum eq. ( 24 ) and forming its weak-form version eq. ( 37 ), we find that: 

� = � 

np + E 

1 / 2 � 

ns , 

G = G 

np . 

n the above: 

 

np 
i j = −2 i m 

∫ 2 π

0 

∫ 1 

0 
� 

m 

i ( s) 
s 

H 

3 
� 

m 

j ( s) d s d φ, (45) 

E 

1 / 2 � 

ns 
i j = 

∫ 2 π

0 

∫ 1 

0 
� 

m 

i ( s) e −i mφ s 

H 

2 
( u 1 r | H + u 1 r | −H ) 

m 

j d s d φ, (46) 

 

np 
i j = 

∫ 2 π

0 

∫ 1 

0 
� 

m 

i ( s ) e −i mφ s 

2 H 

( F V ) 
m 

j ds dφ, (47) 

he superscripts np indicates integrals obtained by considering non-penetration boundary conditions alone, and ns refers to integrals specific
o the no-slip parametrizations. 

Note that the Ekman pumping term u 1 r | ±H has a singular behaviour at s = 1 , with a singularity that behaves as H 

−3 / 2 (see Appendix B ).
he physical reason behind this singularity is that the Ekman pumping flow (eq. 42 ) is strictly valid for zero-frequency motions, for which

he boundary layer has a singularity at s = 1 (Greenspan 1968 ). In columnar-flow models, this singularity worsens when eq. ( 42 ) is inserted
n the momentum equation. For our PG model, this results in a singularity that scales as H 

−5 / 2 (see eq. 44 ). In the majority of columnar-flow
odels that use eq. ( 42 ) to parametrize no-slip boundary conditions (Schaeffer 2004 ; Schaeffer & Cardin 2005a , b ; Guervilly & Cardin 2016 ;
uervilly et al. 2019 ), the momentum equation is discretized via a local method (e.g. finite difference) and the singularity in s = 1 is avoided
 y not explicitl y solving for the momentum equation there. This however introduces some ambiguity as the location of the outermost radial
oint is somewhat arbitrary. 

The weak-form approach used here, under which the expansion coefficients c , a and ̃  a are found by integration of the PG equations,
llows us to quench the singularity at s = 1 , stemming from the Ekman pumping term (eq. 42 ). It is indeed possible to show that the integrand
nvolved in eq. ( 46 ) now contains a H 

−1 / 2 behaviour (see Appendix B ). Although in itself this would still be singular in s = 1 , it is an
ntegrable singularity, and therefore there is no fundamental issue with calculating the matrix � 

ns . Namely, we do not need to explicitly
xclude the s = 1 point in order to calculate the integrals in eq. ( 46 ). 

.3.2 Str ess-fr ee condition 

ollowing Zhang ( 1994 ) and Maffei et al. ( 2017 ), we implement the stress-free boundary condition (eq. 8 ) in a weak-form sense. Consider
he viscous matrix G from eq. ( 37 ). Dropping the indices i and j for ease of notation, its entries are: 

 = 

∫ 
di s c 

� 

∗ s 

2 H 

F V d sd φ. (48) 

he abov e inte gral can be modified so that the stress-free condition is explicitly taken into account, via manipulations detailed in Appendix C .
he final result is: 

G = G 

s f = −
∫ 

core 
∇ × U 

∗ · ∇ × u dV + 2 
∮ 

C M B 
( U 

∗
θ u θ + U 

∗
φ u φ) d�

+ 

∮ 
C M B 

{
− ω r 

sin θ

∂ 

∂θ

[
� 

∗ 1 

2 

sin 2 θ

| cos θ | 
]

+ � 

∗| tan θ | 
[

1 

2 

∂ 2 u φ

∂ r 2 
− 1 

2 sin θ

∂ 

∂r 

(
1 

r 

∂u r 

∂φ

)
+ u φ

]}
d�, 

(49) 

here ω r = 

ˆ r · ∇ × u is the radial component of the vorticity, d V = sd φd sd z is the infinitesimal volume element and d� = sin θdθdφ is the
nfinitesimal surface element on the spherical CMB surface, and 

 

∗ = ∇ ×
[

1 

2 H 

� 

∗ ˆ z 

]
− ∂� 

∗

∂φ

1 

2 H 

2 
sgn ( z) ̂ z (50) 

s a pseudo velocity field introduced to make the abov e inte grals easier to parse. In the above, the volume integrals are taken over the entire,
-D spherical domain, while the surface integrals are taken on the outer surface alone (the CMB). 

The matrices � and G in the stress-free cases are the obtained via eq. ( 15 ) and formula ( 49 ): 

� = � 

np 

G = G 

s f , 
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where the matrix � 

np is as defined in eq. ( 45 ) and the elements G 

s f 
i j (where the superscript s f denotes ‘stress-free’) are obtained replacing

� 

∗ = � 

m 

i ( s) e −i mφ and � = � 

m 

j ( s) e i mφ in eqs ( 49 ) and ( 50 ). 
Note that by expanding the velocity field in terms of inertial modes, we obtain a formulation that is similar to that of Zhang & Liao

( 2004 ), in which it is assumed that the solution at the onset of thermal convection is gi ven b y a superposition of quasi-geostrophic inertial
modes (QGIW), first calculated anal yticall y in Zhang et al. ( 2001 ). The use of the weak formalism, under which the governing equations are
projected upon the appropriate velocity and temperature basis, is another similarity with Zhang & Liao ( 2004 ), which allows for the calculation
of the stress-free integral ( eq. 49 ). One important difference with our methodology lies in the columnar prescription (eq. 9 ), which describes
a different behaviour in z than the 3-D, QGIW basis adopted in Zhang & Liao ( 2004 ), as detailed in Maffei et al. ( 2017 ). Namely, while the
equatorial components of eq. ( 31 ) have no vertical variation, the same is not true for the QGIW solutions, although their v ertical comple xity is
the lowest amongst all the allowed 3-D solutions (Zhang et al. 2001 ). The difference stems from the fact that the QGIW modes are a solution
to the unapproximated, 3-D momentum eq. ( 1 ) (upon setting Ra = 0 ), whereas the PG, and other columnar-flow solutions, impose a more
restrictive behaviour in z as a starting ansatz. 

3.4 Gauss quadrature and numerical implementation 

All elements of the matrices defined in the previous Section involve integrals in the cylindrical radial, s, and azimuthal, φ, directions. The latter
are tri viall y handled as the φ dependence in the integrands simplifies as a result of the linear nature of the PG eqs ( 24 )–( 26 ) considered here.
The integrals in the s direction are calculated numerically via Gauss quadrature. For analogous 3-D, spherical calculations, it is customary
to use Gauss-Legendre quadrature in the latitudinal, θ , direction and Gauss–Cheb yshe v in the radial, r direction (Li et al. 2010 ; Marti et al.
2014 ; Lin et al. 2016 ), since the quadrature nodes and weights are easily computed. Here we use the more general Gauss-Jacobi quadrature
rule. The main reason for this choice comes from the analysis of the no-slip matrix � 

ns . Given definition (eq. 9 ) and our choice of the basis
functions (eq. 31 ), it can be shown (see Appendix B ) that the integrand in � 

ns 
i j above contains a sum of terms proportional to half-integer

powers of H . Conversely, the other integrals involved in eq. ( 37 ) only contain integer powers in s and H , for example: 

� 

np 
i j = −4 i mπ

∫ 1 

0 
s 2 m + 1 H 

3 P 

(3 / 2 ,m ) 
i−1 (2 s 2 − 1) P 

(3 / 2 ,m ) 
j−1 (2 s 2 − 1) ds. (51) 

While � 

np 
i j is amenable to Gauss–Cheb yshe v integration, � 

ns 
i j is not. Multiplying the momentum eq. ( 24 ) by an integration weight to render

� 

ns 
i j integrable via Gauss–Cheb yshe v quadrature, would onl y transfer the problem to the other terms in eq. ( 37 ). Gauss–Jacobi quadrature can

treat the different non-polynomial pre-factors in the integrands involved by treating them as integration weights. The Gauss–Jacobi quadrature 
rule states that, for f ( x) a polynomial in x of degree 2 N + 1 , the formula ∫ 1 

−1 
(1 − x) α(1 + x) β f ( x) dx = 

N ∑ 

l= 1 
w l f ( x l ) , (52) 

where α, β > −1 , is exact if x l are chosen to be the zeros of P 

( α,β) 
N+ 1 and w l are quadrature weights, calculated via well-known formulae (e.g.

chapter 8 of Hildebrand 1987 ). We perform the substitution x = 2 s 2 − 1 for all integrals in s involved in eqs ( 37 )–( 39 ), and transform them
into the form required by eq. ( 52 ). In our case, α and β are rational numbers. The Gauss–Cheb yshe v rule is retrieved for α = β = ±1 / 2 , which
is not the case for our calculations, nor can this condition be tri viall y met, for all terms in all equations, by choosing integration weights. For
the integrals we obtain, such as eq. ( 51 ), α is half of the exponent with which H can be collected in the integrand, and β is proportional to m .
For the specific case of eq. ( 51 ), α = 3 / 2 , β = m . As we show in Appendix B , the no-slip term � 

ns 
i j requires the application of Gauss-Jacobi

rules with β = m and α = ±1 / 4; 3 / 4 and β = m , which are incompatible with the quadrature rule obtained for eq. ( 51 ). Therefore different
quadrature rules have been used for different integrals. 

The disadvantage of Gauss–Jacobi quadrature is that no closed-form solution exists (to our knowledge) for the zeros, x l and weights,
w l , and they have to be determined numerically. 

The procedure outline above is implemented in Wolfram Mathematica (version 12.3.1.0). The radial deri v ati ves of the basis eqs
( 31 )–( 33 ), involved in the calculation of the various terms in eqs ( 24 )–( 26 ), are calculated symbolically. The Gauss–Jacobi quadrature nodes
and weights are calculated numerically at arbitrary precision. All calculations involved in the production of the results shown in the next
Section are performed at least at machine precision. Experimentally we found that accurate results are obtained by setting the precision (which
in Mathematica is the number of digits used to represent numbers) equal to N , the maximum degree in the radial expansions ( 28 )–( 30 ). The
matrices were computed in parallel on ETH’s supercomputer Euler. 

