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Climate drivers of phytoplankton production along the Chilean coast
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Department of Geography, University of Sheffield, Winter Street, Sheffield S10 2TN, UK

A R T I C L E  I N F O

Keywords:
CCA
Chl
SPSA
ENSO
SST
Southerly winds

A B S T R A C T

The west coast of South America is known for its high primary productivity. The level of phytoplankton can be 
measured through satellite images that detect chlorophyll (Chl), which is dependent on several oceanographic 
and meteorological parameters. Climate drivers such as El Niño Southern Oscillation (ENSO) and the Southeast 
Pacific Subtropical Anticyclone (SPSA) affect these parameters and, consequently, the phytoplankton. The 
objective of this study was to identify the impact of ENSO on SPSA, climate variables, and phytoplankton pat-
terns. Composites were created using the years selected with either strongly positive or negative ENSO to un-
derstand their influence on different parameters. To create the Chl composite, it was necessary to extend it using 
Canonical Correlation Analysis (CCA) based on the sea surface temperature (SST) pattern. The study concludes 
that ENSO has a noticeable impact on Chl, mainly in the Southern Zone during the warm season. This is driven by 
the expansion of SPSA to the South, which increases the sea level pressure (SLP) in that region. However, pre-
dicting the Chl concentration has a high degree of uncertainty due to its complexity.

1. Introduction

The Southeast Pacific Subtropical Anticyclone (SPSA) is the main 
atmospheric circulation component in the South Pacific Ocean, affecting 
from 0◦ to 42◦S near the South American coast (Aguirre et al., 2021). 
The SPSA is characterised by a high-pressure system centred at 30◦S, and 
it exhibits seasonal movement, impacting the coasts of Ecuador, Peru, 
and the northern to central part of the Chilean coast (Ancapichun and 
Garcés-Vargas, 2015). This climate driver leads to generally stable 
weather conditions with significant alongshore and equatorwards winds 
from 5◦N to 40◦S. These winds induce coastal upwelling, enriching 
surface waters with nutrients from deeper ocean layers and lowering the 
sea surface temperature (SST; Thiel et al., 2007). These conditions are 
enhanced by the meridionally oriented coastline (Thiel et al., 2007) and 
the presence of the Andes, which restrain the SPSA and block atmo-
spheric frontal systems from the southwest (Barrett et al., 2009; Schulz 
et al., 2012). This distinctive setting makes this region one of the most 
productive oceanic zones, featuring a significant phytoplankton con-
centration that can be easily measured by satellite using Chlorophyll-α 

(Chl; Mogollón and Calil, 2017; Vergara et al., 2017; Tornquist et al., 
2024).

The SPSA undergoes seasonal, interannual and interdecadal cycles, 
leading to fluctuations in wind direction (meridional winds VW and 
zonal winds UW) and intensity (Ancapichun and Garcés-Vargas, 2015). 

During the austral summer, the SPSA’s core migrates southwards to 
35◦S, resulting in southerly winds that prevail up to 42◦S. However, it 
retreats towards the Equator in the austral winter (Fig. 1). This seasonal 
movement creates a significant wind variability between 35◦ to 42◦S 
(Rahn, 2012; Ancapichun and Garcés-Vargas, 2015; Aguirre et al., 
2021). Consequently, the Central Zone of the Chilean coast experiences 
cold fronts from the south during the winter, producing westerly winds, 
intense precipitation rates (PR) episodes and downwelling conditions 
(Fig. 1). Simultaneously, the region from 40 to 42◦S experiences dry 
summers (Ancapichun and Garcés-Vargas, 2015; Rahn, 2012; Quintana 
and Aceituno, 2011). The winds in the 18◦ to 28◦S section maintain their 
alongshore direction, but are weakened (Ancapichun & Garcés, 2015; 
Rahn, 2012; Aguirre et al., 2021). On an interannual scale, SPSA vari-
ability is driven by the El Niño Southern Oscillation (ENSO) and Ant-
arctic Oscillation (AAO), altering the South Pacific dipole (Ancapichun 
and Garcés-Vargas, 2015; Garreaud et al., 2020; Garreaud and Muñoz, 
2005).

The ENSO is a recurring disruption in the ocean-atmosphere system, 
typically occurring every 2–7-years. This phenomenon alters the sea 
level pressure (SLP) differences between the western and eastern Pacific 
coasts, thereby modifying the Walker atmospheric circulation over the 
equatorial Pacific Ocean (Bigg, 2003; CONAMA, 2008). During El Niño 
conditions, weakened or altered trade winds lead to decreased sea levels 
in the western Pacific, flattening the thermocline (Bigg, 2003). This 
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results in warmer waters along the eastern coast of South America, as the 
relaxed equatorial current allows warm water propagated eastwards by 
Kelvin waves. Consequently, the entire Chilean coast can experience 
temperature increases ranging from 1 to 4 ◦C (Ancapichun and Garcés- 
Vargas, 2015; Schollaert Uz et al., 2017; Echevin et al., 2014; Gómez 
et al., 2012; Saldías et al., 2016).

El Niño’s impact extends beyond SST. The warming induces low- 
pressure systems in the east Pacific mid-latitudes, leading to intensi-
fied PR and reduced longshore winds in the region (Cordero et al., 2019; 
Garreaud et al., 2020, Vicente-Serrano et al., 2017). These conditions 
cause a deeper thermocline and weaker upwelling winds, which in turn 
lower nutrient levels and a decrease primary production in the Central 
Zone (Mogollón and Calil, 2017).

