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Abstract

We present a deep learning approach for near real-time detection of Global Navigation Satellite System (GNSS)

radio frequency interference (RFI) based on a large amount of aircraft data collected onboard from the Global

Positioning System (GPS) and Attitude and Heading Reference System (AHRS). Our approach enables detection of

GNSS RFI in the absence of total GPS failure, i.e. while the receiver is still able to estimate a position, which means

RFI sources with low power or at larger distance can be detected. We demonstrate how deep one-class classification

can be used to detect GNSS RFI. Furthermore, thanks to a unique dataset from the Swiss Air Force and Swiss

Air-Rescue (Rega), preprocessed by Swiss Air Navigation Services Ltd. (Skyguide), we demonstrate application of

deep learning for GNSS RFI detection on real-world large scale aircraft data containing flight recordings impacted

by real jamming. The approach we present is highly general and can be used as a foundation for solving various

automated decision-making problems based on different types of Communications, Navigation and Surveillance

(CNS) and Air Traffic Management (ATM) streaming data. The experimental results indicate that our system

successfully detects GNSS RFI with 83 · 5% accuracy. Extensive empirical studies demonstrate that the proposed

method outperforms strong machine learning and rule-based baselines.

1. Introduction

Radio frequency interference (RFI) is a major challenge in aviation when using the Global Navigation

Satellite System (GNSS) for navigation and surveillance purposes (Scaramuzza et al., 2014, 2015,

2016, 2017, 2019; Truffer et al., 2017; Ala’Darabseh and Tedongmo, 2019; Jonáš and Vitan, 2019;

Morales Ferre et al., 2019; Liu et al., 2020a, 2020b, 2021, 2022; Lukeš et al., 2020; Eurocontrol, 2021;

Swinney and Woods, 2021; Mehr and Dovis, 2022; Ebrahimi Mehr and Dovis, 2023). Aircraft flying

under instrument flight rules (IFR) increasingly depend on GNSS as a main navigational aid. GNSS is

becoming crucial for approach and departure operations as well as for the flight’s en-route phase. Near

the ground, aircraft rely on GNSS signals that are more likely to be jammed, whether intentionally or

unintentionally. The low power of GNSS signals at the receiver antenna makes them easily degraded

in the presence of even low-power or distant jammers. GNSS-based safety-critical applications exposed

to RFI may suffer unacceptable performance degradation. Therefore, it is crucial to develop advanced

capabilities for continuous quantitative risk assessment of GNSS RFI over large regions, even for cases

without total loss of Global Positioning System (GPS) signals.

The availability of large amounts of high-quality Communications, Navigation and Surveillance

(CNS) and Air Traffic Management (ATM) streaming data processed and stored by air navigation

service providers (ANSPs) or airspace operators presents a unique opportunity for building innovative
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deep learning systems for automated decision making. These systems may be able to autonomously

extract valuable insights from current CNS, ATM and airspace operator databases, and they will make

use of that insights to offer statistically likely solutions to issues that are challenging or impossible to

resolve using conventional engineering techniques.

In real-world aviation operations, there are a huge number of systems producing large volumes of

GNSS-related measurements continuously in time. To monitor GNSS working conditions in near real-

time, it is vital to be able to efficiently detect abnormalities in time series data so that potential risks

related to GNSS RFI can be mitigated on time.

A high-performing GNSS time series anomaly detection model should be able to generalise well to

unknown anomalies while learning complex nonlinear temporal patterns of the aircraft measurements’

expected characteristics. GNSS time series have complex nonlinear temporal dependencies on other

aircraft onboard signals. Additionally, GNSS RFI anomalies are highly infrequent and manually iden-

tifying, and annotating these patterns is extremely labour-intensive. Hence, GNSS time series anomaly

detection is typically phrased as an unsupervised learning task. However, in reality, we might also have

a limited number of observations that have been annotated as normal or abnormal, in addition to a huge

set of unlabelled examples. Conventional unsupervised anomaly detection methods are not able to take

effective advantage of such labelled data, which is a main limitation for achieving high detection catch

rate and low false positive rate.

In our work, we concentrate on the challenge of GNSS RFI detection. We built a deep learning method

for near real-time detection of GNSS RFI from large amounts of aircraft onboard data collected from

GPS and AHRS. Our approach initially learns a deep anomaly detection model from historical aircraft

onboard data, learning from known anomalies, and then applies this model to detect GNSS RFI in new,

unseen flight recordings. Our method is highly general and can be used as a foundation for solving

different types of anomaly detection tasks based on various kinds of CNS and ATM streaming data.

The key technical insight of our work is to phrase the problem of inferring GNSS RFI as semi-

supervised temporal one-class classification in deep learning. We have demonstrated how deep one-class

classification can be used to detect GNSS RFI. Our formulation enables us to use powerful methods to

learn from historical flight recordings data without manual feature engineering and to perform detection

of GNSS RFI.

Inspired by the Temporal Hierarchical One-Class Network (Shen et al., 2020) and Deep Semi-

Supervised Anomaly Detection (Ruff et al., 2019), we propose Deep Temporal Semi-Supervised

One-Class Classification. In contrast to classic anomaly detection methods that often fail in high-

dimensional datasets and typically require substantial amounts of manual feature engineering, our deep

learning approach presents a way to learn informative temporal features automatically from raw aircraft

measurements data, with outstanding success over classical machine learning and rule-based methods.

Our semi-supervised one-class loss function enables the model to learn from known annotated anoma-

lies, which is superior to classic unsupervised anomaly detection approaches that use only normal

data.

A standard assumption for anomaly detection models is that clean training data are available that

represent normal patterns accurately (Qiu et al., 2022). In practice, this assumption is often wrong, i.e.

datasets are often contaminated, i.e. contain anomalies among the normal samples. For instance, a large

aircraft onboard streaming dataset may already contain RFI anomalies. Simply training an unsupervised

anomaly detection model on such contaminated data will likely lead to poor detection accuracy, i.e.

low catch rate and high false positive rate. In our work, we address the data contamination problem by

leveraging GNSS RFI annotations from an RFI detection method developed by Scaramuzza et al. (2014,

2015) that is based on carrier to noise (C/No) ratio and aerial aircraft attitude measurements.