The problem of finding the critical Ra value for the onset of thermal convection can be formulated as a coupled eigenvalue-optimization
problem. For fixed E , P r , Ra and m the eigenvalue problem (eqs 37 –39 ) has a solution for which the real part of λ (i.e. the growth rate) is
maximum. This is the most unstable mode and we need to find the Ra value for which Re { λ} = 0 (up to a certain numerically acceptable
tolerance). This gives the value Ra c,m 

, above which perturbations at the chosen m grow as a result of thermal convection. The critical value
for the onset of thermal convection at the given E , P r is R a c = min m 

{ R a c,m 

} . That is, we need to find the critical azimuthal wavenumber
m c for which the conv ectiv e instability is characterized by the lowest value of Ra. At onset Im { λ} = ω c defines the drift frequency of the

solution. 
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Table 1. 3-D onset of thermal convection calculations performed with QuICC , 
for both no-slip and stress-free boundaries. In the table we report the E and 
P r combinations for the calculations, the resulting critical parameters Ra c , 
ω c and m c , and the resolution N r and L , indicating the spectral truncation 
of, respecti vel y, the radial and latitudinal expansions representing the solution 
(see Section 3.5 ). The resolution is reported for transparency, and does not 
correspond to an accurate estimate of the minimal values for N r and L at 
convergence. 

E P r Ra c ω c m c N r L 

No-slip 
5 × 10 −4 0.1 1 . 589 × 10 5 −0.1213 3 64 64 
1 × 10 −4 0.1 9 . 642 × 10 5 −0.07855 5 128 128 
5 × 10 −5 0.1 2 . 304 × 10 6 −0.06354 6 128 128 
1 × 10 −5 0.1 1 . 688 × 10 7 −0.04025 11 128 128 
5 × 10 −6 0.1 4 . 072 × 10 7 −0.03145 13 128 128 
1 × 10 −6 0.1 3 . 245 × 10 8 −0.01909 23 128 192 
5 × 10 −4 1 3 . 534 × 10 5 −0.02878 4 64 64 
5 × 10 −5 1 6 . 308 × 10 6 −0.01812 9 128 128 

Stress-free 

1 × 10 −5 0.1 1 . 423 × 10 7 −0.04082 10 64 64 
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Reasonable initial guesses for Ra c , m c and ω c are possible thanks to pre viousl y published results, either from 3-D (Jones et al. 2000 ;
hang et al. 2004 , 2007 ; Zhang & Liao 2017 ) or columnar flow calculations (Guervilly & Cardin 2016 ). Furthermore, there exist very well
no wn scaling la ws that allo w us to estimate Ra c , m c and ω c for a given E from values calculated at higher E , at the same P r value. These
caling laws are Ra c ∼ E 

−4 / 3 m c ∼ E 

−1 / 3 , ω c ∼ E 

1 / 3 (Roberts 1968 ; Busse 1970 ). For each m value close to the estimate m c (typically
 c − 10 < m < m c + 10 is a wide enough range) we find Ra c,m 

iterati vel y via a secant method. At each iteration a new estimate for Ra c,m
s found by solving the eigenvalue problem (eqs 37 –39 ) via the Arnoldi method, with shift given by the estimated ω c , and selecting solutions
or which the eigenfrequency is within 10 per cent of this initial estimate. The solution with the largest value of Re { λ} is then selected at each
teration. The accuracy goal at which the iterations are stopped is set to | Re { λ}| < 10 −10 . Typically the accuracy goal is reached with less than
0 iterations, depending on the initial guess for Ra c,m 

. Once Ra c,m 

is found for a suf ficientl y wide range of azimuthal wavenumber m , Ra c is
impl y gi ven b y the minimal v alue of Ra c,m 

and m c is the corresponding v alue of m . 
Numerical convergence is checked by altering the number of basis set elements N . We consider the result acceptable if Ra c,m 

is converged
o 4 significant digits. Under this criteria, we find that ω c has converged to a higher number of significant digits and that both the spectra of
he solution, | c j | , and m c do not change with higher resolution. 

.5 Pr e viousl y pub lished r esults and complementary 3-D calculations 

n this paper, we compare our PG onset calculations against pre viousl y published, full-sphere results based on both 3-D (Jones et al. 2000 ;
hang et al. 2004 , 2007 ; Zhang & Liao 2017 ) and columnar-flow calculations (Guervilly & Cardin 2016 ). The latter results have been
alculated with a state-of-the-art model that makes use of the columnar flow approximation (eq. 9 ) to describe fluid flows, and the momentum
quation is given by the evolution of the vertically averaged, axial vorticity. Another key difference with our PG methodology, is that in
uervilly & Cardin ( 2016 ) the temperature evolution is described via the fully 3-D heat eq. ( 2 ). This hybrid formulation is the reason we
ill refer to this model as QG-Hyb. The QG-Hyb model adopts a no-slip boundary layer parametrization akin to the one we adopt (see
ection 3.3.1 ). 

Published compilations of onset values in full-sphere geometry have been augmented with full-sphere calculations performed with the
uICC numerical code (Marti et al. 2016 ; Marti & Jackson 2021 ), which is a fully spectral, numerical framework that is capable of solving
qs ( 1 )–( 3 ) in a full sphere. In particular QuICC is capable of solving the eigenvalue problems associated with the linearized version of the
omentum and temperature equations. The velocity field is described via its poloidal and toroidal potential fields. These scalar quantities,

ogether with temperature, are decomposed as a sum of N r spherical radial basis functions and L latitudinal functions. The latter are, as is
ommon in the geodynamo community, associated Legendre functions of degree l and order m . The azimuthal wavenumber m being fixed,
he maximum order of the expansion is given by the element l = L . The critical parameters for the onset of convection are calculated in a
imilar way as described in the previous section, the most significant difference being that Brent’s method is used to maximize Re { λ} . More
etails on the numerical methodology implemented in QuICC can be found in Marti et al. ( 2016 ) and Marti & Jackson ( 2021 ). Results from
he 3-D calculations performed with QuICC are summarized in Table 1 . 

Table 2 provides a reference for the 3-D results (both pre viousl y published and derived within the context of this study) results discussed

bove. 
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Table 2. Sources of results for the onset of convection in a rotating full sphere. The table indicates, in particular, whether 
the data consider no-slip or stress-free mechanical boundary conditions. See main text for more information. 

Name Description Reference 

QG-Hyb, no-slip Columnar/3-D hybrid, no-slip Guervilly & Cardin ( 2016 ) 
3-D, no-slip Fully 3-D, no-slip Zhang et al. ( 2007 ); Zhang & Liao ( 2017 ); Table 1 
3-D, stress-free Fully 3-D, stress-free Jones et al. ( 2000 ); Zhang & Liao ( 2017 ) 

Figure 1. Viscous matrices G 

np , G 

s f and � 

ns for m = 20 and N = 20 . The matrices have been calculated, respecti vel y, with formulae ( 47 ), ( 49 ) and ( 46 ), 
where the basis functions � j have been normalized so that N i j = δi j . 
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4  R E S U LT S  

4.1 Appraisal of viscous and thermal diffusion 

4.1.1 Viscous dissipation 

We begin by assessing the validity of the methodology adopted to calculate viscous and thermal diffusion, starting with the parametrized
treatment of the viscous boundary layers (see Section 3.3 ). In Fig. 1 , we show the matrix entries for G 

np , G 

s f and � 

ns .The non-penetration,
bulk viscosity matrix G 

np has an upper triangular structure, with the diagonal elements being identically zero. This is consistent with previous
3-D (Zhang et al. 2001 ) and columnar-flow (Maffei et al. 2017 ) characterizations of inviscid inertial modes, for which the dissipation integral: ∫ 

core 
( u 

m 

i ) 
∗ · ∇ 

2 u 

m 

j dV , (53) 

is identically zero for i ≥ j . That this result applies to our PG formalism is remarkable for two reasons. The first is that columnar inertial
modes are not a solution to the 3-D problem (Maffei et al. 2017 ) and there is, a priori , no reason why the diagonal terms in the dissipation
integral should be zero. The second is that the PG equi v alent of eq. ( 53 ) has been derived in a dif ferent w ay. Specificall y, eq. ( 53 ) explicitl y

art/ggae294_f1.eps
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Figure 2. First order, stress-free viscous corrections to the inertial modes eigenfrequency. The PG corrections (full lines) have been calculated as in eq. ( 55 ) 
but are rescaled by E 

−1 . The 3-D corrections (crosses) are as reported in Maffei et al. ( 2017 ) and are computed for the 3-D, QGIW modes as in Liao et al. 
( 2001 ). The horizontal axis shows the azimuthal wavenumber m and the radial order of the solution is shown in the plots, with the dark-blue line indicating the 
viscous corrections to the fundamental inviscid modes. 
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nvolves a projection of ∇ 

2 u 

m 

j on the velocity u 

m 

i , while eq. ( 47 ) involves a projection of the viscous operator ( F V ) 
m 

j on the stream-function
 

m 

i . It is far from obvious that the two formulations should be equi v alent for i < j , and future work will explore this property. A proof of
he vanishing of the diagonal terms of eq. ( 53 ) for columnar flows is given in Appendix D . The fact that the non-zero entries of G 

np 
i j are

ll positive is consistent with other columnar-flow formulations (Maffei et al. 2017 ) and in contrast with 3-D calculations, for which the
issipation integral is either positive or ne gativ e for i < j . The real parts of the stress-free, G 

s f , and no-slip, � 

ns integrals are non-zero and
e gativ e along the diagonal, indicating, as expected, a decay of the corresponding inertial mode. Also note that, while G 

s f is fully real-valued,
he entries of � 

ns are generally complex. 
To estimate the effect of no-slip and stress-free parametrizations, we computed the first-order viscous corrections with respect to the

n viscid solution, follo wing the procedure outlined in Maffei et al. ( 2017 ). These corrections are an estimate v alid for low- E v alues and
re entirely calculated from the inviscid solution. The viscous inertial mode problem is obtained by reinstating viscosity in eq. ( 40 ) or,
qui v alentl y, setting Ra = 0 in eq. ( 24 ). The first-order perturbative solution is given by (Liao et al. 2001 ; Liao & Zhang 2008 ; Maffei et al.
017 ): 

 = 

N ∑ 

j= 1 
c j 

(
u 

m 

j + ( u 1 ) 
m 

j 

)
e i mφ+ ( i ω m j + i ω m 1 j + σm 

1 j ) t , (54) 

here u 

m 

j , ω 

m 

j are given by the inviscid solutions (eqs 31 and 36 ) and ( u 1 ) m 

j , ω 

m 

1 j , σ
m 

1 j are first order, small viscous perturbations. Here we
ssume that ω 

m 

1 j and σ m 

1 j are purely real, so that they unequi vocall y refer to, respecti vel y, the frequency correction and the damping factor.
ntroducing eq. ( 54 ) in eq. ( 24 ) with Ra = 0 , implementing viscous boundary conditions as detailed in Section 3.3 and following a procedure
nalogous to Maffei & Jackson ( 2016 ), it is found that: 

 ω 

m 

1 j + σ m 

1 j = E 

G 

s f 
j j 

N j j 
, (55) 

 ω 

m 

1 j + σ m 

1 j = E 

1 / 2 
� 

ns 
j j 

N j j 
, (56) 

n, respecti vel y, the stress-free and no-slip cases. In the above formulae the notation G 

s f 
j j refers to the diagonal j th term of the matrix G 

s f 

nd not to its trace. We did not make use of the assumption that N i j = δi j for generality, as the viscous corrections are independent of this
articular choice. In Fig. 2 and 3 we compare first-order, viscous corrections for the PG model, obtained via eqs ( 55 ) and ( 56 ), and for the
-D, QGIW solutions first derived in Zhang et al. ( 2001 ). For the latter, viscous corrections are calculated via a methodology similar to the
ne that led to eqs ( 55 ) and ( 56 ), and outlined in Liao et al. ( 2001 ). The values for the 3-D corrections shown in Figs 2 and 3 by the crosses,
re the same as published in Maffei et al. ( 2017 ). 