Despite the typical strengthening of coastal winds from 10 N◦ to 25◦S 
during El Niño events, which usually enhances upwelling (Enfield, 1981; 
Kessler, 2006; Chamorro et al., 2018; Huyer et al., 1987), the upwelling 
during El Niño tends to bring warmer and less nutrient-rich waters to the 
surface. This is due to the deepening of the thermocline and nutricline 
caused by the downwelling coastal waves (Barber & Chavez, 1983; 
Calienes, 2014; Echevin et al., 2014; Graco et al., 2016; Espinoza- 
Morriberón et al., 2017).

Conversely, La Niña, the cold phase of ENSO, introduces a negative 
SST anomaly of approximately 1–2 ◦C in the Equatorial Pacific (NOAA, 
2019). This phase intensifies the upwelling process through stronger 
easterly winds in the Equatorial Pacific, raising sea level in the western 
Pacific (Bigg, 2003). La Niña increases the nutrient supply by upwelling 
waters from a shallower thermocline and nutricline (Bigg, 2003; CON-
AMA, 2008). Simultaneously, it reinforces the SPSA effect, amplifying 
the pressure difference in the South Pacific dipole. This leads to drier 
winters in the mid-latitudes (Garreaud et al., 2020) but also weakens the 
coastal winds from 10 N◦ to 25◦S (Enfield, 1981; Kessler, 2006; Cha-
morro et al., 2018; Huyer et al., 1987).

In a previous study (Tornquist et al., 2024), we examined the impact 
of physical parameters such as PR, SST, UW, and VW on phytoplankton 
behaviour along the Chilean coast, specifically noting the differences 

between each Zone (Northern, Central and South). We observed that this 
behaviour is influenced by the SPSA annual pattern, which creates up-
welling conditions, and shelf width. Our study also considered the 
nutrient input from precipitation and rivers, concluding that the up-
welling mechanism driven by the SPSA is the most significant factor in 
phytoplankton fertilization.

However, we did not explicitly consider the influence of climate 
drivers such as ENSO on the SPSA. Given the substantial impact of these 
climate drivers on physical parameters and, consequently, phyto-
plankton fluctuations, a more comprehensive understanding is required 
(Vergara et al., 2017; Echevin et al., 2014; Ancapichun and Garcés- 
Vargas, 2015). Yet, quantifying these climate driver impacts is compli-
cated by the range of time and space scales at which they operate. 
Addressing this challenge necessitates a thorough comprehension of 
how these drivers contribute to observed patterns in these key meteo-
rological variables across appropriate space and time scales (Von Storch 
and Zwiers, 1999). Therefore, establishing a baseline understanding of 
phytoplankton status in the study region is imperative. Although data 
are available from 1979 onwards, continuous Chl data is only accessible 
from 1997, which necessitates extension through statistical methods 
(Schollaert Uz et al., 2017).

This paper aims to build directly on the work of Tornquist et al. 
(2024) and determine the effects of ENSO on phytoplankton dynamics in 
the Chilean coastal region. Its main objectives are to i) extend the Chl 
record from 1979 to 2018 using Canonical Correlations Analysis (CCA), 
ii) develop composite maps using only the highest intensity years of 
ENSO in both phases in order to detect possible changes of the key 
physical parameters and Chl, and iii) determine the ENSO effect on SPSA 
and Chl patterns.

2. Material and methods

2.1. Study area

The research conducted in this study is focused on the Chilean coast. 

Fig. 1. The monthly averaged sea level pressure (SLP) and winds from 1979 to 2018 were calculated using the ERA5 dataset. The panels show how the high-pressure 
centre varies from January (Left) to July (right) and how these affect the wind direction.

F. Tornquist et al.                                                                                                                                                                                                                               Journal of Marine Systems 246 (2024) 104013 

2 



The coast has been divided into three main zones, and these are further 
divided into three subsections. The criteria for defining these zones are 
based on the work of Tornquist et al. (2024), with one exception: the 
Central Zone has been split into three subsections instead of four to 
provide a larger area for observing patterns with greater clarity (Fig. 2). 
The mechanism of each zone was studied in detail in Tornquist (2023), 
and some key elements are mentioned in Tornquist et al. (2024). The 
mechanism specifics of each Zone were studied in detail in Tornquist 
(2023) and some key elements are mentioned in Tornquist et al. (2024)
and Tornquist (2023).

2.2. Data selection

Composite maps are a technique that helps to determine the impact 
of a climate driver on various parameters. This is done by calculating the 
average of each variable, using only the dates when the climate driver 
was more intense in its positive or negative phase (Von Storch and 
Zwiers, 1999). The Composite maps’ grid was built over the following 
coordinates 10◦ to 65◦S and 85◦W to 65◦S. The area of interest was 
expanded to facilitate analysis of higher latitude zones to incorporate 
possible patterns connecting the Chilean coast with the open ocean, Peru 
and the Drake Passage.

The variables that were examined in these composites are those that 
have been affected by ENSO and SPSA variations, such as PR, SST, UW, 
VW and SLP (Thiel et al., 2007; Ancapichun and Garcés-Vargas, 2015; 
Rahn, 2012; Aguirre et al., 2021; Tornquist et al., 2024). Meanwhile, the 
phytoplankton levels were estimated using the Chl concentration ob-
tained through remote sensing (Tornquist et al., 2024).

