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Let T be a d × d matrix with real coefficients. Then T
determines a self-map of the d-dimensional torus T d =
Rd/Zd. Let {En}n∈N be a sequence of subsets of T d and let 
W (T, {En}) be the set of points x ∈ T d such that T n(x) ∈ En

for infinitely many n ∈ N. For a large class of subsets 
(namely, those satisfying the so called bounded property (B)
which includes balls, rectangles, and hyperboloids) we show 
that the d-dimensional Lebesgue measure of the shrinking 
target set W (T, {En}) is zero (resp. one) if a natural 
volume sum converges (resp. diverges). In fact, we prove a 
quantitative form of this zero-one criteria that describes the 
asymptotic behaviour of the counting function R(x, N) :=
#
{

1 ≤ n ≤ N : T n(x) ∈ En}. The counting result makes 
use of a general quantitative statement that holds for a 
large class measure-preserving dynamical systems (namely, 
those satisfying the so called summable-mixing property). 
We next turn our attention to the Hausdorff dimension of 
W (T, {En}). In the case the subsets En are balls, rectangles 
or hyperboloids we obtain precise formulae for the dimension. 
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These shapes correspond, respectively, to the simultaneous, 
weighted and multiplicative theories of classical Diophantine 
approximation. The dimension results for balls generalises 
those obtained in [25] for integer matrices to real matrices. In 
the final section, we discuss various problems that stem from 
the results proved in the paper.

© 2023 The Authors. Published by Elsevier Inc. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons .org /licenses /by -nc -nd /4 .0/).

“You’ve always had the power my dear,

you just had to learn it yourself.”

1. Introduction

Let (X, B, μ, T ) be a measure-preserving dynamical system. Recall, that by definition 

μ is a probability measure. Now let {En}n∈N be a sequence of subsets in B and let

W
(
T, {En}

)
:= lim sup

n→∞
T −n(En)

= {x ∈ X : T n(x) ∈ En for infinitely many n ∈ N} .

For obvious reasons the sets En can be thought of as targets that the orbit under T

of points in X have to hit. The interesting situation is usually, when working within 

a metric space, the diameters of En tend to zero as n increases. It is thus natural to 

refer to W
(
T, {En}

)
as the corresponding shrinking target set associated with the given 

dynamical system and target sets. Since T is measure-preserving μ(T −n(En)) = μ(En), 

and a straightforward consequence of the (convergent) Borel-Cantelli Lemma is that

μ
(
W (T, {En})

)
= 0 if

∞∑

n=1

μ(En) < ∞ . (1)

Now two natural questions arise. Both fall under the umbrella of the “shrinking target 

problem” formulated in [24].

(P1) What is the μ-measure of W (T, {En}) if the measure sum in (1) diverges?

(P2) What is the Hausdorff dimension of W (T, {En}) if the measure sum converges 

and so μ
(
W (T, {En})

)
= 0?

To be precise, the target sets En in the original formulation in [24] are restricted to 

balls Bn. The more general setup naturally incorporates a larger class of problems. For 

example, within the context of simultaneous Diophantine approximation, it enables us 

to address problems associated with the weighted (the target sets are rectangular) and 

multiplicative (the target sets are hyperbola) theories – see Remark 4 in §1.2 below.
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In this paper we revisit the shrinking target problem investigated in [25] in which T is 

a matrix transformation of the d-dimensional torus X = T d := Rd/Zd. There are several 

reasons for doing this. Firstly, for integer matrix transformations a solution to (P1) was 

announced in [25]; namely, under some regularity condition on the rate at which the 

diameters of the balls Bn tend to zero, we have that

md(W (T, {Bn})) = 1 if
∞∑

n=1

md(Bn) = ∞ (2)

where md is d-dimensional Lebesgue measure. However, the intended paper establishing 

this divergent analogue of (1) was never completed2 and to the best of our knowledge 

such a result has not to date appeared in print elsewhere. In this paper not only do 

we rectify the situation but we consider the set up in which T is a real (rather than 

just integer) matrix transformation and the ‘target’ sets are general sets rather than just 

balls. Furthermore, our results are significantly stronger than statements such as (2). In a 

nutshell, our solution to (P1) consists of full measure statements that are quantitative in 

nature. Next, turning our attention to (P2), Theorem 2 in [25] provides a precise formula 

for the Hausdorff dimension of W (T, {Bn}) when T is an integer matrix transformation 

diagonalizable over the rationals. In this paper we investigate the more general situation 

in which T is real and by making use of technology that was not available at the time of 

[25], we show (for instance) that the aforementioned formula for the Hausdorff dimension 

holds for a large class of real diagonal matrix transformations.

At the heart of our solution to (P1) for matrix transformations of tori, is a result 

that holds for a large class of measure-preserving dynamical systems. We start with 

describing this broader result and then move onto formally stating our theorems for 

matrix transformations.

1.1. A quantitative full measure result for Σ-mixing dynamical systems

Given a measure-preserving dynamical system (X, B, μ, T ) and a sequence {En}n∈N

of subsets in B, we will show that if μ is exponentially mixing and the measure sum in 

(1) diverges then the associated lim sup set W
(
T, {En}

)
is of full measure. However, it 

turns out that a lot more is true. We can establish a quantitative full measure statement 

and at the same time work with the potentially weaker notion of Σ-mixing.

Definition 1. Let (X, B, μ, T ) be a measure-preserving dynamical system and C be a 

collection of measurable subsets of X. For n ∈ N, let

φ(n) := sup

{ ∣∣∣∣
μ(E ∩ T −nF )

μ(F )
− μ(E)

∣∣∣∣ : E ∈ C, F ∈ C
}

. (3)

2 The author SV would like to take this opportunity to apologise for making an announcement and then 
not delivering the goods!
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We say that μ is Σ-mixing (short for summable-mixing) with respect to (T, C) if the 

series 
∑∞

n=1 φ(n) converges.

Recall, that the above of mixing is stronger than that of φ-mixing which simply 

requires that φ(n) → 0 as n → ∞. Also recall, that μ is exponentially mixing with 

respect to (T, C) if there exists a constant 0 < γ < 1 such that

μ(E ∩ T −n(F )) = μ(E)μ(F ) + O(γn)μ(F ), (4)

for any n ≥ 1 and E, F ∈ C – the implied constant in the big O does not depend on the 

sets E and F . In other words, and not surprisingly, exponentially mixing and Σ-mixing 

coincide whenever φ(n) converges to zero exponentially fast. It is worth mentioning that 

in the standard definition, condition (4) is required to hold for any F ∈ B rather than 

just in C. We refer the reader to the survey paper [7] for further details including “other” 

variants of the notion of exponentially mixing. Also, see §1.1.1 below.

As above, let {En}n∈N be a sequence of measurable subsets of X. Then, given N ∈ N

and x ∈ X, consider the counting function

R(x, N) = R(x, N ; T, {En}) := #
{

1 ≤ n ≤ N : T n(x) ∈ En}. (5)

As alluded to in the definition, we will often simply write R(x, N) for R(x, N ; T, {En})

since the other dependencies will be clear from the context and are usually fixed. It is 

easily seen that the convergent statement (1) is equivalent to saying that if the measure 

sum converges, then limN→∞ R(x, N) is finite for μ–almost all x ∈ X. The following 

result implies that for a large class of dynamical systems, if the measure sum diverges 

then μ–almost all x ∈ X ‘hit’ the target sets En the ‘expected’ number of times.

Theorem 1. Let (X, B, μ, T ) be a measure-preserving dynamical system and C be a collec-

tion of subsets of X. Suppose that μ is Σ-mixing with respect to (T, C) and let {En}n∈N

be a sequence of subsets in C. Then, for any given ε > 0, we have that

R(x, N) = Φ(N) + O
(

Φ1/2(N) (log Φ(N))3/2+ε
)

(6)

for μ-almost all x ∈ X, where

Φ(N) :=

N∑

n=1

μ(En) .

A simple consequence of Theorem 1 is that limN→∞ R(x, N) = ∞ for μ–almost all 

x ∈ X if the measure sum diverges and so together with (1) we obtain the following 

zero-full measure criterion.
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Corollary 1. Let (X, B, μ, T ) be a measure-preserving dynamical system and C be a collec-

tion of subsets of X. Suppose that μ is Σ-mixing with respect to (T, C) and let {En}n∈N

be a sequence of subsets in C. Then

μ
(
W (T, {En})

)
=

⎧
⎪⎨
⎪⎩

0 if
∑∞

n=1 μ
(
En

)
< ∞

1 if
∑∞

n=1 μ
(
En

)
= ∞.

(7)

Before moving onto considering the specific situation in which T is a matrix transfor-

mation of the torus we discuss previous related works.

1.1.1. Connection to other works

We will focus on two previous works that are related to the framework presented above; 

i.e. the notion of Σ-mixing and its consequences. In an interesting paper [19], Fernández, 

Melián & Pestana introduced the notion of a transformation T being uniformly mixing at 

a point x0 ∈ X. Their notion coincides with our Definition 1 if we restrict the collection C
to balls B centered at x0. The upshot [19, Theorem 1] is that given a decreasing sequence 

of balls Bn := B(x0, rn), if T is uniformly mixing at x0 and 
∑∞

n=1 μ(Bn) = ∞ then

lim
N→∞

R(x, N)

Φ(N)
= lim

N→∞

#
{

1 ≤ n ≤ N : T n(x) ∈ Bn

}
∑N

n=1 μ(Bn)
= 1 . (8)

Clearly our Theorem 1 not only implies this asymptotic statement but it also provides a 

reasonably sharp estimate for the error term. As a consequence, the various applications 

of (8) considered in [19] can be strengthened accordingly. Indeed, their main motivat-

ing application to inner functions [19, Theorem 2] can be improved to the following 

statement.

Theorem FMP+. Let f : D → D be an inner function with f(0) = 0, but not a rotation. 

Let ξ0 be a point in ∂D and let {rn} be a decreasing sequence of positive numbers. If ∑∞
n=1 rn = ∞, then for any given ε > 0, we have that

#
{

1 ≤ n ≤ N : d
(
(f∗)n(ξ), ξ0

)
< rn

}
= Φ(N) + O

(
Φ1/2(N) (log Φ(N))3/2+ε

)

for μ-almost all x ∈ X, where Φ(N) :=
∑N

n=1 rn, f∗(ξ) = limr→1−
f(rξ) and d is the 

angular distance in ∂D.

In the later stages of preparing this manuscript, we discovered that our Theorem 1

overlaps with a result of Philipp [42, Theorem 3] dating back to 1967. Indeed, in his 

theorem the condition imposed on the sequence {En}n∈N of measurable sets is in effect 

equivalent to our notion of Σ-mixing with C = B. It appears that [42, Theorem 3] has 

been either entirely overlooked, or at least not fully exploited in previous works. For 
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the sake of completeness we have decided to include the proof of Theorem 1 in §2. 

Moreover, our proof is pretty short and unlike Philipp’s approach it exploits a rather 

general tool (Lemma 1 in §2) for establishing sharp counting statements. To the best of 

our knowledge, a slightly weaker version of the tool, which suffices to establish Theorem 1, 

first appears in Sprindžuk’s book [45, Lemma 10] which was some ten years after Philipp’s 

paper. Furthermore, we have decided to include a self contained proof of the Corollary 1

since it is rather nifty and some readers may only be interested in the zero-full measure 

criterion rather than its stronger quantitative form.

1.2. Quantitative full measure results for matrix transformations

Let T be a d × d non-singular matrix with real coefficients. Then, T determines a 

self-map of the d-dimensional torus X = T d := Rd/Zd; namely, it sends x ∈ T d to Tx

modulo one. In what follows, T will denote both the matrix and the transformation. It 

should be obvious from the context what is meant. Furthermore, for n ∈ N, by T n we will 

always mean the n-th iteration of the transformation T rather than the matrix multiplied 

n times. With reference to the general setup of §1.1, we now describe a broad collection C
of ‘target’ sets contained in T d so that for any sequence {En}n∈N of subsets in C we are 

able to address the shrinking target ‘measure’ problem (P1) for the associated lim sup

set W
(
T, {En}

)
. In order to do this, we require the notion of the Minkowski content of 

a set in Rd. We start by recalling this basic notion from geometric measure theory.

Let 0 ≤ s ≤ d be two positive integers and let A be a subset of Rd. Let md denote the 

d-dimensional Lebesgue measure and α(d) denote the volume of the d-dimensional unit 

Euclidean ball {x ∈ Rd : |x| < 1}. By convention, we define α(0) := 1. For 0 < ǫ < ∞, 

we let A(ǫ) denote the ǫ-neighbourhood of A; that is

A(ǫ) := {x ∈ Rd : dist(x, A) < ǫ} .

Then, following the classical text of Federer [18, Section 3.2.37], the s-dimensional upper 

and lower Minkowski content of A are defined, respectively as

M∗s(A) := lim sup
ǫ→0+

md(A(ǫ))

α(d − s) ǫd−s
and Ms

∗ (A) := lim inf
ǫ→0+

md(A(ǫ))

α(d − s)ǫd−s
.

If these upper and lower Minkowski contents are equal, then their common value is called 

the s-dimensional Minkowski content of A and is denoted by Ms(A). In general, the set 

functions M∗s and Ms
∗ are not measures. However, for nice sets it turns out that both 

equal a constant multiple of the Lebesgue measure ms. In particular, a result of Federer 

[18, Theorem 3.2.39] states that if A is a closed s-rectifiable subset of Rd (i.e. the image 

of a bounded set from Rs under a Lipschitz function), then the s-dimensional Minkowski 

content of A exists, and is equal to the s-dimensional Hausdorff measure of A. Recall 

that for integer s the latter is a constant multiple of s-dimensional Lebesgue measure. 

Also, for the sake of completeness it is worth mentioning that the Minkowski content 
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is intimately related to the Minkowski dimension which, nowadays is more commonly 

referred to as the box dimension. When considering this fractal dimension, s need not be 

an integer and we put α(d −s) = 1 in the above definitions of upper and lower Minkowski 

contents. For further details see [14, Section 3.1], [18, Sections 3.2.37-44], [35, Chapter 

5] and references within.

The following proposition identifies the collection C of ‘target’ sets alluded to above 

as subsets E of T d for which the boundary ∂E has bounded (d − 1)-dimensional upper 

Minkowski content. It makes use of the work initiated by Keller [29,30] on the existence 

and properties of absolutely continuous invariant measures for piecewise expanding maps, 

and subsequently developed by the likes of Góra & Boyarsky [22], Buzzi [9–11], Buzzi &

Maume-Deschamps [12], Saussol [43] and Tsujii [47,48].

Proposition 1. Let T be a real, non-singular matrix transformation of the torus T d. 

Suppose that all eigenvalues of T are of modulus strictly larger than 1. Then

(i) there exists an absolutely continuous (with respect to Lebesgue measure md) invari-

ant probability measure (acim) μ,

(ii) the support A ⊆ T d of any acim μ can be decomposed into finitely many disjoint 

measurable sets A1, . . . , As such that for each 1 ≤ i ≤ s the restriction μ|Ai
of μ to 

Ai is ergodic and is equivalent to the restriction md|Ai
of Lebesgue measure md to 

Ai,

(iii) each ergodic component Ai in (ii) can in turn be decomposed into finitely many 

disjoint measurable sets Ai1, . . . , Aipi
such that for each 1 ≤ j ≤ pi the restriction 

μ|Aij
is mixing with respect to T pi ,

(iv) on each mixing component Aij in (iii), the restriction μ|Aij
is exponentially mixing 

with respect to (T pi , C) for any collection C of subsets E of Aij satisfying the bounded 

property

(B) : sup
E∈C

M∗(d−1)(∂E) < ∞ .

Remark 1. By definition, the restriction μ|A of a probability measure μ to a set A with 

μ(A) > 0 is normalized so that it too is a probability measure. In other words, for an 

arbitrary measurable set E

μ|A(E) :=
1

μ(A)
μ(E) .

For each 1 ≤ i ≤ s, the sets Aij (1 ≤ j ≤ pi) appearing in part (iii) are referred to as 

the mixing components of Ai (=
⋃pi

j=1 Aij) and the positive integers pi are the period of 

the mixing components. These mixing components satisfy the property that

T (Aij) = Aij+1 (1 ≤ j ≤ pi − 1) and T (Aipi
) = Ai1 .
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Also, for the sake of clarity, completeness and convenience, recall that if μ and ν are two 

measures on the same measurable space, then μ is absolutely continuous with respect to 

ν (written μ ≪ ν) if μ(E) = 0 for every measurable set E for which ν(E) = 0. Moreover, 

the measures μ and ν are equivalent if μ ≪ ν and ν ≪ μ and are said to be strongly 

equivalent or comparable if there exists a constant C ≥ 1 such that for every measurable 

set E

C−1ν(E) ≤ μ(E) ≤ Cν(E).

Given a measure-preserving dynamical system (X, B, μ, T ), the invariant measure μ is 

ergodic if for every set E ∈ B with T −1E = E we have either μ(E) = 0 or μ(E) = 1. 

Moreover, μ is said to be mixing with respect to T (often referred to strong-mixing) if 

for every E, F ∈ B

lim
n→∞

μ(E ∩ T −nF ) = μ(E)μ(F ).

Clearly, exponentially mixing tells us that the implied error term in the above limit 

decays exponentially. Also, if we put F = E we immediately see that mixing implies 

ergodic.

The following constitutes our most general measure theoretic result for the shrinking 

target problem for matrix transformations of tori. As we shall see the “divergent” part, 

which is the hard part, is essentially an immediate consequence of combining Theorem 1

and Proposition 1.

Theorem 2. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that all eigenvalues of T are of modulus strictly larger than 1 and let C be any collection 

of subsets E of T d satisfying the bounded property (B). Furthermore, let μ be an acim 

and suppose it has support T d and is mixing with respect to T . Then for any sequence 

{En}n∈N of subsets in C and ε > 0, we have that

R(x, N) = Φ(N) + O
(

Φ1/2(N) (log Φ(N))3/2+ε
)

(9)

for μ-almost all (equivalently md-almost all) x ∈ T d, where Φ(N) :=
∑N

n=1 μ(En). In 

particular,

md

(
W (T, {En})

)
= μ

(
W (T, {En})

)
=

⎧
⎪⎨
⎪⎩

0 if
∑∞

n=1 μ
(
En

)
< ∞

1 if
∑∞

n=1 μ
(
En

)
= ∞.

(10)

We note that the existence of the acim measure μ in Theorem 2 is guaranteed by part 

(i) of Proposition 1 and that the assumptions imposed on it, namely that the support of μ
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is the whole space T d and that μ is mixing with respect to T , are often satisfied. Indeed, 

this is the situation when the eigenvalues of T are large in modulus or the coefficients of 

T are integers. Regarding the former we have the following precise statement. We will 

come to the integer situation shortly (see Theorem 5 below).

Theorem 3. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that all eigenvalues of T are of modulus strictly larger than 1 +
√

d. Let C be any collection 

of subsets of T d satisfying the bounded property (B). Then there is a unique acim μ, 

such that for any sequence {En}n∈N in C and ε > 0, the counting formula (9) holds 

for μ-almost all (equivalently md-almost all) x ∈ T d, where Φ(N) :=
∑N

n=1 μ(En). In 

particular, the zero-full measure criteria (10) holds.

Remark 2. The fact that the acim μ appearing in Theorem 3 is unique is a trivial 

consequence of the fact that any acim satisfying the hypotheses of Theorem 2 has to be 

unique. Indeed, to see that this is the case, suppose there exist two such measures. Then 

by part (ii) of Proposition 1, both are equivalent to md. By assumption, both are mixing 

with respect to T and hence ergodic. It thus follows (see [51, Theorem 6.10]) that the 

two measures are equal.

Remark 3. By using the full force of Proposition 1, the assumptions on μ in Theo-

rem 2 can be completely dropped if we restrict our attention to the shrinking target set 

W (T p, {En}) ∩ A. Here A ⊆ T d is the support of the acim μ (guaranteed by part (i) of 

Proposition 1) and p := p1p2 . . . ps where the integers pi are the periods of the mixing 

components associated with part (iii) of Proposition 1. Establishing Theorem 4 below is 

an illustration of precisely this remark in action. In short, the point of making the as-

sumptions on μ in Theorem 2 is to obtain a simple statement for the size of W (T, {En})

in terms of the probability measure md supported on T d.

Remark 4. We consider two special families of target sets that correspond to “natural” 

setups within the classical theory of Diophantine approximation. Let ψ : R+ → R+ be 

a real positive function and fix some point a := (a1, . . . , ad) ∈ T d. For n ∈ N, let

Bn = B(a, ψ(n)) :=
{

x ∈ T d : max
1≤i≤d

‖xi − ai‖ ≤ ψ(n)
}

and

Hn = H(a, ψ(n)) :=
{

x ∈ T d :
∏

1≤i≤d

‖xi − ai‖ ≤ ψ(n)
}

, (11)

where ‖ . ‖ denotes the distance to the nearest integer. Clearly, Bn is a ball with respect 

to the maximum norm and Hn is a hyperboloid – both are centred at the fixed point a. 