For stress-free, the calculation eq. ( 55 ) predicts a purely real correction to the inviscid eigenfrequencies ω 

m 

j indicating that, at first order,
tress-free boundaries introduce a viscous decay to the inviscid solution, but no modifications on the frequencies (i.e. ω 

m 

1 j = 0 ). This is a
onsequence of the purely real nature of the entries of G 

s f and is in agreement with the 3-D correction. For no-slip, both ω 

m 

1 j and σ m 

1 j are
on-zero, in line with 3-D calculations. The agreement with the 3-D correction is quantitati vel y better for the decay rate σ m 

1 j than for the
requency correction ω 

m 

1 j , but is worse than for the stress-free case. We attribute the no-slip mismatch to the zero-frequency approximation
sed to derive eq. ( 42 ), since the 3-D, no-slip corrections have been derived in the general case where the boundary layer correction depends
n the frequency ω 

m 

j of the inviscid mode considered. Note that both the PG inviscid eigenfrequencies (see fig. 1 in Paper 1 ) and the
tress-free, first-order corrections agree well with 3-D calculations. Therefore we speculate that the origin of the disagreement with 3-D,
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Figure 3. First order, no-slip viscous corrections to the inertial modes eigenfrequency. The PG corrections (full lines) have been calculated as in eq. ( 56 ) but 
are rescaled by E 

−1 / 2 . The 3-D corrections (crosses) are as reported in Maffei et al. ( 2017 ) and are computed for the 3-D, QGIW modes as in Liao et al. 
( 2001 ). The horizontal axis shows the azimuthal wavenumber m and the radial order of the solution is shown in the plot. 
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no-slip calculations, is not unique to our PG model, but it is shared among all other columnar-flow models that make use of eq. ( 42 ) to
describe the Ekman pumping flow. Further analysis will be carried on in future studies. 

4.1.2 Thermal diffusion 

Next we turn our attention to the assessment of the approximation involved in the deri v ation of the thermal diffusion terms (eqs 22 and 23 ).
With QuICC we obtained the temperature at the onset of thermal convection for various combinations of the P r and E numbers (see Table 1 ).
The dif fusi ve term ∇ 

2 T w as then calculated in physical space using the finite difference Python package findiff (Baer 2018 ). We focussed
on the meridional contribution: 

∇ 

2 
m 

T = 

1 

r 2 
∂ 

∂r 

(
r 2 

∂T 

∂r 

)
+ 

1 

r 2 sin ϑ 

∂ 

∂θ

(
sin θ

∂T 

∂θ

)
, 

since the azimuthal contributions (proportional to the second deri v ati ves in φ) only involves differential operators that commute with the
v ertical inte gration operators. The validity of the approximations ( 22 ) and ( 23 ) is therefore not affected by the azimuthal contributions. In the
left-hand panels of Fig. 4 we show ∇ 

2 
m 

T for the solution at the onset of convection for E = 5 × 10 −4 and E = 5 × 10 −5 , both calculated for
P r = 0 . 1 . As can be seen, the quantity ∇ 

2 
m 

T exhibits the expected spatial anisotropy, with a tendency for invariance along the z direction.
This tendency increases as E decreases. 

We then assessed the validity of the approximations ( 21 ), ( 22 ) and ( 23 ) by calculating 〈∇ 

2 
m 

T 〉 , ∇ 

2 
m 

T , ˜ z∇ 

2 
m 

T and corresponding PG
approximations, from the 3-D solution. Note that the meridional component of the equatorial Laplacian ∇ 

2 
e only involves deri v ati ves in s.

That is: 

∇ 

2 
m 

T = 

1 

s 

∂ 

∂s 

( 

s 
∂ T 

∂s 

) 

, 

and similarly for 〈 T 〉 and ˜ zT . Vertical integrals where calculated by interpolating the 3-D solution on a rectangular grid in s and z and
using the scipy function romb to perform v ertical inte grals via the Romberg method. We experimented with various integration methods
and rectangular grid spacing in order to obtain visually smooth results. The numerical accuracy of our methodology has not been thoroughly
tested, but the correctness of our method has been visually checked by applying it to functions of s and z for which calculations of the
quantities of interests was possible analytically (not shown). 

From the results in Fig. 4 we conclude that the approximations ( 21 ), ( 22 ) and ( 23 ) are indeed valid, and that their validity increases
with increasing complexity of the underlying 3-D solution in the equatorial direction, which is expected, for fixed P r at low- E values. In

the same Figure, we also illustrate, in blue, the failure of the more simple approximations ∇ 

2 T � ∇ 

2 T and ˜ z∇ 

2 T � ∇ 

2 ˜ zT , which intuiti vel y
lead to simpler mathematical and numerical treatment. Although these alternative prescriptions lead to better approximations in the interior 
of the domain, they fail as the boundary s = 1 is approached. In particular, ∇ 

2 T becomes singular. The mathematical reason for that can be
understood by expanding the radial dependence of T and ˜ zT as a sum of the basis elements defined in eqs ( 32 ) and ( 33 ). Note that these
expansions are consistent with the discretization approaches used in 3-D numerical codes, such as QuICC . The presence of the H 

3 and H 

4 

pre-factors in eqs ( 32 ) and ( 33 ), introduced to reflect the vertical integral operations (eqs 12 and 13 ) and the fixed-temperature boundary
conditions (eq. 5 ), causes ∇ 

2 T and ∇ 

2 ˜ zT to be, respecti vel y, singular and non-zero in s = 1 , in opposition to the behaviour of the desired

diffusion terms ∇ 

2 T and ˜ z∇ 

2 T . The H 

−1 and H 

−2 factors in eqs ( 22 ) and ( 23 ) remove a similar pre-factor in eqs ( 32 ) and ( 33 ), introduced
to reflect the application of eqs ( 12 ) and ( 13 ) to the original temperature field. In particular, the quantity T H 

−1 is now a polynomial in s 2 and
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Figure 4. Comparison between the approximated, PG thermal dif fusi ve term and the non-approximated version from 3-D calculations. The top and bottom 

rows refers to the onset of convection calculated for P r = 0 . 1 and, respecti vel y, E = 5 × 10 −4 and E = 5 × 10 −5 . Only the meridional (along r and θ in the 
3-D case, s in the vertically averaged case) contributions to the dif fusi ve terms are considered. The density plots on the left illustrate the meridional dif fusi ve 
contribution as derived from 3-D results. 
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ts deri v ati ves are not problematic an ymore. The multiplication b y H and H 

2 after the application of ∇ 

2 
e restores the desired parity and the

orrect behaviour in s = 1 . 
We remark that the diffusion forms eqs ( 22 ) and ( 23 ) have been deri ved empiricall y and their physical and mathematically consistency

as not been fully checked. Future work will involve testing these forms against well-established criteria, such as whether they lead to
nphysical dissipation (Shchepetkin & O’Brien 1996 ). 

.2 Asymptotic onset of thermal convection 

he calculation of critical onset values for asymptotically low E and spherical geometries is a classical problem tackled by multiple landmark
tudies (Chandrasekhar 1961 ; Roberts 1968 ; Busse 1970 ; Jones et al. 2000 ). In par ticular, the Rober ts–Busse annulus theor y (Rober ts 1968 ;
usse 1970 ) is a well-known staple of rapidly rotating thermal convection. In this Section we show that a similar asymptotic analysis,
erformed on the PG set of linear eqs ( 24 )–( 26 ), provides an updated and upgraded low- E solution. 

We follow the classical Roberts–Busse, local theory and look for a solution for which the azimuthal scales are much smaller than the
adial ones. We therefore assume that: ∣∣∣∣∂� 

∂s 

∣∣∣∣ �
∣∣∣∣1 

s 

∂� 

∂φ

∣∣∣∣ , (57) 

nd similarly for T and ̃  zT . Fur ther more we assume oscillatory solutions in t and φ and make the substitutions: 

∂� 

∂φ
= i m� (58) 

∂� 

∂t 
= i ω� (59) 

here the last assumption derives from requiring that the growth rate of the solution is zero. In line with the simplified local derivation
etailed in section 8.05.4.5.1 of Jones ( 2015 ), we only apply non-penetration boundary conditions, and neglect the effect of stress-free or
o-slip boundaries on the tangential velocity components. Including these effects would considerably complicate the following derivation,
hich is solely aimed at obtaining a leading order behaviour for low- E values. We insert assumptions ( 57 )–( 59 ) in the linear system ( 24 )–( 26 )

nd, in each term of the equations, only retain the dominant terms arising from the spatial deri v ati ves, according to eq. ( 57 ). This leads to: 

m 

2 

H 

(
− s 

2 H 

2 
− 1 

s 

)
i ω� = 

2 s 

H 

3 
i m� + E 

m 

4 

2 s 3 H 

3 
(2 − s 2 ) � + 

1 

2 H 

RaE 

2 i m 

(
s T − s 

H 

˜ zT 
)

, (60) 

art/ggae294_f4.eps


740 S. Maffei, A. Jackson and P.W. Livermore 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/1/725/7739181 by guest on 17 Septem

ber 2024
(
i ω + 

E 

P r 

m 

2 

s 2 
T 

)
= 

1 

P r 

4 

3 
i ms�, (61) (

i ω + 

E 

P r 

m 

2 

s 2 
˜ zT 

)
= 

1 

P r 

1 

2 
i ms�. (62) 

Note that the last two equations are insensitive to the use of approximations ( 22 ) and ( 23 ), since they only involve azimuthal derivatives,
assumed to be dominant with respect to the radial ones. 

Eqs ( 60 )–( 62 ) can be combined into a single equation for �, from which the following characteristic equation can be obtained: (
i ω + 

E 

P r 

m 

2 

s 2 

)[
m 

2 

H 

(
− s 

2 H 

2 
− 1 

s 

)
i ω − 2 s 

H 

3 
i m − E 

m 

4 

2 s 3 H 

3 
(2 − s 2 ) 

]
+ RaE 

2 m 

2 5 

6 

s 

H 

= 0 . 