The physical parameter data used in this study are derived from The 
European Centre for Medium-Range Weather Forecast (ECMWF) model 
known as ERA5 (ECMWF ReAnalysis fifth version). ERA5 is a global 
reanalysis system that integrates satellite and observational data, 
providing improved physical parameter datasets from 1979 onwards, 
with a spatial resolution of 0.25◦ x 0.25◦ (C3S, 2021; https://cds. 
climate.copernicus.eu/cdsapp; Table 1). This version, introduced in 
2016, includes several key improvements, offering a better global bal-
ance of precipitation and more consistent ice patterns than ERA-interim 
and Tropical Rainfall Measuring Mission (TRMM: Hersbach et al., 2020; 
Tang et al., 2020). However, while SST is used as a forcing in the sim-
ulations, ERA5 still faces challenges in accurately capturing rainfall 
quantities in arid regions (Tang et al., 2020).

The Chl data were obtained from GES DISC (Goddard Earth Sciences 
Data and Information Services Centre) Interactive Online Visualization 
and Analysis Infrastructure (GIOVANNI; https://giovanni. gsfc.nasa.gov 
/giovanni/) using Moderate Resolution Imaging Spectroradiometer 
MODIS-aqua data exclusively from 2003 to 2018 (Table 1). Sea-Viewing 
Wide Field-of-View Sensor (SeaWiFS) data from 1997 to 2010 was not 
used to extend the Chl time scale because using mixed sensors would 
produce considerable errors due to their spectra bandwidth differences. 
Additionally, their spatial and temporal resolution do not match, 
generating gaps that are not straightforward to interpolate within (Franz 
et al., 2005). Although there is now a Chl dataset that includes both 
sensors’ data in Copernicus, this was unavailable during the develop-
ment of this research.

A range of indices are commonly used to measure the intensity of 
ENSO and SPSA. Given ENSO’s complexity, various indices are neces-
sary to gauge its impact. This paper focuses on the ENSO index measured 
in the 3.4 region. This index is determined by averaging SST anomalies 
over a thirty-year base period in the Central Pacific (Vicente-Serrano 
et al., 2017). The ENSO 3.4 region index is widely recognised for 
defining El Niño and La Niña events (Trenberth, 2020) and has been 
extensively utilised in research and by institutions such as the Chilean 
Meteorological Directorate (DMC) and in studies by Ancapichun and 
Garcés-Vargas (2015). On the other hand, the SPSA index is calculated 
by normalising SLP anomalies from eight meteorological stations be-
tween the Northern and Central zones of Chile. Then, the SLP anomalies 
are compressed into one using the first Empirical Orthogonal Function 
(EOF; Quintana and Aceituno, 2011). The National Oceanic and Atmo-
spheric Administration (NOAA) estimates the ENSO index (see https://o 
rigin.cpc.ncep.noaa.gov/products/analysis_monitoring/ENSOstu 
ff/ONI_change.shtml), while the SPSA is calculated by the DMC based on 
Quintana and Aceituno’s (2011) methodology. We were kindly provided 
with data for this index by Vicencio (2021).

2.3. Chl time series reconstruction using CCA

Characterising Chl variability adequately can be difficult due to the 
complex relationship that exists between Chl and a wide range of vari-
ables (Schollaert Uz et al., 2017; Tornquist et al., 2024). However, CCA 
has been proven to be a viable and adaptable analysis tool for these types 
of data (Schollaert Uz et al., 2017). CCA analysis determines the number 
of relationships between two or three sets of variables, known as pre-
dictors and predictands, and projects them in a new coordinate system. 
This is achieved by using the optimal correlation between variables 
through EOF analysis. In this way, CCA maximised the correlation 
(called Canonical correlation, Rc) between the covariance of the pre-
dictor and the predictand’s EOF (Variates), which is made by a Singular 
Value Decomposition (Schollaert Uz et al., 2017; Barnett and Pre-
isendorfer, 1987; Taylor et al., 2013). When the predictand and pre-
dictor have comparable space-time fields, and a significant correlation is 
established, CCA can forecast the predictand to a time gap based on the 
predictor behaviour using the best correlation possible. CCA is an 
innovative approach for environmental data reconstruction. Schollaert 
Uz et al. (2017) have carried out successful Chl prediction using this 

Fig. 2. CHILEAN MAP DELIMITING THE ZONES (N: NORTH, C: CENTRAL AND S: SOUTH) OF 
STUDY AND ITS SUBSECTIONS.
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approach. Despite known uncertainty in the outputs, this approach was 
deemed suitable to establish the general Chl pattern sought by this 
research. Prior to processing the Chl data, a pre-treatment is normally 
required to fill apparent gaps due to excessive cloudiness (Gómez et al., 
2017). The Data Interpolating Empirical Orthogonal Functions 
(DINEOF) method was used to address this issue (Echevin et al., 2014). 
The Sinkr R package provided the EOF and DINEOF routines (Taylor, 
2017), while the CCA code was written by Taylor (2012). The mathe-
matical details for CCA and EOF can be found in Wilks (2011), and for 
DINEOF in Beckers and Rixen (2003). It is important to note that all 
variables must be normalised for these techniques to work properly 
(Schollaert Uz et al., 2017). The normalisation process involves sub-
tracting the mean from each value and dividing by the standard devia-
tion (SD). This process is carried out monthly for each grid point.

2.3.1. Generation of DINEOF and EOF outputs
Within the study region, a total of 553,891 data points, representing 

around 24 % of the Chl data, were found to be missing due to adverse 
weather conditions and clouds. This mainly affected S2 and S3 sub-
sections from April to August (Fig. 2). To fill all data gaps, the DINEOF 
technique was employed, and errors were calculated using a cross- 
validation approach. Here, cross-validation randomly selected 1 % of 
the data (17,002 points) to check how effective each iteration was 
(Beckers and Rixen, 2003). This resulted in a final count of 22 EOFs after 
169 iterations. The Root Mean Square (RMS) error stabilised at 0.829, 
which is deemed acceptable, given both the −3.3 to 3.6 range of Chl 
anomalies and a tolerance error of around 12 %.