In turn, let



10 B. Li et al. / Advances in Mathematics 421 (2023) 108994

W (T, ψ, a) := {x ∈ T d : T n(x) ∈ B(a, ψ(n)) for infinitely many n ∈ N},

and

W ×(T, ψ, a) := {x ∈ T d : T n(x) ∈ H(a, ψ(n)) for infinitely many n ∈ N},

denote the corresponding shrinking target sets. The former is intimately related to sets 

studied within the classical simultaneous theory of Diophantine approximation and the 

latter to the multiplicative theory. To see this explicitly, suppose that T is an integer, 

diagonal matrix. In fact, suppose that

T = diag (t1, . . . , td) with ti ≥ 2

and for convenience suppose a is the origin 0. Then, on using the fact that T is integer, 

it is easily seen that for any given x := (x1, . . . , xd) ∈ [0, 1)d we have

T n(x) ∈ B(0, ψ(n)) ⇐⇒ max
1≤i≤d

‖tn
i xi‖ ≤ ψ(n)

and

T n(x) ∈ H(0, ψ(n)) ⇐⇒
∏

1≤i≤d

‖tn
i xi‖ ≤ ψ(n) .

It is evident that both the families of target sets {Bn}n≥1 and {Hn}n≥1 satisfy the 

bounded property (B). Thus, at the very least, our theorems incorporate both the simul-

taneous and multiplicative aspects of the classical theory of Diophantine approximation 

in which the denominators of the rational approximates are restricted to lacunary se-

quences. For the explicit statements see Corollaries 2 & 3 below. In fact, our bounded 

property (B) condition is far more general than the so called property (P) condition (see 

§5.1) imposed by Gallagher in his elegant and influential paper [20]. We reiterate that 

our results hold for any family of target sets {En}n≥1 whose boundaries are rectifiable 

and are of uniformly bounded (d − 1)-dimensional Lebesgue measure.

We now investigate natural situations in which the measure μ associated with Theo-

rem 2 is strongly equivalent to Lebesgue measure md on T d. For such situations we can 

replace μ by md in the finite sum Φ(N) and the righthand side of (10) and thus obtain 

statements entirely in terms of Lebesgue measure. To start with, let us stick with real, 

non-singular matrices and suppose that T is diagonal with all eigenvalues (or equiva-

lently diagonal entries) β1, β2, . . . , βd of modulus strictly larger than 1. Now with this 

in mind, let β ∈ R such that |β| > 1 and let μβ be corresponding Parry measure for 

positive β or the Yrrap measure for negative β – see §3.3 for background and further 

details. Also, let K(β) denote the support of μβ. Then (see Proposition 3 below),
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K(β) = [0, 1] if β ∈ (−∞, −g] ∪ (1, +∞) , (12)

and K(β) is a finite union of closed intervals contained in [0, 1] if β ∈ (−g, −1). Here 

and throughout,

g := (
√

5 + 1)/2

is the golden ratio. Now returning to the transformation T of the torus T d, we consider 

the product measure ν of the corresponding one-dimensional Parry-Yrrap measures μβi
; 

that is

ν := μβ1
× μβ2

× · · · × μβd
. (13)

Then by definition, the support of ν is

K :=

d∏

i=1

K(βi),

and in view of (12) we have that K = T d if all βi are in (−∞, −g] ∪ (1, +∞). On 

exploiting the properties of the Parry-Yrrap measures μβi
and using the full force of 

Proposition 1 (see Remark 3) we are able to show that ν is exponentially mixing with 

respect to (T, C) for any collection C of subsets E of K satisfying the bounded property 

(B). The details of this are given in §3.3 and is at the heart of establishing the following 

statement for real, diagonal matrix transformations.

Theorem 4. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that T is diagonal and all eigenvalues β1, β2, . . . , βd are of modulus strictly larger than 1. 

Let ν be the product measure given by (13) with support K ⊆ T d. Let C be any collection 

of subsets E of K satisfying the bounded property (B). Then for any sequence {En}n∈N

in C and ε > 0, the counting formula (9) holds for ν-almost all (equivalently md|K-almost 

all) x ∈ T d, where Φ(N) :=
∑N

n=1 ν(En). In particular,

md|K
(
W (T, {En})

)
= ν

(
W (T, {En})

)
=

⎧
⎪⎨
⎪⎩

0 if
∑∞

n=1 ν
(
En

)
< ∞

1 if
∑∞

n=1 ν
(
En

)
= ∞.

Furthermore, if all the eigenvalues of T are in (−∞, −g] ∪ (1, +∞) then K = T d and 

we can replace ν by md in the above; i.e. the counting formula (9) holds for md-almost 

all x ∈ T d, where Φ(N) :=
∑N

n=1 md(En) and in particular

md

(
W (T, {En})

)
=

⎧
⎪⎨
⎪⎩

0 if
∑∞

n=1 md

(
En

)
< ∞

1 if
∑∞

n=1 md

(
En

)
= ∞.
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In the case the collection C of subsets of K is restricted to rectangles with sides 

parallel to the axes (they clearly satisfy the bounded property (B)) we can avoid using 

Proposition 1 and give a self-contained and reasonably elementary proof of the above 

theorem (see §3.3.1). In particular, it is more than enough to establish the following 

corollary for balls (cubes); i.e., when we take En = Bn (see Remark 4) in the above 

theorem.

Corollary 2. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that T is diagonal with all eigenvalues in (−∞, −g] ∪ (1, +∞). Let ψ : R+ → R+ be real 

positive function and a ∈ T d. Then for any ε > 0, we have that

#
{

1 ≤ n ≤ N : T n(x) ∈ B(a, ψ(n))
}

= Φ(N) + O
(

Φ1/2(N) (log Φ(N))3/2+ε
)

for md-almost all x ∈ T d, where Φ(N) :=
∑N

n=1(2ψ(n))d. In particular,

md

(
W (T, ψ, a)

)
=

⎧
⎪⎨
⎪⎩

0 if
∑∞

n=1 ψ(n)d < ∞

1 if
∑∞

n=1 ψ(n)d = ∞.

In fact, if we assume that ψ(n) → 0 as n → ∞, we are able to appropriately extend 

Corollary 2 to the situation in which the eigenvalues are in (−∞, −g] ∪ [−1, +∞). In other 

words, we can incorporate the interval [-1,1] into the allowed range of the eigenvalues. 

This is the subject of §3.3.2 below.

In another direction, if T is an integer matrix transformation we are able to use a 

nifty “reduction” argument to relax the condition that T is diagonal in Theorem 4 to T

is diagonalizable over Z. This reduction argument is the subject of §3.3.3 below. In fact, 

for integer matrices far more is true.

Theorem 5. Let T be an integer, non-singular matrix transformation of the torus T d. 

Suppose that all eigenvalues of T are of modulus strictly larger than 1 and let C be any 

collection of subsets E of T d satisfying the bounded property (B). Then, for any sequence 

{En}n∈N of subsets in C and ε > 0, the counting formula (9) holds for md-almost all 

x ∈ T d, where Φ(N) :=
∑N

n=1 md(En). In particular,

md

(
W (T, {En})

)
=

⎧
⎪⎨
⎪⎩

0 if
∑∞

n=1 md

(
En

)
< ∞

1 if
∑∞

n=1 md

(
En

)
= ∞.

To end with, we illustrate natural “number theoretic” consequences of our results. 

Let t1, . . . , td ≥ 2 be integers and let T = diag (t1, . . . , td). Then with reference to 

Remark 4, it follows that

W (T, ψ, a) = {x ∈ [0, 1)d : max
1≤i≤d

‖tn
i xi − ai‖ ≤ ψ(n) for infinitely many n ∈ N}
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and

W ×(T, ψ, a) = {x ∈ [0, 1)d :
∏

1≤i≤d

‖tn
i xi − ai‖ ≤ ψ(n) for infinitely many n ∈ N} .

Thus, Theorem 5 implies the following statement for multiplicative Diophantine approx-

imation. In fact, since T is diagonal, it is also covered by the “furthermore part” of 

Theorem 4.

Corollary 3. Let t1, . . . , td ≥ 2 be integers and let T = diag (t1, . . . , td). Let ψ : R+ → R+

be real positive function such that ψ(x) < 2−d and a = (a1, . . . , ad) ∈ T d. Then

#
{

1 ≤ n ≤ N :
∏

1≤i≤d

‖tn
i xi − ai‖ ≤ ψ(n)

}
= Φ(N) + O

(
Φ1/2(N) (log Φ(N))3/2+ε

)

for md-almost all x = (x1, . . . , xd) ∈ T d, where

Φ(N) =

N∑

n=1

2dψ(n)

(
d−1∑

s=0

1

s!

(
log

1

2dψ(n)

)s
)

In particular,

md

(
W ×(T, ψ, a)

)
=

⎧
⎪⎨
⎪⎩

0 if
∑∞

n=1 ψ(n)
(

log 1
ψ(n)

)d−1
< ∞

1 if
∑∞

n=1 ψ(n)
(

log 1
ψ(n)

)d−1
= ∞.

The analogous statement for the simultaneous set W (T, ψ, a) is clearly covered by Corol-

lary 2 above. The condition that ψ(x) < 2−d is only required for the counting statement.

Corollary 3 is probably most familiar to number theorists within the context of when 

t1 = . . . = td. This corresponds to approximating arbitrary points x ∈ [0, 1]d by “shifted” 

rational points ((p1 +a1)/q, . . . , (pd +ad)/q) with denominators q restricted to an integer 

lacunary sequence. In this setup, the zero-full measure criterion within the corollary 

can just as easily be deduced from the elegant work of Gallagher [20] mentioned in 

Remark 4. Also, under the same setup and the assumption that ψ is non-increasing, the 

corresponding quantitative version (with a slightly worse error term) can be deduced 

from [23, Theorem 4.6].

Remark 5. For n ∈ N, let Hn = H(a, ψ(n)) be the hyperboloid region given by (11). 

Clearly, Corollary 3 follows directly from Theorem 5 on letting En = Hn and on showing 

that

md(Hn) = 2dψ(n)

(
d−1∑

s=0

1

s!

(
log

1

2dψ(n)

)s
)

. (14)
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For the sake of completeness we will provide the details of this measure calculation in 

§3.2.1.

1.3. Dimension results for matrix transformations

We address the shrinking target ‘dimension’ problem (P2) in the case T is a self-map 

of the d-dimensional torus T d and the target sets are a sequence {Bn}n∈N of balls as 

in the original formulation of the problem. The following two theorems constitute our 

main dimension results. It turns out that these statements for balls can be exploited to 

determine the dimension of shrinking targets sets in the case the targets are a sequence 

{Hn}n∈N of hyperboloids. Throughout, given a real positive function ψ : R+ → R+ we 

let λ = λ(ψ) denote its lower order at infinity; that is

λ = λ(ψ) := lim inf
n→∞

− log ψ(n)

n
.

Theorem 6. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that T is diagonal with all eigenvalues β1, β2, . . . , βd strictly larger than 1. Assume that 

1 < β1 ≤ β2 ≤ · · · ≤ βd. Let ψ : R+ → R+ be a real positive function and a ∈ T d. Then

dimH W (T, ψ, a) = min
1≤i≤d

θi(λ),

where

θi(λ) :=

i log βi − ∑
k:βk>βieλ

(log βj − log βi − λ) +
∑
k>i

log βj

λ + log βi
.

Remark 6. We will in fact deduce the above theorem from a more general statement 

concerning rectangular target sets – see Theorem 12 in §4.2.

In the case d = 1, the above result corresponds to the main result in [44]. It turns out 

that while we are currently unable to prove in full generality the analogue of Theorem 6

that incorporates negative eigenvalues, we can do so in the one dimensional case. Thus, 

the following statement for β < −1 is new and extends the work of Shen & Wang [44]

from positive to arbitrary β-transformations Tβ.

Theorem 7. Let β be a real number with |β| > 1 and K(β) be the support of the associated 

Parry-Yrrap measure. Let ψ : R+ → R+ be a real positive decreasing function and 

a ∈ K(β). Then

dimH W (Tβ , ψ, a) =
log |β|

λ + log |β| .
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The proof of Theorem 7 makes use of a general approximation technique for any piecewise 

linear map of the unit interval with constant slope. The associated result (Proposition 7

in §7) may prove to be useful for other problems.

We now mention two consequences of our main dimension theorems. The first is that 

if T is an integer matrix transformation, then in Theorem 6 we can replace the condition 

that T is diagonal by T is diagonalizable over Z.

Theorem 8. Let T be an integer, non-singular matrix transformation of the torus T d. 

Suppose that T is diagonalizable over Z with all eigenvalues β1, β2, . . . , βd strictly larger 

than 1. Assume that 1 < β1 ≤ β2 ≤ · · · ≤ βd. Let ψ : R+ → R+ be a real positive 

function and a ∈ T d. Then

dimH W (T, ψ, a) = min
1≤i≤d

θi(λ) .

The theorem follows from Theorem 6 by using a “reduction” argument – see §4.2.2. 

The second is that the above theorems for balls enables us to establish the dimension of 

the multiplicative set W ×(T, ψ, a). In fact, we only require the d = 1 statement and so 

we are able to utilize the more general Theorem 7.

Theorem 9. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that T is diagonal and all eigenvalues β1, β2, . . . , βd are of modulus strictly larger than 1. 

Assume that 1 < |β1| ≤ |β2| ≤ · · · ≤ |βd|. Let ψ : R+ → R+ be a real positive decreasing 

function and a ∈ T d with ad ∈ K(βd). Then

dimH W ×(T, ψ, a) = d − 1 +
log |βd|

λ + log |βd| .

This consequence of Theorem 7 was pointed out to us by Baowei Wang. We thank him 

for sharing his insight and indeed for providing the details of the proof which forms the 

appendix. We stress that making use of Theorem 7, rather than the previously known 

d = 1 case of Theorem 6 due to Shen & Wang [44] is crucial. The latter requires that all 

the eigenvalues are positive and strictly larger than one and would thus yield a weaker 

version of Theorem 9.

2. Establishing Theorem 1 and Corollary 1

The following statement [23, Lemma 1.5] represents an important tool in the theory 

of metric Diophantine approximation for establishing counting statements. It has its 

bases in the familiar variance method of probability theory and can be viewed as the 

quantitative form of the (divergence) Borel-Cantelli Lemma [2, Lemma 2.2].
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Lemma 1. Let (X, B, μ) be a probability space, let (fn(x))n∈N be a sequence of non-

negative μ-measurable functions defined on X, and (fn)n∈N , (φn)n∈N be sequences of 

real numbers such that

0 ≤ fn ≤ φn (n = 1, 2, . . .).

Suppose that for arbitrary a, b ∈ N with a < b, we have

∫

X

(
b∑

n=a

(
fn(x) − fn

)
)2

dμ(x) ≤ C
b∑

n=a

φn (15)

for an absolute constant C > 0. Then, for any given ε > 0, we have

N∑

n=1

fn(x) =

N∑

n=1

fn + O

(
Φ(N)1/2 log

3
2 +ε Φ(N) + max

1≤k≤N
fk

)
(16)

for μ-almost all x ∈ X, where Φ(N) :=
N∑

n=1
φn.

Note that in statistical terms, if the sequence fn is the mean of fn(x); i.e.

fn =

∫

X

fn(x)dμ(x) ,

then the l.h.s. of (15) is simply the variance Var(Za,b) of the random variable

Za,b = Za,b(x) :=

b∑

n=a

fn(x) .

In particular,

Var(Za,b) = E(Z2
a,b) − E(Za,b)2

where

E(Za,b) =

∫

X

Za,b(x)dμ(x) .

The following extremely useful classical inequality that bounds the probability that a 

random variable is small, in terms of its expectation and second moment, is a well know 

consequence of the Cauchy-Schwarz inequality.
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Lemma 2 (Paley-Zygmund Inequality). Let (X, B, μ) be a probability space and Z be a 

non-negative random variable. Then for any 0 < λ < 1, we have that

μ
(

{x ∈ X : Z(x) > λE(Z)}
)

≥ (1 − λ)2 E(Z)2

E(Z2)
.

We shall see that a straightforward application of Lemma 2 leads to a direct proof of 

Corollary 1. Deducing Theorem 1 from Lemma 1 is also pretty straightforward.

Proof of Theorem 1. Given a sequence {En}n∈N of subsets in C, we consider Lemma 1

with

fn(x) := χT −n(En)(x) = χ
En

(T n(x)) and fn := φn := μ(En) , (17)

where χ
E

is the characteristic function of the set E ⊂ X. Then, clearly for any x ∈ X

and N ∈ N, we have that the

l.h.s. of (16) = #
{

1 ≤ n ≤ N : T n(x) ∈ En} := R(x, N)

and so (16) and (6) coincide. Thus, to complete the proof of Theorem 1 we need to verify 

that (15) is satisfied. Note that by definition, fn is the mean of fn(x) and so

l.h.s. of (15) = Var(Za,b) = E(Z2
a,b) − E(Za,b)2 (18)

where

• Var(Za,b) is variance of the random variable

Za,b = Za,b(x) =
b∑

n=a

χEn
(T n(x)) =

b∑

n=a

χT −nEn
(x), (19)

• the expectation

E(Za,b) =
b∑

n=a

μ(En) , (20)

• and the second moment

E(Z2
a,b) =

∑

a≤m,n≤b

μ
(
T −m(Em) ∩ T −n(En)

)

=
∑

a≤n≤b

μ(En) + 2
∑

a≤m<n≤b

μ
(

Em ∩ T −(n−m)(En)
)

.
(21)
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By making use of the Σ-mixing property (3), it follows that

∑

a≤m<n≤b

μ
(

Em ∩ T −(n−m)(En)
)

≤
∑

a≤m<n≤b

μ(Em)μ(En) +
∑

a≤m<n≤b

φ(n − m) μ(En)

≤
∑

a≤m<n≤b

μ(Em)μ(En) +
∑

a≤n≤b

⎛
⎝ ∑

a≤m<n

φ(n − m)

⎞
⎠μ(En)

≤
∑

a≤m<n≤b

μ(Em)μ(En) + κ
∑

a≤n≤b

μ(En)

where κ :=
∑∞

n=1 φ(n) < ∞. This together with (21) implies that

E(Z2
a,b) ≤ (2κ + 1)

∑

a≤n≤b

μ(En) + 2
∑

a≤m<n≤b

μ(Em)μ(En)

≤ (2κ + 1)
∑

a≤n≤b

μ(En) +

⎛
⎝ ∑

a≤n≤b

μ(En)

⎞
⎠

2

. (22)

The upshot of (18), (20) and (22) is that

Var(Za,b) ≤ (2κ + 1)
∑

a≤n≤b

μ(En) .

This verifies (15) with C = 2κ + 1 and thereby completes the proof of Theorem 1. �

Proof of Corollary 1. In view of (1), we assume that the sum in (7) diverges. With the 

same notation as in the proof of Theorem 1, we start with the observation that for any 

λ > 0

μ
(

W (T, {En})
)

≥ μ
(

lim sup
b→∞

(Z1,b > λE(Z1,b))
)

≥ lim sup
b→∞

μ
(

Z1,b > λE(Z1,b)
)

.

(23)

To estimate the measure on the r.h.s. we use the Paley-Zygmund inequality (Lemma 2) 

and the estimates (20) and (22). With this in mind, for any 0 < λ < 1, it follows that

μ
(

Z1,b > λE(Z1,b)
)

≥ (1 − λ)2 E(Z1,b)2

E(Z2
1,b)

≥ (1 − λ)2

( ∑
1≤n≤b

μ(En)
)2

( ∑
1≤n≤b

μ(En)
)2

+ (2κ + 1)
∑

1≤n≤b

μ(En)
.
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By the divergent sum hypothesis, on letting b → ∞ and λ → 0, we obtain that

lim sup
b→∞

μ
(

Z1,b > λE(Z1,b)
)

= 1 ,

which together with (23) completes the proof of the corollary. �

3. Establishing measure results for matrix transformations

3.1. Proof of Proposition 1

Let X ⊂ Rd be a compact set. The proof of Proposition 1 makes essential use of the 

work of Saussol [43] for general piecewise expanding maps T : X −→ X on X. Clearly, 

our particular case in which X = [0, 1]d and the real, non-singular matrix T (with the 

modulus of all eigenvalues strictly larger than one) that sends x to Tx mod 1 defines 

a piecewise expanding map on X. In what follows will state and apply Saussol’s results 

to our setup. So with this in mind, the first three parts, apart for the equivalence of 

the restricted measures μ|Ai
and md|Ai

in part (ii), follow from [43, Theorem 5.1]. To 

prove the equivalence of the restricted measures we note that by [43, Proposition 5.1], 

the Randon-Nykodym derivative f of μ|Ai
with respect to md|Ai

is md-almost surely 

strictly positive. Hence, for any measurable subset E, if md|Ai
(E) > 0, then

μ|Ai
(E) =

∫

E

f(x)md|Ai
(dx) > 0

and so md|Ai
≪ μ|Ai

. The other direction follows directly from part (i).

It remains to prove part (iv) of the proposition. Without loss of generality, we will 

assume that Aij is A and thus μ|Aij
= μ and also μ is mixing with respect to T . 

