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ABSTRACT: The condition assessment of masonry lined railway tunnels typically involves 
manually identifying lining defects from photographic and lidar surveys taken of the tunnel 
intrados. This process is time-consuming and subjective to the assessor’s judgement. However, 
recent developments in machine learning achieve the quality metrics required to automate the 
detection of defects from noisy and irregular tunnel data, offering the potential to reduce 
tunnel assessment and maintenance costs. This paper proposes a deep learning workflow for 
defect segmentation. The method is evaluated on the task of masonry block segmentation 
from lidar data. Acceptable performance is achieved on a sample tunnel section, suggesting 
that similar methods are applicable to other masonry lined tunnel defect segmentation tasks.

1 INTRODUCTION

A reliable railway system is often a key part of a nation’s economy and so it is important to 
prevent railway tunnel failures that may cause system disruptions. Early warning through con
dition assessments is vital to avoid the significant remediation costs associated with tunnel 
failure (Paraskevopoulou et al. 2022). However, the majority of railway lines in Great Britain 
were constructed in the second half of the 19th century and, as a result, most railway tunnels 
are masonry lined with a deteriorating structure (Atkinson et al. 2021). Built before modern 
design standards, their behaviour can be challenging to predict. It is therefore important to 
accurately characterise the serviceability state of each tunnel to enable timely remediation 
work to take place and prevent a worsening of the structural condition.

At present, the typical masonry tunnel assessment methodology involves a visual and tactile 
inspection, followed by structural analysis undertaken post inspection in an office setting. In 
accordance with (NR 2016), a standardised report is produced and defect severities and loca
tions are input into a TCMI (Tunnel Condition Marking Index), which generates an overall 
condition score for the tunnel. The complete inspection and analysis workflow is shown in 
Figure 1. The following potential tunnel lining defects are considered:

• Spalling
• Open joints or perished mortar
• Water ingress
• Hollow sounding areas
• Bulges or lining deformation, distortion or flattening
• Loose or missing masonry/ block loss
• Cracks and fractures

Each tunnel inspection consists of a team of inspectors traversing the tunnel and visually 
observing defects using flashlights. Voids behind the tunnel lining may be identified by 
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tapping the lining with a listening tool, hearing changes in the sound produced. A TLS (terres
trial laser scanning) survey is typically undertaken during an inspection to enable a 3D point 
cloud of the tunnel to be generated, as many defects can be identified and analysed post- 
inspection directly from this point cloud.

A manually designed 3D model of the deformed tunnel lining is created using trial and 
error. Defects including spalling, large cracks and block loss are then visually identified from 
the offset of the lidar survey from the manually created model. Water ingress and efflorescence 
can be identified from the RGB data of each point. Thresholding is used to highlight points 
with outlying properties. Despite the digitisation of the inspection process, the process is still 
time consuming and dependant on individual assessor’s experience, perception, and engineer
ing judgement to locate defects on the 3D model. This can lead to defects being missed. As 
a result, the benefits from automation are substantial. Despite this, the assessment process has 
modernised little compared to those within other engineering disciplines.

This paper briefly reviews various literature methods that have the potential to be applied 
to automate the assessment process, before proposing a deep learning based defect segmenta
tion method. It then analyses the effectiveness of the method when applied to segment tunnel 
lining masonry blocks from lidar data. This task is chosen, as the non-homogeneity of 
masonry tunnel linings, partially due to the presence of masonry joints, is a key part of why 
defect analysis of masonry tunnels is more challenging to automate than concrete lined tun
nels. Block segmentation is also a key part of tunnel condition digitisation as it enables indi
vidual blocks to have their properties labelled.

2 REVIEW OF ADVANCES IN TUNNEL CONDITION ASSESSMENT

Modernisation of railway tunnel inspection has, in the UK, been mostly limited to the intro
duction of TLS surveys. Much research has been conducted on the feasibility of robotic 
inspection methods, including whether sensors can be attached to in-motion rail vehicles. In 
addition, there are multiple alternative data collection methods that have been proposed to 
aid inspections including GPR (ground penetrating radar), Muon tomography, and Ultra
sound. The field has been previously reviewed by Haack et al. (1995), McCormick (2010), and 
Strauss et al. (2020). Robotic inspection methods were reviewed by Montero et al. (2015). 
While many of these methods either simplify the inspection procedure or generate more 
insightful information about a tunnel’s condition, they have generally not been adopted by 
industry outside of specialist applications. This is often due to the greater upfront cost of new 
systems and lack of specialist knowledge to operate the machinery and analyse data.