To extend the Chl dataset from 1970 to 2002, variables VW and SST 
were tested, both of which were shown to be significantly correlated 
with the Chl in this region, according to Tornquist et al. (2024). How-
ever, since these two variables have a high correlation, they could not be 
used together (Barnett and Preisendorfer, 1987; Taylor et al., 2013). 
Therefore, a separate stage of EOF analysis was performed for these two 
variables and Chl in order to determine which could provide a better 
prediction; Fig. 3 shows the truncation and the cumulative explained 
variance. The selection was made using North’s Rule-of-Thumb, as 
explained by Wilks (2011) and Barnett and Preisendorfer (1987).

In Fig. 3, it is evident that SST had the sharpest curve, indicating that 
it had well-defined patterns that required fewer EOFs to achieve a good 
approximation. In contrast, the Chl curve was shallow, indicating that it 
was less well represented by its EOFs because it has a high variation hard 
to predict. However, the Chl fulfilled the North’s Rule-of-Thumb criteria 
first, requiring only twenty EOFs, but keeping only 55 % of the variance. 
SST required twenty-seven EOFS and explained 92 % of the variance, 
while VW needed nineteen EOFs and explained 89 % of the variance. 
The sensitivity of the Chl pattern was tested by examining its prediction 
with fewer (fifteen) and more (thirty) EOFs retained. The results showed 
that the variance explained was 50 % and 61 %, respectively. Thus, there 
were no significant differences in the Chl prediction. This indicates that 
the key elements that explain the Chl behaviour are already captured by 
the first fifteen EOFs.

2.3.2. The CCA procedure, and output generation
The aim of this analysis was to determine whether SST or VW is a 

better predictor of Chl. To achieve this the model employs a Training 
Mode. During this mode, CCA was performed over a shorter period 
(2003−2013), excluding a portion (2014–2018) of the Chl time-series 
(Taylor et al., 2013; Schollaert Uz et al., 2017). This model used the 
results from 2003 to 2013 to predict the Chl values from 2003 to 2018. 
Following this, a Full Mode was run over the 2003–2018 period to 
predict the Chl time series from 1979. To estimate the error in the 
Training Mode, the Ch prediction (2003–2018) was correlated with the 
Chl data (2003–2018) and the correlation R (do not confuse with Rc) per 
location was mapped (Fig. 4). The Mean Absolute Error (MAE) was also 
calculated, which is appropriate for data that has been normalised 
(Taylor et al., 2013). This procedure was also done with the test set only 
(2014–2018), where the Chl data was not used to feed the model.

Figure 4 shows that the most accurate prediction of the Chl was 
achieved using SST (Chl-SST), with an average R of 0.45 and MAE of 
0.63, resulting in an overall 9.7 % error for the Full Mode. On the other 
hand, VW showed an average R of only 0.21. Chl-SST was also the best 
prediction during the Training Mode, but the average R decreased to 
0.33 with an MAE of 0.72, leading to a higher error of 10.7 %. It is worth 
noting that Chl-VW exhibited a stronger correlation with the Chl in the 

Table 1 
Parameters used in this research as core data-sets in the composite analysis and Chl reconstruction.

Parameter Unit Source Temp res. Spatial res. Date begins End Date
Chl mg m−3 MODIS-Aqua Monthly 0.04◦ x 0.04◦ 04/07/2002 31/06/2018
SST K ERA5 Monthly 0.25◦x 0.25◦ 01/01/1979 31/06/2018

Total Precipitation M ERA5 Monthly 0.25◦x 0.25◦ 01/01/1979 31/06/2018
Westerly Wind (10 m) m s−1 ERA5 Monthly 0.25◦x 0.25◦ 01/01/1979 31/06/2018
Southerly Wind (10 m) m s−0 ERA4 Monthly 0.25◦x 0.25◦ 31/12/1978 31/06/2018

Sea Level Pressure Pa ERA5 Monthly 0.25◦x 0.25◦ 01/01/1979 31/06/2018

Fig. 3. The cumulative sum of the variance in the percentage of SST, Chl and VW. The grey points showed the temporal EOF selected in the construction. Note that 
The Y-axis, showing the cumulative explained variance, has a different scale for each graph.
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Southern Zone coast, indicating a significant influence of the southerly 
winds when they are present. Although the relationship was weaker 
when the real data was missing, giving a MAE of 0.85 in the test set 
(2013–2018), the error remained relatively consistent due to the 
pattern-based approach of CCA.

Fourteen out of twenty CCA components (modes) were used to 
construct the SST and Chl Variates, with a Rc ranging from 0.89 to 0.45 
in the Full Mode. In the Training Mode, sixteen modes out of twenty 
were required, with Rc ranging from 0.93 to 0.46 (Table 2). The Training 
Mode presented a higher Rc range due to its shorter period. The trun-
cation of the modes was defined using the Pillai–Bartlett trace criteria 
(Friederichs and Hense, 2003; Taylor, 2012).

Spatial EOFs for the Chl time-series can be recreated using the CCA 
model based on the SST spatial EOF (Wilks, 2011; Barnett and Pre-
isendorfer, 1987). These are shown in Figs. 5–6, which display the first 5 
EOFs for both the Training and Full Modes, while Table 3 shows the 
results.