The key to proving part (iv) is to use the fact that the acim μ satisfies the property of 

exponential decay of correlations. With this mind, for a set E ⊂ Rd, define the oscillation

of ϕ ∈ L1(md) over E as

osc(ϕ, E) := ess-sup
E

(ϕ) − ess-inf
E

(ϕ).

For given real numbers 0 < α ≤ 1 and 0 < ǫ0 < 1, define the following α-seminorm

|ϕ|α := sup
0<ǫ≤ǫ0

ǫ−α

∫

Rd

osc(ϕ, B(x, ǫ))dx.

Let Vα be the space of L1(md)-functions such that |ϕ|α < ∞ endowed with the norm

‖ϕ‖α := ‖ϕ‖L1(md) + |ϕ|α.
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Then (Vα, ‖ · ‖α) is a Banach space which does not depend on the choice of ǫ0 and 

Vα ⊂ L∞(md) (see [43, Section 3]). Since the acim μ is mixing with respect to T , it 

follows from [43, Theorem 6.1] that there exist constants C > 0 and 0 ≤ γ < 1 such that 

for all ψ ∈ Vα, for all φ ∈ L1(μ) and for all n ∈ N, we have

∣∣∣∣∣∣∣

∫

[0,1]d

ψ.φ ◦ T n dμ −
∫

[0,1]d

ψ dμ

∫

[0,1]d

φ dμ

∣∣∣∣∣∣∣
≤ C ‖ψ‖α ‖φ‖1 γn. (24)

Now, let C be any collection of subsets of A satisfying the bounded property (B). Take 

ψ = χE and φ = χF with E, F ∈ C and assume for the moment that

sup
E∈C

‖χE‖α < ∞. (25)

Note that (25) implies that ψ = χE ∈ Vα and thus together with (24), we obtain that

∣∣μ(E ∩ T −nF ) − μ(E)μ(F )
∣∣ ≤ C · ‖χE‖α · μ(F ) · γn ≤ C ·

(
sup
E∈C

‖χE‖α

)
· γn · μ(F ).

Hence the exponentially mixing property (4) is satisfied for the collection C. This proves 

part (iv) modulo (25).

We now prove (25). To start with, observe that for the characteristic function χE, the 

oscillation can only be non-zero on the boundary ∂E of E. It can be verified that for 

any ǫ > 0,

osc(χE , B(x, ǫ)) ≤ χ(∂E)(ǫ)(x),

where (∂E)(ǫ) is the ǫ-neighbourhood of ∂E. Thus,

ǫ−α

∫

Rd

osc(χE , B(x, ǫ))dx ≤ ǫ−α · md((∂E)(ǫ)).

By the bounded property (B) imposed on C, there exists a constant C1 such that the 

(d − 1)-dimensional upper Minkowski content of ∂E

M∗(d−1)(∂E) ≤ C1,

for all E ∈ C. Hence, by the definition of M∗(d−1), there exists a constant C0 such that 

for all E ∈ C

md((∂E)(ǫ)) < C0ǫ.

Consequently, for all E ∈ C,



B. Li et al. / Advances in Mathematics 421 (2023) 108994 21

|χE |α = sup
0<ǫ≤ǫ0

ǫ−α

∫

Rd

osc(χE , B(x, ǫ))dx ≤ C0ǫ1−α
0 .

On the other hand, for E ⊂ [0, 1]d, we have that

‖χE‖L1(md) = md(E) ≤ 1.

Thus, for all E ∈ C, it follows that

‖χE‖α ≤ 1 + C0ǫ1−α
0 .

Therefore, (25) holds and this completes the proof of the proposition. �

Remark 7. For the sake of completeness, we mention that in the case that T is an integer, 

non-singular, matrix transformation of the torus T d with all eigenvalues in modulus 

strictly larger than one, Fan [15] proved the exponential decay of correlation formula 

(24). Also in the case d = 1, the first three parts of Proposition 1 coincide with the Main 

Result of Wagner [50]

3.2. Proof of Theorems 2, 3 and 5

Proof of Theorem 2. In view of parts (i) to (iii) of Proposition 1, if the acim μ has 

T d as its support and is mixing with respect to T , then μ has one mixing component 

(namely the whole space T d) of period one. Furthermore, by part (iv) of Proposition 1, 

on this unique mixing component, μ is exponentially mixing with respect to (T, C) for 

any collection C of subsets of T d satisfying the bounded property (B). The desired 

counting part (9) of the theorem and the zero-full measure criteria (10) with respect to the 

measure μ now immediately follow on applying Theorem 1 and Corollary 1 respectively. 

To complete the proof of Theorem 2, it remains to prove that the measures μ and md

share the same zero and full measure sets (note that we have already shown above that 

μ
(
W (T, {En})

)
is either 0 or 1). This follows directly from part (ii) of Proposition 1

since it implies that μ is equivalent to md and it is easily seen that equivalent measures 

share the same zero and full measure sets. �

The following lemma will be used in establishing Theorems 3 and 5.

Lemma 3. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that (i) all eigenvalues of T are of modulus strictly larger than 1 +
√

d or that (ii) T is 

integer and all eigenvalues of T are of modulus strictly larger than 1. Then there is a 

unique acim μ. Furthermore, such an acim μ has T d as its support and is of maximal 

entropy.

Proof. We are given that all eigenvalues of T are of modulus strictly larger than 1. 

Thus, by part (i) of Proposition 1, there exists an acim μ. By [9, Proposition 1], if all 
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eigenvalues of T have modulus strictly larger than 1 +
√

d or if T is integers, then the 

dynamical system (T d, T ) is topological transitive. Hence, by [9, Theorem 3 and its 

Corollary] the acim μ has the whole space T d as its support and is the unique maximal 

entropy measure. �

We now prove Theorems 3 and 5.

Proof of Theorem 3. By [9, Lemma 5], if the eigenvalues of T are all of modulus strictly 

larger than 1 +
√

d, then T is locally eventually onto. Thus the unique maximal entropy 

acim μ coming from Lemma 3 which has T d as its support, is exact (see for example [38, 

Theorem 5.2.12]) and hence mixing with respect to T (see [37, Proposition 12.2]). In other 

words, this measure μ satisfies the hypotheses of Theorem 2. On applying Theorem 2, 

we obtain Theorem 3. �

Proof of Theorem 5. Observe that if T is integer, then T is an endomorphism of the torus 

T d (see for example, [51, Theorem 0.15]). By [51, Corollary 1.10.1 and Theorem 1.28], 

the Lebesgue measure md is mixing with respect to T . Furthermore, by [51, Theorem 

8.15], md is of maximal entropy. Thus md is nothing but the unique maximal entropy 

acim μ in Lemma 3. Hence, Theorem 5 follows on applying Theorem 2 with μ = md. �

3.2.1. Proof of Corollary 3

As noted in Remark 5, the corollary follows directly from Theorem 5 on showing that 

the d-dimensional Lebesgue measure md of the hyperboloid region H(a, ψ(n)) satisfies 

(14). It is easily versified that md(H(a, ψ(n))) is independent of the ‘shift’ a ∈ T d. So 

with this in mind, it suffices to prove the following statement.

Lemma 4. Given d ∈ N and δ > 0, let

Hd(δ) :=
{

(x1, . . . , xd) ∈ [0, 1)d : ‖x1‖ . . . ‖xd‖ < δ
}

. (26)

Then

md(Hd(δ)) =

⎧
⎪⎨
⎪⎩

1 if δ ≥ 2−d

2dδ
(∑d−1

t=0
1
t!

(
log 1

2dδ

)t
)

if δ < 2−d .
(27)

Proof. To simplify computations, first note that the measure of Hd(δ) is equal to 2d

times the measure of [0, 1/2]d ∩ Hd(δ). Furthermore, it is technically simpler to work 

with points restricted to [0, 1/2]d since the inequality under consideration is equivalent 

to

x1 . . . xd ≤ δ. (28)
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So, from now on we will focus on computing the measure of the set

Vd(δ) :=
{

(x1, . . . , xd) ∈ [0, 1/2]d : x1 . . . xd ≤ δ
}

(29)

and recall that

2d md

(
Vd(δ)

)
= md

(
Hd(δ)

)
. (30)

Case (a): if δ ≥ 2−d. Then it is a easily versified that Vd(δ) = [0, 1/2]d and this together 

with (30) implies (27). So, without loss of generality we can assume that δ < 2−d.

Case (b): if δ < 2−d. In view of (30), to establish (27) we need to show that for any 

d ∈ N and 0 < δ < 2−d

md

(
Vd(δ)

)
= δ

d−1∑

t=0

1

t!

(
log

1

2dδ

)t

. (31)

This we now do by induction on d. For d = 1, we have that

m1

(
V1(δ)

)
= m1

(
{x ∈ [0, 1/2] : x ≤ δ}

)
= δ (32)

and this coincides with (31). Now let d ≥ 2 and observe that we can rewrite (28) as

x1 . . . xd−1 ≤ δ/xd. (33)

Note that since (x1, . . . , xd) ∈ [0, 1/2]d, the left hand side of (33) is not bigger than 

(1/2)d−1. Hence, it follows that for any 0 < xd ≤ 2d−1δ, inequality (33) is satisfied for 

all 0 ≤ x1, . . . , xd−1 ≤ 1/2. The md-measure of the set of such points (x1, . . . , xd) is thus 

equal to 2−d+1 × 2d−1δ = δ. On the other hand, for any fixed value of xd ∈ (2d−1δ, 1/2], 

the md−1-measure of the set of points (x1 . . . xd−1) ∈ [0, 1/2]d−1 satisfying (33) is by 

definition equal to md−1

(
Vd−1(δ/xd)

)
. The upshot is that for any d ≥ 2 and 0 < δ < 2−d

md

(
Vd(δ)

)
= δ +

1/2∫

2d−1δ

md−1

(
Vk−1(δ/xd)

)
dxd. (34)

Now assume that (31) holds with d − 1 in place of d. Then, it follows via (34) that

md

(
Vd(δ)

)
= δ +

1/2∫

2d−1δ

δ

xd

(
d−2∑

t=0

1

t!

(
log

xd

2d−1δ

)t
)

dxd

= δ + δ

1

2dδ∫

1

(
d−2∑

t=0

1

t!

(log y)t

y

)
dy
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= δ + δ
d−2∑

t=0

1

t!

1

2dδ∫

1

(log y)t

y
dy

= δ + δ
d−2∑

t=0

1

(t + 1)!

(
log

1

2dδ

)t+1

= δ + δ
d−1∑

t=1

1

t!

(
log

1

2dδ

)t

= δ
d−1∑

t=0

1

t!

(
log

1

2dδ

)t

.

This completes the induction step and so establishes (31) for any d ≥ 1. �

3.3. Proof of Theorem 4

We start by summarising various basic facts concerning β-transformations that will 

be utilized in proving Theorem 4. So, with this in mind, let β be a real number such 

that |β| > 1 and let Tβ : [0, 1) → [0, 1) be the associated β-transformation given by

Tβ(x) = βx (mod 1).

For obvious reasons, when β < −1 the corresponding transformation is refereed to as 

the negative β-transformation.

For β > 1, Rényi [39, Theorem 1] proved that there exists a unique Tβ-invariant 

measure μβ (the so called Parry measure) that is strongly equivalent to (one-dimensional) 

Lebesgue measure m1 on the unit interval. Clearly, this implies that μβ is absolutely 

continuous with respect to Lebesgue measure. For the negative β-transformation, Ito 

and Sadahiro [26] proved that there is a unique Tβ-invariant measure μβ (the so called 

Yrrap measure) which is absolutely continuous with respect to Lebesgue measure m1. 

The following proposition implies that μβ is in fact strongly equivalent to m1 when 

β ≤ −g. Note that in view of [26, Theorem 16], for the negative β-transformation the 

corresponding density function of μβ with respect to m1 is given by

hβ(x) :=
1

F (β)

∑

n≥0
T n

β 1≥x

1

βn
,

where

F (β) :=

1∫

0

∑

n≥0
T n

β 1≥x

1

βn
dx

is the normalising function.
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Proposition 2. Let β ≤ −g. Then the Yrrap measure μβ is strongly equivalent to the 

Lebesgue measure m1 on the unit interval. More precisely, there exists a constant C(β) >

0 such that

C(β)−1 ≤ hβ(x) ≤ C(β) ∀ x ∈ (0, 1) .

Proof. For β = −g, it is easily verified that

hβ(x) =

⎧
⎪⎨
⎪⎩

1
3+β if 0 < x ≤ 2 + β

−β
3+β if 2 + β < x < 1.

Hence, we can choose C(β) = 1
3+β . Without loss of generality, assume β < −g and note 

that

1 +

∞∑

n=0

1

β2n+1
=

β2 + β − 1

β2 − 1
≤ F (β) ≤

∞∑

n=0

1

β2n
=

β2

β2 − 1
.

It then immediately follows that

hβ(x) ≤ 1

F (β)

∞∑

n=0

1

β2n
=

β2

β2 + β − 1

and

hβ(x) ≥ 1

F (β)

(
1 +

∞∑

n=0

1

β2n+1

)
=

β2 + β − 1

β2
.

Hence, we can choose C(β) = β2

β2+β−1 . �

The following result identifies the nature of the support of the Tβ-invariant measure 

μβ .

Proposition 3. Let β be a real number with |β| > 1, μβ be the associated Parry-Yrrap 

measure and let K(β) denote the support of μβ. Then

K(β) = [0, 1] if β ∈ (−∞, −g] ∪ (1, +∞) ,

and K(β) is a finite union of closed intervals contained in [0, 1] if β ∈ (−g, −1). Fur-

thermore, μβ is mixing with respect to Tβ and is equivalent to the measure m|K(β); i.e. 

the one-dimensional Lebesgue measure restricted to K(β).

From this point onwards, given β with |β| > 1, μβ will always denote the associated 

Parry-Yrrap measure and K(β) will denote the support of μβ.
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Proof. If β ∈ (−∞, −g] ∪ (1, +∞), the result immediately follows from the fact that μβ

is strongly equivalent to the Lebesgue measure m1 on [0, 1] – this is Proposition 2 for 

β ≤ −g and as already mentioned established by Rényi [39, Theorem 1] for β > 1. In 

general, Keller [28] proved for any |β| > 1 the support of μβ is a finite union of closed 

intervals. The precise description of the closed intervals for the non-trivial case when 

β ∈ (−g, −1) was given by Liao & Steiner [33, Theorem 2.1].

For the furthermore part, it follows via Rokhlin [40, Section 4.5] for β > 1 and Liao 

& Steiner [33, Corollary 2.3] for β < −1, that the Tβ-invariant measure μβ is exact and 

hence mixing with respect to Tβ ([37, Proposition 12.2]). In turn, by the Main Result in 

[50] it follows that μβ is equivalent to m1 restricted to K(β). �

Of course, as indicated in above proof of the proposition, for β ∈ (−∞, −g] ∪ (1, +∞)

we have that μβ is strongly equivalent to the Lebesgue measure m1 on [0, 1] rather than 

simply equivalent. The next statement is a straightforward consequence of Proposition 3

and basic properties of product measures.

Lemma 5. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that T is diagonal and all eigenvalues β1, β2, . . . , βd are of modulus strictly larger than 

1. Then the product measure

ν := μβ1
× μβ2

× · · · × μβd

has support K :=
∏d

i=1 K(βi) and is a T -invariant mixing measure that is equivalent to 

md|K ; i.e. the d-dimensional Lebesgue measure restricted to K.

Proof. By definition, the product measure ν has support K =
∏d

i=1 K(βi) and in view of 

Proposition 3 it is T -invariant and equivalent to the measure md|K . Furthermore, since 

each μβi
is mixing with respect to Tβi

, on following the proof of [51, Theorem 1.24] it is 

easily verified that ν is mixing with respect to T . �

We now show that Theorem 4 is an easy consequence of Lemma 5 together with 

Proposition 1 and Theorem 1. In the next section we will provide a self-contained and 

essentially elementary proof of Theorem 4 in the case the collection C of subsets of K

is restricted to rectangles with sides parallel to the axes. This is an important class of 

“target sets” that clearly satisfy the bounded property (B) and the proof will avoid 

appealing to Proposition 1.

Proof of Theorem 4 using Proposition 1. Lemma 5 implies that product measure ν is 

a T -invariant mixing measure equivalent to md|K . Hence by Proposition 1, ν is ex-

ponentially mixing with respect to (T, C) where C is any collection of subsets E of 

K satisfying the bounded property (B). Then the main counting part of Theorem 4

immediately follows from Theorem 1. For the “furthermore” part we first recall (as 

we have done so several times) that by Rényi [39, Theorem 2] and Proposition 2, for 



B. Li et al. / Advances in Mathematics 421 (2023) 108994 27

any β ∈ (−∞, −g] ∪ (1, +∞) the Parry-Yrrap measure μβ is strongly equivalent to the 

Lebesgue measure m1 on [0, 1]. It thus follows that the product measure ν is strongly 

equivalent to md restricted to K = T d. The upshot of this is that we can replace ν by 

md in the first part of the theorem and thereby completes the proof of Theorem 4. �

3.3.1. Theorem 4 for rectangles: a self contained and direct proof

In the proof of Theorem 4 given above, we make use of Proposition 1 to deduce that 

the product measure ν is exponentially mixing with respect to (T, C) where C is any 

collection of subsets E of K satisfying the bounded property (B). The following result 

enables us to bypass the proposition in the case C is restricted to rectangles with sides 

parallel to the axes.

Lemma 6. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that T is diagonal and all eigenvalues β1, β2, . . . , βd are of modulus strictly larger than 

1. Let ν := μβ1
× μβ2

× · · · × μβd
be the product measure and K :=

∏d
i=1 K(βi) be its 

support. Then ν is exponentially mixing with respect to (T, R) for any collection R of 

rectangles of K with sides parallel to the axes.

It is easily seen that by appealing to Lemma 6 instead of Proposition 1 in the “Proof 

of Theorem 4 using Proposition 1” given in the previous section, we obtain the special 

case of Theorem 4 in which C is any collection R of rectangles of K with sides parallel 

to the axes. In other words, it enables us to provide a self-contained and direct proof of 

Theorem 4 for rectangular target sets.

Proof of Lemma 6. First, we assert that for any β ∈ R with |β| > 1, μβ is exponentially 

mixing with respect to (Tβ , C) where C is any collection of intervals of K(β). When 

β > 1, this is the classical result of Gel’fond [21, Formula (12)] and Philipp [42, Lemma 

7]. When β < −1, the assertion follows from a general result of Baladi [1, Theorem 3.4]

for piecewise monotone expanding interval maps.

We now verify that the product ν satisfies the desired exponentially mixing property. 

With this in mind, let E = B(z1, r1) × · · · × B(zd, rd) and F = B(z′
1, r′

1) × · · · × B(z′
d, r′

d)

be any two rectangles in R. Then

ν(E ∩ T −nF ) =

∫
χE(x1, . . . , xd) χF (T n

β1
x1, . . . , T n

βd
xd) dμβ1

(x1) · · · dμβd
(xd) ,

and by the property of the product measure the right hand side equals

∫
χB(z1,r1)(x1)χB(z′

1,r′
1)(T

n
β1

x1)dμβ1
(x1) · · ·

∫
χB(zd,rd)(xd)χB(z′

d,r′
d)(T

n
βd

xd)dμβd
(xd).

It then follows by the exponentially mixing property of Tβi
, that
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ν(E ∩ T −nF ) =

d∏

i=1

(
μβi

(B(zi, ri)) μβi
(B(z′

i, r′
i)) + O(γn

i ) μβi
(B(z′

i, r′
i))
)

where 0 < γi < 1. This together with the fact that

ν(E) = μβ1
(B(z1, r)) · · · μβd

(B(zd, r)) , ν(F ) = μβ1
(B(z′

1, r′)) · · · μβd
(B(z′

d, r′))

and μβi
(B(zi, r)) ≤ 1 (1 ≤ i ≤ d) implies that

ν(E ∩ T −nF ) = ν(E)ν(F ) + O(γn)μ(F ) where γ = max{γ1, . . . , γd} .

In other words, (4) holds for rectangles in R and we are done. �

3.3.2. Extending Corollary 2 to incorporate eigenvalues in [−1, 1]

We show that on assuming ψ(n) → 0 as n → ∞, we can naturally extend Corollary 2

to the situation that all the eigenvalues of T are in (−∞, −g] ∪ [−1, +∞); that is to 

say, we can incorporate the interval [−1, 1]. In short, assuming that T has eigenvalues in 

[−1, 1], we do this in most cases by reformulating the shrinking target set W (T, ψ, a) in 

terms of related “lower dimensional’ sets W (T∗, ψ, a∗) for which Corollary 2 in its current 

form is applicable. In other words, all the eigenvalues of the related transformation T∗ are 

in (−∞, −g] ∪ (1, +∞). Let T be a real, non-singular, diagonal matrix transformation 

of the torus T d with eigenvalues β1, β2, . . . , βd in (−∞, −g] ∪ [−1, +∞). Without loss of 

generality, assume that there is at least one eigenvalue in [−1, 1]. In fact, let us assume 

that there is only one such eigenvalue, say β1. It should be self-evident how to deal 

with the situation in which that are multiple eigenvalues in [−1, 1]. We consider the 

three separate situations depending on whether |β1| < 1, β1 = 1 or β1 = −1. Note that 

T = diag(β1, · · · , βd) and so for any x = (x1, . . . , xd) ∈ T d

T n(x) = (T n
β1

(x1), T n
β2

(x2), · · · , T n
βd

(xd)).