By separately solving the imaginary and real part of the above equation we obtain: 

ω = 

4 s 2 

m ( P r + 1) ( s 2 − 2 ) 
, (63) 

Ra = 

6 
(

16 P r 2 s 8 + E 

2 m 

6 ( P r + 1) 2 
(
s 2 − 2 

)2 
)

5 E 

2 m 

2 ( P r + 1) 2 s 6 ( s 4 − 3 s 2 + 2 ) 
. (64) 

By minimising these expressions for Ra and ω with respect to s and m we obtain the critical values: 

s c = 

√ 

1 −
√ 

3 

5 
= 0 . 474767 (65) 

m c = 

2 2 / 3 (
5(244 + 63 

√ 

15 ) 
)1 / 6 

(
P r 

E(1 + P r ) 

)1 / 3 

= 0 . 432635 

(
P r 

E(1 + P r ) 

)1 / 3 

(66) 

which, substituted back in eqs ( 63 ) and ( 64 ) leads to 

Ra c = 12 
2 2 / 3 

√ 

3 

5 1 / 6 
(

Pr 
E(1 + Pr ) 

)4 / 3 
= 25 . 2309 

(
P r 

E(1 + P r ) 

)4 / 3 

(67) 

ω c = − 2 4 / 3 5 1 / 6 √ 

4 + 

√ 

15 

(
E 

P r 

)1 / 3 1 

(1 + P r ) 2 / 3 
= −1 . 7435 

(
E 

P r 

)1 / 3 1 

(1 + P r ) 2 / 3 
. (68) 

The above estimate should be compared with the classical Roberts–Busse local theory (indicated via the RB subscript): 

s c,R B = 

1 √ 

5 
= 0 . 447214 (69) 

m c,R B = 

5 1 / 6 √ 

2 

(
P r 

E(1 + P r ) 

)1 / 3 

= 0 . 924656 

(
P r 

E(1 + P r ) 

)1 / 3 

, (70) 

Ra c,R B = 5 2 / 3 
15 

4 

(
P r 

E(1 + P r ) 

)4 / 3 

= 10 . 9651 

(
P r 

E(1 + P r ) 

)4 / 3 

(71) 

ω c,R B = 

5 1 / 3 √ 

2 

(
E 

P r 

)1 / 3 1 

(1 + P r ) 2 / 3 
= −1 . 20914 

(
E 

P r 

)1 / 3 1 

(1 + P r ) 2 / 3 
. (72) 

Comparing the two, we see that both the PG and the Roberts–Busse asymptotic theories capture the same behaviour with E and P r . The
numerical pre-factors are different, with our PG, asymptotic theory predicting a larger Rayleigh number, Ra c , and drift rate, ω c , and a smaller
azimuthal wavenumber, m c . The predicted radial location at which conv ectiv e perturbations grow first, s c , is slightly larger in our theory. Note
that both Roberts–Busse theory and our own assume columnar flows, though the former makes use of a simpler version of eq. ( 9 ). 

Representative asymptotic and 3-D solutions for two different combinations of E and P r are reported in Table 3 . These values have
been obtained in a regime [referred to as the ‘viscous convection’ by Zhang & Liao ( 2017 )] in which the 3-D solution can be meaningfully
compared with the asymptotic calculations above. In this regime, viscosity enters the leading order force balance and the onset of thermal
convection takes the form highly columnar structures travelling in the prograde direction. In this regime, Table 3 shows that our asymptotic
PG theory is in better agreement with 3-D numerical results when compared to the classical Roberts–Busse theory. We also note that both
the PG and Roberts–Busse asymptotic theories perform significantly better for P r = 1 than for more characteristic values for Earth’s core
conditions, such as P r = 0 . 1 . This is a known limitation of asymptotic theories derived as above (Zhang 1992 ; Guervilly & Cardin 2016 ) and
it is due to the restrictiveness of the starting assumption (eq. 57 ). A more general asymptotic solution has been derived in Jones et al. ( 2000 )
by using a global theory that captures the correct spatio-temporal behaviour of the solution. In particular the correct asymptotic behaviour
∼ E 

1 / 3 is preserved in both the azimuthal and radial direction. The P r number dependency, ho wever , is not explicitly given but has been
computed numerically for 0 . 01 ≤ P r ≤ 100 in Jones et al. ( 2000 ). 
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Table 3. Low- E , asymptotic calculations compared with 3-D calculations for the two cases 
indicated in the Table: P r = 1 ; E = 1 × 10 −4 (top) and P r = 0 . 1 ; E = 1 × 10 −5 (bottom). 
3-D solution have either been taken from known references or from novel calculations (see 
Table 2 ). The PG, asymptotic solution, calculated via formulae ( 66 )–( 68 ), is highlighted for 
both cases. The rows indicated with ‘Roberts–Busse theory’ reports values calculated via 
formulae ( 70 )–( 72 ), which have been adapted from Busse ( 1970 ). The rows indicated with 
‘Jones–Soward–Mussa theor y’ repor ts values calculated via the leading order expansion 
derived in Jones et al. ( 2000 ) (see ‘Absolute instability results’ in their table 2). 

Calculation Ra c ω c m c 

P r = 1 ; E = 1 × 10 −4 

3-D, stress-free 2 . 64 × 10 6 −0 . 0326 8 
3-D, no-slip 2 . 58 × 10 6 −0 . 0228 7 
PG, asymptotic 2 . 16 × 10 6 −0 . 0343 7 . 4 
Rober ts–Busse theor y 0 . 938 × 10 6 −0 . 0354 15.8 
Jones–Soward–Mussa theory 2 . 24 × 10 6 −0 . 0347 8.2 

P r = 0 . 1 ; E = 1 × 10 −5 

3-D, stress-free 1 . 42 × 10 7 −0 . 0408 10 
3-D, no-slip 1 . 67 × 10 7 −0 . 0403 11 
PG, asymptotic 4 . 79 × 10 6 −0 . 0512 9 . 0 
Rober ts–Busse theor y 2 . 08 × 10 6 −0 . 0527 19.3 
Jones–Soward–Mussa theory 1 . 32 × 10 7 −0 . 0424 10.4 

Table 4. Onset of thermal convection results computed with the PG model, with no- 
slip boundary conditions. In the Table we report the E and P r combinations for the 
calculations, the resulting critical parameters Ra c , ω c and m c , the radial resolution N
and the index of the dominant radial mode j max . The latter is defined via the maximum 

value of the stream-function spectra | c j | . The reported value of N is not an accurate 
estimation of the minimal resolution required for convergence, but it is indicated here 
for transparency. 

E P r Ra c ω c m c N j max 

1 × 10 −4 0.1 1 . 110 × 10 6 − 0 .07849 4 40 2 
1 × 10 −5 0.1 2 . 005 × 10 7 − 0 .04119 10 50 5 
1 × 10 −6 0.1 3 . 888 × 10 8 − 0 .01972 22 80 12 
1 × 10 −7 0.1 7 . 968 × 10 9 − 0 .009667 53 80 26 
1 × 10 −8 0.1 1 . 656 × 10 11 − 0 .004319 102 100 57 

1 × 10 −3 1 1 . 883 × 10 5 − 0 .04134 2 20 1 
1 × 10 −4 1 3 . 208 × 10 6 − 0 .02943 7 20 3 
1 × 10 −5 1 6 . 197 × 10 7 − 0 .01522 16 20 7 
1 × 10 −6 1 1 . 267 × 10 9 − 0 .007450 35 60 17 
1 × 10 −7 1 2 . 659 × 10 10 − 0 .003570 76 70 36 
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.3 Onset of thermal convection calculations 

umerical results for the critical parameters Ra c , m c and ω c in the general case (i.e. retaining all spatial deri v ati ves) were obtained for v arious
alues of P r and E by solving the PG linear system ( 24 )–( 26 ) via the methodology outlined in Section 3 . We focussed on P r values of 0.1
nd 1 due to their significance in the study of thermal convection in Earth’s outer core, and the availability of existing results in the literature
see Table 2 and Section 3.5 ). PG calculations were performed under both no-slip and stress-free boundary conditions, using the boundary
ayer parametrizations introduced in Sections 3.3.1 and 3.3.2 , respecti vel y. 

Results from our calculations are shown in Tables 4 and 5 , and Figs 5 and 6 . 
Fig. 5 shows values of Ra c , m c and ω c , as a function of E for both P r = 0 . 1 and P r = 1 . The scaling derived from our no-slip

alculations for E ≤ 10 −5 are also reported in Fig. 5 . Note that our scalings are close to the expected ones for both P r = 0 . 1 and P r = 1 .
ig. 6 reports the same data as Fig. 5 , but compensated for the expected scaling behaviour for low E illustrated in relationships ( 66 )–( 68 ). 

Analysing Figs 5 and 6 reveals that the PG model’s results are in line with 3-D calculations and expected scaling behaviours at low- E .
n particular we see that for stress-free, the critical Rayleigh number Ra c is lower than for no-slip (see Figs 5 and 6 ). The expected asymptotic
ehaviour Ra c ∼ E 

−4 / 3 is reached for higher values of E under stress-free conditions, at least for the P r = 0 . 1 case (see Fig. 6 ). The same
ehaviour is hinted at in our P r = 1 results, but lower E calculations are needed to confirm this observation. The compensated evolution for
 c and ω c , appears less monotonic than for Ra c , both for 3-D and PG calculations, especially for P r = 0 . 1 . For P r = 1 , both m c and ω c

eem to approach the expected asymptotic regimes at low E . As E becomes smaller, differences in the results from the no-slip and stress-free
mplementations tend to reduce. This is especially clear from the compensated Ra c behaviour and is as expected since boundary layer effects
n the solution can be considered as perturbations that vanish for E → 0 (Zhang & Jones 1993 ). 
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Table 5. Onset of thermal convection results computed with the PG model, with stress-free 
boundary conditions. See caption of Table 4 for details on the entries. 