The Chl-SST prediction reproduced well the first three EOFs in the 
Training Mode, especially EOF 3 (Fig. 5, Table 3). However, the pre-
dicted EOFs did not follow the original EOF curves correctly over the 
period in which the data were not used to feed the model (2014–2018). 
Only EOFs 1–3, 9, 11, 14, 16 and 17 had an R above 0.5. The EOFs 4, 10, 
13, 15, 18–20 were loosely followed, with an R below 0.4 (Table 3).

The Chl-SST prediction was able to reproduce the first three Chl EOFs 
with good accuracy in the Full Mode, especially for EOFs 2 and 3 (Fig. 6). 
Additionally, EOFs 7 and 14 were also well correlated with an R over 0.7 

(Table 3, see Tornquist, 2023). For the other EOFs, their general ten-
dency was matched with an R above 0.5, except for EOF 12, 19 and 20 
(Table 3, see Tornquist, 2023). The main differences found were that all 
the predicted EOF curves had smoother behaviour than the originals, 
which presented a high variability.

The Ch-SST Training Mode utilised sixteen CCA modes (Table 2) to 
describe the patterns of the first twenty Chl EOFs that account for 30.1 % 
of the variance (Table 3), with an R value of over 0.5. For the Full Mode, 
fourteen modes were needed to explain 34.1 % of the variance with an R 
value of over 0.6 (Table 3), while 14.2 % of the variance was explained 
with an R value between 0.5 and 0.6. This represents 48.3 % of the total 
Chl variance of 55 % that can be accounted. The Full Mode recon-
struction was used for the subsequent analysis, and the error was likely 
to be similar to that of the Training Mode.

To summarise, the most accurate prediction was achieved using SST, 
with an average R-value of 0.45 and an MAE of 0.63 for the available 
data. However, for unknown data, these values were 0.33 and 0.72, 
respectively. This error is significant and can be attributed to excessive 
variation in Chl. Nevertheless, it is considered acceptable since only Chl 
anomalies beyond ±0.5 SD were taken into account in this composite 
analysis.

2.4. Climate driver analysis and composite creation

This analysis constructs composites using normalised Chl anomaly 
data from years with more intense ENSO activity. A complete Chl time- 
series was derived (a) for 1979 to 2003 using CCA based on SST (section 
2.3), and (b) 2003 to 2018 from Chl measured by MODIS-aqua but using 
DINEOF to fill the gaps (section 2.3.1).

2.4.1. Preliminary analysis of ENSO3.4 and SPSA
Both indices were analysed using monthly and annual time windows 

(Fig. 7). The analysis revealed that ENSO exhibits a more consistent 
pattern with a variable 2–5-year periodicity but with a few exceptions. 
On the other hand, the SPSA index presented higher monthly variation, 
with a more negative trend in the mid-1980s and the first half of the 
1990s. From 2000 to 2005, the behaviour of the SPSA was more neutral, 
while from 2006 onwards, it showed a positive tendency. This recent 
intensification was reported by Salvatteci et al. (2018) and Aguirre et al. 
(2021). ENSO showed a significant negative correlation with SPSA (p- 
value <0.01) on a yearly mean variation (−0.63), while the correlation 
was −0.39 on a monthly scale, likely due to the extreme variation in 
SPSA.

Fig. 4. Correlation R of the Chl vs the Chl predicted fields using SST and VW. 
The first row shows the CCA prediction using Full Chl data (2003–2018). The 
bottom row shows the Chl predicted over 2003–2018 years using the Training 
Mode (2003–2013) correlated with the Chl data (2003–2018).

Table 2 
Rc for the modes using Chl-SST in the Full Mode and Training Mode, the 
underlined value indicates when it was truncated.

Mode Full Mode Training Mode
1 0.89 0.93
2 0.87 0.91
3 0.84 0.9
4 0.82 0.89
5 0.79 0.85
6 0.76 0.81
7 0.73 0.75
8 0.69 0.73
9 0.67 0.74
10 0.62 0.69
11 0.57 0.67
12 0.51 0.64
13 0.49 0.57
14 0.45 0.53
15 0.42 0.51
16 0.36 0.46
17 0.30 0.43
18 0.26 0.37
19 0.19 0.34
20 0.13 0.20
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Due to its lower variability, the ENSO is more manageable than the 
SPSA in terms of accuracy for creating composites. As the ENSO is 
responsible for changing the SPSA’s behaviour, we will only construct 
an ENSO composite. This will allow us to observe the ENSO’s impact on 
the SPSA. Tornquist et al. (2024) examined the monthly spatial vari-
ability of Chl in each subsection and its correlation with the parameters 
listed in Table 1, excluding SLP. These variations are closely linked to 
the variation in the SPSA index.

2.4.2. Creation of ENSO composites
To determine the typical behaviour of each variable (Chl, SST, PR, 

UW, VW and SLP; Table 1), composite maps were created using the 
annual values during more intense ENSO events (e.g. as defined by Von 
Storch and Zwiers, 1999). The criteria for creating these composites 
were to (a) have the same minimum limit value for each cycle to enable 
similar intensities comparison between El Niño and La Niña and (b) try 
to keep the number of outliers constant.

Some adjustments to the time series were made before selecting the 
extreme years for the composite. A deeper analysis of the annual ENSO 
cycle revealed that strong El Niño events usually started with a signifi-
cant rise in September, reaching a peak from November to January. The 
values for the following months tended to decrease until March or April, 
when the SST anomalies were close to 0. Therefore, we determined that 
to ensure the highest point in the ENSO cycle is in the middle of the 
sample, and that the composite data does not cross a typical ENSO cycle 
year the starting month of ENSO composites must be June. Considering 
these modifications, the minimum limit selected for ENSO cycles was an 
index value of ±1 (Fig. 8). There are thus four positive outliers (1981, 
1991, 1997 and 2015) and five negative outliers (1988, 1998, 1999, 
2007 and 2010).

