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A MARKET RESILIENT DATA-DRIVEN APPROACH TO OPTION PRICING

ANINDYA GOSWAMI

Department of Mathematics, IISER Pune, India
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Department of Mathematics, University of York, UK

Abstract. In this paper, we present a data-driven ensemble approach for option price prediction
whose derivation is based on the no-arbitrage theory of option pricing. Using the theoretical treat-
ment, we derive a common representation space for achieving domain adaptation. The success of
an implementation of this idea is shown using some real data. Then we report several experimental
results for critically examining the performance of the derived pricing models.

1. Introduction

Some products or services are often bought to protect the buyer from uncertainties. Warranty is
one of them. Figuring out a fair price for a warranty is not an easy task. Since the financial markets
consist of risky assets, traders purchase some warranty-type contracts, called options. Several
different types of options are traded by numerous traders daily in every modern stock exchange.
Determination of an option’s fair price is one of the central questions in Mathematical Finance.
Following the seminal work [2] by Black and Scholes the mathematical treatment for addressing the
option pricing problem quickly flourished. In the last fifty years, thousands of peer-reviewed articles
came into existence to address various mathematical, computational, or statistical aspects of fair
pricing of a large spectrum of options under diverse scenarios. Consideration of increasingly realistic
stochastic models of asset returns and then showing that the model could preclude arbitrage,
before deriving a stochastic or PDE representation of an option’s price is the state of the art
for option pricing research. These works have tremendously enriched our understanding of fair
pricing of options, beyond any doubt. Besides, option pricing research also played a vital role
in inspiring deeper and more diverse investigation of stochastic calculus, differential equations,
numerical simulations etc. Given this, it is natural to have a judgment that “pricing of option is
not just about data science”. Without disagreeing with that judgment, we propose a novel direction
of research that translates some existing data science ideas into the language of stochastic modeling
to derive some theoretical algorithms of data-driven option pricing that leverage from both worlds.

A solution to the option pricing problem is called data-driven if the approach assumes no the-
oretical model of asset dynamics and relies only on the observed data. However, it is possible to
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2 A MARKET RESILIENT DATA-DRIVEN APPROACH TO OPTION PRICING

utilize the general theory of fair pricing of options on an abstract underlying asset while deriving a
data-driven option pricing model. In other words, despite the pricing solution being data-driven the
derivation of the solution need not always be data-driven. For example, in a recent work [4], some
theoretical constraints of fair price of options are utilized to come up with a data-driven model.
The investigations on the prospect of various types of data-driven option pricing are not new in the
literature. Nevertheless, the volume of work in this direction is much less than its counterpart in
the theoretical option pricing. A comprehensive literature survey is beyond the scope of this paper.
In the initial works of [13, 10, 15] the promise of data-driven option pricing is reported using the
data of option contracts on the S&P 500. Further investigation on feature selection appeared in
[3, 14]. Modularity is used in [9, 21] for improving the pricing quality. In the context of option
pricing, modularity entails dividing the data set into disjoint modules, according to the moneyness
and time-to-maturity parameters of the contracts. Some more recent works [8, 17, 18] build upon
the above findings and a theoretical property of options contracts, called homogeneity hint [7].

In this paper, we first revisit the homogeneity hint property by producing theoretical proof in a
wide general setting. Then we explain the shortcomings of the option price prediction models based
only on the homogeneity hint. Such models can learn from one asset class data and be applied
to another, provided their log returns have similar distributions under their risk-neutral measures.
However, requiring this identity in two different assets is quite restrictive. For this reason, we
formulate, in a parametric setting, a common representation space that bridges two different risk-
neutral return distributions. The common representation space is used for connecting option prices
on assets having no similarities. This is a fresh idea for the machine learning application of option
pricing, where domain adaptation is implemented. We show theoretically, as well as empirically
that a data-driven approach based on a common representation space can gain accuracy on test
data having significant domain shifts. For the empirical study, we consider the option price data
of two indices in the National Stock Exchange (NSE) of India. It is worth noting that options on
these indices (NIFTY 50, and NIFTY Bank) have very high trading volume in respect of the global
market.

We compare the performance of both approaches, the one that is based on homogeneity hint (HH)
and the one that accounts for domain shift (DS) using the price data of options on NIFTY 50, and
NIFTY Bank indices. We identify that option price data during the COVID lockdown period in
India has a significant domain shift and is hence eligible to assess the performance of models for
domain shift. The assessment shows a significant gain in accuracy for models that utilize a common
representation space. We also propose an ensemble model using the models based on HH and the
one that is to address DS. We put forward a notion of domain shift quotient, that measures the
degree of domain shift and is utilized to set weights on constituent models in the ensemble model.
We have performed extensive experiments to assess the performance of the ensemble model using
empirical as well as synthetic data. In this paper, we also assess the performance of each of these
three approaches for multi-source training models, where the model is trained on data coming
from symbols NIFTY 50 and NIFTY Bank. We report empirical evidence of the reliability of the
multi-source ensemble model. Option price prediction model with multi-source training is capable
of giving reliable answers even for an underlying asset, which has no or little historical data. This
overcomes the common hurdle faced by any data-driven approach.

It is worth mentioning that we include no macroeconomic or fundamental financial variables
in the feature sets, to retain the interpretability of the model. Thus the proposed approaches
do not lack the interpretability of the model which is a primary criticism that a data science
model commonly receives. We also clarify that the goal of this paper is not merely to showcase
the usefulness of an existing or newly developed machine-learning method. This rather lays the
foundation of the theoretical solution to domain adaptation, a data science idea, in the context of
option pricing. The full potential of a non-asset-specific model with the above-mentioned domain
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adaptation may further be explored by extensive experimentation. In this connection, we recall
that [19] reports a similar extensive experiment to study some other universal non-asset-specific
relations captured by a deep learning model. However, keeping in mind that this is the first research
on domain adaptation in the context of option pricing, we focus more on theory building than on
large-scale empirical verification across all markets.

In this paper, we introduce a variable called volatility scalar that plays a key role in the formu-
lation of common representation space. Theoretically, it represents the root mean square of the
volatilities of the underlying during the remaining life of the option, provided the underlying follows
diffusion dynamics. This variable is used for some type of scaling at the stage of defining features
in the common representation space. We derive its expressions under the constant volatility as well
as stochastic volatility scenarios. These expressions allow one to estimate the value of the volatility
scalar. However, we retain simplicity in the implementation by assuming constant volatility while
estimating the variable for investigating whether the notion of domain adaptation works even with
such a crude assumption. It is also worth noting that since we do not calibrate a theoretical model
for the option price prediction, the discussion of no-arbitrage calibration like [6] is irrelevant here.
We also do not address the question of hedging options. A comprehensive literature survey on the
statistical hedging problem can be found in [16].

The rest of the paper is organized as follows. In Section 2, we develop the theoretical framework
of approaches based on HH and one for addressing DS. For achieving the domain adaptation, a
common representation space is formulated using an approximate identity in Section 3. In this
section, we develop an ensemble approach too. The empirical data is described in Section 4, using
exploratory data analysis. Subsequently, we describe all proposed supervised learning approaches
in Section 5. In Section 6, we report the performance of every model based on proposed approaches.
Some concluding remarks are added to Section 7.

2. Theoretical Framework

2.1. Non-parametric Settings. Let (Ω,F ,P, {Fu}u≥0) be a filtered probability space. In this

section we assume that S(t,s) := {S(t,s)(u), u ≥ t} is an adapted right continuous with left limit
(rcll) process that models the price of a risky asset for all future time u ≥ t and at present time

t(≥ 0) it is equal to a positive value s. Evidently, S = {S(t,s) | t ≥ 0, s > 0} forms a family of
adapted processes. With a minor but usual abuse of terminology, we often call S itself as a process.
Let B := {B(u)}u≥0 denote the price process of a risk-free asset. We further assume the following.
Model Assumptions:-

M1. The market model, consisting of risky and risk-free assets with price processes S(0,s) and B
respectively is free of arbitrage under admissible strategies for any s > 0.