E P r Ra c ω c m c N j max 

6 . 324 × 10 −5 0.1 1 . 483 × 10 6 − 0 .06266 4 20 3 
2 × 10 −5 0.1 6 . 630 × 10 6 − 0 .04957 7 20 4 
1 × 10 −5 0.1 1 . 673 × 10 7 − 0 .03992 9 20 6 
6 . 324 × 10 −6 0.1 3 . 123 × 10 7 − 0 .03316 10 30 7 
3 . 660 × 10 −6 0.1 6 . 400 × 10 7 − 0 .02823 12 50 8 
1 × 10 −6 0.1 3 . 599 × 10 8 − 0 .02062 24 50 12 
1 × 10 −7 0.1 7 . 714 × 10 9 − 0 .01005 57 60 26 
1 × 10 −8 0.1 1 . 610 × 10 11 − 0 .004349 102 100 58 
6 . 324 × 10 −5 1 5 . 452 × 10 6 − 0 .03286 9 10 4 
2 × 10 −5 1 2 . 418 × 10 7 − 0 .02164 13 30 6 
1 × 10 −5 1 5 . 976 × 10 7 − 0 .01711 16 30 8 
6 . 324 × 10 −6 1 1 . 089 × 10 8 − 0 .01482 19 50 9 
2 × 10 −6 1 4 . 952 × 10 8 − 0 .01028 29 80 14 
1 × 10 −6 1 1 . 236 × 10 9 − 0 .008133 36 30 17 
1 × 10 −7 1 2 . 614 × 10 10 − 0 .003778 77 80 38 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/1/725/7739181 by guest on 17 Septem

ber 2024
Comparison with results from the QG-Hyb shows that our PG methodology has superior performance, since our no-slip results are
generally closer to the 3-D predictions, with the notable exception of ω c for the P r = 1 cases. Fur ther more, analysis of the compensated
Ra c data for P r = 0 . 1 , show that the PG model approaches the expected Ra c ∼ E 

−4 / 3 law, for both no-slip and stress-free implementations.
Conversely, the QG-Hyb results do not show sign of convergence even at E = 10 −8 . 

In Figs 7 and 8 , we show the solution in physical space for �, T and ˜ zT , for the no-slip onset modes at P r = 0 . 1 and, respecti vel y
E = 10 −4 and E = 10 −6 . In these Figures we only show a quarter of the equatorial disc, in order to highlight details of the solutions that
would be difficult to see if the full domain were to be shown. All solutions are periodic in φ. Figs 7 and 8 illustrate many of the typical
characteristics of the onset of thermal convection in spherical domains: the spiralling nature of both velocity and temperature solutions, and
that as E decreases, the spatial complexity increases, in agreement with the scaling m c ∼ E 

−1 / 3 derived via asymptotic calculations. 
Our results show that the radial complexity of the onset solution scales in a similar fashion, which is at the origin of the spiralling nature

of the solution. We show this in Fig. 9 were we plot the index, j max at which the spectra, | c j | , of the stream-function solution, reaches its
maximum value. In Fig. 9 , we compensate j max for the E 

−1 / 3 . The figure indicates that both m c and j max have a similar scaling behaviour.
This shows the inadequacy of the asymptotic assumption ( 57 ), essentially requiring that m c /j max ∼ E 

−1 / 3 . 
The novel aspect of these PG solutions is the existence of two temperature variables, T and ˜ zT . As is seen in Figs 7 and 8 , the two are

visually very similar to each other. This is expected since the 3-D solutions in these regime show that the temperature field has a high degree
of axial invariance. Therefore T and ˜ zT , being two different v ertically inte grated moments of the same variable, show basically the same
equatorial structure. The main difference is their amplitude, with ˜ zT < T , which is consistent with their definitions and from the fact that
| z| < 1 . 

5  C O N C LU S I O N S  

In summary, we derived a novel columnar-flow model to study thermal convection in Earth’s outer core. This formulation is based on the PG
equations presented in Paper 1 , which have been extended by the inclusion thermal effects and of viscous mechanical boundary conditions,
and does not require the assumptions on the geometry of the original temperature field. 

The inclusion of viscous corrections allow a parametrization of the effect of either no-slip or stress-free, mechanical boundary conditions.
This has been achieved by adapting existing solutions to the PG formulation. For the no-slip case, a well known parametrization of the Ekman
pumping term (Schaeffer 2004 ; Schaeffer & Cardin 2005a , b ), results in an additional term, introduced in the momentum equation, proportional
to E 

1 / 2 . A well known issue of this approach is the singularity of this term at the equatorial boundary, s = 1 . For stress-free conditions, a
methodology first introduced in Zhang ( 1994 ) and adapted to columnar-flow models in Maffei et al. ( 2017 ), has been extended to the PG
formalism. The viscous correction introduced in this case is proportional to E . First order calculations revealed that the resulting viscous
corrections are in satisfactory agreement with 3-D results, particularly for the stress-free case (see Figs 2 and 3 ). 

The deri v ation of the Ekman pumping eq. ( 42 ) w arrants some additional considerations. First, without assuming low-frequency motions,
a general form of u 1 r | ±H can be derived assuming that the interior flow is a superposition of inertial waves (Kudlick 1966 ). In this case the
singular pre-factor 1 / 

√ 

H is replaced by terms proportional to 1 / 
√ 

i ( ω 

m 

j ± 2 H ) , where ω 

m 

j is the frequency of a given inertial mode. The form
u 1 r | ±H is therefore singular at the critical latitudes, defined by the condition ω 

m 

j ± 2 cos θ = 0 . This singularity, located in the interior of the
domain, s < 1 , is still integrable for columnar modes (Maffei et al. 2017 ). A numerically efficient methodology, akin to Gaussian quadrature,
is however not readily available. In current columnar-flow models this general pumping form is not implemented because the inertial mode
frequencies appear explicitly in the formulation. Unless the flow is expressed as a superposition of inertial modes, this presents considerable
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Figure 5. Onset of thermal convection calculations. The above plots illustrate the critical values Ra c , m c and ω c (resp. top, middle and bottom rows) for 
P r = 0 . 1 (left-hand side) and P r = 1 (right-hand side). The blue lines show results from our PG calculations, the magenta lines are results from the QG model 
of Guervilly & Cardin ( 2016 ); Guervilly et al. ( 2019 ), the black lines are unapproximated, 3-D calculations from Jones et al. ( 2000 ), Zhang et al. ( 2007 ) and 
Zhang & Liao ( 2017 ), complemented with the results from Table 1 (see Table 2 ). Full and dashed lines refer, respecti vel y, to no-slip and stress-free calculations. 
The thin blue line illustrates the slope of the scaling behaviour with E calculated from no-slip, PG calculations for E ≤ 10 −5 . 
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ssues. Our PG formulation makes use of such a decomposition (see eq. 31 ) and it will be possible, in future studies, to explore the effect of a
ore general form of eq. ( 42 ). 

Another caveat to formula ( eq. 42 ) is that it represents a first order viscous correction. A more comprehensive treatment of the boundary
ayer (Kida 2011 ) reveals that the singularity is removed by embedding the critical latitudes in a region of thickness ∼ E 

−2 / 5 and lateral width
E 

−1 / 5 , in agreement with theoretical predictions (Roberts & Ste w artson 1963 ). This correction has not been considered here primarily
ecause of its cumbersome numerical implementation (Kida 2011 ). 

The buoyancy term in the PG momentum eq. ( 10 ) is fully described by the two, 2-D thermal quantities T and ̃  zT . In agreement with the
olumnar -flow appro ximation ( eq. 9 ) and the linear nature of the buoyancy term (eq. 17 ), these quantities are two different moments of the

art/ggae294_f5.eps
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Figure 6. Same as Fig. 5 , but results are corrected by the expected scaling behaviours (namely, Ra c ∼ E 

−4 / 3 , m c ∼ E 

−1 / 3 , ω c ∼ E 

1 / 3 ). Flat lines towards 
the left of the plots indicate that results have reached expected asymptotic behaviours. 

Figure 7. Equatorial plots of (from left to right) �, T and ̃  zT at the onset of convection for P r = 0 . 1 , E = 10 −4 in the no-slip case. Only a quarter of the 
equatorial circle is shown. For this case: m c = 4 . 
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Figure 8. Same as Fig. 7 but for the case E = 10 −6 . For this case m c = 23 . 

Figure 9. Spectral peak for the onset modes, scaled by E 

1 / 3 . The quantity j max is the index at which the stream-function spectra | c j | reaches its maximum 

value. The colours refer to the P r number for which the solution is calculated. Full and dashed lines indicate, respecti vel y, no-slip and stress-free calculations. 
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quatorially symmetric component of the temperature field, and no information on the asymmetric part enters the PG equations. In line with
he magnetic moments derived in Paper 1 , the diffusion-free part of the evolution equations for T and ̃  zT is derived without the need of further
ssumptions or approximations. The resulting mathematical form of thermal dif fusion, howe ver, is not closed in these thermal moments, and
dditional manipulation is required. In order to keep the system closed in the PG variables �, T and ̃  zT , we chose to adopt an approximated
orm for thermal diffusion, based on the assumption that the spatial derivatives along the vertical direction are of smaller magnitude than the
nes along the equatorial directions. The validity of this approximation has been corroborated via 3-D calculations (see Fig. 4 ). 

We also developed a framework for numerical studies based on the PG equations. The methodology of choice is fully spectral, due to the
uperior convergence properties of these methods in the regular domain geometries we are interested in (Boyd 2001 ). All PG variables are
iscretized via a Galerkin basis set and the expansion coefficients are found via integration. This choice is mostly guided by the weak-form
ature of the stress-free viscous correction, and it further allows us to treat the singularity of the no-slip correction, which is integrable
n our framework. A peculiar aspect of our numerical implementation is the need to resort to the Gauss–Jacobi quadrature for numerical
alculation of the resulting integral, at least for the no-slip implementation. This is due to the mathematical form of the Ekman pumping
erm, which cannot be integrated via the more commonly used Gauss–Chebyshev method. The drawback of the Gauss–Jacobi rule is the
eed to numerically find the zeros of a set of Jacobi polynomials, for which no closed form exists. Although we did not e xtensiv ely validate
he calculation of quadrature nodes and weights in our implementation, we find that the final integration results is correct to at least machine
recision in our calculations. We ascertained that by (i) comparing the mass matrices of the numerical system (eqs 37 –39 ), N , C , ̃  C , al wa ys
alculated numerical within our framework, with unit matrices and (ii) sporadically comparing the numerical calculation of high-order terms
n the right-hand side integrals of eqs ( 37 )–( 39 ) with analytical calculations, possible with Mathematica . 

The PG hydrothermal equations (eqs 10 , 19 and 20 ), and the numerical methodology of choice, have been benchmarked on the problem
f the onset of thermal convection in a sphere. Our PG calculations were compared with 3-D and columnar-flow calculations made with a
tate-of-the-art columnar-flow model (Guervilly & Cardin 2016 ), referred to as the QG-Hyb model. This comparison proved the validity of
ur PG methodology. In particular we found that, both in terms of reproducing known 3-D onset values and in terms of reaching the expected
symptotic regimes at low- E values, our PG model performs generally better than the QG-Hyb model. 