To illustrate our approach, we built a scalable prediction engine for detecting GNSS RFI in Switzer-

land based on a unique dataset collected during a project called Helicopter Recording Random Flights

(HRRF) executed by Skyguide, Swiss Air Force and Swiss Air-Rescue (Rega) (Scaramuzza et al., 2014,

2015, 2016, 2017, 2019; Truffer et al., 2017), where data from around thirty helicopters operated by

the Swiss Air Force and Rega were recorded. For all flights, data from the Flight Management System
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(FMS), Global Positioning System (GPS) and Attitude and Heading Reference System (AHRS) were

logged over a number of years and in normal operating circumstances. Large portions of Switzerland

were covered. Low flight altitudes are a recurring feature of all of these helicopter operations. As a

result, it is anticipated that their likelihood of being impacted by radio frequency interference is greater

compared with aircraft operating at higher altitudes. GPS carrier to noise measurements combined with

other onboard aircraft signals from FMS and AHRS enable an effective statistical learning for identifica-

tion of RFI exposures. While laboratory studies are essential for comprehending the effects of jamming

on GPS receivers, they frequently do not reflect the real world (Truffer et al., 2017). This dataset is

distinctive in that it includes a number of flight recordings from actual field trials of military and civil-

ian aircraft engaged in live jamming exercises conducted by Skyguide and the Swiss Air Force (Truffer

et al., 2017). Data from GPS, AHRS and FMS that were recorded during the flights clearly represent

how the jamming signals affect various GPS receivers on different aircraft types. The flight recordings

from the jamming trials are used as real anomaly examples in our machine learning approach, and thus

used for testing of our model. Experimentally, our method detects GNSS RFI with 83 · 5% accuracy.

Extensive empirical studies demonstrate that the proposed method outperforms strong machine learning

and rule-based baselines.

A key limitation of most of the existing approaches for GNSS RFI detection, especially those based

on ADS-B, is that, for achieving high detection accuracy, interference has to be large enough to totally

disrupt the reception of GPS signals or remarkably deteriorate the position accuracy. Our approach

enables detection of GNSS RFI in the absence of total GPS signal loss, i.e. while the receiver is still able

to determine a position, which means RFI sources with low power or at larger distance could be detected.

By formulating the problem of detecting GNSS RFI as deep temporal semi-supervised one-class

classification and demonstrating how to perform model training and anomaly detection in onboard

aircraft streaming data, our work opens up new opportunities for addressing a wide range of challenges

in the context of aviation including anomaly detection, anomaly source localisation and risk assessment.

The main contributions of our work are as follows.

• A deep learning approach for near real-time detection of GNSS RFI based on statistical anomaly

detection with deep temporal semi-supervised one-class classification.

• A general framework for anomaly detection in CNS and ATM data.

• A system that is a concrete implementation of our method used for detecting GNSS RFI in

Switzerland based on recorded helicopter flights.

• An evaluation on real-world large-scale aircraft data from the Swiss Air Force and Rega,

preprocessed by Skyguide, collected onboard and containing flight recordings impacted by a real

jammer. The experimental results indicate that our system successfully detects GNSS RFI with

83 · 5% accuracy. Extensive empirical studies demonstrate that the proposed method outperforms

strong machine learning and rule-based baselines.

2. Related work

Before introducing our method, we briefly review previous approaches to GNSS RFI detection using

machine learning as well as state-of-the-art one-class classification models for anomaly detection.

2.1. GNSS RFI detection

Conventional techniques for interference detection and localisation, e.g. using radio direction finding,

are expensive and time-consuming. Recently, there has been an increased interest in creating statistical

learning models for GNSS RFI detection. However, there exists very limited previous research on

applying machine learning and especially deep learning methods in this domain. The majority of earlier

developments are based on conventional statistical analysis. The approach described by Lukeš et al.

(2020) analyses probability distribution changes of ADS-B Navigation Accuracy Category - Position
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(NACp). A recent method outlined by Liu et al. (2021) provides a machine learning solution for detecting

GNSS RFI that is also based on ADS-B data. The authors used out-of-the-box neural networks that

learn from ADS-B data and generate a classification outcome indicating if the aircraft has been jammed.

Navigation Integrity Category (NIC) is one of the primary raw features used by these models and RFI

events from Cypriot airspace are used for positive examples. Due to the limited features in ADS-B

messages, a key limitation of most of these approaches is that often interference has to be large enough

to totally disrupt the reception of GPS signals or remarkably deteriorate the position accuracy which

is not useful for situations where the interference impact is weak. Another line of research (Morales

Ferre et al., 2019; Swinney and Woods, 2021; Mehr and Dovis, 2022; Ebrahimi Mehr and Dovis, 2023)

focuses on approaches to interference detection based on convolutional neural networks that learn from

visual time-frequency representation of the received GNSS signal. Many of these approaches are based

on artificially generated datasets that are not well representative for real-world flight measurements’

dynamics. Last but not least, recorded aircraft measurements impacted by real jamming are hardly

available which makes it difficult for applying conventional supervised machine learning methods and

performing robust performance evaluation. The works of Scaramuzza et al. (2014, 2015, 2016, 2017,

2019) address the GNSS RFI detection problem through a non-machine learning approach and it is based

on the same dataset used in the current work. The method is based on conventional signal processing

techniques and enables detection of potential radio frequency interference based on C/No and aerial

vehicle attitude measurements. C/No attenuation due to the antenna pattern and antenna environment

is taken into account. Interference affecting the C/No signals by only a few decibels could be detected

with this model.

Our work presents a well-performing deep learning GNSS RFI detection method developed and

tested based on large-scale real-world aircraft measurements data containing flight recordings impacted

by real jamming which enables a rigorous assessment of the whole solution. Our proposed solution

outperforms the method described by Scaramuzza et al. (2014, 2015, 2016, 2017, 2019). A key advantage

of our method is that it can use a much larger input context, i.e. in addition to C/No and aerial vehicle

attitude measurements, it can use other input parameters such as heading, velocity, etc. Furthermore,

our method does not have to derive an antenna diagram with over 100 h of data and then go on to search

for jamming events, instead, it detects a jamming event directly.

2.2. Tree-based supervised and unsupervised learning

Recently, the group of machine learning algorithms based on decision trees has gained solid traction

across academia and especially industry. Light GBM (Ke et al., 2017), XGBoost (Chen and Guestrin,

2016) and Random Forest (Breiman, 2001) are proven to be some of the most effective and efficient

classification methods available today when dealing with labelled tabular data. Isolation Forest (Liu

et al., 2008) is usually one of the go to options when we deal with unlabelled tabular data and aim to

perform anomaly detection.

The main limitation of these methods is that they all require manual feature engineering. Our solution

is superior, in that sense, since it provides automatic feature learning capability from raw data and thus

it is not dependent on manual feature engineering.