M2. The family of processes S satisfies

S(t,s)(u) = sS(t,1)(u), (2.1)

for all u ≥ t ≥ 0 and s > 0 almost surely.
M3. Either S(0,s) is Markov or there is an additional auxiliary process V := {V (u)}u≥0 such

that {(S(0,s)(u), V (u))}u≥0 is Markov w.r.t. the filtration {Fu}u≥0 for all s > 0.

It is worth noting that M1 is a standard technical assumption. On the other hand, M2 asserts affine
structure, i.e. S is expressed as exponential. This is valid, for example, with Geometric Brownian
motion (GBM), regime-switching GBM, Merton’s Jump Diffusion model, etc. Additional V in M3
is not needed for GBM, but that is essential for other multi-factor models. For example, V is the
Markov regime in a regime-switching model, instantaneous volatility in the Heston model, etc.
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Definition 2.1 (Moneyness). Let K be the strike price of a call option. If the present asset price
is s, p = K/s is called the present moneyness of the said option. Note that p = 1 represents
at-the-money, p > 1 represents out-of-the-money and p < 1 represents in-the-money.

Theorem 2.2. Assume that the market contains two risky assets other than a risk-free asset,
whose price processes are modeled by S1 and S2, satisfying (M1)-(M3) with a common auxiliary
process V . Let ϕi denote the European call option price function on the ith risky asset. That is,
ϕi(t, si, v;Ki, T ) gives the present (time t) price of the call option on Si having exercise price and
maturity Ki and T respectively with V (t) = v and Si(t) = si. Also assume that the conditional

laws of S
(t,1)
1 (T ) and S

(t,1)
2 (T ) given V (t) = v are identical under their corresponding risk-neutral

measures P1 and P2, respectively. If the contracts are chosen with an identical time to maturity
and equal moneyness at present time t i.e., K1

s1
= K2

s2
= p (say), we have

s1
−1ϕ1(t, s1, v; ps1, T ) = s2

−1ϕ2(t, s2, v; ps2, T ). (2.2)

The above theorem is applicable for a wide range of models. For example, when two geometric
Brownian motions (GBM) with different drifts but the same diffusion coefficients are taken, their
dynamics under respective risk neutral measures are identical. The requirement of common V is
also not a real restriction. For example, consider two regime switching GBMs S1 and S2, with
Markov regime processes X1 and X2 respectively. In other words, for each i, Xi is a finite state
continuous-time Markov chain that influences otherwise constant drift and volatility coefficients of
a GBM Si. Then the process V := (X1, X2), is such that both (S1, V ) and (S2, V ) are Markov. It
is also worth noting that due to the normalization condition in the equality of conditional law, the
theorem remains applicable even if one asset’s price is more than several orders of magnitude of
another. The theorem is proved below.

Proof of Theorem 2.2. It is given that the market contains two risky assets, whose price processes
are modeled by S1 and S2, satisfying (M1)-(M3) with an auxiliary process V . For each i = 1, 2, let
Pi be an equivalent martingale measure (EMM) corresponding to Si, i.e., Si/B is martingale under
Pi, a probability measure equivalent to P. Using Pi, we express a present (time t) fair price of a
European-style call option on the ith risky asset having the exercise price and maturity time as Ki

and T respectively, as

Ei

(

B(t)

B(T )
(Si(T )−Ki)

+ | Ft

)

where Ei is the expectation w.r.t. Pi. Using (M3), the above is

Ei

( B(t)

B(T )
(Si(T )−Ki)

+ | Si(t), V (t)
)

= ϕi(t, Si(t), V (t);Ki, T ),

where ϕi denotes the call option price function on the ith asset with maturity T and exercise price
Ki. For each i = 1, 2, using (2.1), and the above equation, and by denoting V (t) = v, Si(t) = si,
we get

ϕi(t, si, v;Ki, T ) = Ei

( B(t)

B(T )
(S

(t,si)
i (T )−Ki)

+ | S(t,si)
i (t) = si, V (t) = v

)

= Ei

( B(t)

B(T )
si(S

(t,1)
i (T )− Ki

si
)+ | siS(t,1)

i (t) = si, V (t) = v
)

= siEi

( B(t)

B(T )
(S

(t,1)
i (T )− Ki

si
)+ | S(t,1)

i (t) = 1, V (t) = v
)

= siϕi

(

t, 1, v;
Ki

si
, T

)

. (2.3)
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Furthermore, it is given that the conditional laws of S
(t,1)
1 (T ) and S

(t,1)
2 (T ) given identical V values

at time t under their corresponding risk-neutral measures P1, and P2 respectively are identical.
Hence for the contracts with identical time to maturity and equal moneyness at time t, i.e., K1

s1
=

p = K2
s2
, we have

E1

( B(t)

B(T )
(S

(t,1)
1 (T )− p)+ | S(t,1)

1 (t) = 1, V (t) = v
)

= E2

( B(t)

B(T )
(S

(t,1)
2 (T )− p)+ | S(t,1)

2 (t) = 1, V (t) = v
)

or, ϕ1(t, 1, v; p, T ) = ϕ2(t, 1, v; p, T ).

Using (2.3), the above equality is rewritten as

s1
−1ϕ1(t, s1, v; ps1, T ) = s2

−1ϕ2(t, s2, v; ps2, T ).

Hence, (2.2) holds. □

Remark 2.3 (Homogeneity Hint Approach or AHH). The above theorem is alluded to as homo-
geneity hint (see [7] and references therein) as the scale-free terms on both sides of (2.2) are equal.
This also reflects the homogeneity of order one of the option prices in stock and strike prices.
For predicting option price, the scale-free ratio of option and stock price can be considered as a
response/target variable in a learning approach whereas another observed scale-free quantity, the
array of order statistics of mean-adjusted historical log returns, can be taken as a predictor/feature
variable. By doing so, from the input asset price data, the magnitude, temporal, and drift infor-
mation are removed and the spatial distribution of return is retained. On the other hand from the
predicted target value, which stands for the ratio of option and spot prices, the predicted option
price is obtained by multiplying the target with the observed stock price. Such an approach has
great flexibility. It can learn from one asset class data and be applied to another, provided their
log returns have similar distributions. See [8] for more details. We call such approaches as the
Homogeneity Hint Approach or AHH .

However, requiring identical distributions of log returns in two different assets is quite restrictive,
even under their risk-neutral measures. Unless the features and targets are further scaled, to factor
out the large disparity of their distributions, the trained model fails to perform across assets. In
other words, AHH adapts poorly to domain shifts. Indeed such an approach may find feature values
of the test data from another asset unfamiliar with reference to the training data and hence fail to
perform for test dataset. In view of this, we wish to formulate a common representation space, i.e.,
a bridge between two different risk-neutral return distributions and utilize that for connecting their
corresponding option prices. To this end, we adopt parametric models of asset price dynamics.

2.2. Parametric Settings. In this section and onwards we only consider the processes having
continuous paths, unlike rcll process in the preceding section.

The simplest parametric model for the continuous-time dynamics of asset prices is geometric Brow-
nian motion (GBM). The GBM which is also a Markov process satisfies (M1)-(M3), with no need
of auxiliary process V and hence in particular(2.1) holds. Therefore, under GBM the theoretical
call option price function C(t, s;K,T ; r, σ) satisfies

C(t, s;K,T ; r, σ) = sC

(

t, 1;
K

s
, T ; r, σ

)

as a consequence of (2.3). The function C is also known as the Black-Scholes-Merton (BSM)
formula for a European call option. Here we replace (S(t), V (t)) by only S(t), since S itself is
Markov. As a result, the additional variable V is dropped from the option price function. The
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rationale behind such discrepancies in notation in other places is also evident from the context, so
the discrepancies cause no ambiguity. Next, we consider an extension of BSM model for further
discussion. Let (Ω,F ,F,P) be a filtered probability space, with a Brownian motion W = W (t)t≥0

adapted to F. We consider S = {S(t)}t≥0 an Itô Process that models a stock, i.e., S satisfies the
following SDE

dS(t) = µ(t)S(t)dt+ σ(t)S(t)dW (t), (2.4)

where {µ(t)}t≥0 and {σ(t)}t≥0 are adapted and bounded processes.