Being able to automatically detect and identify defects from already routinely recorded 2D 
and 3D sensor data would reduce the cost and subjectivity of the classification process, with
out requiring additional equipment or specialist personnel. Some have proposed change detec
tion methods such as digital image correlation. Stent et al. (2016), for example, created 
a workflow to automatically detect concrete tunnel lining changes between subsequent photo
graphic surveys. Changes detected are clustered into groups representing the formation of dif
ferent types of defect. While the change detection was successful, their defect clustering 
method produced many false positives and cannot label the nature of each defect cluster.

As reviewed by Spencer et al. (2019), computer vision involving deep learning has been 
applied extensively for automated defect detection and segmentation across a variety of infra
structure condition assessment tasks.The field of computer vision involves applying algorithms 
to automatically make conclusions about a scene directly from an image. Since the advent of 
deep convolutional networks, the field has developed rapidly (Chai et al. 2021). Research has 

Figure 1.  Typical tunnel assessment workflow.
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been conducted, for example by Makantasis et al. (2015), to detect defects in concrete tunnel 
linings from photos of the tunnel lining using CNNs (Convolutional Neural Networks).

No work could be found extracting defects automatically from masonry lined-tunnels, 
although studies such as Wang et al. (2018) and Dais et al. (2021) have applied patch based 
sliding CNN methods for detection of spalling and cracking of external masonry walls from 
photographic data.

Encoder-decoder based defect segmentation networks such as the U-Net generally 
achieve higher localisation performance than patch-based ones, so offer the most 
potential for accurate defect identification from tunnel lining lidar data. They have 
been successfully applied by Ibrahim et al. (2019) and Loverdos & Sarhosis (2022) to 
segment masonry joint locations from photographic data of external masonry walls 
and by Dais et al. (2021) for masonry crack segmentation. These approaches are com
pared with manual segmentation in Table 1.

The photographic methods used in these studies may be challenging to apply to older 
masonry lined tunnels, as uniform lighting is difficult and defects are often obscured by 
significant efflorescence and masonry discolouration. It would be beneficial to use 3D 
point cloud data recorded by lidar instead of 2D colour image data. A comprehensive 
lidar survey is also typically already conducted during tunnel inspections. Studies identi
fying structural defects from 3D point clouds most commonly take a multiview 
approach. This involves projecting point properties from the sides of a structure’s point 
cloud onto a 2D image. Reducing the complexity of the problem to 2D makes training 
models easier and takes advantage of the more advanced state of 2D computer vision 
research. Yoon et al. (2009) conducted early work using geometrical methods to identify 
concrete tunnel lining defects from lidar data. Defects were defined as points with 
a significant offset from the plane of the tunnel lining. More recently, patch and 
encoder-decoder CNNs have been applied to flattened 3D data. Xu & Yang (2020), for 
example, trained a mask RCNN on photogrammetry data to detect cracks in concrete 
tunnel linings. Zhou et al. (2021) used a CNN to segment areas of spalling in concrete 
lined tunnels from 3D point cloud data. To flatten the point cloud, they fitted an ellipse 
to the inside of the tunnel lining. It is unknown, however, whether lidar generates high 
enough quality data to be used with machine learning methods on highly non- 
homogeneous masonry tunnel linings.

3 METHODOLOGY

A multiview approach to segment individual masonry blocks from tunnel lining 3D point 
cloud data is proposed in Figure 2.

The tunnel lining point cloud is first unrolled and flattened onto a 2D plane to enable it to be 
rasterised without distortion. The transformations for unrolling are calculated from a manually 
fitted tunnel intrados mesh. Each of the point cloud parameters outlined in Table 2 are then 

Table 1. Infrastructure defect segmentation methods.

Method Advantages disadvantages

Manual visual identification Output is explainable Time consuming. Output is subject
ive and often variable.

Change detection methods, 
for example digital image 
correlation

Good detection of defects since 
previous survey, no machine learn
ing required

Requires data from before the for
mation of defects, Unable to identify 
defect types

CNN based patch 
classification

Easy to label data for training Localisation of defect is limited to 
size of patch

Encoder-decoder CNN 
segmentation

Good localisation of defect. Small 
training sets possible.