In this work, we expanded the velocity field as a sum of inviscid inertial waves (see eq. 31 ). A similar methodology is routinely used
y Zhang and colleagues in 3-D convection studies (e.g. Zhang & Liao 2004 ; Zhang et al. 2007 , 2017 ). This specific choice results in zero
iagonal terms in the dissipation integrals (eqs 48 and 53 ). Physically, this means that internal self-dissipation of the basis set of choice is
ull, in agreement with the fact that the basis elements are solution to the inviscid momentum equation. The onset of thermal convection,
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ho wever , is intrinsically viscous in nature, and the absence of internal dissipation makes the problem physically ill-posed. The inclusion of
no-slip and stress-free corrections introduces non-zero diagonal terms, rendering the problem physically well-posed and in agreement with 
the viscous dissipation acting primarily through the boundary layers for the moderate-to-low P r numbers and low E numbers of interest
in typical geophysical applications (Zhang 1994 , 1995 ; Zhang & Liao 2017 ). In contrast, the asymptotic analysis illustrated in Section 4.2
does not require neither the stress-free nor the no-slip boundary condition, but a physical solution is nevertheless obtained, since no specific
stream-function expansion is needed. 

In this work, we have ignored the presence of magnetic effects, since our goal was focussed on the purely hydrodynamic aspects of the
PG system. From our non-magnetic investigation, we retrieved the critical values for the onset of thermal convection, most importantly, Ra c .
These values will inform future non-linear simulations, since supercriticality (the ratio R a/R a c ) is one of the most important input parameters
in thermally driven magneto-hydrodynamic simulations. For fixed values of the other input parameters, such as E and P r , supercriticality
sets, for example, the magnitude of the conv ectiv e flows and their spatial properties (Guervilly et al. 2019 ), the heat transferred outside of
the domain, and the generation of axisymmetric, zonal flows (Aubert et al. 2003 ; Barrois et al. 2022 ). In the PG framework, the latter can be
modelled by adding a separate equation for the axisymmetric motions, obtained by taking the geostrophic average of the momentum eq. ( 1 ),
as done in other columnar-flow implementations (e.g. Aubert et al. 2003 ; Guervilly & Cardin 2016 ; Barrois et al. 2022 ). Zonal winds would
then arise from non-linear interaction of the non-zonal flows. 

Magnetic effects, important in the dynamics of Earth’s outer core, can be reinstated in the hydro-thermal PG eqs ( 10 )–( 20 ), by adding
terms derived from the Lorentz force in the momentum eq. ( 10 ) and by considering the temporal evolution of the magnetic moments, as
done in Paper 1 . The final major ingredient to be implemented is magnetic diffusion. The insights gained in the deri v ation of approximated
thermal diffusion eqs ( 22 ) and ( 23 ) will be certainly invaluable to that end, but magnetic diffusion presents challenges of its own. The
assumptions that temperature is characterized by low v ertical comple xity, used in the deri v ation of eqs ( 22 ) and ( 23 ), is supported in recent
geodynamo simulations (e.g. Schaeffer et al. 2017 ; Aubert 2019 ), the same simulations suggest that the magnetic field possesses a much
higher spatial complexity. Fur ther more the magnetic field is considered via quadratic quantities in the PG framework ( Paper 1 ), resulting in
further mathematical challenges. By comparison, the bulk viscous term in the momentum equation, F V in eq. ( 10 ) does not present the same
difficulties in its implementation. The Laplacian term, ∇ 

2 u involved in the calculation of F V , is in fact closed in the rele v ant PG v ariable, �,
due to the columnar-flow assumption (eq. 9 ) and no additional approximation or simplification is therefore required to obtain closure. 

Finally we point out that the numerical code developed for the calculations of the results presented in this study is not optimized for
perfor mance on moder n supercomputers. Our code w as primaril y intended as a test-bed in which the methodology illustrated in this study
could be tested. The choice of Mathematica was guided primarily by the need to carefully test our algorithms, facilitated by the simplicity
of the language, the ease of implementation of analytical calculations and the ease of access to vast libraries to, for e xample, solv e eigenvalue
problems. Work is ongoing to implement the PG equation via programming environment better suited for high-performance computational 
studies. 
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DATA  AVA I L A B I L I T Y  

A Mathematica notebook that can be used to reproduce the PG model results presented in this paper is freely available from the Github
repository https://github.com/smaffei/PG-basics.git . The notebook can be used to generate the PG matrices and calculate both the viscous
corrections and the critical values at the onset of thermal convection. 

Published values for onset of thermal convection in a full sphere have been taken from Jones et al. ( 2000 ); Zhang et al. ( 2004 , 2007 );
Zhang & Liao ( 2017 ), for 3-D calculations, and from Guervilly & Cardin ( 2016 ), for the QG-Hyb model. 

The code QuICC , used to complement the above-mentioned 3-D calculations is available at https://github.com/QuICC . Access can be
granted upon contacting the repository administrator, Dr Philippe Marti (ETH Zurich). For this study, the version of the QuICC framework
used is onset v0.1.0 , and the specific physical model is the BoussinesqSphereRTC version v1.12.0 . 

https://github.com/smaffei/PG-basics.git
https://github.com/QuICC
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A P P E N D I X  A :  G E N E R A L  F O R M  O F  T H E  C O R I O L I S  T E R M  

In this Appendix we derive a generic form of the Coriolis term F C that appears in the PG momentum eq. ( 10 ). We set: 

f = −2 ̂ z × v 

but we do not assume that the velocity v has a columnar structure, nor do we specify the boundary conditions. We do, ho wever , assume that
the flow is incompressible: ∇ × v = 0 . Applying formula ( 11 ) we obtain: 

F C = 4 
d H 

ds 
v s | 0 − 2 ̂ z · ∇ × ( ̂ z × v e ) . 

The second term can be manipulated using well known vector calculus identities: 

− 2 ̂ z · ∇ × ( ̂ z × v e ) = −2 ̂ z · [ ˆ z ( ∇ · v e ) − v e ( ∇ · ˆ z ) + ( v e · ∇) ̂ z − ( ̂ z · ∇) v e ] = −2 ∇ · v e (A1) 

In writing the last identity, we used the fact that the spatial deri v ati ves of the unit vector ˆ z are identically zero, and that v e , a vertically
integrated quantity, does not depend on z. Fur ther prog ress is made b y explicitl y expanding the divergence operator in cylindrical coordinates
and making use of the Leibniz integration rule: 

−2 ∇ · v e = − 2 

(
∂ v s 

∂s 
+ 

1 

s 
v s + 

1 

s 

∂ v φ

∂φ

)
= −2 

[ (
∂v s 

∂s 
+ 

1 

s 
v s + 

1 

s 

∂v φ

∂φ

)
+ 

d H 

ds 
( v s | H + v s | −H ) 

] 

= − 2 

[ 

−∂v z 

∂z 
+ 

d H 

ds 
( v s | H + v s | −H ) 

] 

= −2 

[
− ( v z | H − v z | −H ) + 

d H 

ds 
( v s | H + v s | −H ) 

]
. 

On the upper and lower hemispheres of the unit sphere, defined, respecti vel y, b y z = + H and z = −H , w e ha ve: 

v r | H = sv s | H + H v z | H 
v r | −H = sv s | −H − H v z | −H . 
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Since d H/ d s = −s H 

−1 : 

F C = −4 
s 

H 

v s | 0 + 

2 

H 

( v r | H + v r | −H ) , 

hich is formula ( 43 ) 

P P E N D I X  B :  N O - S L I P  C O R R E C T I O N  

ere we illustrate some details on the viscous correction arising from the application of no-slip boundary conditions via Ekman pumping.
e start by illustrating how the singular behaviour arises from eq. ( 42 ). Let us first define: 

P 1 = 

1 

2 
√ 

H 

(
− s 

2 H 

u φ

)
, 

P 2 = 

1 

2 
√ 

H 

(
−5 

2 

s 

H 

2 
u s 

)
, 

P 3 = 

1 

2 
√ 

H 

( −H ω z ) , 

P 4 = 

1 

2 
√ 

H 

(
s 

H 

∂u s 

∂φ

)
. 

uch that u 1 r | z=±H = E 

1 / 2 ( P 1 + P 2 + P 3 + P 4 ) . Making use of eqs ( 9 ) and ( 31 ) it is possible to show that: 

P 1 = −1 

4 
s m H 

−3 / 2 
[(

m 

(
s 2 − 1 

) + 3 s 2 
)

p j ( s) + s 
(
s 2 − 1 

)
p ′ j ( s) 

]
e i mφ, 

P 2 = −5 

4 
i ms m H 

−1 / 2 p j ( s) e i mφ, 

P 3 = −1 

2 
s m H 

1 / 2 
[
(5 m + 6) p j ( s) + 

(−2 m H 

2 + 6 s 2 − 1 
)

s −1 p ′ j ( s) − H 

2 p ′′ j ( s) 
]

e i mφ, 

P 4 = −1 

2 
m 

2 s m H 

1 / 2 p j ( s) e i mφ. 

here p j ( s) = P 

(3 ,m −1 / 2) 
j−1 (2 s 2 − 1) for brevity and generality. Note that s −1 p ′ ( s) is not singular for s → 0 , since p( s) is a regular polynomial

n s 2 . Focussing on the behaviour as s → 1 , the above identities show that u 1 r | z=±H ∼ H 

−3 / 2 . 
Inserting the above identities into eq. ( 45 ) we obtain the following integrals: 

 

(1) 
i j = −1 

2 

∫ 2 π

0 

∫ 1 

0 
s 2 m + 1 H 

−1 / 2 p i ( s ) 
[(

m 

(
s 2 − 1 

) + 3 s 2 
)

p j ( s ) + s 
(
s 2 − 1 

)
p ′ j ( s) 

]
d s d φ, 

 

(2) 
i j = −i m 

5 

2 

∫ 2 π

0 

∫ 1 

0 
s 2 m + 1 H 

1 / 2 p i ( s ) p j ( s ) d s d φ, 

 

(3) 
i j = −

∫ 2 π

0 

∫ 1 

0 
s 2 m + 1 H 

3 / 2 p i ( s) 
[
(5 m + 6) p j ( s) + 

(−2 m H 

2 + 6 s 2 − 1 
)

s −1 p ′ j ( s) − H 

2 p ′′ j ( s) 
]

d s d φ, 

 

(4) 
i j = −m 

2 

∫ 2 π

0 

∫ 1 

0 
s 2 m + 1 H 

3 / 2 p i ( s ) p j ( s ) d s d φ, 

uch that � 

ns 
i j = � 

(1) 
i j + � 

(2) 
i j + � 

(3) 
i j + � 

(4) 
i j . The only singularity is now contained in the integrand of � 

(1) 
i j , and it is integrable. 