Definition 2.4 (ρ-scaling of a process). Given a positive valued process S = {S(t)}t≥0, define
A := {A(t)}t≥0 such that A(t)ρ = S(t) for all t ≥ 0 and for some ρ > 0. We call the process A as
ρ-scaling of process S.

The ρ-scaling is an easy recipe for obtaining a parametric family of processes, all having different
risk-neutral return distributions. A more precise version of this statement is given in the following
lemma.

Lemma 2.5. Assume that S satisfies (2.4) and ρ > 0. (i) Both S and its ρ-scaling satisfy (M1)-
(M3). (ii) The instantaneous volatility of the ρ-scaling of S is identical to the instantaneous volatil-
ity of S divided by ρ.

Proof. (i) The strong solution of SDE (2.4) is

S(t) = S(0)e

∫ t

0

(

µ(u)−
σ(u)2

2

)

du+
∫ t

0 σ(u)dW (u)
,

for an arbitrary initial value S(0) > 0. Thus S satisfies (2.1) and (M3) holds with no additional
auxiliary process V , as S itself is Markov. Consequently, ρ-scaling of S satisfies

A(t) = S(t)
1
ρ = A(0)e

[

ρ−1
∫ t

0

(

µ(u)−
σ(u)2

2

)

du+
∫ t

0
σ(u)
ρ

dW (u)

]

(2.5)

as S(0)
1
ρ = A(0). Therefore, A also satisfies (2.1) and (M3). Similarly, it is not hard to see that

both S and A fulfill (M1), as an application of Girsanov’s transformation and the fundamental
theorem of fair pricing (See [11, Example 2 in Subsection 7.4].

(ii) Using Itô’s lemma, from (2.5), we get

dA(t) =

(

µ(t)

ρ
− ρ− 1

2ρ2
σ(t)2

)

A(t)dt+
σ(t)

ρ
A(t)dW (t)

i.e.,
1

A(t)
dA(t) =

(

µ(t)

ρ
− ρ− 1

2ρ2
σ(t)2

)

dt+
σ(t)

ρ
dW (t). (2.6)

The left side is the instantaneous simple return of A. Thus the instantaneous volatility of A, i.e.,
the coefficient in dW (t) term, is ρ−1 times the volatility of S. □

Lemma 2.5 implies that although S and A satisfy (M1)-(M3), Theorem 2.2 is not applicable
between them. In other words, an identity like (2.2) between the option prices on S and A does not
hold, as their returns’ distributions under the respective risk-neutral measures are not identical.
However, given a pair of assets whose prices are modeled by (2.4) with different parameter values,
one can choose a pair of ρ values so that the assets’ ρ-scalings satisfy an identity like (2.2). This
fact is stated in the following theorem.
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Theorem 2.6. Assume that for each i = 1, 2, Si solves (2.4) with µ = µi, σ = σi and Brownian
motion W =Wi. For a fixed t ∈ [0, T ), denote

ρi :=

(

1

T − t
E

∫ T

t
σ2i (u)du

)

1
2

, ∀i = 1, 2, (2.7)

where E is the expectation with respect to P, and denote the price function of a European call option
on the ρi-scaling of ith asset, by ψi. Then
(i) the risk-neutral distribution of log return of the ρi-scaling of ith assets are identical,
(ii) for all a1 > 0, a2 > 0, p > 0

1

a1
ψ1(t, a1, pa1, T ) =

1

a2
ψ2(t, a2, pa2, T ). (2.8)

Proof of Theorem 2.6. It is given that Si solves for all t > 0

dSi(t) = µi(t)Si(t)dt+ σi(t)Si(t)dWi(t),

where the Brownian motions W1 and W2 may or may not be independent. Now we fix a t > 0 and

for each i = 1, 2, set ρi arbitrarily and Ai(u) = Si(u)
1
ρi for all u ≥ t and also denote the European

call option price function on the asset having price process Ai as ψi. In view of (2.6), Ai solves the
following SDE

dAi(u) = Ai(u)

(

dB(u)

B(u)
+
σi(u)

ρi
dW ′

i (u)

)

where, W ′
i (·) :=Wi(·) +

∫ ·
0

(

µi(u)
σi(u)

− ρi−1
2ρi

σi(u)
)

du−
∫ ·
0

ρi
σi(u)

dB(u)
B(u) . Hence

Ai

B
(·) = Ai

B
(t)E

(
∫ ·

t

σi(u)

ρi
dW ′

i (u)

)

(2.9)

where E(X) denotes the Doléans-Dade exponential of the semi-martingale X. For each i = 1, 2, let
P
′
i denote a probability measure equivalent to P such that W ′

i is a Brownian motion under P′
i. This

exists as a consequence of Girsanov’s Theorem. Then Ai/B is a martingale under P′
i, and hence P

′
i

is an equivalent martingale measure (EMM) corresponding to Ai.

Next, we choose the constants ρ1, and ρ2 so that under the respective risk-neutral measures P′
1,

and P
′
2, the conditional laws of A

(t,1)
1 (T ) and A

(t,1)
2 (T ) are identical. That is, using (2.9)

∫ T

t

σ1(u)

ρ1
dW ′

1(u)
d
=

∫ T

t

σ2(u)

ρ2
dW ′

2(u) (2.10)

where the equality “
d
=” is in the sense of distribution. Since the conditional distributions of

Ai(T )/Ai(t) under the corresponding risk neutral measures are identical, from Lemma 2.5 and

Theorem 2.2 we get (2.8). Moreover, as σi is bounded,
∫ T
t

σi(u)
ρi

dW ′
i (u) becomes Gaussian random

variable with mean zero and variance ρ−2
i E

∫ T
t σ2i (u)du for each i. Hence the values of the parame-

ters ρ1 and ρ2 specified by (2.7) are sufficient to ensure (2.10). Hence the proofs of (i) and (ii) are
complete. □

Although ρ in (2.7) depends on the law of σ, and values of t, and T , we don’t write it here to avoid
clumsy notation. However, we refer to the value in (2.7) as volatility scalar to avoid ambiguity.
For the rest of the paper, ρ and ρi denote the volatility scalars of S and Si respectively, unless
otherwise mentioned.
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Remark 2.7 (Estimation of the volatility scalar ρ). From (2.7), it is also evident that, if σ1 and
σ2 are stationary, ρ1, ρ2 can be estimated from the past data. More precisely, ρ, the average of
forward variance, see (2.7), is typically estimated by taking the past 20 days’ data and we assume
that the past 20 days’ historical volatility is a good estimator of future volatility, at least in average.
It is worth mentioning that ρ must be re-estimated as t and T change which is a sensible thing to
do as in practice one needs to calibrate the model at every epoch (i.e., as t changes and then time
to maturity T − t also changes).

The selection of ρ, so that (2.7) holds becomes particularly simple if the volatility factor σ is
constant in time. Indeed, the volatility scalar ρ becomes identical to σ. Even if the volatility process
is neither constant nor stationary but follows a parametric diffusion equation, the volatility scalar
may be estimated by estimating the parameters. We illustrate this by considering the Heston model.
In that, the square of volatility follows a Cox–Ingersoll–Ross (CIR) process, i.e., for all t ≥ 0

dσ2(t) = κ(θ − σ2(t))dt+ ξσ(t)dW̃ (t),

with σ2(0) > 0 where κ, θ, ξ, σ(0) are positive parameters and W̃ is a standard Brownian motion.
A direct calculation shows that

1

T − t
E

∫ T

t
σ2(u)du = θ − (θ − σ2(t))

1− e−κ(T−t)

κ(T − t)
.

Therefore, ρ =

√

(

θ − (θ − σ2(t))1−e−κ(T−t)

κ(T−t)

)

, a number between the long-run mean of volatility
√
θ and the current volatility σ(t), can be estimated using the estimator of θ, σ(t) and the speed

parameter κ of mean reversion.