(i) We assume |β1| < 1. We distinguish between three subcases:

• Case 1: β1 = 0. Then it is easily verified that

W (T, ψ, a) =

⎧
⎨
⎩

∅ if a1 �= 0

T × W (T∗, ψ, a∗) if a1 = 0,

where

T∗ := diag(β2, · · · , βd) and a∗ := (a2, · · · , ad) ∈ T d−1 . (35)

• Case 2: 0 < β1 < 1. Then T n
β1

(x1) = βn
1 x1 → 0 as n → ∞ for any x1 ∈ T . Note that 

zero is the unique fixed point of Tβ1
. Thus,
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{
x1 ∈ [0, 1) : T n

β1
(x1) < ψ(n) for infinitely many n ∈ N

}
= I∗ or I∗,

where I∗ := [0, min{1, τ}), I∗ is the closure of the set I∗ and

τ := lim sup
n→∞

ψ(n) |β1|−n. (36)

Indeed, the set under consideration is I∗ if ψ(n) |β1|−n ≤ τ for infinitely many n ∈ N

and I∗ otherwise. Hence, with T∗ and a∗ as in (35), it follows that

W (T, ψ, a) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

∅ if a1 �= 0

{0} × W (T∗, ψ, a∗) if a1 = 0 and τ = 0,

I∗ × W (T∗, ψ, a∗) or I∗ × W (T∗, ψ, a∗) if a1 = 0 and τ > 0.

• Case 3: −1 < β1 < 0. Let F be the countable set of all preimages of zero; that is,

F :=
{

x1 ∈ T : T n
β1

(x1) = 0 for some n ≥ 0
}

.

If x1 /∈ F , then Tβ1
x1 = β1x1 + 1 and

T n
β1

x1 = βn
1 x1 + βn−1

1 + βn−2
1 + · · · + β1 + 1 → 1

1 − β1

as n → ∞. Note that zero and 1
1−β1

are the fixed points of Tβ1
. Thus,

{
x1 ∈ [0, 1) \ F : T n

β1
(x1) < ψ(n) for infinitely many n ∈ N

}
= J∗ \ F or J∗ \ F,

where J∗ :=
(

( 1
1−β1

− τ, 1
1−β1

+ τ) ∩ [0, 1)
)

, J∗ is the closure of the set J∗ and τ is 

given by (36). Indeed, the set under consideration is J∗ \ F if ψ(n) |β1|−n ≤ τ for 

infinitely many n ∈ N and J∗ \ F otherwise. Hence, with T∗ and a∗ as in (35), it 

follows that

W (T, ψ, a) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

F × W (T∗, ψ, a∗) if a1 = 0

∅ if a1 �= 1

1−β1
, a1 �= 0

{ 1

1−β1
} × W (T∗, ψ, a∗) if a1 = 1

1−β1
and τ = 0,

J∗ × W (T∗, ψ, a∗) or J∗ × W (T∗, ψ, a∗) if a1 = 1

1−β1
and τ > 0.

The upshot is that in order to determine the size of W (T, ψ, a) or the behaviour 

of the associated counting function we need to investigate the shrinking target set 

W (T∗, ψ, a∗) ⊆ T d−1. Recall, that for ease of discussion we are assuming that β1 is 

the only eigenvalue of T in [−1, 1]. Thus, all the eigenvalues of the related transforma-

tion T∗ are in (−∞, −g] ∪ (1, +∞) and so Corollary 2 is applicable with T replaced by 

T∗, a replaced by a∗ and d replaced by d − 1.
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(ii) We assume β1 = 1. For any x = (x1, . . . , xd) ∈ T d and a = (a1, · · · , ad) ∈ T d, the 

condition T n(x) ∈ B(a, ψ(n)) implies that

‖x1 − a1‖ < ψ(n).

Now, since we are assuming that ψ(n) → 0 and n → ∞, it follows that for any x ∈
W (T, ψ, a) we must have that x1 = a1. Hence, with T∗ and a∗ as in (35), it follows that

W (T, ψ, a) = {a1} × W (T∗, ψ, a∗) .

As in (i), the upshot is that we need to investigate the shrinking target set W (T∗, ψ, a∗) ⊆
T d−1 and that for this setup Corollary 2 is applicable with T replaced by T∗, a replaced 

by a∗ and d replaced by d − 1.

(iii) We assume β1 = −1. Then, for x1 �= 0

T n
β1

(x1) =

⎧
⎨
⎩

x1 if n is even

−x1 + 1 if n is odd.

If a1 = 0, then the same reasoning as in (ii) shows that W (T, ψ, a) = {0} × W (T∗, ψ, a∗)

and so we can apply Corollary 2 with T replaced by T∗, a replaced by a∗ and d replaced 

by d − 1. If a1 �= 0, it follows that for any x ∈ W (T, ψ, a) we must have that x1 = a1 or 

x1 = −a1 + 1. Thus, with T∗ and a∗ as in (35), we have that

W (T, ψ, a) = {a1} × W ′(T∗, ψ, a∗)
⋃

{1 − a1} × W ′′(T∗, ψ, a∗),

where

W ′(T∗, ψ, a∗) := {x ∈ T d−1 : T n
∗ (x) ∈ B(a∗, ψ(n)) for infinitely many even n ∈ N},

W ′′(T∗, ψ, a∗) := {x ∈ T d−1 : T n
∗ (x) ∈ B(a∗, ψ(n)) for infinitely many odd n ∈ N}.

Now observe that W ′(T∗, ψ, a∗) and W ′′(T∗, ψ, a∗) are shrinking target sets with re-

spect to the transformation T∗ ◦ T∗ of the torus T d−1. Indeed,

W ′(T∗, ψ, a∗) = {x ∈ T d−1 : (T∗ ◦ T∗)n(x) ∈ B(a∗, ψ(2n)) for infinitely many n ∈ N},

and

W ′′(T∗, ψ, a∗) ={x ∈ T d−1 : (T∗ ◦ T∗)n(x) ∈ T −1
∗ B(a∗, ψ(2n + 1))

for infinitely many n ∈ N}.

Now in essence, the above procedure removes the presence of the problematic eigenvalue 

β1 = −1 but still none of the results we have established for matrix transformations 
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are applicable to the above shrinking targets sets. The reason for this is simple. The 

composition map T∗ ◦T∗ is not a matrix transformation of the torus T d−1. The upshot is 

that we need to appeal to Theorem 1 and its corollary directly. In view of the argument 

set out in §3.3.1 that provides a self-contained proof of Theorem 4 for rectangular target 

sets, it is easily seen that the desired counting and measure statements for W ′(T∗, ψ, a∗)

and W ′′(T∗, ψ, a∗) would follow on showing that the product measure ν is exponentially 

mixing with respect to (T∗ ◦T∗, R). To establish the latter, we first recall (see the start of 

the proof of Lemma 6) that for any β ∈ R with |β| > 1, μβ is exponentially mixing with 

respect to (Tβ , C) where C is any collection of intervals of K(β). Hence by definition, 

there exists a constant 0 < γ < 1 such that

μβ

(
E ∩ T −2nF

)
= μβ(E)μβ(F ) + O(γ2n) μβ(F )

for any E, F ∈ C. In other words,

μβ

(
E ∩ (T ◦ T )−nF

)
= μβ(E)μβ(F ) + O

(
(γ2)n

)
μβ(F ),

and so μβ is exponentially mixing with respect to (Tβ ◦ Tβ , C). Then, on mimicking the 

proof of Lemma 6 with T replaced by T∗ ◦ T∗ and d replaced by d − 1, we conclude that 

ν is exponentially mixing with respect to (T∗ ◦ T∗, R) for any collection R of rectangles 

of K with sides parallel to the axes.

3.3.3. A nifty “reduction” argument

In this section we show that when T is an integer matrix transformation, the diagonal 

assumption in Theorem 4 can be relaxed to T is diagonalizable over Z. So, suppose T

is diagonalizable over Z. Then by definition, there exist a nonsingular integer matrix P

and a diagonal integer matrix D such that product matrix relationship P · T = D · P

holds. In turn, there exists an invertible mapping

φ : T d → T d such that φ ◦ T = D ◦ φ . (37)

Obviously, the diagonal entries of D are the eigenvalues of T and we assume these integers 

are of modulus strictly larger than 1.

Now recall that for diagonal transformations such as D, the “Proof of Theorem 4 using 

Proposition 1” makes key use of the fact that the product measure ν is D-invariant and 

is exponentially mixing with respect to (D, C) where C is any collection of subsets E

of K satisfying the bounded property (B). We claim that the image measure ν ◦ φ is 

T -invariant and exponentially mixing with respect to (D, C). The proof of Theorem 4

can then be modified in the obvious manner to deal with the more general (integer) 

situation in which T is diagonalizable over Z. To establish the claim, first note that for 

any measurable set A ⊂ T d, on using the fact that ν is D-invariant it follows that

ν ◦ φ(T −1A) = ν(φ(T −1A)) = ν(D−1(φ(A))) = ν(φ(A)) = ν ◦ φ(A).
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Thus, ν ◦φ is T -invariant. Next, since φ is linear the (inverse) image of any collection C of 

subsets E of K satisfying the bounded property (B) also satisfies the bounded property 

(B). Hence, for any E, F ∈ C, noting that φ(E ∩ T −nF ) = φ(E) ∩ φ(T −nF ), it follows 

that there exists a constant 0 < γ < 1 such that

ν ◦ φ(E ∩ T −nF ) = ν
(
φ(E ∩ T −nF )

)
= ν

(
φ(E) ∩ φ(T −nF )

)

= ν
(
φ(E) ∩ D−n ◦ φ(F )

)

= ν
(
φ(E)

)
ν
(
φ(F )

)
+ O

(
γn
)

ν
(
φ(F )

)

= ν ◦ φ(E) ν ◦ φ(F ) + O(γn) ν ◦ φ(F )

as desired. Note that the third displayed line uses the fact that ν is exponentially mixing 

with respect to (D, C).

Remark 8. We remark that for real non-integer matrices, we cannot in general use the 

above argument to extend Theorem 4 to the situation that T is diagonalizable over Z. 

In short, the commutative property φ ◦ T = D ◦ φ may not be true since the product 

matrix relationship P · T = D · P does not guarantee that

P (Tx mod 1) mod 1 = T (Px mod 1) mod 1.

4. Establishing dimension results for matrix transformations

We begin with a brief account in which we bring together various statements concern-

ing Hausdorff measure and dimension that we will utilise in the course of establishing 

Theorems 6 and 7.

4.1. Preliminaries

We start by defining Hausdorff measure and dimension for completeness and for es-

tablishing some notation. Let X be a subset of Rd. For ρ > 0, a countable collection 

{Bi} of Euclidean balls in Rd of diameter di ≤ ρ for each i such that X ⊂ ⋃i Bi is called 

a ρ-cover for X. Let s be a non-negative number and define

Hs
ρ(X) = inf

{
∑

i

ds
i : {Bi} is a ρ−cover of X

}
,

where the infimum is taken over all possible ρ-covers of X. The s-dimensional Hausdorff 

measure Hs(X) of X is defined by

Hs(X) = lim
ρ→0

Hs
ρ(X) = sup

ρ>0
Hs

ρ(X)

and the Hausdorff dimension dim X of X by
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dimH X = inf {s : Hs(X) = 0} = sup {s : Hs(X) = ∞} .

Further details and alternative definitions of Hausdorff measure and dimension can be 

found in [14,35]. It is easily verified (see [14, Corollary 2.4]) that the Hausdorff dimension 

of a set is invariant under bi-Lipschitz maps.

Lemma 7. Let X be a subset of Rd and f : X → Rd be a bi-Lipschitz map; i.e.

c1 |x − y| ≤ |f(x) − f(y)| ≤ c2 |x − y| (x, y ∈ X)

where 0 < c1 ≤ c2 < ∞, then dimH f(X) = dimH X.

We now describe a deep and powerful mechanism for obtaining lower bounds for the 

Hausdorff dimension of a large class of “rectangular” lim sup sets.

4.1.1. Mass transference principle for rectangles

The discussion below is tailored to the application we have in mind. It is far from 

the most general and powerful setup of the Mass Transference Principle. We begin by 

describing the original ‘balls to balls’ principle which is all that is required for directly 

proving Theorem 6 and Theorem 7. However, we will deduce Theorem 6 from a more 

general statement concerning rectangular target sets and for this we will require the 

more versatile ‘rectangle to rectangle’ principle.

To set the scene, let X be a locally compact subset of Rd equipped with a non-atomic 

probability measure μ. Suppose there exist constants δ > 0, 0 < a ≤ 1 ≤ b < ∞ and 

r0 > 0 such that

a rδ ≤ μ(B) ≤ b rδ (38)

for any ball B = B(x, r) with x ∈ X and radius r ≤ r0. Such a measure is said to be 

δ-Ahlfors regular. It is well known that if X supports a δ-Ahlfors regular measure μ, 

then dimH X = δ and moreover that μ is strongly equivalent to δ-dimensional Hausdorff 

measure Hδ – see [14,35] for the details. The latter implies that (38) is valid with μ

replaced by Hs. Next, given s > 0 and a ball B = B(x, r) we define the scaled ball

Bs := B
(
x, r

s
δ

)
,

and so by definition Bδ = B. The following Mass Transference Principle [3] allows us to 

transfer Hδ-measure theoretic statements for lim sup subsets of X to general Hs-measure 

theoretic statements.

Theorem 10 (MTP: balls to balls). Let X be a locally compact subset of Rd equipped with 

a δ-Ahlfors regular measure μ. Let {Bn}n∈N be a sequence of balls in X with radius 

r(Bn) → 0 as n → ∞. Let s ≥ 0 and suppose that
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Hδ
(

lim sup
n→∞

Bs
n

)
= Hδ(X).

Then,

Hs
(

lim sup
n→∞

Bn

)
= Hs(X).

Note that by the definition of Hausdorff dimension, Theorem 10 implies that

dimH

(
lim sup

n→∞
Bn

)
≥ s , (39)

and moreover that Hs(lim supn→∞ Bn) = ∞ if s < δ. We now describe a recent result 

due to Wang & Wu [52] that gives a lower bound for the Hausdorff dimension of lim sup

sets defined via rectangles rather than just balls. So with this in mind, fix an integer 

p ≥ 1 and for 1 ≤ i ≤ p, let Xi be a subset of Rdi . Obviously, if Bi is a ball in Xi then ∏p
i=1 Bi is in general a rectangle in the product space 

∏p
i=1 Xi. The following statement 

for lim sup sets arising from sequences of such rectangles is a much simplified version of 

[52, Theorem 3.4]. As we shall see, it is more than adequate for our purpose.

Theorem 11 (MTP: rectangles to rectangles). For each 1 ≤ i ≤ p, let Xi be a locally 

compact subset of Rdi equipped with a δi-Ahlfors regular measure μi. Let {Bi,n}n∈N be 

a sequence of balls in Xi with radius r(Bi,n) → 0 as n → ∞ for each 1 ≤ i ≤ p and 

assume that there exist v = (v1, . . . , vp) ∈ (R+)p and a sequence {rn}n∈N of positive real 

numbers such that

r(Bi,n) = rvi
n for all 1 ≤ i ≤ p. (40)

Suppose that there exists (s1, . . . , sp) ∈ ∏p
i=1(0, δi) such that

μ1 × · · · × μp

(
lim sup

n→∞

∏p
i=1Bsi

i,n

)
= μ1 × · · · × μp

(∏p
i=1Xi

)
. (41)

Then, we have that

dimH

(
lim sup

n→∞

∏p
i=1Bi,n

)
≥ min

1≤i≤p
s(u, v, i),

where u = (u1, . . . , up) with ui = sivi/δi for 1 ≤ i ≤ p, and

s(u, v, i) :=
∑

k∈K1(i)

δk +
∑

k∈K2(i)

δk

(
1 − vk − uk

vi

)
+

∑

k∈K3(i)

ukδk

vi
,

with the sets

K1(i) := {1 ≤ k ≤ p : uk ≥ vi}, K2(i) := {1 ≤ k ≤ p : vk ≤ vi},
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and

K3(i) := {1, . . . , p} \ (K1(i) ∪ K2(i))

forming a partition of {1, . . . , p}.

Note that since the radius r(Bi,n) → 0 as n → ∞ for each 1 ≤ i ≤ p we automatically 

have that limn→∞ rn = 0. Also note that if (40) holds for some v = (v1, . . . , vp) ∈ (R+)p, 

then it holds for cv = (cv1, . . . , cvp) where c > 0 is a constant. Thus, the choice of v

and therefore u is not unique. However, it is easily seen that the “dimension number” 

s(u, v, i) is not effected; i.e.

s(u, v, i) = s(cu, cv, i) .

For the sake of convenience, we refer to a collection of rectangles {Rn :=
∏p

i=1Bi,n}n∈N

with sidelengths satisfying (40) as a collection of rectangles with exponent v. Thus, The-

orem 11 can be regarded as the dimension analogue of the original Mass Transference 

Principle for lim sup sets arising from rectangles with exponent v.

Remark 9. It is worth mentioning that assumption (40) can be easily weakened to the 

following statement: for any 1 ≤ i, j ≤ p,

lim
n→∞

log r(Bi,n)

log r(Bj,n)
exists and is finite.

To see this, let rn = r(B1,n). Then, there exists v = (v1, . . . , vp) ∈ (R+)p and sequences 

{vi,n}n∈N for each 1 ≤ i ≤ p, such that

r(Bi,n) = rvi,n
n with lim

n→∞
vi,n = vi .

Now, given ǫ > 0 consider the associated lim sup set R∗
ǫ obtained by replacing the balls 

Bi,n by balls B∗
i,n with the same centre but radius r(B∗

i,n) = rvi+ǫ
n (1 ≤ i ≤ p). Then,

R∗
ǫ := lim sup

n→∞

∏p
i=1B∗

i,n ⊂ lim sup
n→∞

∏p
i=1Bi,n

and on applying Theorem 11 we obtain a lower bound for dimH R∗
ǫ which converges to 

the desired dimensional number as ǫ → 0.

Remark 10. In the above setup the rectangles arise as products of balls Bi in Xi. Balls 

of radius ρ are of course ρ-neighbourhoods of special points; namely their centres. The 

general form of the Mass Transference Principle of Wang & Wu is based on the framework 

of ubiquitous systems. This allows them to naturally consider the situation in which 
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the balls Bi are replaced by ρ-neighbourhoods of special sets called resonant sets. It is 

easily verified that the κ-scaling property for resonant sets within the general dimension 

statement [52, Theorem 3.4] is satisfied with κ = 0 when the resonant sets are points. 

In turn, this together with [52, Proposition 3.1] directly yields Theorem 11. It is also 

worth mentioning that if we replace the full measure condition (41) by the stronger ‘local 

ubiquity system for rectangles’ condition [52, Definition 3.2] and also assume that the 

radii of the balls in the given sequence are non-increasing, then we are able to conclude 

[52, Theorem 3.2] that

Hs
(

lim sup
n→∞

∏p
i=1Bi,n

)
= Hs

(∏p
i=1Xi

)
with s = min

1≤i≤p
s(u, v, i).

In other words, we obtain a complete ‘rectangle to rectangle’ analogue of the original 

Mass Transference Principle.

It is easily seen that in the case of balls, Theorem 11 coincides with the dimension 

statement (39). Indeed, when p = 1 we have that that K1(1) = K3(1) = ∅ and K2(1) =

{1}. Hence, it follows that

s(u, v, 1) = δ1

(
1 − v1 − u1

v1

)
=

δ1u1

v1
= s1 ,

and so Theorem 11 implies that

dimH lim sup
n→∞

B1,n ≥ s1

as claimed.

4.2. Proof of Theorem 6 via a dimension theorem for rectangular targets

As mentioned in Remark 6, straight after the statement of Theorem 6, we deduce the 

theorem from a more general statement concerning rectangular target sets. This we now 

describe and prove. For 1 ≤ i ≤ d, let ψi : R+ → R+ be a real positive function. For 

convenience, let Ψ := (ψ1, . . . , ψd) and for n ∈ N let Ψ(n) := (ψ1(n), . . . , ψd(n)). Fix 

some point a := (a1, . . . , ad) ∈ T d and for n ∈ N, let

R
(
a, Ψ(n)

)
:=
{

x ∈ T d : ‖xi − ai‖ ≤ ψi(n) (1 ≤ i ≤ d)
}

.

Clearly, R
(
a, Ψ(n)

)
is a rectangle centred at the fixed point a. In turn, let

W (T, Ψ, a) :=
{

x ∈ T d : T n(x) ∈ R
(
a, Ψ(n)

)
for infinitely many n ∈ N

}
.

It is evident that the family of rectangular target sets {R
(
a, Ψ(n)

)
}n≥1 satisfy the 

bounded property (B) and indeed the stronger property (Pa) based on Gallagher’s prop-
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erty (P) as described in §5.1. Note that when ψ := ψ1 = · · · = ψd, the rectangles are 

squares and so

W (T, Ψ, a) = W (T, ψ, a) .