2.3. Kernel-based one-class classification

One-class classification (Moya et al., 1993; Schölkopf et al., 2001; Tax, 2002; Tax and Duin, 2004) is a

discriminative anomaly detection approach where the key technical assumption is that most of the data

are normal (genuine) and a model can be trained to learn normal behaviour. When a given sample cannot

be adequately explained by the model, the observation is considered abnormal. One-class classification

methods directly learn a decision boundary and avoid full density estimation as an intermediate step to

anomaly detection in contrast to generative anomaly detection approaches. The most common one-class

classification methods are kernel-based OC-SVM (One-Class Support Vector Machine) (Schölkopf
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et al., 2001) that learns a hyperplane to discriminate genuine observations from abnormal ones, and

SVDD (Support Vector Data Descriptor) (Tax, 2002; Tax and Duin, 2004) that learns a hypersphere

to enclose the normal data. Both of these models are based on the so-called kernel trick (Schölkopf

et al., 2002), which consists of projecting model input to a higher dimensional kernel space for better

discrimination. Given a set of 𝑁 observations 𝑥1, . . . , 𝑥𝑁 , where the majority are genuine and some are

abnormal, the support vector data descriptor objective is to learn an as small as possible hypersphere

with radius 𝑅 and centre c to enclose the normal samples. The following optimisation problem definition

is a direct realisation of that concept:

min
c,𝑅, 𝜉

𝑅2 +
1

𝜈𝑁

𝑁∑

𝑖=1

𝜉𝑖

such that ‖𝜙𝑘 (x𝑖) − c‖2 ≤ 𝑅2 + 𝜉𝑖 , 𝜉𝑖 ≥ 0 ∀𝑖 ∈ 1, . . . , 𝑁,

(2.1)

where 𝜙(·) represents a kernel feature function, 𝜉𝑖 are slack variables enabling a soft decision boundary,

and 𝜈 is controlling the trade-off between the volume of the sphere and the slack variables.

Even though these methods have been successfully applied in many applications (Chen et al., 2001;

Liu et al., 2013; Zhao et al., 2013), they are highly dependent on manual feature engineering and thus

limited to data settings where normal patterns can be easily learned. Our method enables automatic

learning of representations and thus eliminates the need for manual feature engineering.

2.4. Deep one-class classification

Recently, there has been an increased interest in integrating deep learning (LeCun et al., 2015) into

traditional one-class classification approaches. A deep support vector descriptor (Ruff et al., 2018; Ruff,

2021) improves the classic support vector descriptor method by replacing the kernel feature function 𝜙(·)

with a trainable deep neural network. Similarly to Equation (2.1), the optimisation problem is defined as

min
𝑅,W

𝑅2 +
1

𝜈𝑁

𝑁∑

𝑖=1

max{0, ‖𝑁𝑁 (x𝑖;W) − c‖2 − 𝑅2} + 𝜆Ω(W). (2.2)

Here, 𝑁𝑁 (·;W) represents a neural net with 𝐿 hidden layers and its corresponding parameters

W = {W1, . . . , W𝐿}, where Ω(W) is a regularisation function like ℓ2 regularisation. The entire

model is trained end-to-end.

The main limitation of this method is that it is not able to learn from labelled examples and thus,

in situations where such examples are available, this method will fall short against systems capable to

leverage annotated data. This is one of the key advantages of our solution compared with deep one-class

classification.

2.5. Deep semi-supervised one-class classification

Deep semi-supervised one-class classification (Ruff et al., 2019, 2021) represents an enhancement

of the deep one-class classification method where the key technical assumption is that there are 𝑚

labelled examples (𝑥1, 𝑦̃1), . . . , (𝑥𝑚, 𝑦̃𝑚) ∈ X × Y available together with the 𝑛 unlabelled examples

𝑥1, . . . , 𝑥𝑛 ∈ X with X ⊆ R
𝐷 and Y = {−1, +1}. Here, 𝑦̃ = −1 means anomalous examples and

𝑦̃ = +1 genuine or unlabelled examples. In Deep Semi-Supervised Anomaly Detection (Deep SAD),

the objective is formulated in the following way (Ruff et al., 2019, 2021):

min
W

1

𝑛 + 𝑚

𝑛∑

𝑖=1

‖𝜙(𝑥𝑖 ,W) − c‖2 +
𝜂

𝑛 + 𝑚

𝑚∑

𝑗=1

(‖𝜙(𝑥 𝑗 ;W) − c‖2)𝑦 𝑗 +
𝜆

2

𝐿∑

ℓ=1

‖Wℓ ‖2
𝐹 . (2.3)
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In that particular case, we use the same objective function as in the deep support vector descriptor

method (Ruff et al., 2018) for the unlabelled samples, i.e. we recover the deep support vector descriptor

as a concrete case when there are no labelled examples, i.e. (𝑚 = 0). The parameter 𝜂 > 0 controls the

balance between the labelled and the unlabelled term, where 𝜂 > 1 assigns more weight on the labelled

data and 𝜂 < 1 assigns more weight on the unlabelled data.

This approach enables learning from labelled examples; however, its limitation in the context of

GNSS RFI detection is that it is designed for fixed dimensional input while GNSS time series data

are dynamic. The superiority of our proposed method compared with deep semi-supervised one-class

classification is exactly in our ability to operate with time series data effectively.

2.6. Deep temporal one-class classification

Overall, traditional and deep one-class classification methods are intended for fixed dimensional input.

How to expand these techniques for time series anomaly detection is still an open research challenge.

Running a sliding window on the time series data in a basic manner would generate a fixed-dimensional

feature vector containing the required context and serving as an input to a one-class classification model.

This method, however, falls short of fully capturing the underlying temporal dependencies. Numerous

time series anomaly detection models based on recurrent networks have recently been proposed as

solutions to this issue. An LSTM (Long Short-Term Memory) encoder-decoder (Malhotra et al., 2016)

defines an anomaly score derived from the time series reconstruction error. The problem with that

approach is that the model experiences error accumulation when decoding lengthy sequences. Deep

generative models have also been proposed, including the recurrent variational autoencoder (Su et al.,

2019) and different types of generative adversarial networks (GANs) (Li et al., 2019; Zhou et al., 2019);

however, designing an effective discriminator and generator is very challenging in practice (Kodali

et al., 2017). Temporal Hierarchical One-Class (THOC) (Shen et al., 2020) leverages a dilated recurrent

neural network (Chang et al., 2017) to learn temporal features from the time series. THOC uses features

from all internal network layers, and multiple hyperspheres at each layer represent typical data patterns.

The model uses a multiscale support vector data description one-class loss function determined by the

difference between hypersphere centres and the final features.