On the other hand, for a special case of non-parametric settings, consider two stocks whose prices

satisfy (2.4) with identical volatility processes, i.e., σ1
d
= σ2. Then (2.10) holds with any equal values

of ρ1 and ρ2.

In the aim of building a market-resilient learning approach for option price prediction, we follow
the approach of common representation. First of all, we are required to select features that can
help to extrapolate for successfully predicting option prices corresponding to atypical out-sample
data. In this connection, Theorem 2.6 (i) is useful. In particular, it implies that the risk-neutral
distribution of log return of the ρ-scaling of the asset is a market-resilient feature influencing the
option pricing mechanism. Needless to say, the learning approach should also have features coming
from contract parameters and risk-free assets. This feature representation from source and target
domains is indistinguishable. Next, we are required to decide on a suitable target that depends
solely on features and not on factors, not included in the feature for formulating the common
representation space. There is no unique or obvious way to do that. For example, a relation
between ϕi and ψi, the observable and unobserved option prices of the assets with prices Si and
Ai for each i, may be derived. Then a relation between ϕ1 and ϕ2, the observable option prices of
the assets with prices S1 and S2 can be derived, as Theorem 2.6 relates ψ1 and ψ2. It seems that
this is hard in general. If for each i = 1, 2,

ψi(t, ai, pai, T ) = F (ϕi(t, a
ρi
i , pa

ρi
i , T ), ai, ρi, p, T ) (2.11)

for some known F , then from Theorem 2.6 we have

1

s
1/ρ1
1

F (ϕ1(t, s1, ps1, T ), s
1/ρ1
1 , ρ1, p, T ) =

1

s
1/ρ2
2

F (ϕ2(t, s2, ps2, T ), s
1/ρ2
2 , ρ2, p, T ) = U (say) (2.12)

provided ρ1 and ρ2 are chosen as in (2.7). The target U is invariant for two different contracts
with identical moneyness and time to maturity on two different assets, possibly with domain shifts.
Also, U = ψi(t, ai, pai, T )/ai, which depends solely on the Ai features and the features related to the
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contract and risk-free asset. One may perhaps obtain some other targets based on a transformation
involving implied volatility etc so that similar common representation is created. Assume that a

learning approach A is trained to take centered return distribution of S
1/ρi
i (i.e., the returns of Ai

after being subtracted by its mean) and variables and parameters p, T , r as inputs and to give U as
target. Then A learns a fundamental property of option pricing from the common representation
space, that holds across assets having a wide range of return distributions. Further, if the map
ϕ 7→ U is invertible, then for test data, the predicted target may be used for computing the option
price. We explain this idea by making use of an approximation formula [1] in the next section.

3. Application of an Implied Volatility Estimate in Domain Adaptation

3.1. A Common Representation Space. In this section, instead of an equality (2.11), which is
hard to find, we use an approximate equality relation to derive an approximation of the equality
(2.12). To this end, we refer to [1], which gives a simple approximation of implied volatility, the
inversion of the BSM formula for near ATM options. The literature on the inversion of the BSM
formula is reasonably rich. We cite [12] for various other improvements over the simple formula in
[1] which we use in this section. For each asset i = 1, 2, the approximation formula for IV Si,pi,Ti , the
implied volatility of asset Si corresponding to a call contract with moneyness and time to maturity
pi, and Ti respectively, is given by

IV Si,pi,Ti ≈
√

2π

Ti

(

ϕi(0, si, pisi, Ti)

si(1 + p∗i )/2
− (1− p∗i )

(1 + p∗i )

)

,

where pi ≈ 1, p∗i = pie
−rTi , si is the present price of ith stock. We recall that ϕ1 and ϕ2 are price

functions of European call contracts on assets having prices S1 and S2 respectively which follow
diffusion equations as in (2.4). Since, ρi is defined (see Definition 2.7) using the instantaneous
volatility values on the time interval between present and maturity time, the implied volatilities
should nearly be proportional to ρi, provided all other parameters are kept constants. That is if
p1 ≈ p2, and T1 ≈ T2, we have

IV S1,p1,T1

ρ1
≈ IV S2,p2,T2

ρ2
.

However, the stylized facts and other theoretical validations of volatility smile indicate that the
said approximation should worsen as T1, and p1 depart from T2, and p2. Finally, by plugging in
the approximate expressions in the above approximate equality we get

√

2π

T1

(

ϕ1(0, s1, p1s1, T1)

s1(1 + p∗1)/2
− (1− p∗1)

(1 + p∗1)

)

/ρ1 ≈
√

2π

T2

(

ϕ2(0, s2, p2s2, T2)

s2(1 + p∗2)/2
− (1− p∗2)

(1 + p∗2)

)

/ρ2. (3.1)

We denote the left and right sides by U(si, r, σi, pi, Ti, ρi) with i = 1, 2 respectively. Also, we

can approximate U(si, r, σi, pi, Ti, ρi) = IV Si,pi,Ti

ρi
≈ IV Ai,pi,Ti , the implied volatility corresponding

to the asset Ai. The last approximate equality is due to the identical values of moneyness and
time to maturity and the fact that the volatility scalar value corresponding to A is one. Hence,
U(si, r, σi, pi, Ti, ρi) may be regarded as primarily dependent on asset Ai features and the features
related to contract and risk-free asset.

3.2. Discussion on the approximation error. Equation (3.1) expresses an approximate relation
between these two option prices and conveys that U is nearly constant wrt s, σ, and the volatility

scalar ρ. In particular, if prices of a pair of stocks satisfy (2.4) with σ1
d
= σ2, then (2.10) holds

with ρ1 = ρ2 = ρ, for any arbitrary value. With ρ1 = ρ2 = 1, clearly Si = Ai and ψi = ϕi for each
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i = 1, 2. Consequently (2.8) gives ϕ1(0,s1,p1s1,T )
s1

= ϕ2(0,s2,p2s2,T )
s2

. On the other hand if T1 = T2 = T ,

p1 = p2 = p, Equation (3.1) gives
(

ϕ1(0, s1, ps1, T )

s1
− (1− p∗)

2

)

/ρ ≈
(

ϕ2(0, s2, ps2, T )

s2
− (1− p∗)

2

)

/ρ

i.e.,
ϕ1(0, s1, ps1, T )

s1
≈ϕ1(0, s2, ps2, T )

s2
.

Thus the relation in (3.1) is exact, i.e., ‘≈’ can be replaced by ‘=’, when the volatility scalars are
identical, i.e., ρ1 = ρ2 and the contract moneyness and time to maturities match.

The approximation error in (3.1) associated to a pair similar contracts (i.e., T1 = T2 = T , p1 = p2 =

p) on assets having volatility processes σ1 and σ2 is measured by the relative error sup{ |U1−U2|
max(U1,U2)

|
s1 > 0, s2 > 0} where, Ui = U(si, r, σi, p, T, ρi). We compute this error for the ATM options,
i.e., moneyness parameter p = 1 under the special case of BSM models with constant volatility
coefficients. The time to maturity T is taken as 0.2 year. In Figure 1a, the horizontal and vertical
axes represent the volatility coefficients values of two different assets. Each volatility value ranges
on [5%, 100%]. The darkness of shades show the relative error values for each ordered pair (σ1, σ2).
The maximum error is less than 4.5%. If none of σ1 and σ2 is smaller than 9%, the error is less
than 2%. This numerically validates that (3.1) is a reasonable approximation for practical purposes
where the volatilities are not too small.

(a) Grid heatmap of the approximation error for a
pair of volatilities
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(b) The approximation error vs disparity(max-min
ratio) of volatilities

Figure 1. Visualization of relative error in the approximation relation (3.1)

It is evident from Figure 1a that the error is minimal when σ1 and σ2 are identical. This can
be explained by appealing to the homogeneity hint, stated under the non-parametric setting in
Theorem 2.2. A separate visualization of error’s dependence on the degree of mismatch of the
volatilities is given in the scatter plot Figure 1b under the same setting.