3. Results

3.1. Use of composites maps to understand phytoplankton dynamics in 
ENSO cycles

In this section, we discuss the positive and negative ENSO Chl 
anomaly composites focusing on the coastal zone of Chile, with some 
exceptions. These composites were constructed using Chl data from 
MODIS-aqua from 2003 to 2018, and the data from 1979 to 2002 was 
extended using CCA based on the SST patterns (section 2.3). The ENSO 
composite construction was made using the years that had either 
extremely positive (El Niño) or negative (La Niña; section 2.4.2 and 
Fig. 8) events.

The El Niño Chl composite (Fig. 9.a) displayed positive Chl anoma-
lies from September to May, with the highest peak from September to 
December. The Southern Zone, particularly S2 and S3, was the most 
affected area. This Chl increase extended from the coast to the open 
ocean sections. This was also linked with a Chl shift from September to 
May in the Drake Passage. Another area of significant Chl increments 
was observed in the N1-N2 subsections from October to December. In 
the same period, a Chl decline was observed in the Peruvian Zone. The 
Central Zone (C1-C3) did not show significant changes, apart from a 
decrease between January and April. However, C2 and C3 displayed a 
slight upsurge in Chl anomalies during the last month of that period.

During La Niña (Fig. 9.b), the positive Chl anomalies were not as 
substantial as they were during El Niño. In fact, the trend seemed to be 
more towards negative anomalies, with no anomalies exceeding±1 
along the coast, which is unexpected. From June to October, there was a 
drop in the Chl concentration in the Northern and Central Zone. How-
ever, a slight local increase was observed in December in N1, N3, and 
C1. In the Southern Zone, S1 had a persistent positive anomaly for 

Fig. 5. CCA Chl EOF 1–5 prediction (1979–2018) using Chl-SST Training Mode (2003–2013). R indicates the correlation between the prediction and each real 
Chl EOF.
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almost the entire year, reaching the whole section in July–August. From 
December to May, there was a slight reduction in S2-S3.

3.2. Use of physical composites to understand parameter behaviour in 
ENSO cycles

The composites for the physical variables, including SST, PR, VW and 

UW, were created using the same procedure as the Chl composite (not 
shown, see Tornquist, 2023). Figs. 10 and 11 provide a summary of these 
variables, only displaying when their anomalies were over ±1.0 in 
conjunction with the Chl composite in the background. This was done in 
order to identify any changes in the key physical parameters that could 
explain the Chl variations. The correlations presented in Table 4 were 
used to assess the impact of these parameters on the Chl anomalies. 
These correlations come from Tornquist et al. (2024) where these pa-
rameters were studied per subsection from 2003 to 2018.

For El Niño, Fig. 10 indicates that an increase in southerly winds in 
S3 during October and February, combined with a rise in SST anomalies 
in S2 and S3 in April, explains the Chl anomalies observed in these 
subsections during those months. Furthermore, S3 experienced a 
decrease in precipitation in April and May which correspond with the 
rise in Chl levels. It is interesting to note that the Chl anomalies were not 
as high in the remaining months. The increase in Chl observed in N1-N2 
from October to November was not caused by upwelling, considering the 
significant SST anomaly increments observed there. However, substan-
tial southerly winds appeared in N2 and N3 in November, which did not 
enhance the Chl anomalies observed by upwelling. These winds were 
also present in the previous month but were not as strong. The Chl rise in 
N1 observed from October to February occurred despite the unfav-
ourable upwelling SST conditions experienced there, but with some 
upwelling-inducing winds in December. Chl drops were also observed in 
the Peruvian Zone in the same months. These were consistent with the 
SST anomaly increase in that section. From January through the rest of 
the seasonal cycle, there was a general Chl anomaly decrease in the 
Central and part of the Northern Zone. This is compatible with the rise of 
SST and easterly wind anomalies appearing there.

There were not many substantial physical anomalies during La Niña, 
unlike El Niño (Fig. 11). However, some favourable conditions still 
increased productivity and caused local Chl increases. The decrease in 

Fig. 6. CCA Chl-EOF 1–5 prediction (1979–2018) using Chl-SST Full Mode (2003–2018), R indicates the correlation between the prediction and each real Chl EOF.

Table 3 
CCA Chl-EOF using Chl-SST Training (2003–2013) and Full Modes (2003–2018), 
R indicates the correlation between the prediction and each real Chl EOF, and 
the variance explained for each Chl EOF.