Also, it is easily verified that if

T = diag (β1, . . . , βd) (βi ∈ R)

then

W (T, Ψ, a) =
{

x ∈ T d : |T n
βi

xi − ai| ≤ ψi(n) (1 ≤ i ≤ d) for infinitely many n ∈ N
}

,

(42)

where Tβi
is the standard β-transformation with β = βi.

It turns out that the Hausdorff dimension of the shrinking target set W (T, Ψ, a) is 

dependent on the set U(Ψ) of accumulation points t = (t1, t2, . . . , td) of the sequence {
(− log ψ1(n)

n , · · · , − log ψd(n)
n )

}
n≥1

.

Theorem 12. Let T be a real, non-singular matrix transformation of the torus T d. Sup-

pose that T is diagonal with all eigenvalues β1, β2, . . . , βd strictly larger than 1. Assume 

that 1 < β1 ≤ β2 ≤ · · · ≤ βd. For 1 ≤ i ≤ d, let ψi : R+ → R+ be a real positive function 

and a ∈ T d. Assume that U(Ψ) is bounded. Then

dimH W (T, Ψ, a) = sup
t∈U(Ψ)

min
1≤i≤d

{
θi(t)

}
,

where

θi(t) :=
∑

k∈K1(i)

1 +
∑

k∈K2(i)

(
1 − tk

log βi + ti

)
+

∑

k∈K3(i)

log βk

log βi + ti

and, in turn

K1(i) := {1 ≤ k ≤ d : log βk > log βi+ti}, K2(i) := {1 ≤ k ≤ d : log βk+tk ≤ log βi+ti},

and

K3(i) := {1, . . . , d} \ (K1(i) ∪ K2(i)).

Remark 11. It is easily seen the value of θi(t) remains unchanged if replace > to ≥ in 

K1(i), and/or replace ≤ by < in K2(i).

We now deduce Theorem 6 from Theorem 12.
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Proof of Theorem 6 modulo Theorem 12. For the real positive function ψ in Theorem 6, 

we first suppose that its lower order at infinity is bounded; that is

λ = λ(ψ) := lim inf
n→∞

− log ψ(n)

n
< +∞.

With this in mind, put ψ1 = ψ2 = · · · = ψd = ψ in the statement of Theorem 12 and 

note that any t in U(Ψ) is of the form t = (t, t, . . . , t) where t ∈ U(ψ) – the set of 

accumulation points of the sequence 
{

− log ψ(n)
n

}
n≥1

. We remark that λ < +∞ means 

that U(Ψ) is bounded. Hence, for any 1 ≤ i ≤ d we have that

θi(t) := θi(t) =
∑

k:βk>βiet

1 +
∑

k:βk≤βi

(
1 − t

log βi + t

)
+

∑

k:βiet≥βk>βi

log βk

log βi + t
.

Now let

k1 := max{1 ≤ k ≤ d : βk ≤ βi},

and

k2 := max{1 ≤ k ≤ d : βk ≤ βie
t}.

Then, the above expression for θi(t) becomes

θi(t) =

d∑

k=k2+1

1 +

k1∑

k=1

log βi

log βi + t
+

k2∑

k=k1+1

log βk

log βi + t
(43)

and noting that βk = βi for i + 1 ≤ k ≤ k1 whenever k1 > i, it follows that

θi(t) =

∑d
k=k2+1(log βi + t) + i log βi +

∑k2

k=i+1 log βk

log βi + t

=
i log βi −∑d

k=k2+1(log βk − log βi − t) +
∑d

k=i+1 log βk

log βi + t
.

The upshot of this together with Theorem 12 is that

dimH W (T, ψ, a) = sup
t∈U(ψ)

min
1≤i≤d

θi(t).

Now observe that since θi(t) is a decreasing function in t, the above right hand side is 

equal to min1≤i≤d θi(λ) where λ = λ(ψ) is the lower order at infinity of the function ψ. 

Thus, under the assumption that λ is bounded, we have that

dimH W (T, ψ, a) = min
1≤i≤d

θi(λ)
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as desired. To deal with the case that λ = λ(ψ) = +∞, given any real number M > 0

consider the function ψM : R+ → R+ : x → e−xM . Then, by definition U(ψM ) = {M}
and for M sufficiently large

W (T, ψ, a) ⊂ W (T, ψM , a)

and so it follows that

0 ≤ dimH W (T, ψ, a) ≤ dimH W (T, ψM , a) ≤ min
1≤i≤d

θi(M). (44)

Now with reference to (43), we have that t = M and so for M sufficiently large: k2 = d

for 1 ≤ i ≤ d. Hence, for any 1 ≤ i ≤ d

lim
M→∞

θi(M) = lim
M→∞

(
i∑

k=1

log βi

log βi + M
+

d∑

k=i+1

log βk

log βi + M

)
= 0.

This together with (44) implies that

dimH W (T, ψ, a) = 0. �

4.2.1. Proof of Theorem 12

We start with a brief discussion that sums up various fundamental notions and state-

ments that we will require during the course of establishing Theorem 12. The statements 

are concerned with the distribution of the preimages of a fixed ball under a given β-

transformation Tβ. As usual, let β ∈ R such that |β| > 1 and let

Q =

{[
0,

1

|β|
)

, . . . ,
[ k

|β| ,
k + 1

|β|
)

, . . . ,
[⌊|β|⌋

|β| , 1
)}

be the natural partition of [0, 1). The n-th refinement of Q is defined as

Qn :=
{

Qi0
∩ T −1

β (Qi1
) ∩ · · · ∩ T

−(n−1)
β (Qin−1

) : Qij
∈ Q for 0 ≤ j ≤ n − 1

}
.

The elements in Qn are called cylinders of order n. Evidently, the cylinders are disjoint 

and the restriction of T n
β on each cylinder is continuous linear of slop βn. Now given a 

point a ∈ T , consider the preimage of the ball B(a, r) under T n
β . It can be verified that 

this preimage consists of disjoint intervals whose lengths are bounded above by 2r|β|−n. 

Indeed, we can write

T −n
β

(
B(a, r)

)
=

Nn⋃

j=1

In,j , (45)
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where each In,j is an interval lying in some cylinder of order n and Nn is the number of 

such intervals.

For β > 1, via the work of Rényi [39], it follows that the (total) number of cylinders 

of order n of Tβ is bounded from above by βn+1/(β − 1). Hence,

Nn ≤ βn+1/(β − 1). (46)

Remark 12. It is worth mentioning that on exploiting the well-known fact that the topo-

logical entropy of Tβ is log |β| for any β with |β| > 1, we obtain the weaker bound

Nn ≤ |β|n(1+ǫ) (47)

for any ǫ > 0 and n sufficiently large. This suffices for not only proving Lemma 8 below 

but more importantly for establishing the upper bound for the dimension within the 

context of Theorems 7 and 9 in which β is allowed to be negative.

Now, suppose β > 1. Recall that a cylinder I of order n is said to be full for Tβ if 

T n
β (I) = T . With this in mind, Bugeaud & Wang [8, Theorem 1.2] proved that every 

(n +1) consecutive cylinders of order n contains at least one full cylinder. This gives rise 

to the following useful fact that we will make use of on multiple occasions.

Fact BW: The distance between any two consecutive full cylinders is less than (n +1)β−n. 

Furthermore, since any full cylinder intersects T −n
β

(
B(a, r)

)
it follows that the distance 

between any two consecutive intervals In,j and In,j+1 is less than (n + 3)β−n; i.e.,

dist(In,j , In,j+1) ≤ (n + 3)β−n.

We now move onto the task of proving Theorem 12. This will be done by establishing 

the upper and lower bounds for dim W (T, Ψ, a) separately.

Proposition 4. Under the setting of Theorem 12, we have that

dimH W (T, Ψ, a) ≤ sup
t∈U(Ψ)

min
1≤i≤d

{θi(t)}.

We first establish the proposition in the special case that U(Ψ) consists of a single 

point.

Lemma 8. Under the setting of Theorem 12, assume in addition that there exists t =

(t1, . . . , td) ∈ (R+)d such that

lim
n→∞

− log ψi(n)

n
= ti for all 1 ≤ i ≤ d.

Then
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dimH W (T, Ψ, a) ≤ min
1≤i≤d

{θi(t)}.

Proof. Observe that we can re-write (42) as

W (T, Ψ, a) = lim sup
n→∞

T −n
β1

(
B(a1, ψ1(n))

)
× · · · × T −n

βd

(
B(ad, ψd(n))

)
, (48)

where Tβi
is the standard β-transformation with β = βi. As usual, we do not distinguish 

between β-transformations acting on the unit interval [0, 1) or the torus T . The proof 

of Lemma 8 relies on finding an “efficient” covering by balls of the lim sup set (48). So 

with this in mind, for any 1 ≤ i ≤ d, by (45) we have that

T −n
βi

(
B(ai, ψi(n))

)
=

Ni,n⋃

j=1

I
(i)
n,j , (49)

where each I
(i)
n,j is an interval lying in some cylinder of order n and Ni,n is the number 

of such intervals. Now for n ∈ N, let

Jn :=
{

j = (j1, . . . , jd) : 1 ≤ ji ≤ Ni,n (1 ≤ i ≤ d)
}

and for j ∈ Jn, let

Rn,j := I
(1)
n,j1

× · · · × I
(d)
n,jd

.

In turn, let

Rn =
⋃

j∈Jn

Rn,j and Rn :=
{

Rn,j : j ∈ Jn

}
.

Then in view of (49), we can re-write (48) as

W (T, Ψ, a) =
∞⋂

N=1

∞⋃

n=N

Rn

and it follows that for any N ≥ 1,

W (T, Ψ, a) ⊂
∞⋃

n=N

Rn .

In other words, the collection {Rn : n = N, N + 1, . . .} of rectangles Rn,j form a cover 

for the set W (T, Ψ, a). Now, observe that along the direction of the i-th axis (1 ≤ i ≤ d), 

by construction for each 1 ≤ j < Ni,n the sides I
(i)
n,j and I

(i)
n,j+1 are disjoint and thus the 

rectangles in Rn are disjoint. On the other hand, by Fact BW
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dist(I
(i)
n,j , I

(i)
n,j+1) ≤ (n + 3)β−n

i

and so along the direction of the i-th axis, the distance between consecutive rectangles 

in Rn is at most (n + 3)β−n
i .

We now estimate the number of balls Bi,n of diameter 2ψi(n)β−n
i (the sidelength of 

the rectangles in Rn along the direction of the i-th axis) needed to cover the set Rn. We 

start by covering a fixed generic rectangle R = Rn,j ∈ Rn. It is easily verified that we 

can find a collection Bi,n(R) of balls Bi,n that covers R with

#Bi,n(R) ≤ 2d
∏

1≤k≤d :
ψk(n)β−n

k ≥ψi(n)β−n
i

ψk(n)β−n
k

ψi(n)β−n
i

. (50)

Indeed, we can simply take the natural cover in which we split R into closed balls Bi,n

which are disjoint apart from at the boundary. Now observe that the collection Bi,n(R)

will also cover other rectangles in Rn along the direction of the k-th axis (1 ≤ k ≤ d) 

if the separation in that direction is small compared to the diameter of the balls Bi,n; 

that is, in view of Fact BW if

(n + 3)β−n
k < 2ψi(n)β−n

i .

In particular, this leads to the following lower bound for the number Mi,n(R) of rectangles 

covered by Bi,n(R):

Mi,n(R) := #
{

Rn,j ∈ Rn : Rn,j ⊆
⋃

Bi,n∈Bn,i(R)

Bi,n

}

≥
∏

1≤k≤d :
(n+3)β−n

k <ψi(n)β−n
i

2ψi(n)β−n
i

(n + 3)β−n
k

. (51)

The upshot is that there is a collection Bn,i of balls of Bi,n that cover the set Rn with

#Bn,i ≤ #Rn

Mi,n(R)
#Bn,i(R) =

d∏

j=1

Nj,n · #Bn,i(R)

Mi,n(R)
.

This together with (46), (50) and (51) implies that

#Bn,i ≤
d∏

j=1

βn+1
j

βj − 1
·

∏

1≤k≤d :
(n+3)β−n

k <ψi(n)β−n
i

(n + 3)β−n
k

2ψi(n)β−n
i

· 2d
∏

1≤k≤d :
ψk(n)β−n

k ≥ψi(n)β−n
i

ψk(n)β−n
k

ψi(n)β−n
i
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= 2d ·
d∏

j=1

βn+1
j

βj − 1

∏

k∈Kn,1(i)

(n + 3)β−n
k

2ψi(n)β−n
i

∏

k∈Kn,2(i)

ψk(n)β−n
k

ψi(n)β−n
i

,

where

Kn,1(i) :=
{

1 ≤ k ≤ d : (n + 3)β−n
k < ψi(n)β−n

i

}

=

{
1 ≤ k ≤ d : − log(n + 3)

n
+ log βk > − log ψi(n)

n
+ log βi

}
,

and

Kn,2(i) :=
{

1 ≤ k ≤ d : ψk(n)β−n
k ≥ ψi(n)β−n

i

}

=

{
1 ≤ k ≤ d : − log ψk(n)

n
+ log βk ≤ − log ψi(n)

n
+ log βi

}
.

Thus, given ρ > 0 and on choosing N sufficiently large so that 2ψi(n)β−n
i < ρ for any 

n ≥ N , it follows from the definition of s-dimensional Hausdorff measure that for any 

s > 0

Hs
ρ(W (T, Ψ, a))

≤
∞∑

n=N

#Bn,i

(
2ψi(n)β−n

i

)s

≤
∞∑

n=N

2d ·
d∏

j=1

βn+1
j

βj − 1

∏

k∈Kn,1(i)

(n + 3)β−n
k

2ψi(n)β−n
i

∏

k∈Kn,2(i)

ψk(n)β−n
k

ψi(n)β−n
i

·
(
2ψi(n)β−n

i

)s

= C

∞∑

n=N

exp {−n · ℓn} , (52)

where C := 2s+d
∏d

j=1
βj

βj−1 is a constant and

ℓn = ℓn(i) := −
d∑

j=1

log βj −
∑

k∈Kn,1(i)

(
log(n + 3)

n
− log βk − log ψi(n)

n
+ log βi

)

−
∑

k∈Kn,2(i)

(
log ψk(n)

n
− log βk − log ψi(n)

n
+ log βi

)

+ s

(
− log ψi(n)

n
+ log βi

)
.

Now note that 
∑∞

n=1 exp {−n · ℓn} converges as long as

lim sup
n→∞

ℓn > 0 ,
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and that this is equivalent to the condition that s is strictly larger than the upper limit 

of

hn = hn(i) :=

d∑
j=1

log βj +
∑

k∈Kn,1(i)

(
log(n+3)

n − log βk − log ψi(n)
n + log βi

)

− log ψi(n)
n + log βi

+

∑
k∈Kn,2(i)

(
log ψk(n)

n − log βk − log ψi(n)
n + log βi

)

− log ψi(n)
n + log βi

=
∑

k∈Kn,1(i)

1 +
∑

k∈Kn,2(i)

(
1 − − log ψk(n)

n

− log ψi(n)
n + log βi

)
+

∑

k∈Kn,3(i)

log βk

− log ψi(n)
n + log βi

,

where

Kn,3(i) := {1, . . . , d} \ (Kn,1(i) ∪ Kn,2(i))

=

{
1 ≤ k ≤ d : − log(n + 3)

n
+ log βk

≤ − log ψi(n)

n
+ log βi < − log ψk(n)

n
+ log βk

}
.

So, by the additional assumption imposed in the lemma, it follows that

lim sup
n→∞

hn = lim
n→∞

hn =
∑

k∈K1(i)

1 +
∑

k∈K2(i)

(
1 − tk

log βi + ti

)

+
∑

k∈K3(i)

log βk

log βi + ti
= θi(t).

The upshot of the above is that for any 1 ≤ i ≤ d and s > θi(t), we have that

∞∑

n=1

exp {−n · ℓn} < ∞

and hence together with (52) we obtain that

0 ≤ Hs(W (T, Ψ, a)) = lim
ρ→0

Hs
ρ(W (T, Ψ, a)) ≤ lim

N→∞
C

∞∑

n=N

exp {−n · ℓn} = 0 .

In turn, it follows from the definition of Hausdorff dimension that dimH W (T, Ψ, a) ≤
θi(t). This upper bound estimate is true for any 1 ≤ i ≤ d, and so it implies that

dimH W (T, Ψ, a) ≤ min
1≤i≤d

θi(t)
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as desired. �

Armed with Lemma 8, it is relatively straightforward to prove the general upper 

bound statement for the Hausdorff dimension of W (T, Ψ, a).

Proof of Proposition 4. To prove the proposition, we first cover the accumulation set 

U(Ψ). For any ε > 0, since U(Ψ) is bounded, we can find a family Bǫ of finitely many 

balls of the form

B =
d∏

i=1

[b
(i)
B , b

(i)
B + ε] (b

(i)
B ≥ 0)

that cover U(Ψ). For B ∈ Bǫ, let

N (B) =

{
n ∈ N :

(− log ψ1(n)

n
, · · · ,

− log ψd(n)

n

)
∈

d∏

i=1

[b
(i)
B , b

(i)
B + ε]

}
.

Without loss of generality, we assume that #N (B) = ∞ since, otherwise, there is no 

accumulation point in the ball B. We claim that W (T, Ψ, a) is a subset of

⋃

B∈B

{
x ∈ T d : ‖T n

βi
xi − ai‖ ≤ e−nb

(i)
B (1 ≤ i ≤ d) for infinitely many n ∈ N (B)

}
.

Indeed, for any x ∈ W (T, Ψ, a), there exists a sequence {nj}j∈N depending on x such 

that for any 1 ≤ i ≤ d

‖T
nj

βi
xi − ai‖ ≤ ψi(nj) ∀ j ≥ 1.

Since there are only finitely many balls B ∈ Bǫ which cover U(Ψ), there exists some 

B ∈ Bǫ that contains infinitely many points of

{(− log ψ1(nj)

nj
, · · · ,

− log ψd(nj)

nj

)}
j∈N

.

Thus, for these infinitely many j’s, we have that for any 1 ≤ i ≤ d

‖T
nj

βi
xi − ai‖ ≤ ψi(nj) ≤ e−njb

(i)
B .

This establishes the claim and by the countable stability property of Hausdorff dimension, 

it follows that dimH W (T, Ψ, a) is less than or equal to

max
B∈Bǫ

dimH

{
x ∈ T d : ‖T n

βi
xi − ai‖ ≤ e−nb

(i)
B (1 ≤ i ≤ d) for infinitely many n ∈ N

}
.

Now observe that
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lim
n→∞

− log e−nb
(i)
B

n
for all 1 ≤ i ≤ d ,

and so on applying Lemma 8 we deduce that

dimH W (T, Ψ, a) ≤ max
B∈Bǫ

min
1≤i≤d

θi

(
(b

(1)
B , . . . , b

(d)
B )
)
.

Then on letting ε → 0, by the continuity of θi(t) with respect to t, we conclude that

dimH W (T, Ψ, a) ≤ sup
t∈U(Ψ)

min
1≤i≤d

{θi(t)}.

This completes the proof of Proposition 4. �

We now turn out attention to establishing the lower bound for the Hausdorff dimension 

of W (T, Ψ, a).

Proposition 5. Under the setting of Theorem 12, we have that

dimH W (T, Ψ, a) ≥ sup
t∈U(Ψ)

min
1≤i≤d

{θi(t)}.

Proof. The proof of Proposition 5 relies on constructing a suitable lim sup type subset of 

W (T, Ψ, a) which enables us to exploit the ‘rectangles to rectangles’ Mass Transference 

Principle (Theorem 11). With this in mind, by (48) and (49), we know that W (T, Ψ, a) is 

a limsup set of rectangles with sides given by the intervals I
(i)
n,j (1 ≤ i ≤ d). Recall, that 

the sides correspond to the intersection of T −n
βi

(
B(ai, ψi(n))

)
and a cylinder of order n

and as in the proof of Proposition 4, we do not distinguish between β-transformations 

acting on the unit interval or the torus. Thus, if for each 1 ≤ i ≤ d, we select only those 

intervals which are intersections of T −n
βi

(
B(ai, ψi(n))

)
and full cylinders of order n, we 

will obtain a lim sup type subset of W (T, Ψ, a); that is

W (T, Ψ, a) ⊃
∞⋂

N=1

∞⋃

n=N

M1,n⋃

j1=1

· · ·
Md,n⋃

jd=1

B(x
(1)
n,j1

, β−n
1 ψ1(n))×· · ·×B(x

(d)
n,jd

, β−n
d ψd(n)) , (53)

where {x
(i)
n,ji

, 1 ≤ ji ≤ Mi,n} are the preimages of ai under T n
βi

that fall within full 

cylinders of order n for Tβi
and Mi,n is the number of such full cylinders. Now with (53)

and Fact BW in mind, it follows that for each 1 ≤ i ≤ d the enlarged collection of balls 

or rather intervals 
{

B(x
(i)
n,ji

, (n + 3)β−n
i ) : 1 ≤ ji ≤ Mi,n

}
covers T , that is

T =

Mi,n⋃

ji=1

B
(
x

(i)
n,ji

, (n + 3)β−n
i

)
. (54)
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Now fix a point t = (t1, . . . , td) ∈ U(Ψ). Then by definition and the fact that U(Ψ) is 

bounded, there exists a subsequence {nl}l∈N such that

lim
l→∞

− log ψi(nl)

nl
= ti for all 1 ≤ i ≤ d.