In this max(σ1,σ2)
min(σ1,σ2)

, a measure of mismatch, is plotted on the horizontal axis and the corresponding

relative error of the approximation (3.1) is plotted on the vertical axis. Every blue circle corresponds
to a pair of volatilities (σ1, σ2) for which the relative error is computed. The horizontal and the

vertical coordinates of each circle are max(σ1,σ2)
min(σ1,σ2)

and sup{ |U1−U2|
max(U1,U2)

| s1 > 0, s2 > 0} respectively,
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where σi is the constant volatility of ith asset. It shows that if the largest volatility is not larger
than double the smallest, the relative error is less than 1.5%. On the other hand, the error is less
than 3% if the largest is not larger than 9 times the smallest.

3.3. Approach ADS for Domain Shift. Assume that a learning approach takes risk-neutral
return distribution of ρ1-scaling A1 of asset prices S1 as a feature variable. To be more precise, the
order statistics of mean subtracted log returns of A1 for the past few time periods are included in
the feature set. The approach should also have features from contract parameters p and T , and
risk-free assets’ interest rate r. Also, set U(s1, r, σ1, p1, T1, ρ1) as the target, which can be obtained
from the observed option value ϕ1 in the training data set. Consequently, for a test data set on
another asset S2, after feeding in the feature values to the trained model, a value of the target
U(s2, r, σ2, p2, T2, ρ2) is predicted. Then the option price can be revived using the following formula

ϕ2(t, s2, p2s2, T2) = s2

(

ρ2
1 + p∗2

2

√

T2
2π

U(s2, r, σ2, p2, T2, ρ2) +
1− p∗2

2

)

, (3.2)

irrespective of its volatility as long as ρ2 is the volatility scalar for S2. Therefore, the above-
mentioned learning approach is better adapted for the domain shift. We denote this as ADS .
Of course, it is possible to develop a different learning model following this idea by choosing an
approximation relation more accurate than (3.1) for possibly better performance. So, as far ADS

is concerned, we can imagine that although this simple approximation facilitates predicting option
prices reasonably well for test data sets with domain shifts, would fail to outperform AHH when
domain shift is absent. This raises the need of an ensemble model.

3.4. Ensemble Model. The difference between the present and the past mean volatilities, nor-
malized by the second one, may be considered as a crude measure of the domain shift. We call
this measure the domain shift quotient or simply DSQ. To be more precise, if σ0 and σi are the
average historical volatility of the full training data set and the current historical volatility associ-

ated with ith test data respectively, the formula for the DSQ for the specific test data is |σi−σ0|
σ0

. In
this subsection, we propose an ensemble model where the ratio of weights given to the predictions

from ADS and AHH models is λ1

(

|σi−σ0|
σ0

)λ2

, a power function of DSQ. We denote the resulting

approach as AE(λ) where λ = (λ1, λ2). If PDS(i) and PHH(i) are the predicted prices of i-th option
from the models with approaches ADS and AHH respectively trained with same data, then PE(i),
the predicted price from an ensemble approach AE(λ), is defined as

PE(λ)(i) =
1

1 + λ1

(

|σi−σ0|
σ0

)λ2
PHH(i) +

λ1

(

|σi−σ0|
σ0

)λ2

1 + λ1

(

|σi−σ0|
σ0

)λ2
PDS(i). (3.3)

As a result, for a fixed λ, the weight to PHH diminishes as the atypicality rises in the test data.
The more atypical the return data, i.e., the larger the relative difference between the test and the
training volatilities, the higher weight is assigned to the prediction PDS in the ensemble approach
AE(λ). The parameter λ is estimated using the least square method from a sample of test data.
The ensemble approach using the estimated λ is simply denoted by AE . The performance of the
ensemble model may be evaluated for in-sample and out-of-sample data.
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4. Data

According to the Futures Industry Association (FIA), 84% of global equity options are now traded
on Indian exchanges, up from just 15% a decade ago.1 In the first quarter of 2024 alone, over 34.8
million equity index options were traded on India’s two main financial derivatives exchanges—the
National Stock Exchange of India (NSE) and the Bombay Stock Exchange (BSE) India. This was
double the volume from Q1 2023 and accounted for 73% of all futures and options traded globally.
Despite this high trading volume, the market’s value remains relatively small compared to North
American and European markets due to lower notional values and premiums per contract. For
example, in March 2024, NSE’s total options premiums were $150 billion, about a quarter of the
$598 billion seen across all US options exchanges. Nonetheless, the Indian market’s rapid growth
and substantial trading volume makes it a crucial area for developing and applying data-driven
option trading strategies.

For our study, we analyze daily contract price data for European call options on NIFTY502

and BANKNIFTY3. The abundance of data allows a learning model to better capture and depict
market behavior and trading patterns. On the other hand, due to the presence of many traders’
participation, the traded prices are free from market inefficiency. The dataset, spanning January 1,
2015, to April 30, 2020, is obtained from the NSE’s historical archives4. The data-driven supervised
learning approaches for pricing European-style call options, outlined in [8] reportedly performed
worse in abrupt highly volatile market conditions. Our objective is to introduce a novel market-
resilient approach for improving the prediction for out-sample data having atypical asset returns.
To this end, we incorporate testing of the trained model with data from the COVID-19 lockdown
period, when the financial market crashed, i.e., from January 2020 to April 2020.

Each data point includes the following information, (i) the daily closing prices of the underlying
asset and a particular European call option, (ii) moneyness and the time to maturity of that call
contract, (iii) daily 19 log returns of the underlying asset from the 20 most recent daily data, (iv)
daily close price of the same call contract on the current and earlier day and v) prevailing risk-
free interest rate. Moreover, we filter out all data points for which the same option contract did
not exist the previous day. Our choice of a 20-day window aligns approximately with a calendar
month, accounting for holidays. Since we compute the daily 19 log returns of the underlying asset,
to have these log returns from January 1, 2015, to April 30, 2020, we consider the daily data of
the underlying assets (specifically, NIFTY50 and BANKNIFTY indices) from October 1, 2014, to
April 30, 2020.

We retain datapoints only for option contracts that are near at-the-money (ATM), specifically
those where the ratio of the strike price to the spot price is between 96% and 104%. We refer to
these as near-ATM option contracts. It is observed that numerous near-ATM contracts are traded
daily, with varying times to maturity. Since, contracts with large or minimal times to maturity
have significantly low trading volumes, we focus on studying contracts with time-to-maturity values
between 3 and 45 days.

Train/Test Split: To develop a predictive model using XGBoost supervised learning, we parti-
tioned the dataset into two segments, allocating roughly 80% for training and 20% for evaluating

1Article by Bennett Voyles https://www.fia.org/marketvoice/articles/premium-turnover-indian-options-hits-150-
billion
2NIFTY 50, abbreviated as NIFTY50, serves as a benchmark index for the Indian stock market. It reflects the
weighted average performance of 50 of the largest companies listed on the National Stock Exchange of India.
3The NIFTY Bank index, referred to as BANKNIFTY, consists of the most liquid and highly capitalized Indian
banking stocks.
4Link to access the data -https://www1.nseindia.com/products/content/derivatives/equities/historical fo.htm
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the trained models. The split is such that the training set includes data dated before the oldest
data of the test set. This is for avoiding information leakage as explained in [20]. Specifically, the
training dataset spans 56 months, covering the period from January 01, 2015, to August 31, 2019.

Subsequently, the test dataset is subdivided into two parts to facilitate comprehensive evaluation:

(1) Typical: The “typical” test dataset encompasses data from September 01, 2019, to De-
cember 31, 2019. This period is characterized by typical market dynamics, enabling model
evaluation under market behaviour similar to that observed during the training phase.

(2) Atypical: The “atypical” test dataset consists of data from January 01, 2020, to April
30, 2020. This period includes the COVID-19 Indian financial market crash, presenting a
unique testing scenario to assess model robustness under an extremely volatile market. The
dynamics during this period are significantly different from those observed during the train-
ing phase, thereby offering valuable insights into the model’s performance in unprecedented
market scenarios.

Table 1 provides a breakdown of the number of data points at each stage of the model building and
evaluation process, offering insight into the dataset’s composition and distribution across training
and test phases.