EOF Var exp Training Mode R Full Mode R
1 11.0 % 0.52 0.63
2 7.3 % 0.51 0.74
3 5.3 % 0.61 0.72
4 3.4 % 0.34 0.57
5 2.9 % 0.43 0.59
6 2.7 % 0.43 0.57
7 2.6 % 0.46 0.72
8 2.4 % 0.49 0.66
9 2.2 % 0.52 0.63
10 2.0 % 0.32 0.5
11 1.9 % 0.56 0.62
12 1.7 % 0.45 0.48
13 1.5 % 0.36 0.55
14 1.4 % 0.5 0.7
15 1.3 % 0.31 0.55
16 1.2 % 0.55 0.6
17 1.2 % 0.51 0.6
18 1.1 % 0.37 0.5
19 1.0 % 0.16 0.3
20 0.9 % 0.27 0.41
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Chl experienced in N1 and N2 from June to October did not match the 
Southerly winds detected in July in both subsections, nor did it match 
the N1 drop in SST and rise in precipitation in October. However, the 
SST drop in December and southerly wind anomalies in March coincided 
with a Chl increment observed in N1. The westerly wind detected in N2 
in May was consistent with the Chl drop there. The decrease experienced 
in N3 and C1 in July and August corresponds to westerly winds in those 
subsections. A slight Chl rise in C3 in August, December and April was 
related to the SST drop experienced in that area, except for April, which 
was caused by a southerly wind anomaly. In that same month, a slight 
Chl rise in C1 and C2 is consistent with the decrease in SST anomalies. In 
the Southern Zone, the S1 behaviour cannot be attributed to any phys-
ical parameter anomaly over 1, but minor southerly wind anomalies 
were observed there in some months. In contrast, unfavourable wind 
conditions can explain the slight reduction in S2-S3 from December to 
May. Nonetheless, these conditions were present in December, April and 
March, when the Chl reductions were higher.

4. Discussion

4.1. Understanding SPSA impacts on phytoplankton productivity

During the El Niño, there was a positive variation in Chl concen-
tration in the Southern Zone during the warm season (section 3.1). This 
change was caused by an increase in southerly winds and a decrease in 
PR (section 3.2), which is consistent with the correlations shown in 
Table 4 between these parameters and Chl. These relationships are 
explored in detail in Tornquist et al. (2024).

However, in the Central Zone, there was a Chl decrease, which is also 
in line with the increase in SST and the VW drop. These observations are 
consistent with the relationship observed in C1 (Figs. 9a, 10a and 
Table 4). These results follow the findings of Montecinos and Aceituno 
(2003). Despite a persistent SST rise and modest southerly wind in-
creases, the Northern Zone did not experience important Chl changes. 
The correlation between these variables was low, which is why N1 was 
less sensitive to these changes (Table 4).

It has been observed that the phytoplankton productivity on the 
Chilean coastal region is influenced by the variability of the mentioned 
physical variables driven by El Niño. Therefore, these changes can be 
best explained by investigating the likely impacts of ENSO on the SPSA. 
Essentially, as shown in Fig. 12b, during El Niño warm season, the core 
of SPSA had lower intensity but expanded towards the south, leading to 
a slight increase in SLP in the Southern Zone (Fig. 12c). This resulted in 
substantially decreased westerly winds and PR events during the warm 
season, while southerly winds increased in September, October, and 
February.

During La Niña cycles, a slight drop in Chl levels was observed in the 
Northern and Central Zone from June to October, while the rest of the 
cycle showed a slight increase (Figs. 9b and 11). However, the Chl in the 
Northern Zone remained unresponsive to the upwelling-favourable 
conditions observed in the physical conditions in July (Fig. 11). In the 
Southern Zone, there was a reduction in Chl levels from December to 
May due to westerly wind anomalies. Fig. 13b shows a strengthening of 
SPSA during La Niña, which resulted in almost no variation in the 
Central and Northern Zone except for some occasional southerly winds, 
and more intense westerly winds in the Southern Zone Fig. 13c. The only 

Fig. 7. Time series of ENSO and SPSA indices sampled on both monthly (AB) and annual (CD) scales. A vertical line shows from when the Chl data is available. The 
scale is normalised to 1.0 SD.

Fig. 8. ENSO annual index (June to May), where the dashed lines represent the limits that were set to create the composites. The scale is normalised to 1.0 SD.
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exception was February, where the SLP was lower, reducing the typical 
southerly winds in S1.

Our findings indicate that the variation in El Niño’s Chl anomaly 
observed in time and space (Fig. 9a) are consistent with the temporal 

and spatial variations of physical parameters driven by El Niño (Fig. 10), 
which alter the SPSA (Fig. 12b). The Chl impact during El Niño was 
mainly in the Southern Zone during the warm season, which was also 
found by Ancapichun and Garcés-Vargas (2015) and Montecinos and 

Fig. 9. Annual Chl cycle anomaly normalised composite for El Niño (a) and La Niña (b) showing alternate months. Squares indicate the highest Chl anomalies and 
dashed squares show the drops.

Fig. 10. Schematic showing the physical anomalies normalised over 1 during El Niño where P is PR, T is SST, and U and V are the wind components (UW, VW). The 
red colour means positive, and blue Negative. The bold terms are between 1 and 1.5, and the bold underlined are beyond 1.5. The dashed vertical lines indicate the 
subsection limits. These were labelled only in the first panel. The colour bar is the same as in Fig. 9. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)
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Aceituno (2003). In contrast, the Northern Zone experienced an increase 
in SST and at times, more southerly winds, which did not lead to an 
increase in Chl concentration. This is likely due to the deepening of the 
thermocline and nutricline as reported by Barber and Chavez (1983), 
Calienes (2014) and Echevin et al. (2014).

Despite La Niña producing an SPSA reinforcement, this did not lead 
to longshore wind increments (Figs. 11 and 13), except for a few occa-
sions in the Central and part of the Northern Zone that did not signifi-
cantly increase the Chl level. However, Gómez et al. (2012) found a 
notorious Chl increase in C3 during La Niña’s Spring. On the other hand, 
the concentration of the Chl in the Northern Zone is consistent with a 
low response observed by Tornquist et al. (2024) and the reduced 
coastal winds reported by Enfield (1981), Kessler (2006), Chamorro 
et al. (2018) and Huyer et al. (1987). The reason behind this is discussed 
by Tornquist et al. (2024), indicating that weak winds and narrow 
coastal shelves in N2 and N3 interfere with the nutrient renovation 
process.