It is easily verified that for any 0 < ε < 1, there exists N = N(ε) > 0 such that

(1 − ε) log βi

(1 − ε) log βi + ti
≤

− log(nl+3)
nl

+ log βi

log βi + − log ψi(nl)
nl

(55)

for all l ≥ N and 1 ≤ i ≤ d. Let

si :=
(1 − ε) log βi

(1 − ε) log βi + ti
(1 ≤ i ≤ d).

Then, (55) is equivalent to

(
β−nl

i ψi(nl)
)si ≥ (nl + 3)β−nl

i ,

which together with (54) implies that for any l ≥ N

T =

Mi,nl⋃

ji=1

B
(
x

(i)
nl,ji

,
(
β−nl

i ψi(nl)
)si
)
.

In turn, it follows that for any l ≥ N

T d =

M1,nl⋃

j1=1

· · ·
Md,nl⋃

jd=1

B
(
x

(1)
nl,j1

, (β−nl

1 ψ1(nl))
s1
)

× · · · × B
(
x

(d)
nl,jd

, (β−nl

d ψd(nl))
sd
)

and so

T d = lim sup
n→∞

M1,n⋃

j1=1

· · ·
Md,n⋃

jd=1

B
(
x

(1)
n,j1

, (β−n
1 ψ1(n))s1

)
×· · ·×B

(
x

(d)
n,jd

, (β−n
d ψd(n))sd

)
. (56)

The upshot is that given the lim sup set of rectangles appearing on the right hand side 

of (53), the corresponding lim sup set of ‘(s1, . . . , sd)-scaled up’ rectangles satisfies (41)

with p = d, Xi = T , δi = 1 and μi = m1 (one-dimensional Lebesgue measure) for each 

1 ≤ i ≤ d. Thus on applying Theorem 11 with ui = (1 −ε) log βi and vi = (1 −ε) log βi+ti

(1 ≤ i ≤ d), we obtain the lower bound

dimH W (T, Ψ, a) ≥ min
1≤i≤d

s(i, ε)
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where

s(i, ε) :=
∑

k∈K1(i,ε)

1 +
∑

k∈K2(i,ε)

(
1 − tk

(1 − ε) log βi + ti

)
+

∑

k∈K3(i,ε)

(1 − ε) log βk

(1 − ε) log βi + ti

and where K1(i, ε), K2(i, ε), K3(i, ε) is the partition of {1, . . . , d} given by

K1(i, ε) :=
{

k : (1 − ε) log βk ≥ (1 − ε) log βi + ti

}

K2(i, ε) :=
{

k : (1 − ε) log βk + tk ≤ (1 − ε) log βi + ti

}
,

K3(i, ε) :=
{

1, . . . , d
}

\
(
K1(i, ε) ∪ K2(i, ε)

)
.

Fix 1 ≤ i ≤ d. On letting ε → 0, we find that K1(i, ε) → {k : log βk > log βi+ti} = K1(i), 

K2(i, ε) → K2(i) and K3(i, ε) → K3(i). Thus

lim
ε→0

s(i, ε) = θi(t) and dimH W (T, Ψ, a) ≥ min
1≤i≤d

θi(t).

Moreover, since this is valid for any t ∈ U(Ψ) it follows that

dimH W (T, Ψ, a) ≥ sup
t∈U(Ψ)

min
1≤i≤d

{θi(t)}

and we are done. �

4.2.2. Proof of Theorem 8

We show that when T is an integer matrix transformation, the diagonal assumption in 

Theorem 6 can be relaxed to T is diagonalizable over Z. This thereby proves Theorem 8. 

So, suppose T is diagonalizable over Z. Then by definition, there exist a diagonal integer 

matrix D and an invertible mapping φ satisfying (37). It is easily versified that T n(x) ∈
B(a, ψ(n)) if and only if Dn(φ(x)) ∈ φ

(
B(a, ψ(n))

)
. Since φ is a bi-Lipschitz map, we 

can find two positive constants 0 < c1 ≤ c2 < ∞ such that

B
(
φ(a), c1ψ(n)

)
⊂ φ

(
B(a, ψ(n)

)
⊂ B

(
φ(a), c2ψ(n)

)
.

In turn, Lemma 7 implies that the Hausdorff dimension of

W (T, ψ, a) := {x ∈ T d : T n(x) ∈ B(a, ψ(n)) for infinitely many n ∈ N}

is the same as that of

{
x ∈ T d : Dn(x) ∈ B(φ(a), ψ(n)) for infinitely many n ∈ N

}
.

Thus, without loss of generality, we only need to prove the desired dimension result in 

the case that T is diagonal.
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4.3. Proof of Theorem 7

The proof of Theorem 7 will make use of a general statement (namely, Proposi-

tion 7 below) concerning Markov subsystems which may be of independent interest. 

In short, these systems provide a “nice” approximation to one-dimensional piecewise 

linear dynamical systems. To start with, let us recall the notion of a Markov system 

for a one-dimensional expanding dynamical system (X, T ). With this in mind, let X be 

a compact set in R and T : X → X be an expanding map. Furthermore, let Λ be a 

subset of X. A partition PΛ of Λ into finite or countable collection of sets P (k) is called 

a Markov partition if Λ :=
⋂∞

n=0 T −n
(

∪ P (k)
)

and

(i) the interior of P (j) and P (k) are disjoint if j �= k,

(ii) T restricted on each P (j) is one to one,

(iii) if T (P (j)) intersects the interior of P (k) for some j and k then P (k) ⊆ T (P (j)).

In turn, the system (Λ, T |Λ, PΛ) is called a Markov subsystem of (X, T ). In the case 

Λ = X, we simply write (X, T, P) and referred to it as a Markov system.

An important property regarding Markov subsystems that we shall utilise is given by 

the following statement. It is a direct consequence of [34, Theorems 4.2.9 & 4.2.11].

Proposition 6. Let X be a compact set in R and T : X → X be an expanding map. Let 

(Λ, T |Λ, PΛ) be a Markov subsystem of (X, T ) with finite partition PΛ = {P (i)}1≤i≤N

whose incidence matrix is primitive. Suppose that for any 1 ≤ k ≤ N , T |P (k) is C1+α

for some α > 0. Then the measure Hδ|Λ is δ-Ahlfors regular where δ := dimH Λ.

The following statement provides a lower bound for dimH Λ in the case T is piecewise 

linear. Throughout, we suppose that the absolute value of the slope of such a map T is 

constant and will be denoted by β(T ).

Proposition 7. Let T be a piecewise linear map on [0, 1] and assume that β(T ) > 8. 

Then there exists a Markov subsystem (Λ, T |Λ, PΛ) of ([0, 1], T ) with a finite partition 

PΛ = {P (i)}1≤i≤m where each P (i) is an interval and T |P (i) is linear, such that

dimH Λ ≥ 1 − log 8

log β(T )
.

Proof. Let P̃ = {P̃ (i)}m
i=1 be a partition of [0, 1] such that for each 1 ≤ i ≤ m the set 

P̃ (i) is an interval and T |P̃ (i) is linear. Without loss of generality, we can assume that

max{|P̃ (i)| : P̃ (i) ∈ P̃} ≤ 2κ with κ := min{|P̃ (i)| : P̃ (i) ∈ P̃} .

Indeed, if |P̃ (i)| > 2κ for some 1 ≤ i ≤ m, then there exists ℓ ∈ N such that
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2ℓκ < |P̃ (i)| ≤ 2ℓ+1κ.

Hence, we can subdivide P̃ (i) into 2ℓ equal pieces and take these subintervals as part of 

partition rather than P̃ (i). The map T restricted to each piece of the new partition is 

still linear and by construction the length of each piece if bounded above by 2κ.

For any interval P̃ ∈ P̃ , let

P := P̃ ∩ T −1
( ⋃

1≤i≤m

{P̃ (i) ∈ P̃ : P̃ (i) ⊂ T (P̃ )}
)

.

Now since T |P̃ (i) is linear, the intervals P̃ (i) contained in T (P̃ ) are adjacent intervals in 

the partition P̃. Hence, P is a subinterval of P̃ . Furthermore, since T |P̃ is linear with 

slope ±β(T ) we have that |T (P̃ )| = β(T ) · |P̃ | ≥ β(T )κ. So the number of P̃ (i) ∈ P̃ that 

intersect T (P̃ ) is at least the integer part of β(T )κ/2κ = [β(T )/2]. Here we use the fact 

that |P̃ (i)| ≤ 2κ for all intervals in the partition. Thus, on using the fact that β(T ) > 8, 

we have that

#
{

P̃ (i) ∈ P̃ : P̃ (i) ⊂ T (P̃ )
}

≥ [β(T )/2] − 2 ≥ 1 . (57)

The upshot of this is that

P �= ∅ .

We now prove that P := {P (i) : P̃ (i) ∈ P̃, 1 ≤ i ≤ m} is a Markov partition of ⋃m
i=1 P (i). The first two conditions are automatically satisfied. Regarding the third condi-

tion, for any 1 ≤ j, k ≤ m with T (P (j)) ∩P (k) �= ∅, we first note that T (P (j)) ∩P̃ (k) �= ∅
which in turn implies that P (j) ∩T −1(P̃ (k)) �= ∅. Then, by the definition of P (j), P̃ (k) is 

an interval such that P̃ (k) ⊂ T (P̃ (j)) and P̃ (j) ∩T −1(P̃ (k)) ⊂ P (j). So P̃ (k) ⊂ T (P (j)). 

Therefore, by noting that P (k) ⊂ P̃ (k), we have P (k) ⊂ T (P (j)) ⊂ T (P (j)) and this 

verifies the third condition.

Next, let

f := T |∪m
i=1P (i) and Λ :=

∞⋂

n=0

f−n
(

∪m
i=1 P (i)

)
.

Then, by construction, the system (Λ, T |Λ, PΛ) with PΛ := {P (i) : P̃ (i) ∈ P, 1 ≤ i ≤ m}
is a Markov subsystem of ([0, 1], T ). It remains to prove that the Hausdorff dimension 

of the set Λ satisfies the lower bound in the statement of the proposition. For this, we 

work in the symbolic space of the dynamical system under consideration to estimate the 

topological entropy of T |Λ and then use the fact that the entropy is intimately related 

to the dimension of Λ.

The dynamics of T |Λ can be coded by the m ×m transition matrix A = (Ajk)1≤j,k≤m

with entries
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Ajk =

⎧
⎨
⎩

1 if P (k) ⊂ T (P (j)),

0 otherwise.

Denote by ΣN
A ⊂ {1, 2, . . . , m}N the corresponding symbolic space induced by A and Σn

A

the set of words of length n in ΣN
A . The projection π from ΣN

A to Λ is given by

ω = (ωn)n≥0 �→ π(ω) =
∞⋂

n=0

f−n(P (ωn)) .

In view of (57), it follows that any given word of length n gives rise to at least 
[β(T )

2

]
−2

words of length (n + 1). Hence, we have that

#Σn
A ≥ m

(
β(T )

2
− 3

)n−1

,

which implies that the topological entropy htop(T |Λ) of T |Λ is at least log
(

β(T )
2 − 3

)
. 

This together with Bowen’s definition of topological entropy (see [5], [16, page 230]) and 

the fact that the absolute value of the slope of T |Λ is a constant (namely β(T ) > 8), 

implies that

dimH Λ =
htop(T |Λ)

log β(T )
≥

log
(

β(T )
2 − 3

)

log β(T )
≥ 1 − log 8

log β(T )
. �

The following result provides a lower bound for the Hausdorff dimension of shrinking 

target sets associated with piecewise linear maps.

Proposition 8. Let T be a piecewise linear map on [0, 1] and assume that β(T ) > 8. Let 

(Λ, T |Λ, PΛ) be the associated Markov subsystem arising from Proposition 7. Suppose 

there exists a compact set K ⊇ Λ and an integer k0 > 0, so that T k0(P ) ⊇ K for any 

interval P ∈ PΛ. Let ψ : R+ → R+ be a real positive function and a ∈ K. Then

dimH W (T, ψ, a) ≥ 1 − log 8/log β(T )

1 + λ/ log β(T )
,

where λ = λ(ψ) is the lower order at infinity of the function ψ and

W (T, ψ, a) := {x ∈ [0, 1] : |T nx − a| ≤ ψ(n) for infinitely many n ∈ N}.

Proof. We are given that (Λ, T |Λ, PΛ) is a Markov subsystem of the dynamical system 

([0, 1], T ) coming from Proposition 7. Indeed, PΛ = {P (i) : 1 ≤ i ≤ m} where each 

P (i) is an interval and T |P (i) is linear. As in the proof of Proposition 7, denote by 

ΣN
A ⊂ {1, 2, . . . , m}N the corresponding symbolic space of the dynamics of T |Λ induced 
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by the transition matrix A and Σn
A the set of words of length n in ΣN

A . With this in 

mind, given a word (i0i1 · · · in−1) ∈ Σn
A, let

P (i0i1 · · · in−1) := P (i0) ∩ T −1
(
P (i1)

)
∩ · · · ∩ T −(n−1)

(
P (in−1)

)

and for each n ∈ N, let

Pn :=
{

P (i0i1 · · · in−1) : (i0i1 · · · in−1) ∈ Σn
A

}

denote the collection of cylinder sets of length n. Now by the Markov property of PΛ, 

for any cylinder P (i0i1 · · · in−1) ∈ Pn

T n−1
(
P (i0i1 · · · in−1)

)
= P (in−1). (58)

Then with K and k0 as in the statement of the proposition, we have that

T n−1+k0
(
P (i0i1 · · · in−1)

)
⊇ K. It therefore follows that for any a ∈ K, there exists 

a point xi0i1···in−1
∈ P (i0i1 · · · in−1) such that T n−1+k0(xi0i1···in−1

) = a. That is, we can 

find a preimage of the point a under T n+k0−1 on every cylinder of order n. So for any 

point x ∈ B
(

xi0i1···in−1
, ψ(n+k0−1)

β(T )n+k0−1

)
, we have that

|T n+k0−1(x) − a| = |T n+k0−1(x) − T n+k0−1(xi0i1···in−1
)|

= β(T )
n+k0−1|x − xi0i1···in−1

|
< ψ(n + k0 − 1).

Therefore,

lim sup
n→∞

⋃

i0i1···in−1∈Σn
A

B
(

xi0i1···in−1
,

ψ(n + k0 − 1)

β(T )
n+k0−1

)
⊂ W (T, ψ, a). (59)

On the other hand, by (58) we have that

κ∗β(T )
−(n−1) ≤ |P (i0i1 · · · in−1)| ≤ κ∗β(T )

−(n−1)
,

where κ∗ = min1≤i≤m |P (i)| and κ∗ = max1≤i≤m |P (i)|. Hence

⋃

i0i1···in−1∈Σn
A

B
(
xi0i1···in−1

, κ∗β(T )
−(n−1)) ⊇ Λ (60)

and so

lim sup
n→∞

⋃

i0i1···in−1∈Σn
A

B
(
xi0i1···in−1

, κ∗β(T )
−(n−1)) ⊃ Λ . (61)
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Now let δ := dimH Λ and note that

(ψ(n + k0 − 1)

β(T )
n+k0−1

) s
δ ≥ κ∗β(T )

−(n−1)

for any

0 < s < s0 := lim sup
n→∞

δ(log κ∗ − (n − 1) log β(T ))

log ψ(n + k0 − 1) − (n + k0 − 1) log β(T )
=

δ

1 + λ/ log β(T )
.

In other words, for s < s0 the radii of the ‘s-scaled up’ balls associated with (59) are 

at least the size of the corresponding balls appearing in (61). It then follows via (59), 

(61) and Proposition 6, that on applying the Mass Transference Principle (the original 

Theorem 10) with μ = Hδ|Λ, we have that

Hs
(
W (T, ψ, a)

)
= Hs(Λ) = ∞ . (62)

The right hand most equality is valid since s < δ. Now (62) is true for any s < s0 and 

so together with Proposition 7 it follows that

dimH W (T, ψ, a) ≥ s0 =
dimH Λ

1 + λ/ log β(T )
≥ 1 − log 8/log β(T )

1 + λ/ log β(T )
. �

As we shall soon see, Proposition 8 will be instrumental in the proof of Theorem 7. 

Before moving onto the latter, we establish a technical lemma.

Lemma 9. Let ψ : R+ → R+ be a real positive decreasing function and let λ = λ(ψ) be 

its lower order at infinity. Then, for any positive integer k we have that

lim inf
n→∞

− log ψ(kn)

kn
= λ.

Proof. Recall, λ := lim inf
n→∞

− log ψ(n)
n and thus there exist infinitely many indices n ∈ N

such that

ψ(n) > exp (−(λ + ε)n) . (63)

Now fix a positive integer k ≥ 2 and let

ξ := lim inf
n→∞

− log ψ(kn)

kn
.

Thus, for any ε > 0 there exists an Nε > 0 such that for every n > Nε

ψ(kn) < exp (−(ξ − ε)kn) . (64)
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By definition, we trivially have that ξ ≥ λ. We claim that if ψ is decreasing then 

we must have equality. With this in mind, assume on the contrary that ξ > λ and set 

ε := ξ−λ
4 . For our fixed k ≥ 2, any arbitrarily positive integer can be written in the form 

kn + r with n ∈ N and r ∈ N satisfying 0 ≤ r ≤ k − 1. By (63), there is an increasing 

sequence (kni + ri)i≥1 with ni ∈ N and 0 ≤ ri ≤ k − 1 such that

ψ(kni + ri) > exp (−(λ + ε)(kni + ri)) .

On the other hand, for any n ∈ N and 0 ≤ r ≤ k − 1 such that kn > Nǫ, by the 

decreasing property of ψ and (64), we have that

ψ(kn + r) ≤ ψ(kn) < exp (−(ξ − ε)kn) = exp (−(ξ − ε)(kn + r)) exp ((ξ − ε)r) .

Thus, for all i large enough we have that

exp (−(λ + ε)(kni + ri)) < exp (−(ξ − ε)(kni + ri)) exp ((ξ − ε)ri) ,

which in turn implies that

exp
(ξ − λ

2
(kni + ri)

)
< exp

(
(ξ − ε)ri

)
. (65)

Now note that with k fixed, the right-hand side of (65) is bounded since ri lies in the 

range from 0 to k −1. However, since ξ−λ
2 > 0, the left-hand side of (65) tends to infinity 

as i tends to infinity and we obtain a contradiction. The upshot is that we must have 

ξ = λ, as claimed. �

Proof of Theorem 7. We prove Theorem 7 by estimating the upper and lower bounds 

for the Hausdorff dimension of W (Tβ, ψ, a) separately.

The upper bound for dimH W (T, ψ, a) essentially follows the same line of argument as 

within the proof of Lemma 8 with i = 1 and the estimate (46) replaced by (47). In short, 

for any n ∈ N the preimage T −n
β

(
B(a, ψ(n))

)
consists of Nn intervals {In,j : 1 ≤ j ≤ Nn}

with lengths bounded by 2ψ(n)|β|−n and in view of Remark 12, for any ǫ > 0 there exists 

N0 ≥ 1 such that for all n ≥ N0

Nn ≤ |β|n(1+ǫ).

Now for any N ≥ 1, we have that

W (Tβ , ψ, a) ⊂
∞⋃

n=N

Nn⋃

j=1

In,j .

Thus, given ρ > 0 and on choosing N ≥ N0 sufficiently large so that |β|−N < ρ, it follows 

that for any s > 0
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Hs
ρ(W (Tβ , ψ, a)) ≤

∞∑

n=N

Nn∑

j=1

|In,j |s ≤
∞∑

n=N

|β|n(1+ǫ)(2ψ(n)|β|−n)s

≤
∞∑

n=N

|β|n(1+ǫ)−ns+s log ψ(n)
log |β| .

Hence, for any s > (1+ǫ) log |β|
λ+log |β| we have that Hs(W (Tβ , ψ, a)) = 0 and thus

dimH W (Tβ , ψ, a) ≤ (1 + ǫ) log |β|
λ + log |β| .

Since ǫ > 0 is arbitrary, we obtain the desired upper bound for the dimension of 

W (Tβ , ψ, a).

To prove the complementary lower bound, we make use of Proposition 8. With this in 

mind, for any real number β with |β| > 1, the transformation Tβ can be considered as a 

piecewise linear mapping of the unit interval [0, 1] with β(T ) = |β|. Strictly, speaking Tβ

is defined on [0, 1) but we can naturally include the end point one by defining Tβ(1) =

β (mod 1). This extension will not effect the dimension of W (Tβ, ψ, a) since it introduces 

at most a single point. Now choose k ∈ N large enough so that |β|k > 8, and note that

W (Tβ , ψ, a) ⊇ W (T k
β , ϕk, a) where ϕk(n) := ψ(kn) .