Table 1. Train/Test split of European style call option contract dataset sizes

Dataset Time Period N50 BNF

Raw 01/01/2015 - 30/04/2020 1611549 576302

Filtered 01/01/2015 - 30/04/2020 27372 37284

Train 01/01/2015 - 31/08/2019 19182 26348

Typical Test 01/09/2019 - 31/12/2019 3692 3709

Atypical Test 01/01/2020 - 30/04/2020 3047 2774

It is important to highlight that the sum of data points in the training, typical test, and atypical
test datasets do not match the number of data points in the filtered dataset. This discrepancy
occurs because, during the feature generation step in our approach, we remove the rows of data
associated with option contracts that do not have a previous day option closing price, which is a
feature in our learning approach.

A brief exploratory data analysis is presented below. The Q-Q plot in Figure 2 shows that the
log returns of daily closing values of NIFTY50 and BANKNIFTY indices do not possess identical
distribution. Nevertheless they are not significantly different during the period that constitutes
the training dataset. The Q-Q plot is linear and has a slightly different slope than the identity
line. Next, we compare the statistical behavior of log-returns of daily closing values of NIFTY50
index during different time intervals. In Figure 3a the said comparison between the data from
training window and the typical test window is presented. On the other hand, Figure 3b presents
a comparison between the data from training and the atypical test windows. In 3a the Q-Q plot is
aligned with the identity line but in 3b the slop of the Q-Q plot is visibly far from the identity line.
Similar comparisons are reported in Figure 4 where we compare the distributions of log-returns
of daily closing values of BANKNIFTY index during different time intervals. In 4a, except few
outliers, the return distribution of the typical test dataset matches well with that of the training
dataset. The points in the Q-Q plot approximately lie on the identity line. However, when the
atypical test data is compared with the training data in Figure 4b, the distributions of log-returns
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Figure 2. Q-Q plot for the log return distributions of the “Close” prices of the
BANKNIFTY and NIFTY50 indices for training dataset from January 01, 2015 to
August 31, 2019
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(a) Train vs Typical test data
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(b) Train vs Atypical test data

Figure 3. Q-Q plot for the log return distributions of the “Close” prices of
NIFTY50 in training and testing data

of the closing values appear to differ drastically. Although the Q-Q plot is linear in this case,
the slop vastly mismatches with that of the identity line. These observations justifies the use of
terminology “typical” and “atypical” for two non-overlapping test datasets.

5. Description of Supervised Learning Approach

In this section, we outline the steps involved in the supervised learning approach utilized in this
study.
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(b) Train vs Atypical test data

Figure 4. Q-Q plot for the log return distributions of the “Close” prices of
BANKNIFTY in training and testing data

Step 1: Data Cleaning and Filtering In this essential step, we prepare the gathered raw data
for European call option contracts to apply the ML algorithms. Initially, we eliminate rows con-
taining blank ‘-’ entries in the ‘Underlying Value’ or ‘Strike Price’ columns. Additionally, any rows
containing values of ‘0’ in the ‘Open’ or ‘Close’ columns are removed.

To further refine the selection, we follow the modularity approach of [8] and focus on option
contracts that closely resemble at-the-money (ATM) contracts. This involves filtering contracts
based on a criterion where the absolute quantity

∣

∣1− S
K

∣

∣ is less than or equal to the pre-decided value
of 0.04 as considered in [8], where S and K respectively represent the spot price of underlying and
strike price of the option contract. However, it is important to note that contracts with significantly
large or small time to maturities exhibit notably diminished trading volumes. Therefore, to conduct
a more focused analysis, we opt to exclusively investigate contracts with time-to-maturity (‘TTM’)
values falling within the range of not more than 45 days and not less than three days.

Step 2: Feature Generation Let ∆ denote the time granularity in year unit and S̄(t) := S(∆∗t)
the price of the risky asset at present time ∆ × t, where t is an integer. The discrete time series
{S̄(t) | t = 0, 1, . . .} gives daily data if ∆ = 1/255, by imagining 255 number of trading days in a
year. Let n be a fixed natural number. For each i ≤ n, the feature variable Fi := R(i), where, {R(i) :

i = 1, . . . , n} is order statistics of Ri := ln(S̄(t− n+ i)/S̄(t− n− 1 + i))− 1
n ln(S̄(t)/S̄(t− n)), the

centered daily log return. The order statistics R(i) are determined by arranging Ri in ascending

order for each sample. To clarify, the ith order statistic, denoted by x(i), of a sample comprising

various real values (x1, x2, x3, . . . , xn) represents the i
th-smallest value, such that x(i) = xβ(i) where

β is a permutation on {1, . . . , n}, and x(1) ≤ x(2) ≤ · · · ≤ x(n) is satisfied. We set n = 19 for
sampling past daily data of nearly one month. At this stage, we compile a set of 23 features to be
utilized in supervised learning models:

• The set comprises 19 order statistics of centered log return, denoted by F1 through F19,
derived from index (or underlying asset) data.

• The time-to-maturity (‘TTM’) of the option contract under study, measured in days.
• Moneyness of the option contracts is calculated as the ratio K

S , representing the ratio
between the strike price K of the option contract and the underlying value or Spot Price S
being examined. Its reciprocal is used as a feature.
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• Normalized previous option price, computed as 100× Ct−1

St−1
, where Ct−1 denotes the previ-

ously reported close price of the option contract under consideration and St−1 denotes the
spot price at time t − 1. If the option contract was not traded on the previous day (i.e.,
Ct−1 data is unavailable), we exclude this option from consideration.

• The ideal bank’s interest rate is approximated by the three-month sovereign bond yield
rates in the literature and added as a feature. This serves as an estimation for risk-free
interest rates.

Step 3: Target Variable We use regression to implement the Homogeneity Hint Approach AHH ,
as described in Remark 2.3. According to this approach (also see [8]) ‘AHH target’ is the ‘normalized
price’ and is given by

AHH target = 100× C

S
,

a scale-free target variable. For the regression implementation of the ADS approach, as presented
in Subsection 3.3, the scale-free target variable referred to as the ‘ADS target’ is defined by (3.1),
i.e.,

ADS target =
1

ρ

√

2π

T

(

C

S(1 + p∗)/2
− (1− p∗)

(1 + p∗)

)

.

where C, S, and T denote the call option price, underlying value, and time-to-maturity in years,

respectively. Here, p = K
S is moneyness, p∗ = Ke−rT

S = pe−rT is discounted moneyness, where K
is the strike price of the call option contract and r is the interest rate of an ideal bank estimated
to ‘Yield03’ value divided by 100. The volatility scalar ρ is estimated using historical volatility,
the annualized (assuming 255 trading days in a year) standard deviation computed from the set of
feature variables F1 to F19, derived earlier.

Step 4: Ensemble Model At this step we implement the ensemble approach (3.3) formulated
in Subsection 3.4. The parameters λ1 and λ2 are estimated from a sample of data using the least
square method. Given a sample, we first have a train-test split. Following the training of both AHH

and ADS on the training data, the performance of the ensemble model (3.3) on the test data is
measured using RMSE for various values of λ in a square. The value of parameter λ that minimizes
the RMSE, gives an estimator of ensembling parameter and hence yields an ensemble model for
the given sample. Subsequently the performance of the same is reported for both in-sample and
out-of-sample data.

To achieve this, we select one of the datasets: NIFTY50 (N50), BANKNIFTY (BNF), or the
combined dataset (referred to as N50+BNF) as the sample. For the numerical least square estima-
tion of λ1 and λ2, we vary them within the range [0, 5] with increment of 0.1. The square root of the
sum of squared errors, normalized by the number of data points in the sample, is then computed
for both typical and atypical test scenarios for the selected symbol. The values of λ1 and λ2 that
minimize this quantity are identified as the optimal parameters for the chosen dataset.