We finally comment on the quadrature rules necessary to calculate the above integrals. As discussed in Section 3 , the radial part of the
bov e inte grals can generally be calculated via Gauss–Jacobi quadrature. Upon performing the substitution x = 2 s 2 − 1 , we can transform
he above integrals in the form required by the quadrature rule (eq. 52 ). It can be shown that the quadrature’s α and β for the above integrals
re, respecti vel y, α = −1 / 4; 1 / 4; 3 / 4; 3 / 4 , and β = m for all of them. Integrals � 

(3) 
i j and � 

(4) 
i j can therefore be treated in the same manner.

ote also that there is no single quadrature rule that is exact for all of the above integrals. That is because the pre-factor of H al wa ys appears
ith a half-integer power. Specifically, the rule valid for � 

(1) 
i j can be applied to � 

(3) 
i j and � 

(4) 
i j , by increasing the degree of the polynomial f ( x) ,

ut not to � 

(2) 
i j , since the resulting f ( x) would not be a polynomial, and the quadrature rule would not be exact anymore. 

P P E N D I X  C :  S T R E S S - F R E E  C O R R E C T I O N  

n principle the stress-free conditions (eq. 8 ) apply to the total flow v , defined here as in eq. ( 41 ): 

 = u + u 1 , (C1) 

here u is the interior, columnar and inviscid flow described by the columnar flow formalism ( eq. 9 ) and || u 1 || � || u || is a correction that
nsures that the tangential conditions (eq. 8 ) are satisfied. In particular, it is possible to show that u 1 is proportional to E (see for example
hang 1994 ; Liao et al. 2001 ). We further assume that the total flow v satisfies incompressibility, ∇ · v = 0 . 
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To implement the stress-free boundary conditions in the PG framework we follow the procedure outlined in Maffei et al. ( 2017 ), where
we considered the columnar-flow implementation first presented in Labb é et al. ( 2015 ). In the PG framework, the mathematical details are
more complicated and we illustrate them below. In the weak formulation we multiply the momentum eq. ( 10 ) by � 

∗, a weight function w � 

(for generality), and integrate in s and φ. The PG viscous term, in its weak form, is, as in eq. ( 48 ): 

G = 

∫ 
di s c 

� 

∗ s 

2 H 

F V w � d sd φ

Let us introduce the following notation: 

∇ 

2 v ≡ L , 

so that: 

˜ ˆ z · ∇ 

2 v ≡ ˜ L z , 

( ∇ 

2 v ) e ≡ L e , 

ˆ φ · ∇ 

2 v | 0 ≡ L φ | 0 . 
Fur ther more, we indicate the vorticity with ω = ∇ × v . The integral (eq. 48 ) can then be expanded as: 

G = 

∫ 
di s c 

� 

∗ s 

2 H 

{
d H 

ds 

[
−1 

s 

∂ ̃  L z 

∂φ
− 2 L φ | 0 

]
+ ̂  z · ∇ × L e 

}
w � d sd φ

= 

∫ 
di s c 

� 

∗ s 

2 H 

d H 

ds 

[
−1 

s 

∂ ̃  L z 

∂φ

]
w � d sd φ︸ ︷︷ ︸ 

≡˜ G 
+ 

∫ 
di s c 

� 

∗ s 

2 H 

d H 

ds 

[−2 L φ | 0 
]

w � d sd φ︸ ︷︷ ︸ 
≡G 0 

+ 

∫ 
di s c 

� 

∗ s 

2 H 

ˆ z · ∇ × L e w � d sd φ︸ ︷︷ ︸ 
≡G 

. 

As illustrated in the above, the full integral G is then decomposed as a sum of three terms: ̃  G , G , G 0 . 
Let us consider the G term. By making use of the Leibniz integration rule: 

G = 

∫ 
di s c 

� 

∗ s 

2 H 

ˆ z · ∇ ×
∫ H 

−H 
L e d z w � d sd φ = 

∫ 
di s c 

� 

∗ s 

2 H 

[∫ H 

−H 
ˆ z · ∇ × L e dz − 2 s 

H 

L φ

]
w � d sd φ

= 

∫ 
core 

� 

∗ 1 

2 H 

ˆ z · ∇ × L w � dV −
∫ 

di s c 
� 

∗ s 

H 

2 
L φ w � d A, 

where dA = s dφds is the surface area element on the equatorial disc. In the above we assumed that L φ | H = L φ | −H = L φ . We recognize the
second integral in the above to be equi v alent to −G 0 (since, in the interior of the domain, L φ | 0 = L φ), so: 

G + G 0 = 

∫ 
core 

� 

∗ 1 

2 H 

ˆ z · ∇ × L w � dV = 

∫ 
core 

∇ ×
[ 
� 

∗ w � 

2 H 

ˆ z 
] 

· L dV −
∫ 

core 
∇ ·

[ 
� 

∗ w � 

2 H 

ˆ z × L 

] 
dV 

The remaining integral is: 

˜ G = 

∫ 
di s c 

� 

∗ w � 

2 H 

s 

H 

[
1 

s 

∂ ̃  L z 

∂φ

]
s ds dφ = −

∫ 
di s c 

∂� 

∗

∂φ

w � 

2 H 

2 
˜ L z d A = −

∫ 
core 

∂� 

∗

∂φ

w � 

2 H 

2 
sgn ( z) ̂ z · L dV . 

Let us now sum the terms back together: 

G + G 0 + ̃

 G = 

∫ 
core 

∇ ×
[ 
� 

∗ w � 

2 H 

ˆ z 
] 

· L dV −
∫ 

core 
∇ ·

[ 
� 

∗ w � 

2 H 

ˆ z × L 

] 
dV −

∫ 
core 

∂� 

∗

∂φ

w � 

2 H 

2 
sgn ( z) ̂ z · L dV 

= 

∫ 
core 

{
∇ ×

[ 
� 

∗ w � 

2 H 

ˆ z 
] 

− ∂� 

∗

∂φ

w � 

2 H 

2 
sgn ( z) ̂ z 

}
︸ ︷︷ ︸ 

≡U ∗

·L d V −
∫ 

core 
∇ ·

[ 
� 

∗ w � 

2 H 

ˆ z × L 

] 
d V . 

In the above w e ha ve introduced the complex conjugate, pseudo-velocity U 

∗, in order to simplify the remainder of the deri v ation. The first
integral can be manipulated as in Zhang ( 1994 ) and Maffei et al. ( 2017 ): ∫ 

core 
U 

∗ · L dV = 

∫ 
core 

U 

∗ · ∇ 

2 v dV = −
∫ 

core 
∇ × U 

∗ · ∇ × v dV + 

∮ 
C M B 

ˆ r · ( U 

∗ × ∇ × v ) d�

= −
∫ 

core 
∇ × U 

∗ · ∇ × v dV + 

∮ 
C M B 

[
2( U 

∗
θ v θ + U 

∗
φv φ) + U 

∗
θ

∂ 

∂r 

(v θ

r 

)
+ U 

∗
φ

∂ 

∂r 

(v φ

r 

)]
d �, 

where we recognize the stress-free condition in the last two terms of the surface integral and we eliminate them. In the remaining terms, we
set v = u , so that: ∫ 

U 

∗ · L dV = −
∫ 

∇ × U 

∗ · ∇ × u dV + 2 
∮ 

( U 

∗
θ u θ + U 

∗
φ u φ) d�, 
core core C M B 
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The total viscous integral is then: 

G + G 0 + ̃

 G = −
∫ 

core 
∇ × U 

∗ · ∇ × v dV + 2 
∮ 

C M B 
( U 

∗
θ u θ + U 

∗
φ u φ) d� −

∫ 
core 

∇ ·
[ 
� 

∗ w � 

2 H 

ˆ z × L 

] 
dV . (C2) 

e finally have to consider the third integral on the right-hand side of this last expression: 

−
∫ 

core 
∇ ·

[ 
� 

∗ w � 

2 H 

ˆ z × L 

] 
dV = −

∮ 
C M B 

ˆ r ·
[ 
� 

∗ w � 

2 H 

ˆ z × L 

] 
d� = 

∮ 
C M B 

� 

∗ w � 

2 H 

L φ sin θ d�

= −
∮ 

C M B 
∇ ×

[ 
� 

∗ w � 

2 H 

sin θ ˆ φ
] 

· ω d� + 

∮ 
C M B 

∇ ·
[ 
� 

∗ w � 

2 H 

sin θ ˆ φ × ω 

] 
d�. 

he second integrals requires applying Gauss’ theorem on a surface in 3-D space. We make use of formulae from appendix 7 of Backus et al.
 1996 ). Let us define: 

 

∗ w � 

2 H 

sin θ ˆ φ × ω ≡ q = 

ˆ r q r ︸︷︷︸ 
normal 

+ q h ︸︷︷︸ 
tangential 

. 

e therefore need the following: ∮ 
C M B 

∇ · q d� = 

∮ 
C M B 

[
1 

r 2 
∂ 

∂r 
( r 2 q r ) + ∇ h · q h 

]
d�, 

here ∇ h is the tangential gradient on the spherical surface of the CMB. According to eq. (7.4.21) of Backus et al. ( 1996 ), the second term
n the above integral is zero, when integrated on the CMB. We therefore obtain: ∮ 

C M B 
∇ ·

[ 
� 

∗ w � 

2 H 

sin θ ˆ φ × ω 

] 
d� = −

∮ 
C M B 

1 

r 2 
∂ 

∂r 

[ 
� 

∗ w � 

2 
| tan θ | ω θr 2 

] 
d�

= −
∮ 

C M B 

1 

r 2 
∂ 

∂r 

[ 
� 

∗ w � 

2 
| tan θ | r 2 

] 
ω θ d� −

∮ 
C M B 

� 

∗ w � 

2 
| tan θ | ∂ω θ

∂r 
d�. 

herefore, the last integral in eq. ( C2 ) is: 

−
∫ 

core 
∇ ·

[ 
� 

∗ w � 

2 H 

ˆ z × L 

] 
dV = −

∮ 
C M B 

∇ ×
[ 
� 

∗ w � 

2 H 

sin θ ˆ φ
] 

· ω d�

−
∮ 

C M B 

1 

r 2 
∂ 

∂r 

[ 
� 

∗ w � 

2 
| tan θ | r 2 

] 
ω θ d�

−
∮ 

C M B 
� 

∗ w � 

2 
| tan θ | ∂ω θ

∂r 
d�

nd now we apply the stress-free boundary condition. In the abov e e xpression, only ω r , ω θ and ∂ω θ /∂r appear, which can be manipulated by
pplying the non-penetration and stress-free conditions eqs ( 6 ) and ( 8 ), where relevant: 

 r = 

1 

r sin θ

[
∂ 

∂θ
( v φ sin θ ) − ∂v θ

∂φ

]
= 

1 

r sin θ

[
∂ 

∂θ
( u φ sin θ ) − ∂u θ

∂φ

]
, 

 θ = −1 

r 

∂ 

∂r 
( r v φ) + 

1 

r sin θ

∂ v r 

∂ φ
= −2 

r 
u φ, 

∂ω θ

∂r 
= − ∂ 

∂r 

(
1 

r 

)
v φ − 1 

r 

∂v φ

∂r 
− ∂ 2 v φ

∂ r 2 
+ 

1 

sin θ

∂ 

∂r 

[
1 

r 

∂v r 

∂φ

]
= −∂ 2 u φ

∂ r 2 
+ 

1 

sin θ

∂ 

∂r 

[
1 

r 

∂u r 

∂φ

]
. 