Let (Λk, T k
β |Λk

, PΛk
) be the Markov subsystem of ([0, 1], T k

β ) arising from Proposi-

tion 7. The following claim will enable us to establish the hypotheses within Proposition 8

regarding the existence of a compact set K ⊇ Λk and an integer k0 > 0, so that 

T k0

β (P ) ⊇ K for any interval P ∈ PΛk
. As usual, we let K(β) denote the support of 

the Parry-Yrrap measure μβ . Recall, that K(β) is either the unit interval or a finite 

union of closed intervals – see Proposition 3 in §3.3.

Claim. For any interval I ⊆ [0, 1], there exists an integer k(I) > 0, such that T
k(I)
β (I) ⊇

K(β).

Proof of Claim. We will use the fact that for any |β| > 1, the map Tβ is locally eventually 

onto (or topologically exact); i.e. for every non-degenerate subinterval I ⊆ K(β) there 

exists a non-negative integer k such that T k(I) ⊇ K(β). For β > 1, this is explicitly 

stated and proved in the work of Troubetzkoy & Varandas [46, Section 3.3] and since 

K(β) = [0, 1] when β > 1 it directly establishes the claim. On the other hand, for β < −1

the fact is explicitly stated and proved in the work of Liao & Steiner [33, Theorem 2.2]. 

As a consequence, given any interval I ⊆ [0, 1], if I ∩ K(β) contains an interval then we 

are done. So assume that this is not the situation. Then, I ∩
(
[0, 1] \ K(β)

)
contains an 

interval and to continue we consider two situations:
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(a) There exists a positive integer ℓ(I) such that T
ℓ(I)
β (I) ∩ K(β) contains an interval. 

In this case the claim follows directly from the locally eventually onto property of 

Tβ .

(b) If (a) does not hold, then for all n ∈ N, T n(I) is contained in [0, 1] \ K(β) except 

for a finite number of points. Therefore

lim
n→∞

m1

(
T −n([0, 1] \ K(β))

)
≥ m1(I) > 0 ,

where as usual m1 is one-dimensional Lebesgue measure. However, this contradicts 

the second assertion of [33, Theorem 2.2]; namely that lim
n→∞

m1(T −n([0, 1] \K(β))) =

0. �

On using the above claim, it follows that for any interval P (i) ∈ PΛk
:= {P (i) : 1 ≤

i ≤ m} there exists an integer k0(i) > 0 such that T
k0(i)
β

(
P (i)

)
⊇ K(β). The upshot 

of this is that the hypotheses within Proposition 8 is satisfied with K = K(β) and 

k0 = max
1≤i≤m

k0(i). Then on applying Proposition 8, we have that

dimH W (Tβ , ψ, a) ≥ dimH W (T k
β , ϕk, a) ≥ 1 − log 8/(k log β(T ))

1 + λk/(k log β(T ))

where λk := lim infn→∞
− log ϕk(n)

n is the lower order at infinity of ϕk. Now by Lemma 9, 

since ψ is a real positive decreasing function, we have that λk/k = λ and so on letting 

k → ∞ we obtain the desired lower bound for the dimension of W (Tβ, ψ, a). �

5. Final comments

In this section we discuss various natural problems that arise as a consequence of the 

results proved in this paper. The measure results (namely, Theorems 2 - 5) for matrix 

transformations are reasonably complete so the problems listed below are essentially 

concerned with Hausdorff dimension.

5.1. Dimension problem for property (P) targets sets

Theorem 12 and Theorem 9 give the Hausdorff dimension of shrinking target set 

W (T, {En}) when the targets sets {En}n∈N are a sequence of rectangles or hyperboloids. 

It is easily seen that both these “shapes” when centred at the origin satisfy the property 

(P) condition of Gallagher [20] adapted for the torus: a subset E of T d is said to have 

property (P) if whenever x = (x1, . . . , xd) ∈ E and ‖x′
i‖ ≤ xi (1 ≤ i ≤ d) then 

x′ = (x′
1, . . . , x′

d) ∈ E. Geometrically, the property simply means that the rectangle 

B(0, x1) × . . . × B(0, xd) is contained within E. In short, it would be desirable to extend 

and thereby unify our dimension results (with a := (0, . . . , 0) in the first instance) to 

target sets satisfying property (P). We now briefly describe what we have in mind.
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Let T be a real, non-singular matrix transformation of the torus T d. Suppose that 

T is diagonal and all eigenvalues β1, β2, . . . , βd are strictly larger than 1. Assume that 

1 < β1 ≤ β2 ≤ · · · ≤ βd. Let P be any collection of subsets E of T d satisfying property 

(P). Then, for any sequence {En}n∈N in P, Theorem 4 implies that md

(
W (T, {En})

)
= 0

if 
∑∞

n=1 md

(
En

)
< ∞. Thus, whenever the measure sum converges, it is natural to ask 

for the Hausdorff dimension of W (T, {En}). Given that property (P) is intimately tied 

up with rectangles, it is not unreasonable to expect that dimH W (T, {En}) is in someway 

related to the Hausdorff dimension of the ‘rectangular’ shrinking targets sets W (T, Ψ, a)

given by Theorem 12. With this in mind, for any sequence {En}n∈N in P, we propose 

the following candidate for the dimension formula:

dimH W (T, {En}) = sup
Ψ : ∀ n∈N

R(0,Ψ(n))⊆En

dimH W (T, Ψ, 0). (66)

Here, as in §4.2, given Ψ := (ψ1, . . . , ψd) and some point a := (a1, . . . , ad) ∈ T d, for 

n ∈ N we let

R
(
a, Ψ(n)

)
:=
{

x ∈ T d : ‖xi − ai‖ ≤ ψi(n) (1 ≤ i ≤ d)
}

.

Observe, that since in (66) the supremum is over Ψ such that the corresponding rectangles 

R
(
0, Ψ(n)

)
are a subset of the sets En satisfying property (P), we automatically obtain 

the desired lower bound statement:

dimH W (T, {En}) ≥ sup
Ψ : ∀ n∈N

R(0,Ψ(n))⊆En

dimH W (T, Ψ, 0). (67)

Thus, establishing (66) boils down to establishing the complimentary upper bound state-

ment.

It is not difficult to see that the dimension formula (66) holds when the targets sets 

{En}n∈N are a sequence of rectangles as in Theorem 12 or hyperboloids as in Theorem 9. 

The former is obvious. Regarding the latter, for n ∈ N we let Ψ(n) := (1, · · · , 1, ψ(n)). 

Then,

R
(
0, Ψ(n)

)
= B(0, 1) × · · · × B(0, 1) × B(0, ψ(n)) (68)

and with reference to Theorem 12

U(Ψ) =

{
(0, 0, · · · , 0, td) : td is an accumulation point of

{
− log ψ(n)

n

}
n≥1

}
.

Furthermore, for 1 ≤ i ≤ d − 1, we have that K1(i) = {i + 1, i + 2, · · · , d}, K2(i) =

{1, 2, · · · , i}, and K3(i) = ∅. Hence,

θ1(0, 0, · · · , 0, td) = · · · = θd−1(0, 0, · · · , 0, td) = d .
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For i = d, we have that K1(d) = K3(d) = ∅ and K2(d) = {1, 2, · · · , d}. Thus,

θd(0, 0, · · · , 0, td) = d − 1 +
log βd

td + log βd
.

Therefore, on applying Theorem 12 we obtain that

dimH W (T, Ψ, 0) = sup
td

min
1≤i≤d

θi(0, 0, · · · , 0, td) = sup
td

{
d − 1 +

log βd

td + log βd

}

= d − 1 +
log βd

λ + log βd
,

where λ is the lower order at infinity of ψ. Since this dimension formula coincides with 

the dimension of W ×(T, Ψ, 0) given by Theorem 9, and we always have the lower bound 

(67), we conclude that the supremum in (66) is attained by the choice of rectangles given 

by (68). In other words, the dimension formula (66) holds when the targets sets {En}n∈N

are a sequence of hyperboloids as in Theorem 9.

The following is an extension of Gallagher’s property (P) condition that naturally 

incorporates “shapes” not necessarily centred at the origin. Given a ∈ T d, a subset E of 

T d is said to have property (Pa) if whenever x = (x1, . . . , xd) ∈ E and ‖x′
i − ai‖ ≤ xi

(1 ≤ i ≤ d) then x′ = (x′
1, . . . , x′

d) ∈ E. Now with this in mind, let Pa be any collection 

of subsets E of T d satisfying property (Pa). Then, for any sequence {En}n∈N ∈ Pa, we 

propose that (66) holds with the origin replaced by a. Clearly, such a statement would 

unify in full our dimension results for rectangular and hyperboloid target sets; that is, 

not just for when a := (0, . . . , 0).

5.2. Dimension problem for diagonal matrices with negative entries

In the one dimensional case, Theorem 7 extends Theorem 6 by incorporating negative 

eigenvalues. Naturally, it would be desirable to obtain the higher dimensional analogue 

of Theorem 7. Indeed, this would clearly follow if we could extend Theorem 12 (the 

“rectangular” generalization Theorem 6) to the situation that all eigenvalues of T are 

of modulus strictly larger than 1. Formally, we would expect the following statement to 

hold in which the conditions on the eigenvalues in Theorem 12 are replaced by conditions 

on the modulus of the eigenvalues.

Claim 1. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that T is diagonal and all eigenvalues β1, β2, . . . , βd are of modulus strictly larger than 

1. Assume that 1 < |β1| ≤ |β2| ≤ · · · ≤ |βd|. For 1 ≤ i ≤ d, let ψi : R+ → R+ be a 

real positive decreasing function and a ∈ K =
∏d

i=1 K(βi). Assume that the set U(Ψ) of 

accumulation points t = (t1, t2, . . . , td) of the sequence 
{

(− log ψ1(n)
n , · · · , − log ψd(n)

n )
}

n≥1

is bounded. Then
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dimH W (T, Ψ, a) = sup
t∈U(Ψ)

min
1≤i≤d

{
θi(t)

}
,

where

θi(t) :=
∑

k∈K1(i)

1 +
∑

k∈K2(i)

(
1 − tk

log |βi| + ti

)
+

∑

k∈K3(i)

log |βk|
log |βi| + ti

and, in turn

K1(i) := {1 ≤ k ≤ d : log |βk| > log |βi| + ti},

K2(i) := {1 ≤ k ≤ d : log |βk| + tk ≤ log |βi| + ti},

and

K3(i) := {1, . . . , d} \ (K1(i) ∪ K2(i)).

The key problem with allowing negative eigenvalues is that we do not have an analogue 

of Fact BW in Section 4.2.1 for negative β-transformations. This fact played a key role our 

proofs of the upper bound (Proposition 4) and lower bound (Proposition 5) statements 

for the Hausdorff dimension of dimH W (T, Ψ, a). However, by exploiting the framework 

of Markov subsystems used in proving Theorem 7, it is not too difficult to establish the 

lower bound of the above claim; that is to say, we can bypass Fact BW altogether and 

prove that

dimH W (T, Ψ, a) ≥ sup
t∈U(Ψ)

min
1≤i≤d

{
θi(t)

}
.

Indeed, for each 1 ≤ i ≤ d, by Proposition 7 there exists a Markov subsystem 

(Λ(i), Tβi
|Λ(i) , PΛ(i)) of ([0, 1), Tβi

) under the assumption that |βi| > 8. Also, in view 

of Proposition 6 we know that the measure Hδi |Λ(i) is δi-Ahlfors regular where δi =

dimH Λ(i). Now, let Si = Tβi
|Λ(i) and consider restricted shrinking target set

W ∗(T, Ψ, a)

:=
{

x ∈
d∏

i=1

Λ(i) : |Sn
i xi − ai| ≤ ψi(n) (1 ≤ i ≤ d) for infinitely many n ∈ N

}
.

Then, by definition,

W ∗(T, Ψ, a) ⊂ W (T, Ψ, a).

The first goal is obtain a lower bound for dimH W ∗(T, Ψ, a). For this, we follow the basic 

strategy used in proving Proposition 5. However, the key in executing the strategy lies 

in the fact that each map Si (1 ≤ i ≤ d) satisfies the hypothesis of Proposition 8 – this 
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follows on using the same arguments used at the end of the proof of Theorem 7 to show 

that the Markov subsystem (Λm, T m
β |Λm

, PΛm
) of ([0, 1], T m

β ) arising from Proposition 7

satisfies the hypotheses of Proposition 8. Then, on naturally adapting the arguments 

leading to (59) within the proof of Proposition 8, it follows that for each 1 ≤ i ≤ d there 

exists an integer k
(i)
0 such that

W ∗(T, Ψ, a) ⊇ lim sup
n→∞

M1,n⋃

j1=1

· · ·
Md,n⋃

jd=1

d∏

i=1

B
(

x
(i)
n,ji

,
ψi(n − 1 + k

(i)
0 )

|βi|n−1+k
(i)
0

)
, (69)

where {x
(i)
n,ji

, 1 ≤ ji ≤ Mi,n} are the preimages of ai under Sn
i that fall within cylinders 

of order n for Si and Mi,n is the number of such cylinders. This is the analogue of the 

inclusion (53) in the proof of Proposition 5. Now in view of (60) within the proof of 

Proposition 8, it follows that for each 1 ≤ i ≤ d there exists a constant κ∗
i such that

Mi,n⋃

ji=1

B
(
x

(i)
n,ji

, κ∗
i |βi|−n

)
⊇ Λ(i) .

In particular, this leads to the following analogue of (56) in the proof of Proposition 5, 

for any fixed t = (t1, . . . , td) ∈ U(Ψ):

d∏

i=1

Λ(i) ⊆ lim sup
n→∞

M1,n⋃

j1=1

· · ·
Md,n⋃

jd=1

d∏

i=1

B
(

x
(i)
n,ji

,
(ψi(n − 1 + k

(i)
0 )

|βi|n−1+k
(i)
0

)si
)

where

0 < si < s0(i) :=
δi

1 + ti/ log |βi|
.

The upshot is that given the lim sup set of rectangles appearing on the right hand side 

of (69), the corresponding lim sup set of ‘(s1, . . . , sd)-scaled up’ rectangles satisfies (41)

with p = d, Xi = Λ(i), δi = dimH Λ(i) and μi = Hδi |Λ(i) for each 1 ≤ i ≤ d. Thus on 

applying Theorem 11 with ui = (1 − ε) log |βi| and vi = ti (1 ≤ i ≤ d), we find as in the 

proof of Proposition 5, that

dimH W (T, Ψ, a) ≥ dimH W ∗(T, Ψ, a) ≥ sup
t∈U(Ψ)

min
1≤i≤d

{
θ̂i(t)

}
,

where

θ̂i(t) :=
∑

k∈K1(i)

δk +
∑

k∈K2(i)

δk

(
1 − tk

log |βi| + ti

)
+

∑

k∈K3(i)

δk log |βk|
log |βi| + ti

and K1(i), K2(i), K3(i) are defined as in Claim 1.
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To obtain the desired lower bound, for each 1 ≤ i ≤ d we need to (i) overcome the 

underlying assumption that |βi| > 8 in the argument above and (ii) replace θ̂i(t) by 

θi(t) in the above lower bound estimate; i.e., replace δi by 1 in the definition of θ̂i(t). 

As in the proof of Theorem 7, we deal with (i) by working with a high enough iterate 

Sm
i := T m

βi
|
Λ

(i)
m

of the map Si and replacing ψ(n) by ϕm(n) := ψ(mn) and then letting m

become arbitrarily large. This also deals with (ii) since by Proposition 7, dimH Λ
(i)
m → 1

as m → ∞.

5.3. Theorem 12 for unbounded U(Ψ)

In the statement of Theorem 12, we require that the set U(Ψ) of accumulation points 

is bounded. In short, this allows us to directly exploit the ‘rectangles to rectangles’ Mass 

Transference Principle (Theorem 11). However, this is a matter of convenience and it 

should be possible to obtain a general form of Theorem 12 (and indeed Claim 1 in §5.2) 

without assuming that U(Ψ) is bounded. Indeed, by adapting the arguments used in 

this paper we can “directly” establish various partial statements. These we now briefly 

describe.

For t = (t1, . . . , td) ∈ (R+ ∪ {∞})d, let

L1(t) := {1 ≤ i ≤ d : ti < +∞} and L2(t) := {1 ≤ i ≤ d : ti = +∞}.

In turn, with θi(t) as in the statement of Theorem 12, define θ̃i(t) to be the reduced 

value of θi(t) obtained by removing the “infinite” directions associated with L2(t); i.e.,

θ̃i(t) :=
∑

k∈K1(i)\L2(t)

1 +
∑

k∈K2(i)\L2(t)

(
1 − tk

log |βi| + ti

)
+

∑

k∈K3(i)\L2(t)

log |βk|
log |βi| + ti

Then, under the setting of Theorem 12 but without the assumption that U(Ψ) is bounded, 

we are able to adapt the proofs of Propositions 4 and 5 to show that:

sup
t∈U(Ψ)

min
{

min
i∈L1(t)

{θ̃i(t)}, #L1(t)
}

≤ dimH W (T, Ψ, a)

≤ sup
t∈U(Ψ)

min
{

min
i∈L1(t)

{θi(t)}, #L1(t)
}

. (70)

Clearly, in the case U(Ψ) is bounded the upper and lower estimates in (70) coincide. In 

the unbounded case, this is not necessarily true and so the estimates do not in general 

provide a precise formula for the dimension. We illustrate this with a concrete example. 

Let d = 2 and T to be the diagonal matrix with entries β1 = 2 and β2 = 3. Also, given a 

real number t1 > 0, let ψ1(n) = e−nt1 and ψ2(n) = e−n2

. Then, it is easily verified that 

(70) implies that for any t1 > 0

log 2

log 2 + t1
≤ dimH W (T, Ψ, a) ≤ min

{
1,

log 2 + log 3

log 2 + t1

}
. (71)
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To the best of our knowledge the precise formula for the dimension is unknown and 

is not a consequence of know results in the theory of Diophantine approximation. In 

a forthcoming paper [31], by using the ‘old school” approach of constructing optimal 

Cantor-type subsets of the set under consideration and applying the Mass Distribution 

Principle [14, Section 4.1], it is shown that

dimH W (T, Ψ, a) = min
{

1,
log 2 + log 3

log 2 + t1

}
;

that is, the upper bound in (71) is sharp. In general, we are therefore lead to believe 

that the upper bound in (70) is sharp. In [31], we show that this is indeed the case.

For the sake of completeness, we mention that in [31] we also address the analogous 

“unbounded” problem in the classical theory of simultaneous Diophantine approxima-

tion. For example, given a real number τ > 0, let S(τ) denote the set of (x1, x2) ∈ R2

for which the inequalities

‖nx1‖ < n−τ and ‖nx2‖ < e−n

hold for infinitely many n ∈ N. Then it follows from known “classical” statements (see 

for example [41]) that dim S(τ) = 1 for 1/2 ≤ τ ≤ 1, and that for τ > 1

2

1 + τ
≤ dim S(τ) ≤ min

{
1,

3

1 + τ

}
.

However, to the best of our knowledge we do not have a precise formula for the dimension 

when τ > 1. In [31], it is shown that for τ ≥ 1/2

dim S(τ) = min
{

1,
3

1 + τ

}
.

5.4. Badly approximable sets

Let T be a real, non-singular matrix transformation of the torus T d. Suppose that 

all eigenvalues of T are of modulus strictly larger than 1 and let C be any collection 

of subsets E of T d satisfying the bounded property (B). For any sequence {En}n∈N of 

subsets in C, we can consider the badly approximable set with respect to the sequence

{En}n∈N as follows:

Bad
(
T, {En}

)
:=
{

x ∈ T d : ∃ n0(x) ∈ N such that T n(x) /∈ En ∀ n ≥ n0(x)
}

.

It is easily seen that the set Bad
(
T, {En}

)
is the complement of shrinking target set 

W
(
T, {En}

)
and consists of points x ∈ T d whose orbit under T eventually avoids the 

given sequence of subsets En in C. Hence, Theorem 2 provides us a criterion on the 

zero-one d-dimensional Lebesgue measure of Bad
(
T, {En}

)
. Indeed, in the case T is 
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diagonal and all eigenvalues are strictly larger than 1, it follows via Theorem 4 that if ∑∞
n=1 md

(
En

)
= ∞, then

md

(
Bad

(
T, {En}

))
= md

(
T d \ W (T, {En})

)
= 0 . (72)

Thus, whenever the measure sum diverges, it is natural to ask for the Hausdorff dimension 

of Bad
(
T, {En}

)
. We suspect that for a large class of subsets in C, such as those satisfying 

the stronger property (P), the associated badly approximable sets are of full dimension. 

Indeed, it is plausible that they are winning sets in the sense of Schmidt’s framework of 

(α, β)–games - see [2, §1.7.2] and references within. Note that there are obvious cases for 

which Bad
(
T, {En}

)
is empty (for example if En = T d for all n ∈ N) and these should 

naturally be excluded.

To give a little background and to motivate a concrete problem, we consider the special 

case when the sequence {En}n∈N corresponds to balls. More precisely, given a ∈ T d and 

a decreasing function ψ : R+ → R+, let

Bad(T, ψ, a) := T d \ W (T, ψ, a)

=
{

x ∈ T d : lim inf
n→∞

ψ(n)−1 ‖T nx − a‖ > 1
}

.