Output can be noisy, so often needs 
post-processing
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rasterised onto 2D grids. The rasters are run through a neural network trained to segment masonry 
joints. Once the mortar has been segmented into a binary image, a watershed algorithm based on 
the theory outlined in Roerdink & Meijster (2000) is applied to isolate and label each block.

3.1  Segmentation network

A pixelwise semantic segmentation network is trained on the rasterised images to semantically 
segment the masonry joints, creating a binary image of their locations. The U-Net and SegAN 
networks are trialled. The U-Net is a popular Encoder-Decoder format network developed by 
Ronneberger et al. (2015) that utilises skip connections. Multiple encoders were trialled and 
a MobileNetv2 encoder was found to be the most effective. Developed by Howard et al. 
(2017), MobileNet uses depthwise separable convolutions to create a more efficient architec
ture than encoders such as ResNet. Transfer learning is used by pretraining the encoder on 
the ImageNet dataset. The Adam optimiser developed by Kingma & Ba (2014) is used in com
bination with a Binary cross entropy loss function.

Figure 2.  Proposed block segmentation method.

Table 2. Point cloud parameters.

Normal Change Rate

The point cloud normal change rate is a measure of the change in curvature at a certain point, indicating 
where local surface deviations are present. It is calculated by subtracting the point cloud normal calcu
lated over a small radius from the point cloud normal calculated over a large radius. This is shown in 
Figure 3a. Point cloud normals are calculated by least squares fitting a plane to points within a radius of 
the target point using principal component analysis

Surface roughness

This is a measure of a point’s deviation from the local surface. A least squares plane is fitted to points 
within a radius of the target point but excluding the target point. The roughness is the distance of the 
target point from the calculated plane and is shown in Figure 3b.

Depth map

This is offset of the raw point cloud from the undeformed manually created 3D model.

Intensity

This is the intensity of the reflected laser detected by the lidar scanner. It gives an indication of the reflect
ance of the surface at the target point

RGB

Colour data is attributed to each point from a camera mounted on the TLS station.

Figure 3.  (a) Point cloud normal change rate (b) Point cloud surface roughness.
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The SegAN network developed by Xue et al. (2017) is a generative adversarial network that 
uses a multiscale objective function. Generative adversarial networks consist of two networks com
peting in a zero-sum game. One network is an encoder-decoder trained for segmentation, while 
the other is trained to identify the difference between the segmentation output and the ideal 
output. This helps the network to perform in a more human-like way and should enable better 
segmentation of obscured lining areas, for example when adjacent blocks are touching at joints.

3.2  Watershed algorithm

After application of the segmentation network, a marker assisted watershed algorithm is 
applied to connect gaps in detected joints. This ensures that each block has a complete bound
ary and so can be individually identified. A similar method was previously used by Ibrahim 
et al. (2019) for masonry block segmentation from RGB images.

3.3  Network training

Unlike in typical semantic segmentation tasks, the binary masks created for training consist of 
straight lines representing the masonry joint locations. This is intended to encourage joint 
location pattern learning and help identify the locations of partially occluded joints.

The network is trained on 512x512 image crops. Five different random transformations are 
applied to each image and mask pair before each step of training. The transformations 
Random brightness, Random contrast, Random 90-degree rotation, Random image flip and 
Gaussian noise were chosen as feasibly realistic. A train test split of 8:2 is used.

3.4  Dataset

A lidar survey of the Sydney Gardens East railway tunnel (SGE) in Bath provided by Bedi Con
sulting Ltd. was used to evaluate the method and is shown in Figure 4. The tunnel lining is formed 
of irregularly sized rectangular stone blocks arranged in regular layers of varying sizes. There are 
substantial mineral deposits causing rough surfaces and obscuring the masonry joints on the inten
sity and RGB data. Some of the blocks are spalled in places. An 8.5m x 5.25m area of masonry 
within the northerly part of the tunnel was used for training. After flattening, this section produces 
a 8486 x 5265 image containing parts of 217 masonry blocks. The training images formed from 
each of the point cloud attributes outlined in Table 2 are shown in Figure 5. A 0.01m radius was 
used for normal change rate calculation and 0.1m was used for roughness. A 4-channel method 
using all the parameters except for RGB was also trialled. A 2397x4286 image of a different part 
of the tunnel with similar properties was used for testing the optimised networks.