The drawback of THOC is that no label information is leveraged during training – it only takes into

account the unsupervised learning setting. Our approach represents an advancement over THOC in a

way that it enables both learning from time series data as well as learning from labelled examples.

2.7. Anomaly detection with contaminated data

A basic assumption in most of the conventional unsupervised anomaly detection models is that the

number of anomalies in the training dataset is minimal and the model will use inlier priority (Wang

et al., 2019). Quite often, no special treatment is performed to deal with data contamination which

is the situation where our dataset contains hidden anomalies among the normal samples. A technique

that eliminates potential anomalies from the training data is described by Yoon et al. (2021), where an

ensemble of one-class classifiers is used for anomalies removal. There are variations where this method

is combined with autoencoders (Xia et al., 2015; Beggel et al., 2020) or with latent SVDD (Görnitz et al.,

2014). These techniques do not, however, take advantage of the outlier exposure (Hendrycks et al., 2018),

insight which imposes a limitation considering that anomalies could be a highly important training

signal for improving overall model accuracy. Zhou and Paffenroth (2017) employed an autoencoder

to recognise anomalous data points, but their method necessitates training a fresh model every time

to spot anomalies, which is impractical in the majority of near real-time situations. Hendrycks et al.

(2018) suggest to synthesise artificial anomalies by getting samples from a related domain. Qiu et al.

(2022) offer a general method to enhance the training mechanism of many deep learning based anomaly

detection models. Their work aims to take advantage of unlabelled anomalies in the training data while

outlier exposure assumes labelled anomalies.
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Figure 1. RFI on a stationary GNSS receiver.

In our work, we employ a domain-specific method for dealing with contaminated datasets that is

based on the work of Scaramuzza et al. (2014, 2015).

3. Deep temporal semi-supervised one-class classification for GNSS RFI detection

Next we introduce our anomaly detection method for GNSS RFI detection. The core idea is to phrase the

problem of inferring GNSS RFI as semi-supervised temporal one-class classification in deep learning.

We demonstrate how the statistical learning framing is done, what deep learning objective we use

and how we deal with data contamination. The anomaly detection framework presented here is highly

general and can be easily instantiated to many types of challenges in CNS and ATM data.

3.1. The GNSS RFI detection problem

Carrier to noise ratios of all tracked satellites are the primary factors used for GNSS RFI detection in

our work. Those are augmented with additional measurements such as heading, roll and pitch, as well

as ground speed and true air speed measurement.

Interference on a stationary GPS receiver. Analysing statistical properties of C/No values might

reveal a potential radio frequency interference (Scaramuzza et al., 2014). Since RFI affects the entire

GPS receiving antenna equally, all C/No ratios should theoretically decrease by a near constant level

when exposed to interference (Scaramuzza et al., 2014). This hypothesis is empirically validated by

Scaramuzza et al. (2014) where, in a laboratory environment, a real interference is assessed on a station-

ary GPS receiver, which is illustrated in Figure 1. When interference started, all C/No measurements

dropped by five dB.

Interference detection on a live GNSS receiver. We could address in an analogous way the detection

of interference for a GNSS receiver running in a live setting; however, there are some challenges of

which to be aware. In contrast to the laboratory example in Figure 1, a flying aircraft that approaches an

interference source would typically be impacted gradually and the C/No ratio would smoothly decrease

(Scaramuzza et al., 2014). Second, the C/No is impacted by the satellite positions relative to the antenna

(Scaramuzza et al., 2014). Figure 2 illustrates a real scenario assessed by Scaramuzza et al. (2014),

where changes in the aircraft’s attitude are shown to have an impact on some C/No values.
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Figure 2. Helicopter manoeuvre affecting a GNSS satellite’s C/No.

Figure 3. Roll and pitch angles affecting the carrier to noise ratio shown in Figure 2.

Considering that some C/No ratios are decreasing and some are increasing due to the interference,

the drop at 56702.404 time cannot be attributed to radio frequency interference (Scaramuzza et al.,

2014). According to the measured roll and pitch angles, a manoeuvre has been performed (Figure 3).

Overall, the following factors, in addition to radio frequency interference, could affect the carrier to

noise measurements (Scaramuzza et al., 2014):

1. declining signal due to multipath from surroundings outside the airframe;

2. declining signal due to airframe multipath;
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3. signal fading due to air frame;

4. antenna gain pattern;

5. deviation in fading of cabling and amplifiers gain;

6. troposphere;

7. ionosphere.

By restricting the measurements to areas where the helicopter travels at a minimum ground speed,

factor 1 could be solved (Scaramuzza et al., 2014). That way, we can prevent scenarios where the

geometry between GPS antenna, reflector and satellite stays static for a prolonged time frame, and thus

signal decline is minor (Scaramuzza et al., 2014).

Factors 2, 3 and 4 must always be taken into consideration. These factors have one thing in common:

the antenna’s local coordinate system and the satellite’s position determine how much the signal is

reduced (Scaramuzza et al., 2014).

Factor 5 could be ignored considering that these amplifications and losses are applicable to all tracked

satellites (Scaramuzza et al., 2014).

Similar to factors 2 to 4, factors 6 and 7 are always present but are unaffected by the attitude of the

aircraft (Scaramuzza et al., 2014). An estimate of the signal attenuation caused by the troposphere and

ionosphere is pertinent in this situation. The low signal attenuation caused by the atmosphere is one of the

primary factors in the choice of the L-band for GNSS applications (Scaramuzza et al., 2014). For signal

paths entirely within the troposphere, the tropospheric attenuation is much lower than 1 dB (Essentials,

2012; Recommendation, 2013). For signal paths from space to Earth, it is even lower. According to

Christie et al. (1996), the ionospheric attenuation is thought to be insignificant. Special attention should

be made in case of ionospheric scintillation considering that in such situations, attenuation can reach

levels above twenty dB (Series, 2015, 2016). The geomagnetic equator is where ionospheric scintillation

is at its highest and mid-latitude regions (Series, 2015) are where it is at its lowest. Since our experimental

work is based on datasets covering Switzerland, regardless of Switzerland’s location at middle latitudes,

we should not record interference detection when ionospheric scintillation is present (Scaramuzza et al.,

2014).

The factors that matter most for interference detection are factors 2, 3 and 4 (Scaramuzza et al., 2014).

3.2. Statistical learning problem definition

Let D = {X1, . . . , X𝑁 } be a set of time series representing recorded flights. Each X𝑠 ∈ D represents a

flight of length𝑇𝑠 epochs, and the flight measurements vector at time 𝑡 is 𝑥𝑡 ,𝑠 ∈ 𝑋 ⊆ R
𝐷 . The GNSS RFI

detection problem is to estimate if the measurements 𝑥𝑡 ,𝑠 are impacted by radio frequency interference,

based on the sequence of observations 𝑥1:𝑡 ,𝑠 that has been observed so far.