Also, let

Bad(T, a) :=
{

x ∈ T d : lim inf
n→∞

‖T nx − a‖ > 0
}

.

Then, it is easily seen that if ψ(n) → 0 as n → ∞, then

Bad(T, a) ⊂ Bad
(
T, a, ψ

)

and so if the badly approximable set Bad(T, a) has full dimension then so does 

Bad(T, ψ, a). With this is mind, Dani [13] showed that if T is a non-singular, semi-

simple integer matrix and a ∈ Qd/Zd, then dimH Bad(T, a) = d. In fact, he showed 

that Bad(T, a) is winning. Dani’s winning result was later extended by Broderick, Fish-

man & Kleinbock [6] to any non-singular, integer matrix transformation and a ∈ T d. 

Regarding non-integer matrix transformations, we have a complete dimension result in 

dimension one. Indeed, for any β ∈ (1, 2] and a ∈ T , Färm, Persson & Schmeling [17]

have shown that Bad(Tβ , a) is “strong” winning and hence has full Hausdorff dimen-

sion. Subsequently, Yang & Wang [53] extended the full Hausdorff dimension result to 

any β > 1. To the best of our knowledge, the problem of determining dimH Bad(T, a)

when T is a real, non-singular matrix transformation of T d with d ≥ 2 is open. In fact, 

it seems that the dimension result is currently unknown even in the case that T is a 

diagonal matrix with all eigenvalues strictly larger than 1.

Now let us consider the special case when the sequence {En}n∈N corresponds to 

hyperboloids. For the sake of simplicity, suppose that T = diag (t1, . . . , td) is an integer, 
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diagonal matrix with ti ≥ 2. Then in line with the discussion above for balls, given 

a = (a1, . . . , ad) ∈ T d and a decreasing function ψ : R+ → R+, we consider the sets

Bad×(T, ψ, a) := T d \ W ×(T, ψ, a)

=
{

x ∈ T d : lim inf
n→∞

ψ(n)−1
∏

1≤i≤d

‖tn
i xi − ai‖ > 1

}

and

Bad×(T, a) :=
{

x ∈ T d : lim inf
n→∞

∏

1≤i≤d

‖tn
i xi − ai‖ > 0

}
.

If ψ(n) → 0 as n → ∞, then Bad×(T, a) ⊂ Bad×
(
T, a, ψ

)
and so the aim is to show 

that the multiplicative badly approximable set Bad×(T, a) has full dimension. Given 

the one dimension result for balls (namely that dim Bad(Tβ , a) = 1), this is relatively 

straightforward to establish. Indeed, we start with the observation that

lim inf
n→∞

∏

1≤i≤d

‖tn
i xi − ai‖ ≥

∏

1≤i≤d

lim inf
n→∞

‖tn
i xi − ai‖.

Thus, it follows that

∏

1≤i≤d

Bad(ti, ai) ⊆ Bad×(T, a),

where for each 1 ≤ i ≤ d

Bad(ti, ai) :=
{

xi ∈ T : lim inf
n→∞

‖tn
i xi − ai‖ > 0

}
.

In turn, since each Bad(ti, ai) has Hausdorff dimension 1, we obtain that

dimH Bad×(T, a) ≥ dimH

∏

1≤i≤d

Bad(ti, ai) ≥
∑

1≤i≤d

dimH Bad(ti, ai) = d .

The complementary upper bound statement is trivial. Thus, dimH Bad×(T, a) = d as 

desired.

We now describe a class of sequences {En}n∈N that naturally unify the above badly 

approximable sets for balls and hyperboloids. At the same time it allows us to state a 

concrete problem. Suppose that E is a subset of T d satisfying the bounded property 

(B) and furthermore suppose that E contains the origin. Next, given a ∈ T d and a 

decreasing function ψ : R+ → R+, for each n ∈ N let

En(a, ψ) = a + ψ(n)E :=
{

a + ψ(n)x : x ∈ E
}

.
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Note that if E satisfies Gallagher’s property (P) condition then for each n ∈ N, the set 

En(a, ψ) satisfies the general property (Pa) introduced in §5.1. Now let

Bad(T, ψ, a, E) :=
{

x ∈ T d : ∃ n0(x) ∈ N such that T n(x) /∈ En(a, ψ) ∀ n ≥ n0(x)
}

denote the badly approximable set with respect to the sequence {En(a, ψ)}n∈N . Fur-

thermore, let

Bad(T, a, E) :=
{

x ∈ T d : ∃ c(x) > 0 such that T n(x) /∈ a + c(x)E ∀ n ∈ N
}

.

It is easily verified, that if we take E to be the ball B(0, 1) (resp. the hyperbola 

H(0, 1)) then Bad(T, ψ, a, E) coincides with Bad(T, ψ, a) (resp. Bad×(T, ψ, a)) and 

Bad(T, a, E) coincides with Bad(T, a) (resp. Bad×(T, a)). We suspect that the badly 

approximable set Bad(T, a, E) is of full dimension and thus by default Bad(T, ψ, a, E)

is also of full dimension. More precisely, we would expect the following statement to hold.

Claim 2. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that T is integer and all eigenvalues β1, β2, . . . , βd are of modulus strictly larger than 1. 

Then

dimH Bad(T, a, E) = d .

It is plausible that the claim is true without the assumption that T is integer. However, 

as mentioned above, without the integer assumption the problem is currently open even 

for balls (i.e., when E = B(0, 1)). A potentially interesting starting point towards es-

tablishing the claim would be to consider the situation in which E satisfies Gallagher’s 

property (P) condition and T is diagonal with all eigenvalues strictly larger than 1.

We now briefly consider another aspect of the badly approximable theory. Let c ∈ (0, 1)

and with Bad(T, a, E) in mind, consider the set

Badc(T, a, E) :=
{

x ∈ T d : T n(x) /∈ a + cE ∀ n ∈ N
}

.

In short, we fix the so called badly approximable constant c(x) appearing in Bad(T, a, E). 

Then, by definition

Bad(T, a, E) =
⋃

0<c<1

Badc(T, a, E) .

When E is an open set, the corresponding set Badc(T, a, E) is often referred to as a 

survivor set in the study of (open) dynamical systems. The associated open set a + cE is 

referred to as a hole and we are interested in points whose orbit under T avoid the hole. 

In general, it is difficult to give an exact formula for dimH Badc

(
T, a, E

)
and we are 

interested in determining how dimH Badc

(
T, a, E

)
varies with respect to the positioning 
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of the hole which is governed by a and its size which is governed by 0 < c < 1. So with 

this in mind, Urbański [49] proved that if T is an expanding map of T and E = [0, 1]

then the dimension function c �→ dimH Badc

(
T, 0, E

)
is a devil’s staircase. The same 

statement was shown to hold by Nilson [36] in the case T is the doubling map, and by 

Kalla, Kong, Langeveld & Li [27] in the case T is a β-transformation with β ∈ (1, 2]. The 

problem of extending the latter to all β > 1 and indeed to higher dimensions is clearly 

a natural path to pursue. In the first instance, establishing a statement of the following 

type would in our opinion represent serious progress.

Claim 3. Let T be a real, non-singular matrix transformation of the torus T d. Suppose 

that T is diagonal and all eigenvalues β1, β2, . . . , βd are strictly larger than 1. Further-

more, let E be a subset of T d satisfying Gallaghers’s property (P) condition. Then the 

dimension function

c �→ dimH Badc

(
T, 0, E

)

is a devil’s staircase.

Indeed, establishing the claim in the case T is integer and E = B(0, 1) would be most 

desirable.

5.5. Shrinking targets restricted to manifolds

For the sake of simplicity, through out this section T will be an integer, non-singular 

matrix transformation of the torus T d. Also, we suppose that T is diagonal with eigen-

values 1 < β1 ≤ β2 ≤ · · · ≤ βd. Finally, given ψ : R+ → R+ we consider the “basic” 

shrinking target set

W (T, ψ) = W (T, ψ, 0) := {x ∈ T d : T n(x) ∈ B(0, ψ(n)) for infinitely many n ∈ N} .

In view of Theorems 5 and 6, we have a complete description of the “size” of W (T, ψ)

in terms of both Lebsegue measure and Hausdorff dimension. Indeed, the former implies 

that

md

(
W (T, ψ)

)
=

⎧
⎪⎨
⎪⎩

0 if
∑∞

n=1 ψ(n)d < ∞

1 if
∑∞

n=1 ψ(n)d = ∞,

(73)

while the latter implies that

dimH W (T, ψ) = min
1≤i≤d

θi(λ) . (74)

We now add a little twist which is very much in line with the classical theory of Dio-

phantine approximation on manifolds – see [2, Section 6] for background and further 
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references. Suppose that the coordinates of the point x in T d are confined by functional 

relations or equivalently are restricted to a sub-manifold M of T d. We then consider the 

following two natural problems.

Problem 1. To develop a Lebesgue theory for M ∩ W (T, ψ).

Problem 2. To develop a Hausdorff theory for M ∩ W (T, ψ).

In short, the aim is to establish analogues of (73) and (74) for the set M ∩W (T, ψ). The 

fact that the points x ∈ T d of interest are of dependent variables, which reflects the fact 

that x ∈ M, introduces various difficulties even in the specific case that M is a planar 

curve C. However, in this case we have recently obtained a reasonably complete theory. 

Briefly, assume that d = 2 and that the planar curve

C = Cf := {(x, f(x)) : x ∈ [0, 1]}

is the graph of a bi-Lipschitz function f : [0, 1] → R. Let m denote the normalised, 

induced one dimensional Lebesgue measure on C. Then, the main measure result in our 

forthcoming paper [32] implies that

m
(
C ∩ W (T, ψ)

)
=

⎧
⎪⎨
⎪⎩

0 if
∑∞

n=1 ψ(n)d < ∞

1 if
∑∞

n=1 ψ(n)d = ∞.

As usual, let λ be the lower order at infinity of ψ and recall that 1 < β1 ≤ β2. Then, 

the main dimension result in [32] implies the following statement. Assume that 0 ≤ λ ≤
log β2. Then

dim
(
C ∩ W (T, ψ)

)
≤

1 − λ
log β2

1 + λ
log β2

, (75)

and we have equality in (75) for 0 ≤ λ ≤ log β2 − log β1. Moreover, if C is a line 

with rational slope then we also have equality in (75) for log β2 − log β1 < λ ≤ log β2, 

conditional on the validity of the abc-conjecture.

Remark 13. Let C be the diagonal line L := {(x, x) : x ∈ [0, 1]} and T to be the 

diagonal matrix with entries β1 = 2 and β2 = 3. Then, a simple consequence of the 

above dimension result is the following number theoretic statement which may be of 

independent interest: for 0 ≤ τ ≤ 1 the set

{
x ∈ [0, 1] : max {‖2nx‖, ‖3nx‖} < 3−nτ for infinitely many n ∈ N

}

has Hausdorff dimension (1 −τ)/(1 +τ). For τ > 1 −(log 2/ log 3), our proof is conditional 

on the validity of the abc-conjecture.
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Two things are worth mentioning. Firstly, for log β2 − log β1 < λ ≤ log β2 we suspect 

that we also have equality in (75) for all “bi-Lipschitz” planar curves (not just rational 

lines) and almost certainly the use of the abc-conjecture is an overkill. Secondly, to the 

best of our knowledge, beyond the planar case very little seems to be known and in our 

opinion Problems 1 & 2 represent interesting and potentially fruitful avenues of research.
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Appendix A. Proof of Theorem 9 by Baowei Wang3

We start with stating two lemmas that we will make use of during the course of 

establishing Theorem 9. As in the main body of the paper, balls are always with respect 

to the maximum norm and thus correspond to a hypercubes. Indeed, the diameter d(B)

of a ball B can equivalently be interpreted as the side length of a hypercube.

Lemma 10. ([4, Lemma 1]) Let d ∈ N and δ be a sufficiently small positive number. 

Then, for any a = (a1, . . . , ad) ∈ T d and s ∈ (d − 1, d) the set

Hd(a, δ) = {x = (x1, . . . , xd) ∈ T d : ‖x1 − a1‖ · · · ‖xd − ad‖ < δ}

has a covering B by d-dimensional balls B such that

∑

B∈B

d(B)s ≪ δs−d+1,

where d(B) is the length of a side of U and ≪ implies an inequality with a factor inde-

pendent of δ.

The above lemma does not precisely correspond to the Bovey-Dodson statement [4, 

Lemma 1]. However, it is readily verified that in establishing Lemma 10 we can, without 

3 School of Mathematics, Huazhong University of Science and Technology, Wuhan 430074, China.
E-mail address: bwei -wang @hust .edu .cn
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loss of generality, ignore the ‘shift’ a ∈ T d. Then, the problem reduces to finding an 

appropriate cover by balls of the set {(x1, . . . , xd) ∈ [0, 1/2]d : x1 · · · xd < δ}. In short, 

for this task the Bovey-Dodson statement is directly applicable.

Lemma 11. ([14, Corollary 7.12]) Let F be any subset of Rd, and let E be a subset of 

the xd-axis. Assume that

dimH F ∩ Lx ≥ t

for all x ∈ E, where Lx is the plane parallel to all other axis through the point 

(0, . . . , 0, x). Then

dimH F ≥ t + dimH E.

We now move onto the task of proving Theorem 9. This will be done by establishing 

the upper and lower bounds for dimH W ×(T, ψ, a) separately. Recall, that

W ×(T, ψ, a) := {x ∈ T d : T n(x) ∈ H(a, ψ(n)) for infinitely many n ∈ N}

where H(a, ψ(n)) is the hyperboloid region given by (11).

Proposition 9. Under the setting of Theorem 9, we have that

dimH W ×(T, Ψ, a) ≤ d − 1 +
log |βd|

λ + log |βd| .

Proof. Observe that we can re-write W ×(T, Ψ, a) as

W ×(T, Ψ, a) = lim sup
n→∞

E×
n (T, ψ, a) (76)

where

E×
n (T, ψ, a) := {x ∈ T d : T n(x) ∈ H(a, ψ(n))} =

{
x ∈ T d :

d∏

i=1

‖T n
βi

xi − ai‖ < ψ(n)
}

.

As in the main body of the paper, Tβi
is the standard β-transformation with β = βi and 

we do not distinguish between β-transformations acting on the unit interval [0, 1) or the 

torus T . The proof of the proposition relies on finding an “efficient” covering by balls of 

the lim sup set (76). So with this in mind, for n ∈ N, we first obtain an efficient cover of 

the set E×
n (T, ψ, a).

For any 1 ≤ i ≤ d, let {C
(i)
n,j : 1 ≤ j ≤ Ni,n} be the cylinders of order n associated 

with the transformation Tβi
. By definition, these Ni,n intervals are disjoint and cover T . 

Hence
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T d =

N1,n⋃

j1=1

· · ·
Nd,n⋃

jd=1

C
(1)
n,j1

× · · · × C
(d)
n,jd

,

where the d-dimensional “rectangles” C
(1)
n,j1

× · · · × C
(d)
n,jd

are disjoint. For n ∈ N, let

Jn :=
{

j = (j1, . . . , jd) : 1 ≤ ji ≤ Ni,n (1 ≤ i ≤ d)
}

and for j ∈ Jn, let

E×
n,j(T, ψ, a) :=

{
x ∈ C

(1)
n,j1

× · · · × C
(d)
n,jd

:
d∏

i=1

‖T n
βi

xi − ai‖ < ψ(n)
}

.

It follows that

E×
n (T, ψ, a) =

⋃

j∈Jn

E×
n,j(T, ψ, a) .

By Lemma 10, with δ = ψ(n) and n sufficiently large, for any s ∈ (d − 1, d) there 

exists a covering Bn of the hyperboloid H
(
a, ψ(n)

)
by balls B such that

∑

B∈Bn

d(B)s ≪ ψ(n)s−d+1. (77)

By definition

E×
n,j(T, ψ, a) =

(
T n|

C
(1)
n,j1

×···×C
(d)
n,jd

)−1 (
H
(
a, ψ(n)

))
,

and so it follows that

E×
n,j(T, ψ, a) ⊂

(
T n|

C
(1)
n,j1

×···×C
(d)
n,jd

)−1( ⋃

B∈Bn

B
)

=
⋃

B∈Bn

(
T n|

C
(1)
n,j1

×···×C
(d)
n,jd

)−1

(B) .

On making use of the fact that for each 1 ≤ i ≤ d, the n-th iteration of Tβi
on C

(i)
n,ji

is 

an affine function, it can be verified that for any B ∈ Bn:

Rn,j(B) :=
(

T n|
C

(1)
n,j1

×···×C
(d)
n,jd

)−1

(B)

corresponds to either the empty set or to a rectangle with side length |βi|−nd(B) along 

the xi-th axis. The upshot is that

E×
n (T, ψ, a) ⊂

⋃

j∈Jn

⋃

B∈Bn

Rn,j(B) ,

and so for N large enough
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W ×(T, ψ, a) ⊂
∞⋃

n=N

E×
n (T, ψ, a) ⊂

∞⋃

n=N

N1,n⋃

j1=1

· · ·
Nd,n⋃

jd=1

⋃

B∈Bn

Rn,j(B) .

For any 1 ≤ i ≤ d, whenever Rn,j(B) is non-empty, as already mentioned above 

the side length of the rectangle along the xi-th axis is |βi|−nd(B) and by assumption 

|βi|−nd(B) ≥ |βd|−nd(B). We now cover the rectangle by balls with diameter equal to 

the shortest side length of the rectangle. A straightforward geometric argument shows 

that we can find a collection Cn of balls with diameter |βd|−nd(B) that cover Rn,j(B)

with

#Cn ≤
d∏

i=1

( |βi|−nd(B)

|βd|−nd(B)
+ 1

)
=

d∏

i=1

( |βd|n
|βi|n

+ 1

)
≤ 2d

d∏

i=1

|βd|n
|βi|n

.

Thus, given ρ > 0 and on choosing N sufficiently large so that |βd|−nd(B) < ρ for all 

B ∈ Bn and for any n ≥ N , it follows from the definition of s-dimensional Hausdorff 

measure that for any s > 0

Hs
ρ(W ×(T, ψ, a)) ≤

∞∑

n=N

∑

j∈Jn

∑

B∈Bn

#Cn

(
|βd|−nd(B)

)s

≤
∞∑

n=N

∑

j∈Jn

(
2d

d∏

i=1

|βd|n
|βi|n

)
|βd|−ns

∑

B∈Bn

d(B)s. (78)

Now for any given ǫ > 0, it follows via (47) that for n sufficiently large

#Jn ≤
d∏

i=1

|βi|n(1+ǫ) .

This together with (77), (78) and the assumption that |βd| ≥ |βi| > 1 for any 1 ≤ i ≤ d, 

implies that for any s ∈ (d − 1, d) and N sufficiently large

Hs
ρ(W ×(T, ψ, a)) ≤

∞∑

n=N

d∏

i=1

|βi|n(1+ǫ)

(
2d

d∏

i=1

|βd|n
|βi|n

)
|βd|−ns (ψ(n))

s−d+1

≤ 2d
∞∑

n=N

|βd|n(d(1+ǫ)−s) (ψ(n))
s−d+1

= 2d
∞∑

n=N

exp
(

n
(

d(1 + ǫ) log |βd| − (d − 1)
log ψ(n)

n

−s
(

log |βd| − log ψ(n)

n

)))
.

Now for any
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s > d − 1 +
(dǫ + 1) log |βd|

λ + log |βd|

the above exponential sum converges and so Hs(W ×(T, ψ, a)) = 0. Therefore, it follows 

from the definition of Hausdorff dimension that

dimH W ×(T, ψ, a) ≤ d − 1 +
(dǫ + 1) log |βd|

λ + log |βd| .

Since ǫ > 0 is arbitrary, on letting ǫ → 0 we obtain the desired upper bound for 

dimH W ×(T, ψ, a). �

We now establish the complementary lower bound statement for the Hausdorff di-

mension of the set W ×(T, ψ, a).

Proposition 10. Under the setting of Theorem 9, we have that

dimH W ×(T, Ψ, a) ≥ d − 1 +
log |βd|

λ + log |βd| .

Proof. By Theorem 7, for any ad ∈ K(βd) we have that

dimH W ×(Tβd
, ψ, ad) = dimH W (Tβd

, ψ, ad) =
log |βd|

λ + log |βd| .

Now it is easily verified that for any xd ∈ W ×(Tβd
, ψ, ad)

(
[0, 1)d−1 × W ×(Tβd

, ψ, ad)
)

∩ Lxd
= [0, 1)d−1 .

Hence, it follows that

dimH

((
[0, 1)d−1 × W ×(Tβd

, ψ, ad)
)

∩ Lxd

)
≥ d − 1.

Applying Lemma 11, we obtain

dimH

(
[0, 1)d−1 × W ×(Tβd

, ψ, ad)
)

≥ d − 1 +
log |βd|

λ + log |βd| .

This together with the fact that

[0, 1)d−1 × W ×(Tβd
, ψ, ad) ⊂ W ×(T, ψ, a),

implies that

dimH W ×(T, ψ, a) ≥ d − 1 +
log |βd|

λ + log |βd| . �
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