Step 5: Testing and Error Metric After the training phase, it is imperative to evaluate our
model’s performance using unseen test data, ensuring a comprehensive understanding of prediction
quality. This study employs Root Mean Square Error (RMSE) to assess regression model predic-
tions. Assume that the total number of data points in the test set is N and ei is the difference
between the target value and the predicted target value of a model M at the ith entry. Then
ei denotes the prediction error for the ith test data for each i ≤ N . Finally, the RMSE of the
prediction of model M for the test data set is defined as

RMSE =

(

1

N

N
∑

i=1

(ei)
2

)

1
2

. (5.1)
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It is crucial to emphasize that the evaluation specifically centers on gauging the regression model’s
performance with respect to the scale-free target variable denoted as ‘normalized price’. In the
context of ‘AHH target’ scenarios, RMSE formula are applied directly to the test variable ‘normal-
ized price’. However, for scenarios involving ‘ADS target’, we utilize (3.2) to compute the predicted
‘normalized price’ and subsequently evaluate the regression model’s performance.

Step 6: Setting Numerical Values of Hyperparameters We ran the codes in Python version
3.10.4. XGBoost, a well-studied supervised ML algorithm developed by Chen and Guestrin [5], was
utilized in this research. Table 2 presents the hyperparameter values used to train the XGBoost
(Extreme Gradient Boosting) linear regression model described in this manuscript. While XGBoost
offers numerous hyperparameters, we focused on the following key ones. For detailed information
on each hyperparameter used, please refer to the XGBoost Documentation5.

Table 2. Hyperparameter values for XGBoost

Name Value Set

nthread 4

objective reg:linear

n estimators 750

max depth 7

learning rate 0.03

min child weight 4

colsample bytree 0.7

subsample 0.7

We conducted a cross-validated grid search using the scikit-learn GridSearchCV routine to de-
termine the optimal values for these hyperparameters. However, we observed that the model
performance did not vary significantly with changes in the hyperparameters.

6. Model Performance

Our study involves analyzing and comparing the performance of three approaches, namely, AHH ,
ADS , and AE for option price predictions. While the first two are supervised learning models, the
last one is an ensemble model, whose ensembling parameter is subject to calibration using the
sample. The first approach AHH appeared in [8] whereas the other two are proposed in this article.
We have collected historical option price data on two different indices N50 and BNF. Based on the
data from each symbol we train three models using above mentioned three approaches. Moreover,
we perform multi-source training using historical data from both symbols to get an additional
combined model using each of the three approaches. Hence we obtain a total of 9 models. For each
symbol of the training set, the ensembling parameter of the ensembling model is estimated from
the training and test data of that symbol. We test each of these 9 models on all four disjoint test
data samples.

5There are many resources available to read about XGBoost parameters; for example, one can refer to https:

//xgboost.readthedocs.io/en/stable/parameter.html
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6.1. Performance comparison using RMSE. The model performances are presented in Table 3.
In that, the models are classified into 3 classes based on the training data sets. The symbol/symbols
of each training data are listed in the first column. The approaches used in the model are mentioned
in the second column. The estimated values of ensembling parameters are mentioned next to each
AE approach in the second column. The option price prediction using historical volatility and the
Black-Scholes-Merton formula is set as the benchmark for comparison. We compare the performance
of all these models and the benchmark using two types of test data coming from each of the two
symbols N50 and BNF. The performance, i.e., the RMSE of predictions, of each model is reported
for all four disjoint test data samples. Given a training symbol and test data, the best-performed
approach is indicated by highlighting the least RMSE value in orange. Given a test data, the least
RMSE across all nine trained models is indicated with a star (∗) sign.

Table 3. Performance of XGBoost regression for AHH , ADS , and Ensemble
Approaches are assessed. RMSE values for models with training (01/01/2015
- 31/08/2019), typical testing (01/09/2019 - 31/12/2019), and atypical testing
(01/01/2020 - 30/04/2020) periods are reported. RMSE values for the Ensem-
ble approach are reported for optimal λ1, λ2 ∈ [0, 5], adjusted in increments of 0.1,
across varying training error sets.

RMSEs of option price prediction models using XGBoost regression

Symbol(s) of Approach Test - N50 Test - BNF

Training data Typical Atypical Typical Atypical

- Benchmark - BSM 0.358 1.559 0.527 1.416

N50

AHH 0.176* 1.299 0.348 1.278

ADS 0.235 0.749 0.302 0.697

AE(λ1 = 2.6, λ2 = 0.0) 0.199 0.617* 0.214 0.569*

BNF

AHH 0.193 1.225 0.245 1.181

ADS 0.269 0.759 0.272 0.741

AE(λ1 = 0.8, λ2 = 0.5) 0.173 0.648 0.189* 0.598

N50+BNF

AHH 0.184 1.199 0.255 1.182

ADS 0.251 0.736 0.288 0.715

AE(λ1 = 1.3, λ2 = 0.4) 0.179 0.628 0.194 0.576

At the outset, we notice that for each test data, the column-wise reported RMSE values for all
nine training models are smaller than the RMSE of the benchmark prediction. In fact, the lowest
RMSE turns out to be smaller than 50% of the benchmark RMSE for each of the four test data
sets. It is observed that on every atypical data, the ADS approach outperforms AHH approach, no
matter what the training data set is. This validates the usefulness of the domain shift approach
presented in this paper. On the other hand, we also observe that AHH outperforms ADS on the
typical test data of each symbol when the training data is from the same symbol. This empirically
validates the theoretical conclusion of Theorem 2.2. We explain this below. We recall that AHH

is founded on perfect equalities whereas ADS is based on some approximations. So, in the special
circumstances where Theorem 2.2 is applicable, AHH gives a better result than ADS . On the other
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hand for typical test data of the same symbol of training data, as anticipated, the assumption on
similarity between return distributions of training and test is valid. Again, for the same reason, in
the multi-source training scenario (see the row with heading N50+BNF), AHH outperforms ADS on
both of the typical data. This justifies the benefit of combined training. In this scenario, however,
the ensemble approach outperforms both AHH and ADS on each of the 4 test data. It is interesting
to note that each of the 9 models performs better on typical test data of N50 than those of BNF.
On the contrary, each of the 9 models performs better on atypical test data of BNF than those
of N50. Such consistent performance of approaches on typical or atypical test data irrespective of
the source of training data indicates the importance of consideration of domain shifts in the model
building. It also indicates that while AHH is insensitive to the domain shift, ADS incorporates the
domain adaptability reasonably well. So far prediction on BNF atypical test data is concerned,
RMSE value of the ensemble model trained with N50 data is lower than that of the ensemble model
trained with BNF data. This is another instance of the success of common representation space
and domain adaptation.

6.2. Performance of multi-source training model. Now we contrast the performance of multi-
source or combined training with single-source training models. We start with the following simple
observation from Table 3. We consider the performance of models trained on data of one symbol
and tested on typical/atypical data of another symbol with the approach AHH or ADS . RMSEs
of eight such cross-symbol experiments are reported in Table 3. We compare those with eight
other corresponding RMSEs for the multi-source models. In seven out of eight cases, the RMSE
of multi-source training is lower than those of cross-symbol experiments. Only for BNF atypical
test data, the RMSE of multi-source training ADS model is larger by 2.6% than that by N50
trained ADS model. We also observe the following. Although AHH approach performs poorer than
ADS on atypical test data, the performance of AHH approach on atypical test data gets better in
combined training model, compared to single-source training model. Finally, for every test data,
the performance of the multi-source ensemble model is close to the best performance. To be more
precise, the relative difference of its RMSE value is less than 3% from the RMSE of the best model
on the same test data. This is empirical evidence of the reliability of the multi-source ensemble
model.