Figure 4.  Sydney Gardens East tunnel.
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4 RESULTS & DISCUSSION

The neural networks were trained using PyTorch on an Intel i7 2600k@3.00GHz with 16Gb of 
RAM. The training utilised CUDA on a Nvidia GTX970 GPU with 4Gb VRAM. Training was 
conducted for the optimum number of epochs according to validation set results up to a maximum 
of 200 epochs. The Following hyperparameters were determined as optimal for training:

• Learning rate = 0.0005
• Eps = 1e-08
• Weight decay = 0.00001
• Batch size = 2

The depth map output on the test data is shown in Figure 6. The effectiveness of the U-Net 
and SegAN networks within the semantic segmentation step is discussed below and recorded 
quality metrics are shown in Table 3. Where TP = true positive, FP = false positive, and FN = 
false negative, the following metrics are calculated:

• Precision - This is the percentage of detected joint pixels that are correct and is calculated 
as TP/(TP + FP).

• Recall - This is the percentage of joint pixels that are correctly identified and is calculated 
as TP/(TP + FN).

• Intersection over union (IOU) - This combines precision and recall to assess the overall per
formance. It is calculated as TP /(TP + FP + FN).

Figure 5.  Layers of image used for training.

Table 3. U-Net and SegAN results.

Image type Network Precision Recall IOU

intensity U-Net 0.5515 0.4948 0.3528
normal U-Net 0.5562 0.4614 0.3373
roughness U-Net 0.6557 0.4687 0.3761
depth map U-Net 0.5439 0.819 0.4856
RGB U-Net 0.2606 0.7000 0.2344
combined U-Net 0.6381 0.6655 0.4832
intensity SegAN 0.5646 0.848 0.5128
normal SegAN 0.5455 0.6836 0.4354
roughness SegAN 0.583 0.837 0.5235
depth map SegAN 0.5604 0.8986 0.5271
RGB SegAN 0.0001 0.4838 0.0001
combined SegAN 0.5737 0.872 0.5292
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In general, an IOU above 0.5 is considered satisfactory performance for segmentation 
tasks. The depth map obtains the best performance for the U-Net. This is expected, as the 
image is directly showing the location data of each point and is less impacted by local vari
ations from spalling in the case of the normal variation and roughness images and mineral 
deposits and water ingress in the case of the intensity and RGB images. The combined 4-chan
nel input is the best SegAN network and also the best network overall, although the perform
ance is not substantially greater than the depth map single channel SegAN network. This 
suggests that there is not a significant diversity of information between the 4 different non- 
RGB parameters. RGB data is the worst performer and for the SegAN network could not be 
effectively trained at all. This is expected, since on the RGB images efflorescence dominates 
over joint locations. The RGB image is also more complicated, containing many different fea
tures. SegAN performs better than U-Net for every image type. This is expected, since the 
adversarial nature should train the network to generalise better on noisy data.

5 CONCLUSION

While there has been significant research on new tunnel data collection technologies, there has 
been only limited research on automating the detection and localisation of masonry lined tunnel 
defects. Encoder-decoder architecture convolutional neural networks that have been successfully 
applied to semantic segmentation tasks in other fields of engineering have been demonstrated here 
on masonry lined tunnels. Lidar data of tunnel linings is shown to be of sufficient quality for input 
to U-Net and SegAN segmentation algorithms. The effectiveness of different point cloud proper
ties for masonry block segmentation was analysed and a 2D depth map was shown to be the most 
effective input into these segmentation algorithms, although a combined input was also shown to 
be effective. Further research is necessary to examine how the network would generalise to areas 
of tunnel lining of different construction types. In addition, it would be useful to compare the 
effectiveness of 2D multiview with fully 3D computer vision methods including VoxelNet and 
PointNet. In conclusion, the deep learning based workflow presented may be usefully applied to 
masonry block segmentation without requiring any additional machinery, expertise or manpower. 
With sufficient training data, based on results in the literature it also has potential to be applied to 
segment tunnel lining defects such as spalling.

Figure 6.  U-Net and watershed output on test data using depth map network.
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