We phrase the GNSS RFI detection problem as anomaly detection in time series data, and thus we

generalise the GNSS RFI detection task as determining if the measurements 𝑥𝑡 ,𝑠 are anomalous.

Our objective is to develop an anomaly detection model that reduces false positives and missed true

anomalies. Conceptually, attaining a low (or even zero) false positive rate is straightforward: given a

large number of instances of normal data, we can simply define a decision boundary that encompasses

all of the instances, e.g. a large hypersphere that contains all data observations. Of course, maintaining

a low miss rate while not drawing this boundary too broadly is the challenge here. Therefore, the main

technical problem consists in reducing miss rate for a predefined false positive rate when we have zero

or just a few anomalous samples.

Let 𝑌 ∈ {±1} be the target variable considering that 𝑌 = +1 means genuine flight measurement

observations and 𝑌 = −1 means abnormal flight measurement observations. Additionally, we define

ℓ : R × {±1} → R as a binary classification loss and 𝑓 : 𝑋 → R to be a real-valued scoring

function. Having an unlabelled dataset of flight measurement vectors 𝑥1, . . . , 𝑥𝑛 ∈ 𝑋 and, if available,

an annotated dataset of flight measurement vectors (𝑥1, 𝑦̃1), . . . , (𝑥𝑚, 𝑦̃𝑚), and following the empirical

risk minimisation concept, we formulate our one-class classification learning objective in Equation (3.1).
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The assumption that the 𝑛 unlabelled training samples are non-anomalous is incorporated into the

implicit labelling 𝑦 = 1 in the first term.

min
𝑓

1

𝑛

𝑛∑

𝑖=1

ℓ( 𝑓 (x𝑖), +1) +
1

𝑚

𝑚∑

𝑗=1

ℓ( 𝑓 (x̃ 𝑗 ), 𝑦 𝑗 ) + R . (3.1)

In the unsupervised setting, the second term is a zero sum. To signify and encompass regularisation,

we add the term R as an additional component in our loss function.

3.3. Deep temporal semi-supervised one-class classification

Next, we present our approach for deep temporal semi-supervised anomaly detection. Consider that we

have 𝑚 labelled examples (𝑥1, 𝑦̃1), . . . , (𝑥𝑚, 𝑦̃𝑚) ∈ X × Y together with the 𝑛 unlabelled examples

𝑥1, . . . , 𝑥𝑛 ∈ X with X ⊆ R
𝐷 and Y = {−1, +1}, considering that 𝑦̃ = +1 means genuine observations

and 𝑦̃ = −1 known abnormalities. Our model architecture is built on top of the THOC Network

(Schölkopf et al., 2001). Similar to THOC, our model architecture uses a dilated recurrent neural

network (Chang et al., 2017) to effectively learn temporal representations from time series data. Multiple

hyperspheres at each network layer are used to learn representations of normal patterns which enables

the model to learn complex relationships in GNSS time series data and is much more effective than

conventional one-class classification approaches based on just a single hypersphere (Shen et al., 2020).

We designed a semi-supervised one-class loss function to enable the model to learn from known

annotated anomalies and deal with contaminated data which is superior to classic unsupervised anomaly

detection approaches that use only normal data. We define our deep temporal semi-supervised one-class

classification learning objective as follows:

ℓ =
1

𝑁𝐾𝐿

𝑁∑

𝑠=1

1

𝑇𝑠

𝑇𝑠∑

𝑡=1

𝐾 𝐿∑

𝑗=1

𝑅𝐿
𝑡, 𝑗,𝑠𝑑 (f

𝐿
𝑡, 𝑗 , c

𝐿
𝑗 )

𝑦𝑡,𝑠 + 𝜆Ω(W). (3.2)

It is based on the difference between hyperspheres’ centres {c𝐿
1
, . . . , c𝐿

𝐾 𝐿 } and final calculated

features {f̄𝐿𝑡, 𝑗 } at the last layer of the deep network, where 𝑡 runs over the time points and 𝑇𝑠 is number

of epochs for a given time series, 𝑗 runs over the hyperspheres at a given layer, and 𝐿 is the number of

network layers (3 in our reference implementation). Given a concrete scale 𝑙 ∈ {1, . . . , 𝐿}, we have a

specific layer of 𝐾 𝑙 hyperspheres where 𝐾 𝑙 is the number of hyperspheres at layer 𝑙. Cosine distance

is used for 𝑑 (f̄𝐿𝑡, 𝑗 , c𝐿
𝑘
). Here, W are the trainable network weights and Ω(W) is ℓ2 regularisation.

The subscript 𝑠 is added for samples and 𝑁 is the number of samples. While conventional one-class

classification has just a single hypersphere, our model incorporates multiple network layers each with

multiple hyperspheres’ centres. 𝑅𝐿
𝑡, 𝑗,𝑠 represents how much the measurement x𝑡 ,𝑠 is similar to centre c𝐿𝑗

and, in our case, it is based on a cosine similarity function. The term is used as an importance weighting

of 𝑑 (f̄𝐿𝑡, 𝑗 , c𝐿
𝑘
). It is computed in a recursive manner for each layer and for a given layer 𝑙, it is calculated

by a softmax over all centres in the given layer. For simplicity, we remove the subscript 𝑠:

𝑅𝑙
𝑡 , 𝑗 =

exp(𝑅̃𝑙
𝑡 , 𝑗
)

∑𝐾 𝑙

𝑖=1 exp(𝑅̃𝑙
𝑡 ,𝑖
)
, where 𝑅̃𝑙

𝑡 , 𝑗 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪
⎩

𝑃𝑙
𝑡 ,𝑖, 𝑗

if 𝑙 = 1,

𝐾 𝑙−1∑

𝑖=1

𝑃𝑙
𝑡 ,𝑖, 𝑗𝑅

𝑙−1
𝑡 ,𝑖 if 1 < 𝑙 ≤ 𝐿.