The option price prediction performance of multi-source models with approaches AHH and ADS ,
summarized in Table 3, is illustrated more effectively through a histogram of residuals, defined as
the differences between predicted and actual normalized price of options, as shown in Figure 5.
The horizontal axis represents the range of residuals, which is divided into 100 intervals, while
the vertical axis shows the relative frequency. The histograms in Figure 5 is constructed using
predictions from the XGBoost model, trained on combined datasets, and tested on NIFTY50 (plot
5a) and BANKNIFTY (plot 5b) datasets respectively. These predictions are made using both the
ADS and AHH approaches, under typical and atypical testing scenarios. Hence each plot has four
histograms. The performance reported in Table 3 indicates that under typical testing scenarios,
the AHH approach yields better accuracy than ADS approach, as corroborated by the histogram.
Specifically in plot 5a, for N50 test set, the residuals from AHH approach (represented by the
‘blue’ bars) are more tightly clustered around zero compared to the ADS approach (‘orange’ bars).
In contrast, for the BANKNIFTY test data, the difference in frequency levels between the two
approaches is less pronounced, indicating a similar error margin. On the N50 typical test data
residual distributions for both the approaches exhibit (Figure 5a) symmetric and low dispersion
around zero. This confirms the absence of bias in the prediction. A similar low dispersion of the
prediction residual is also visible for BANKNIFTY typical test data in Figure 5b.

The dispersion of prediction residual for atypical test data appears to be significantly larger
than that of the typical data scenario for every approach in both Figures 5a and 5b. Additionally,
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(a) NIFTY50 testing data
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(b) BANKNIFTY testing data

Figure 5. Histograms of subtraction of predicted from actual ‘normalized price’
are plotted for models trained on combined N50 and BNF training data. Both
models with AHH , and ADS approaches are tested on different indices with both
typical and atypical scenarios.

an intriguing observation in the atypical testing scenario is that the ADS approach leads to some
outliers of overestimation of option prices relative to actual values, as evidenced by the leftward
skew of the ‘red bars’, while the AHH approach leads to outliers of underestimation of prices, as
indicated by the rightward skew of the ‘green’ bars across both atypical testing indices. Hence the
ensemble model performs significantly better on atypical data by neutralizing such polar outliers in
AHH and ADS predictions. In summary, the histograms provide a clearer and deeper insight into
the models’ performance across different testing scenarios than the RMSE errors offer in Table 3.

6.3. Performance of ensemble models. Next, we wish to gain better insight into the parametric
ensemble models and the least square estimation of the ensemble parameters. To this end, we
produce Figure 6, which displays contour plots illustrating the RMSE error as a function of the
independent variables λ1 and λ2. This helps in providing a clear rationale for why the optimal
(λ1, λ2) values for the NIFTY50, BANKNIFTY, and combined datasets are those reported in Table
3. These plots offer a two-dimensional representation where points with the same RMSE values
are connected by contour lines, effectively visualizing the RMSE landscape. The RMSE values are
represented through a color gradient, with ‘blue’ indicating lower errors and ‘red’ signifying higher
errors. The plots show the presence of unique minima in each case. For the ensemble approach
using NIFTY50 dataset, the lowest RMSE values occur near λ1 = 2.6 and λ2 = 0, as shown by the
darkest ‘blue’ region. This suggests that the domain shift measure (DSQ), introduced in Section
3, has a small impact on determining the weights between the AHH and ADS approaches. In
contrast, the BANKNIFTY dataset shows that DSQ plays a more significant role, with the lowest
RMSE observed around (λ1, λ2) = (0.8, 0.5). The importance of DSQ in weight allocation is also
pronounced in the combined dataset, where the minimum RMSE is observed near the optimal point
(λ1, λ2) = (1.3, 0.4).

6.4. Model performance on synthetic test data. Now we present the results of two exper-
iments conducted to assess the performance of trained models on synthetic data. The use of
synthetic data overcomes real-world data limitations for assessing domain adaptation in rare but
large domain shifts. The synthetic data is simulated using Black–Scholes-Merton model of asset
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Figure 6. Contours for RMSE of prediction by models with AE(λ1,λ2) approach
are plotted against different values of λ1, λ2 ∈ [0, 5] with increment of 0.1 for each
training dataset.

prices and the formula for theoretical option prices. The primary goal of these experiments is to
assess how the prediction quality of the proposed approaches varies as the test data shifts from
the training dataset. It is important to clarify that these experiments are not intended to evaluate
the overall performance of the models but to gain a comparative insight into model performances
in extreme cases. These do not give a reliable performance measure in a typical scenario as both
underlying asset returns and the option prices of test data are derived under specific mathematical
assumptions that may not accurately reflect real-world prices.

We simulate Geometric Brownian motion (GBM) with a drift parameter µ = 0.1 and vary the
volatility parameter from 1% to 30% in increments of 1%. For each volatility level, we generate
daily data of length 520 days. This test set is supplemented with prices of several near-ATM option
contracts, with time to maturity in {10, 25, 40} and risk-free interest rate of 5%, calculated using
the Black-Scholes-Merton formula. We then test each of the trained models for each variant of the
test data and plot the predictions’ RMSE against the volatility parameter. The analysis is centered
on comparing the performance of the models with ADS , AHH , and ensemble model AE approaches,
and trained on various datasets. Given the nature of simulated test data, although the distinction
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between typical and atypical test scenarios is not direct, still all the synthetic data generated with
σ > 20% may be viewed as atypical.
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Figure 7. Model performance on a range of parametrized synthetic data

6.4.1. Experiment 1. In the first experiment, we evaluate and compare the models’ prediction qual-
ity on synthetic test data for various training datasets. We perform this comparison for synthetic
test data having varying volatility levels, and models with each approach, AHH and ADS . Indeed,
for every synthetic data with volatility parameter σ not less than 5%, among AHH models, the
BNF trained model has the least RMSE, whereas N50 trained model has the largest RMSE. This
can be explained using the historical volatility values of respective training data. As the historical
volatility of BNF (14.05%) is higher than that of N50 (11.38%), the test data with high σ is less
unfamiliar to BNF-trained data than to N50-trained data. The same consistent comparison is not
visible in the ADS based models. In contrast, the ADS approach aims to mitigate such errors.
Figure 7b provides supporting evidence of the absence of performance dependence on the type or
volume of training data. Moreover, for σ < 15% no monotonic growth of RMSE with increasing σ
of synthetic test data is visible for ADS models. On the other hand, as noted in [8], the effectiveness
of approach AHH diminishes with domain shift, i.e., the RMSE values of each AHH model steadily
increase for synthetic test data with larger volatility values. Although the RMSE of prediction by
ADS grows with larger σ beyond σ = 15%, the growth is slower than that by AHH . This growth
of RMSE for ADS prediction may be attributed to the growth of relative error in approximation
relation (3.1) with the increase of disparity(max-min ratio) of volatilities as illustrated in Figure
1b. These results align with the intent of making the ADS approach less sensitive to discrepancies
between the return distributions of the training and testing datasets.

6.4.2. Experiment 2. In another experiment, we compare the RMSE values for all three approaches
AHH , ADS and the emsemble model on the afore mentioned collection of synthetic data. Separate
comparison plots are presented for models trained on the NIFTY50, BANKNIFTY and combined
datasets. The estimated values of λ1 and λ2, as outlined in Step 4 in Section 5, are used for each
selected sample dataset. As anticipated, above a volatility level (i.e., above 8%) of the test data, the
approach ADS outperforms AHH for every training set (see each subplot of Fig 8). Additionally,
performance graphs for the ensemble model are presented, utilizing the estimated parameters λ1
and λ2. In every case (i.e., subplots 8a, 8b, 8c) the performance of the ensemble model is never
worst and is between the performance of AHH and ADS models except a small range of the volatility
values of the synthetic data, where it is the best.
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Figure 8. Comparison of approaches AHH , ADS and AE for each of three different
trained set using a parametric family of synthetic data

7. Conclusion

This work presents several interesting elements and fresh ideas for option pricing applications of
machine learning. This paper puts forward an interesting idea of utilizing a formula for implied
volatility estimates to create a common representation space so that a better domain adaptation
is achieved. This method also allows training models on several options markets (i.e., options
with different underlying securities), since this could improve out-of-sample performance in each
considered market. Finally, we formulate a novel enseble model, depending on a domain shift
quotient, that works for both typical and atypical test data. We believe, this is a promising avenue
for further research and could potentially bring some new insights into the field of data-driven option
pricing. Moreover, we also assess the models using a family of synthetic test data for gaining a
better understanding of the models.
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