4.2. Limitations and considerations

The remote sensing data comes with uncertainties, especially the Chl 

algorithm. This algorithm faces difficulty in shallow regions where 
phytoplankton is present, as noted by Yang et al. (2018) and Abbas et al. 
(2019). However, this paper aims to estimate general tendencies with 
substantial changes despite these uncertainties. These are even higher 
considering the Chl was extended using CCA with a MAE ranging from 
0.63 to 0.73 for a variable whose coastal values generally did not exceed 
±2 (section 3.2). However, the general tendency of the results was 
acceptable, given the complexity and high variation that Chl has 
onshore. The error was minimised using actual and predicted data in the 
Chl composite construction using 25 % of real data for El Niño and 40 % 
for La Niña. Despite this, the Chl patterns were consistent with the 
meteorological composites.

The reconstruction of the Chl time series from SST observations can 
potentially introduce artificial correlations between SST and Chl. While 
SST is a valuable predictor for Chl variations, relying heavily on SST data 
to estimate Chl can lead to an overestimation of the SST-Chl relation-
ship. This is because the algorithm may prioritise SST changes over other 
factors key to Chl complexity behaviour, such as nutrient availability 
and light conditions. As a result, caution is needed when interpreting Chl 
variations derived from SST, as the observed patterns may reflect an 
enhanced or biased relationship that does not fully represent the un-
derlying ecological dynamics.

The accuracy of the Chl prediction could have been improved by 
incorporating a second independent variable and utilising SeaWiFS data. 
Schollaert Uz et al. (2017) made these improvements using SST and 
bathymetry data to reconstruct the Chl in the tropical Pacific, leading to 
better predictions. Nevertheless, these were not considered in this study 
since SeaWiFS and MODIS-Aqua data were only available individually 
due to maintenance of the merged version. Although, these data sets 
could have been combined manually, it would have been complex and 
required significant effort because they have different time and space 
scales. Additionally, the inclusion of bathymetry as a second variable for 
feeding the model was not considered due to the challenges in accessing 
detailed bathymetry data along the Chilean coast and the complexity of 
the model itself.

Fig. 11. Schematic showing the physical anomalies anomalies normalised over 1 during La Niña; See Fig. 10 for a full explanation.

Table 4 
Chl correlation with the physical parameters per subsection in the coastal strip, 
the statistically significant correlations are marked with an asterisk (0.01 < P- 
values<0.05), and the statistically very significant are in bold (P-values<0.01; 
Tornquist et al., 2024).

Rho Chl ~ SST Chl ~ PR Chl ~ VW Chl ~ UW
N1 −0.10 0.14 0.07 −0.12
N2 −0.13 0.05 0.09 −0.03
N3 −0.12 −0.08 0.21 0.10
C1 −0.16* −0.07 0.20 −0.03
C2 −0.15* 0.04 0.08 0.06
C3 ¡0.20 ¡0.33 0.38 ¡0.27
S1 −0.06 ¡0.39 0.45 ¡0.41
S2 0.15* ¡0.24 0.26 ¡0.29
S3 0.20 ¡0.20 0.23 ¡0.32
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5. Conclusions

The use of CCA has proven to be a powerful tool in expanding the Chl 
variable. This methodology has consistently produced coherent results 
that align with the observed patterns in meteorological variables, as 
depicted in Fig. 10 and Ancapichun and Garcés-Vargas (2015) along 
with Montecino & Aceituno’s (2003) findings. Despite the acknowl-
edged uncertainties, this approach has provided valuable insights into 
the intricate relationship within this dynamic system.

The ENSO composites were useful to determine the spatial and 
temporal variation of the physical parameters and the Chl. This allowed 
us to establish the relationship between them and determine which 
Zones were more affected.

ENSO events induce alterations in the SPSA, leading to shifts in 
typical winds and precipitation, which affect phytoplankton production. 
Figs. 12 and 13 highlight that the Southern Zone is more susceptible to 
these climate variations, while the Northern Zone is almost not affected.

The most relevant change was observed in the Southern Zone (S2 and 
S3), which experienced a reduction in westerly winds and precipitation, 
coupled with a slight increase in the southerly winds during warm 
seasons driven by an SLP-positive variation (Fig. 12). This resulted in a 
notable boost in phytoplankton production, particularly during strong El 
Niño episodes. Meanwhile, the Northern Zone showed no noticeable 
variations in chlorophyll during La Niña and some increases during El 
Niño. However, these variations were not as noticeable because of the 
generally low chlorophyll variability (Fig. 3 and Table 4 from Tornquist 
et al., 2024). This was due to weak winds with minimal variation and the 
narrow coastal shelf (Tornquist et al., 2024; Tornquist, 2023).

This procedure could be extended to analysing other important 
climate drivers that have an impact on the SPSA and, consequently, the 
Chilean coast, such as AAO or the Pacific Decadal Oscillation (PDO).

Fig. 12. A) SPSA averaged behaviour for September, October, February and April, where the horizontal lines define each Subsection limit (top colour bar). B) SPSA 
averaged behaviour in El Niño years (2015, 1997, 1981 and 1991) for the same months (top colour bar). C) El Niño SPSA difference from the regular SPSA (bottom 
colour bar). The curly brackets indicate the sections where the southerly winds are more substantial than in a regular SPSA year. The C section showed how the SLP 
was higher in the extreme south. it also exhibited how the westerly winds were weaker during an El Niño year.
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