utting everything together, rearranging terms and setting w � = 1 , we can now obtain formula (eq. 49 ): 

G = G s f = −
∫ 

core 
∇ × U 

∗ · ∇ × u dV + 2 
∮ 

C M B 
( U 

∗
θ u θ + U 

∗
φ u φ) d�

+ 

∮ 
C M B 

{
− ω r 

sin θ

∂ 

∂θ

[
� 

∗ 1 

2 

sin 2 θ

| cos θ | 
]

+ � 

∗| tan θ | 
[

1 

2 

∂ 2 u φ

∂ r 2 
− 1 

2 sin θ

∂ 

∂r 

(
1 

r 

∂u r 

∂φ

)
+ u φ

]}
d�, 

P P E N D I X  D :  A NA LY T I C A L  E X P R E S S I O N  O F  T H E  D I S S I PAT I O N  I N T E G R A L  

ere we derive an analytical expression for the integral (eq. 53 ). In particular we show that the diagonal terms identically vanish. 
For the purposes of this proof we re-write the columnar modes velocity as: 

 

m 

n = 

1 

H 

∇ × [
s m H 

3 P 

(3 / 2 ,m ) 
n (2 s 2 − 1)e i mφ ˆ z 

] − z 

H 

3 

∂ 

∂φ

[
s m H 

3 P 

(3 / 2 ,m ) 
n (2 s 2 − 1)e i mφ

]
ˆ z , 

nd, for brevity of notation, we also define an inner product of two vectors x and y as: 

< x , y > = 

∫ 
x · y ∗dV 
core 
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We also introduce the dual-basis: 

v m 

n = ∇ × [
s m P 

( −1 / 2 ,m ) 
n (2 s 2 − 1)e i mφ ˆ z 

]
, 

w 

m 

n = ∇ × ∇ × [
s m z P 

( −1 / 2 ,m ) 
n (2 s 2 − 1)e i mφ ˆ z 

]
. 

The vector w 

m 

n has a z-component that is linear in z but other components that are independent of z. The vectors v m 

n lie entirely in the horizontal
plane. When n = 0 , the vectors v m 

0 and w 

m 

0 are parallel. 
Note that: 

ˆ z · w 

m 

n = C 

m 

n −1 z P 

(3 / 2 ,m ) 
n −1 (2 s 2 − 1)e i mφ, ˆ z · ∇ × v m 

n = C 

m 

n −1 P 

(3 / 2 ,m ) 
n −1 (2 s 2 − 1)e i mφ

, where: 

C 

m 

n = −2(3 + 2 m + 2 n )( m + n + 1) , 

as can be shown using the elementary properties of Jacobi polynomials (e.g. Arfken et al. 2011 ). The following orthogonality properties hold: 

< u 

m 

j , u 

m 

′ 
k > = A 

( j,m ) 
1 δ j,k δm,m 

′ , 

< u 

m 

j , v 
m 

′ 
k > = A 

( j,m ) 
2 δ j,k−1 δm,m 

′ , 

< u 

m 

j , w 

m 

′ 
k > = A 

( j,m ) 
3 δ j,k−1 δm,m 

′ , 

< v m 

j , w 

m 

′ 
k > = A 

( j,m ) 
4 δ j,k δm,m 

′ , 

(D1) 

where A 

( j,m ) 
i are normalization constants. Additionally 

< u 

m 

j , w 

m 

′ 
k > = 

m 

3i 
< u 

m 

j , v 
m 

′ 
k >, (D2) 

and 

< u 

m 

j , v 
m 

j+ 1 > = −4 π
(2 j 2 + 5 j + 3)(2 j + 2 m + 3) 

(4 j + 2 m + 5) 

� ( j + 3 / 2) � ( j + m + 2) 

� ( j + 2) � ( j + m + 5 / 2) 
. (D3) 

Lemma We can write: 

∇ 

2 u 

m 

j = 

j ∑ 

l= 0 
a ( j,m ) 

l v m 

l + b ( j,m ) 
l w 

m 

l . (D4) 

Note the upper limit for the sum comes about since the maximum degree (in s) of ∇ 

2 u 

m 

j is 2 j , and hence is described by v m 

l and w 

m 

l with
l ≤ j . The coefficients are given by (when l ≥ 1 ): 

b ( j,m ) 
l = 

i m 

4 
( j − l + 1)(4 l + 2 m + 1)(2 j + 2 l + 2 m + 3) 

�( l + 1 / 2 + m ) �( j + m + 1) 

�( l + 1 + m ) �( j + m + 5 / 2) 
, 

a ( j,m ) 
l = b ( j,m ) 

l 

i 

m 

(4 j 2 + 4 jm + 10 j + 5 m + 6) . 
(D5) 

Proof To prove the abov e-giv en lemma, it is sufficient to show agreement of both sides of eq. ( D4 ) in both the vertical component and
the vertical component of the curl, since both the left and right hand sides are div ergence-free v ectors and can be written in a toroidal-poloidal
form. Thus, we show that: 

ˆ z · ∇ 

2 u 

m 

j = 

j ∑ 

l= 0 
b ( j,m ) 

l ˆ z · w 

m 

l , ˆ z · ∇ × ∇ 

2 u 

m 

j = 

j ∑ 

l= 0 
a ( j,m ) 

l ˆ z · ∇ × v m 

l . 

By the properties of the dual basis, these can be written as: 

ˆ z · ∇ 

2 u 

m 

j = z s m e i mφ
∑ j 

l= 0 C 

m 

l−1 b 
( j,m ) 
l P 

(3 / 2 ,m ) 
l−1 (2 s 2 − 1)e i mφ, (D6) 

ˆ z · ∇ × ∇ 

2 u 

m 

j = s m e i mφ
∑ j 

l= 0 C 

m 

l−1 a 
( j,m ) 
l P 

(3 / 2 ,m ) 
l−1 (2 s 2 − 1)e i mφ. (D7) 

We can show eqs ( D6 ) and ( D7 ) by explicitly calculating the expansions on both sides of each equation, using: 

P 

( α,β) 
n ( x) = 

�( n + α + 1) 

�( n + 1) �( α + β + n + 1) 

n ∑ 

k= 0 

�( n + 1) �( α + β + n + k + 1) 

� ( k + 1) � ( n − k + 1) � ( α + k + 1) 

(
x − 1 

2 

)k 

. (D8) 

For example, for the right-hand-side of eq. ( D6 ) writing: 

j ∑ 

l= 0 
C 

m 

l−1 b 
( j,m ) 
l P 

(3 / 2 ,m ) 
l−1 (2 s 2 − 1) , 



Plesio-geostroph y f or Earth’s core II 753 

a  

f

W

w

l

z

w  

(
 

c

w

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/239/1/725/7739181
s an expansion in powers of y = ( x − 1) / 2 = s 2 − 1 (since in the above x = 2 s 2 − 1 ), and performing the summation (over l), gives the
ollowing expression for the coefficient of y r , where r is an integer: 

S jmr = 

−64i m ( j + m )4 r √ 

π(8 r 3 + 60 r 2 + 142 r + 105) 

� ( j + 7 / 2) � ( j + m + 7 / 2 + r ) 

� ( j − r ) � (2 + 2 r ) � ( j + m + 5 / 2) 
. (D9) 

e note in passing that: 

j ∑ 

r= 0 
y r S jmr = K 1 P 

(7 / 2 ,m ) 
j−1 (2 s 2 − 1) , 

here K 1 is a proportionality constant. To find the left-hand-side of eq. ( D6 ), we use the usual deri v ati ve-forms of the Jacobi polynomials: 

d k 

dx k 
P 

( α,β) 
n ( x ) = 

�( α + β + n + 1 + k) 

2 k �( α + β + n + 1) 
P 

( α+ k ,β+ k ) 
n −k ( x ) , 

eading to: 

ˆ  · ∇ 

2 u 

m 

j = −i m (2 m + 2 n + 5) 
[ 
( x + 1)(7 / 2 + m + n ) P 

(3 / 2 + 2 ,m + 2) 
n −2 ( x) + 2( m + 1) P 

(3 / 2 + 1 ,m + 1) 
n −1 ( x) 

] 
e i mφ, 

here x = 2 s 2 − 1 . Using eq. ( D8 ) again, and collecting together the coefficients of s 2 − 1 , we obtain eq. ( D9 ). Thus the two sides of eq.
 D6 ) are equal. 

A deri v ation of eq. ( D7 ) follows along identical lines, although it is more involved as the expressions involve higher deri v ati ves. In this
ase, the analogue of eq. ( D9 ), the coefficient of y r , is S jmr / ( −i m ) . 

Theorem The elements of the integral < u 

m 

k , ∇ 

2 u 

m 

j > are zero if k ≥ j , and are positive-definite when k < j . In particular, for k < j : 

< u 

m 

k , ∇ 

2 u 

m 

j > = 

4 π

3 
( j − k)(2 j + 2 k + 2 m + 5)(12 j 2 + 12 jm + m 

2 + 30 j + 15 m + 18) 
�( j + m + 1) �( k + 5 / 2) 

�( j + m + 5 / 2) �( k + 1) 
. (D10) 

Usingeq. ( D4 ) it follows that: 

< u 

m 

k , ∇ 

2 u 

m 

′ 
j > = 

j ∑ 

l= 0 
( a ( j,m ) 

l ) ∗ < u 

m 

k , v 
m 

′ 
l > + ( b ( j,m ) 

l ) ∗ < u 

m 

k , w 

m 

′ 
l > 

= δm,m 

′ 

(
( a ( j,m ) 

k+ 1 ) ∗ < u 

m 

k , v 
m 

k+ 1 > + ( b ( j,m ) 
k+ 1 ) 

∗ < u 

m 

k , w 

m 

k+ 1 > 

)
. 

hich, by dint of eq. ( D1 ) leads to: 

< u 

m 

k , ∇ 

2 u 

m 

′ 
j > = 

{ 

[ 
( a ( j,m ) 

k+ 1 ) ∗ < u 

m 

k , v 
m 

k+ 1 > + ( b ( j,m ) 
k+ 1 ) 

∗ < u 

m 

k , w 

m 

k+ 1 > 

] 
δm,m 

′ for k < j 

0 for k ≥ j. 

Using eqs ( D2 ), ( D3 ) and ( D5 ) gives eq. ( D10 ), which is positive definite when k < j . 
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