(3.3)

Here the term 𝑃𝑙
𝑡 ,𝑖, 𝑗

is defined as

𝑃𝑙
𝑡 ,𝑖, 𝑗 =

exp(cos(f̄𝑙−1
𝑡 ,𝑖

, c𝑙
𝑗
))

∑𝐾 𝑙

𝑘=1 exp(cos(f̄𝑙−1
𝑡 ,𝑖

, c𝑙
𝑘
))
. (3.4)
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To introduce semi-supervision, we penalise the inverse of the distances by 𝑑 (f̄𝐿𝑡, 𝑗 , c𝐿
𝑘
)𝑦𝑡,𝑠 for the

labelled anomalies (𝑦̃ = −1), requiring anomalies to be mapped further from the centre. This is consistent

with the widely held belief that anomalies do not cluster (Schölkopf et al., 2002; Steinwart et al., 2005).

This component enables the model to learn from just a few labelled anomalies.

The THOC Network is recovered as a concrete case when there are no available annotated training

samples (𝑚 = 0) by using the same objective for the unlabelled data (𝑦̃ = +1) in our loss function.

We also take into account the fact that the majority of the unlabelled data is normal when doing

this.

With a trained deep learning model against our objective, let 𝑥𝑡 be the measurement at time 𝑡 for a new

and unseen time series 𝑋 . We define a quantitative anomaly score that determines how an observation

at a given time epoch differs from the regular data patterns represented by the hyperspheres. The score

is defined as follows: 𝑓 (𝑥𝑡 ) =
∑𝐾 𝐿

𝑗=1 𝑅
𝐿
𝑡, 𝑗,𝑠 · 𝑑 (f

𝐿
𝑡, 𝑗 , c𝐿𝑗 ). In combination with a user-defined threshold

selected empirically based on target precision and recall or simply based on the value that produces the

highest F1 score on a validation set, the score is used for anomaly detection in unseen time series. Thus,

considering a threshold 𝛿, we then classify 𝑥𝑡 as anomalous in case 𝑓 (𝑥𝑡 ) > 𝛿.

3.4. Addressing data contamination

Now, we present our domain-specific strategy for generating pseudolabels and dealing with data con-

tamination. Considering that our datasets are likely contaminated and contain various types of RFI

anomalies, we implemented a strategy to address this problem by leveraging GNSS RFI annotations

from the RFI detection method developed by Scaramuzza et al. (2014, 2015) that is based on car-

rier to noise measurements and aerial aircraft attitude. This approach enables us to generate anomaly

pseudolabels (𝑦̃ = −1) for particular time steps that our semi-supervised model can use during training.

The core idea behind the method developed by Scaramuzza et al. (2014, 2015) is to assess the C/No

values distribution of each tracked GPS satellite (Scaramuzza et al., 2014, 2015) taking into account

that the GPS receiving antenna is entirely impacted by the same level of interference, an RFI occurrence

would cause the C/No to decrease by a near constant amount at each individual time step (Scaramuzza

et al., 2014, 2015). To do so, the method estimates the GPS antenna pattern which affects the GPS C/No

depending on the satellite position referred to the GPS antenna. This allows to normalise the C/No

and minimise most signal attenuation not related to RFI. Finally, it is possible to determine whether a

constant decrease of all C/No is present, indicating a potential RFI, or not. Figure 4 depicts all steps of

the method detecting any potential RFI based on Scaramuzza et al. (2014, 2015).

The synopsis in Figure 4 shows the context in which the man-made RFI is detected. It is understood

that RFI is not the only electromagnetic type of interference to have an adverse impact on the quality of

the GNSS signals. Only non-intentional and intentional man-made RFI is subject of RFI detection, i.e.

multipath and natural RFI is out of scope (Scaramuzza et al., 2014, 2015).

4. Implementation

In this section, we provide implementation details around our solution. Figure 5 summarises the high

level network architecture. The system operates based on a sliding window approach. We use a long

window length of 100 epochs for better performance. The first 100 epochs are used to washout since they

have not enough context or, in other words, we assume that they are normal samples. The sliding step is

20 and it is less than the window size which helps training. If some points are detected multiple times,

we compute their anomaly scores’ mean value as the final score. We use a batch size of 32, learning

rate of 0·001 and weight decay of 1 × 10−6. Our dilated recurrent neural network has three layers and

dilations [1, 12, 34]. Respectively, the number of clusters at each layer is as follows: [12, 6, 6]. Hidden

layers size is 64 and input size is 37. The model uses an Adam optimiser. For clustering, we use k-means.

Data are scaled with a robust scaler. Model hyperparameters are fine-tuned with a random search. The
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Figure 4. Flow chart of all required steps to detect potential GPS RFI based on a method developed by

Scaramuzza et al. (2014, 2015).

implementation is done in Python 3.9.7 using PyTorch 1.11.0. The source code is available at https://

github.com/vii500/dtssoccgnssrfid.

5. Experimental evaluation

In this section, we describe the evaluation of the proposed deep learning model. Our main objective is

to study how effective our approach is for GNSS RFI detection based on a real-world dataset containing

onboard measurements of jammed aircraft.

5.1. Dataset

Skyguide has provided the data for this research. There are 54,402 recorded flights in the dataset. The

information was gathered by Skyguide as part of the Helicopter Recording Random Flights (HRRF)

project, where data recorders were installed on board of three dozens of helicopters operated by Swiss

Air Force and Rega (Scaramuzza et al., 2014, 2015, 2016, 2017, 2019; Truffer et al., 2017). For all

flights, data from GPS, AHRS and FMS were logged over the course of six years and in normal operating

circumstances. Large portions of Switzerland were thus covered. Low flight altitudes are a recurring

feature of all of these helicopter operations. As a result, it is anticipated that their likelihood of being

exposed to GNSS RFI is higher than that of aircraft flying at higher altitudes. Through the recorded

C/No values or position losses, any exposure of this kind can be identified (Scaramuzza et al., 2014,

2015). The additional recorded data enable more effective statistical learning based on richer input

features.
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Figure 5. Deep temporal semi-supervised one-class classification high level network architecture.

Figure 6. EC145 of the HEMS operator Rega. The GPS antenna is attached on the top of the fin in front

of the strobe light (courtesy Rega).

The Swiss Air Force operated 18 EC-635 helicopters (Figure 7) and Rega operated 11 AW109SP and

6 EC-145 helicopters (Figure 6), making up the entire fleet of helicopters with recording units. Fixed

installations were implemented due to the many years data collection timeline.

Installation. We briefly describe the technical setup from Scaramuzza et al. (2014, 2015). A mini

Quick Access Recorder (mQAR), depending on the architecture of the aircraft, is connected to its ARINC

bus or RS-232 interface as the technical solution. The mQAR is a lightweight and compact unit. An

installed mQAR is shown in Figure 8, as indicated by the red arrow. The mQAR begins recording data

automatically as soon as the helicopter is powered on and continues doing so until the power is turned

off. Therefore, there is no need for the pilot or ground crew to interact. An SD (Secure Digital) memory

card serves as the storage medium and, under normal circumstances, can store several weeks’ worth of
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Figure 7. EC635 of the Swiss Air Force. The GPS antenna is mounted analogous to the EC145 (courtesy

VBS).

flight data. Each helicopter base’s ground staff were given instructions to download the recorded data

and upload it to a shared data storage every two to four weeks.

Recorded data. Overall, we have a large volume of data collected onboard. From EC-145/635, we

are leveraging data from the GPS, AHRS and FMS, and from AW109SP, we have FMS and GPS only.

EC145/635 GPS data include satellite position, GPS position, vertical and horizontal integrity limits and

figure of merits, pseudo range and pseudo range rate, C/No ratios and different status indicators. Only on

AW109SP do we have position domain data. AHRS data include roll, heading and pitch measurements.

The GPS and AHRS sampling interval is 1 Hz.

Interference detection input. The key measurement used for GNSS interference detection is the carrier

to noise ratio of each tracked satellite. Radio frequency interference will impact all carrier to noise ratios.

The carrier to noise input (C/No1–C/No32) is augmented with heading, roll and pitch measurements as

well as ground speed, i.e. velocity over ground measurement (no wind effects taken into account) and

true air speed measurement, i.e. velocity relative to air. This represents a much richer context compared

with the conventional ADS-B setups.

True interference labels. Two flight recordings from actual field trials of military and civilian aircraft

engaged in live jamming situations carried out by Skyguide and the Swiss Air Force (Truffer et al., 2017)

are included in our dataset. The recorded data help us to understand how real-world jamming affects

various GPS receivers on different types of aircraft. The jamming trials are used for model testing,

i.e. they are used in our deep learning approach to extract true examples of anomalies. We specifically

annotate the epochs within the jamming time range as anomalous and the epochs outside the jamming

time range as normal based on the known start and stop times of the jammer. We have two fully annotated

time series with actual anomalies, allowing us to run a robust test.

5.2. Evaluation setup

We now provide details on how model evaluation is performed.

Training data. For model training, we use the flight recordings of 17 of the helicopters available

in the dataset provided by Skyguide with anomaly pseudolabels derived from a method developed by
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Figure 8. Installed Avionica mQAR in Swiss Air Force and Rega helicopters (red arrow).

Table 1. Known start and stop jammed epochs in jammed flight 1.

Jammer mode Jamming start epoch Jamming end epoch

Noise 1,939 2,355

CW 2,370 2,674

Pulse 3,091 3,526

Sweep 3,691 3,942

Table 2. Known start and stop jammed epochs in jammed flight 2.

Jammer mode Jamming start epoch Jamming end epoch

Noise 994 1,269

CW 1,294 1,651

Pulse 2,387 2,807

Sweep 2,867 2,927

Sweep 3,047 3,176

Scaramuzza et al. (2014, 2015). We explicitly exclude all flights of the two helicopters participated in

the jamming trials to prevent potential overfitting on specific aircraft. We have 43,696 number of flights

(time series) in total where the average number of epochs per flight (time series length) is 1,700. We

have 0·05% anomalous epochs in the training data.

Test data. For model evaluation, we use the two flights from the jamming trials having anomaly

labels based on the known start and stop times of the jammer. Jammed flight 1 has 4,002 epochs of

which 2,592 flagged as normal and 1,410 flagged as abnormal. Jammed flight 2 has 3,782 epochs of

which 2,536 flagged as normal and 1,246 flagged as anomalous. Tables 1 and 2 present the jamming

annotations based on the known start and stop times of the jammer.
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Table 3. Model evaluation on jammed flight 1.

Method Precision Recall F1 score Accuracy

Our method (semi-supervised mode) 0 · 80 0 · 78 0 · 79 0 · 85

Our method (unsupervised mode) 0 · 37 1 · 00 0 · 54 0 · 40

THOC network 0 · 37 1 · 00 0 · 54 0 · 40

Scaramuzza et al. (2014) 0 · 96 0 · 25 0 · 39 0 · 73

Isolation forest 0 · 36 0 · 98 0 · 53 0 · 38

Light GBM 0 · 98 0 · 18 0 · 30 0 · 71

Random forest 0 · 96 0 · 22 0 · 36 0 · 72

Baselines for comparison. The following set of anomaly detection algorithms are benchmarked

with the suggested model. The first group contains models based on supervised machine learning.

These include random forest (Breiman, 2001) and light gradient boosting machine (LGBM) (Ke et al.,

2017). The second group contains anomaly detectors for general multivariate tabular data. This group

is represented by isolation forest (Liu et al., 2008). The third group contains deep learning anomaly

detectors for time series data. This group is represented by THOC Network (Shen et al., 2020). Finally,

we compare with the method developed by Scaramuzza et al. (2014).

Performance metrics. We use four standard metrics for evaluating our method against the baselines:

precision, recall, F1 score and accuracy:

• Precision is calculated as TP/(TP + FP);

• Recall calculated as TP/(TP + FN);

• F1 score is calculated as 2 × (precision × recall)/(precision + recall);

• Accuracy is calculated as (TP + TN)/(TP + TN + FP + FN),

where TP refers to true positive which is the outcome where the model correctly predicts the anomaly

class, TN refers to true negative which is the outcome where the model correctly predicts the normal

class, FP false positive which is the outcome where the model incorrectly predicts the anomaly class and

FN refers to false negative which is the outcome where the model incorrectly predicts the normal class.

5.3. Hardware

We ran our experiments on a standard desktop workstation with a Intel Core i7-7700 CPU 3 · 60 GHz

processor, 32GB RAM, a solid-state drive storage and running 64-bit Windows 10 Home.

5.4. Evaluation results

Table 3 shows the results on jammed flight 1 and Table 4 shows the results on jammed flight 2. The main

comparison metric is F1 score which is commonly used as a standard benchmark metric in imbalanced

binary classification since it integrates precision and recall into a single metric, and thus provides a

better understanding of model discriminative power. Precision, recall and accuracy are reported for

completeness of evaluation. To calculate the performance metrics, we select a predefined threshold for

our model. The threshold is selected out of a large range of consecutive options based on the highest F1

score produced by the model.

Isolation Forest performs poorly on the time series, which is not surprising given that it is not well

suited to capture the underlying temporal dependencies in the data. Even though it achieves high recall,

its precision is very low, and thus overall F1 score and accuracy are both low. This model will produce

a high number of false positives and thus is impractical for real usage.
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Table 4. Model evaluation on jammed flight 2.

Method Precision Recall F1 score Accuracy

Our method (semi-supervised mode) 0 · 72 0 · 72 0 · 72 0 · 82

Our method (unsupervised mode) 0 · 35 1 · 00 0 · 52 0 · 38

THOC network 0 · 35 1 · 00 0 · 52 0 · 38

Scaramuzza et al. (2014) 1 · 0 0 · 1 0 · 18 0 · 70

Isolation forest 0 · 32 0 · 55 0 · 40 0 · 46

Light GBM 1 · 00 0 · 06 0 · 11 0 · 69

Random forest 1 · 00 0 · 07 0 · 14 0 · 70

THOC Network does not perform well in general. Similarly to Isolation Forest, its precision is very

low. F1 score and accuracy are both low. This model will also exhibit a high false positive rate that is

unacceptable for real application.

(a)

(b)

Figure 9. Model evaluation on jammed flight 1. (a) Flight trajectory and marked true positive (TP),

false positive (FP), true negative (TN) and false negative (FN) epochs. (b) Model anomaly scores of all

epochs. (c) Values of all C/No. (d) Mean value of all C/No (blue line) and marked TP, FP, TN and FN

epochs.
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(c)

(d)

Figure 9. Continued.

Random Forest and Light GBM perform better considering that they leverage information from

annotated examples in the training data. They achieve very high precision, but their recall is very low,

and the F1 score and accuracy are both low. These models will miss most of the potential RFIs in

real-world application.

The method of Scaramuzza et al. (2014) performs best out of all baseline methods. Similarly to

Random Forest and Light GBM, it achieves very high precision but the recall is low. F1 score and

accuracy are both low. This model is missing the majority of potential RFIs.

Our proposed model operating in unsupervised learning mode, i.e. when data contamination is not

addressed and labelled anomalies are not used, recovers the performance of the THOC network and

performs poorly.

Our proposed model operating in semi-supervised learning mode outperforms all the baselines on

both flights in F1 score and accuracy. The model is able to learn complex temporal dynamics in time

series data and at the same time to use known anomalies and extract relevant information from them.

It achieves both high precision and high recall resulting in highest F1 score and accuracy among all

models. It is detecting the majority of the RFIs with high precision.

Based on our test set, the estimated average inference time of our method is 0 · 125 s per flight where

the average number of epochs in a flight is 1698 considering that the epoch sampling interval is 1 Hz.
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Figures 9 and 10 illustrate the performance of our model on jammed flight 1 and flight 2. We can

see jammed flight 1 and 2 trajectories with marked true positives, false positives, true negatives and

false negatives in Figures 9(a) and 10(a). Correlation between anomaly scores and C/No drops can be

observed in Figures 9(b) and 9(c) for jammed flight 1, and Figures 10(b) and 10(c) for jammed flight 2.

Finally, we present marked true positive, false negative and false positive epochs on mean C/No plot in

Figure 9(d) for jammed flight 1, and Figure 10(d) for jammed flight 2.

5.5. Discussion

Next, we discuss two systematic errors made by our model that are clearly observable in the empirical

evaluation.

Systematic false negatives. We observe a systematic error mode of our model in both flights leading

to false negatives or missed anomalies. Concretely, in jammed flight 1, we see a concentration of false

negatives around flight epochs 2000 and 3200. Similarly, we observe the same type of concentration of

(a)

(b)

Figure 10. Model evaluation on jammed flight 2. (a) Flight trajectory and marked true positive (TP),

false positive (FP), true negative (TN) and false negative (FN) epochs. (b) Model anomaly scores of all

epochs. (c) Values of all C/No. (d) Mean value of all C/No (blue line) and marked TP, FP, TN and FN

epochs.
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(c)

(d)

Figure 10. Continued.

false negatives in jammed flight 2 around flight epochs 1000 and 2500. In both cases, these are epochs

impacted by RFI following a long period of normal recordings. The intuition behind these errors is that

the model is estimating potential RFI for a given epoch based on the past recordings and so it is unable

to accumulate sufficient anomalous context to estimate potential RFI quickly enough. Therefore, our

model might be ineffective in situations where the jamming interval is really short. Furthermore, we

should be aware that given a detected RFI, we should always expect that flight recordings prior the first

successful detection might also be impacted by RFI but not detected by the model.

Systematic false positives. We observe another systematic error mode of our model in both flights

resulting in false positives. These are the situations straight after the jammer is turned off and before

it is turned on again. Overall, these are questionable situations that also depend on the GPS recovery

time but, in the general case, we might expect that after a period of RFI impacting the flight recordings,

the model might produce false positives for some period shortly after the RFI is over considering that

the epochs assessed by the model straight after the RFI will still have a historical context of recordings

impacted by the RFI.

Application to vehicles on the ground. In principle, our approach could also be used for vehicles

on the ground, not only for helicopters, but a poorer performance is to be expected. The multipath

effects will be stronger from surrounding environments and are likely to be problematic. In the case of
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helicopters, the multipath effect is largely reduced, as data were only used if the velocity was larger than

10 m/s. It can therefore be expected that multipath effects only occur for a short time period and therefore

hardly influence the result (exceptions can be when the helicopter flies over a smooth water surface,

but this was rarely the case). Furthermore, the helicopters usually fly higher above the ground if they

are moving at more than 10 m/s and therefore potential reflectors are further away from the receiving

antenna. Depending on the correlator spacing of the receiver used, the multipath error collapses from

a certain distance and therefore also contributes to a better result. In the conservative case of BPSK1

and 1 chip correlator spacing, the error is practically zero with a multipath delay of just over 400 m. For

a vehicle on the ground, it can be assumed that these two influences are stronger than for a helicopter.

Especially when, for example, a car is moving slowly in city traffic and is surrounded by reflectors such

as building walls and the ground, this method is likely to lead to degraded results.

Training with synthetic jamming signals. Considering that real-world jamming data are hard to

acquire, users of our model could, in principle, use a software-based approach to add synthetically

generated jamming signals to real measurements of GNSS, and use the modified GNSS measurements

to train the model. In such a case, the jammer has to be modelled and this highly depends on the

environment (terrain, obstacles, etc.), the jammer antenna characteristics, etc. and depending on the

applied model, the result might be better or not.

6. Conclusion and future work

We presented a deep learning approach for detection of GNSS RFI from large amounts of aircraft data.

Our solution is easily transferable and can be used as a foundation for different anomaly detection tasks

in CNS and ATM data. Extensive empirical studies demonstrate that the proposed method outperforms

strong baselines. As a next step, we plan to evolve our solution towards localisation of GNSS interference

sources.
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