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ABSTRACT: Existing models for estimating pesticide bioconcen-
tration in earthworms exhibit limited applicability across different
chemicals, soils and species which restricts their potential as an
alternative, intermediate tier for risk assessment. We used
experimental data from uptake and elimination studies using
three earthworm species (Lumbricus terrestris, Aporrectodea
caliginosa, Eisenia fetida), five pesticides (log Kow 1.69−6.63) and
five soils (organic matter content = 0.972−39.9 wt %) to produce a
first-order kinetic accumulation model. Model applicability was
evaluated against a data set of 402 internal earthworm
concentrations reported from the literature including chemical
and soil properties outside the data range used to produce the
model. Our models accurately predict body load using either
porewater or bulk soil concentrations, with at least 93.5 and 84.3% of body load predictions within a factor of 10 and 5 of
corresponding observed values, respectively. This suggests that there is no need to distinguish between porewater and soil exposure
routes or to consider different uptake and elimination pathways when predicting earthworm bioconcentration. Our new model not
only outperformed existing models in characterizing earthworm exposure to pesticides in soil, but it could also be integrated with
models that account for earthworm movement and fluctuating soil pesticide concentrations due to degradation and transport.

KEYWORDS: uptake, elimination, dermal, gut, lipid, porewater, risk assessment

1. INTRODUCTION

Risk assessment of pesticide residues in the soil environment is
of significant interest due to the widespread use of pesticides
and their potential effects on terrestrial ecosystems.1−3 The
assessment of pesticide toxicity to earthworms via laboratory
studies (lower-tier option) or site-specific field studies (higher-
tier option) is a standard procedure in current regulatory
guidance for risk assessment of pesticides.4 However,
laboratory studies fail to fully reflect ecologically realistic
conditions due to their standardization, while field studies are
expensive, time-consuming and challenging to extrapolate
across diverse agricultural environments.5 A modeling
approach for estimating uptake of chemicals into earthworms
that can link into population-effect models could serve as an
intermediate tier for risk refinement that would offer a cost-
and time-effective alternative to field testing and minimize
animal testing requirements.
Exposure to pesticides in the soil can occur after their

application to crops or soils, and the concentration of
pesticides can fluctuate significantly over time due to factors
such as degradation, rainfall, or repeated applications.2,6,7

Kinetic bioconcentration models can be used to estimate the
body residues of organic compounds in earthworms at any

given time under different exposure scenarios such as constant,
fluctuating, or repeated pulsed exposures.8 In contrast
equilibrium partitioning (EP) models estimate body residues
when they are in equilibrium with the compound of
interest.9,10 Both types of model can be implemented in risk
assessments to characterize bioconcentration in earthworms
and thereby determine the risk to vertebrates from secondary
poisoning.9 However, because EP models assume an
equilibrium between chemicals in the soil and the exposed
organism, they are not suited to exposure scenarios where
organisms move and are exposed to varying concentrations of
chemical as will be the case for earthworms and pesticides,
whereas kinetic models are. In addition, kinetic models can be
linked to toxicodynamic models to simulate and predict toxic
effects of time-varying exposures on earthworms, thereby
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providing an option for refining the current risk assessment for
in-soil organisms.7,11

We identified three previously developed kinetic bioconcen-
tration models that simulate chemical uptake and elimination
over time by earthworms in soil.12,13 Jager et al.14 and Jager15

reported similar closed mass balance models incorporating
dermal and intestinal uptake routes to estimate the total body
residues of the earthworm Eisenia andrei resulting from
chemical exposure via contaminated soils and/or food. The
Armitage and Gobas16 model quantifies kinetic uptake of
contaminants from air, porewater, soil, and food by earth-
worms, and their elimination through respiratory exchange,
fecal and urinary pathways, reproduction, and metabolic
transformation. Our previous evaluations12,13 identified Jager
et al.14 as the best performing model, but with limited
applicability across earthworm species and to soils with low
(<2%) organic carbon content. All three existing kinetic
models require a large number of rate constants for uptake and
elimination of chemicals by earthworms as input parameters.
These vary greatly across different chemicals, soils, and
earthworm species,17−19 and need to be calibrated prior to
predictive use, further limiting model applicability.
This study aimed to develop an improved kinetic model for

estimating the bioconcentration of pesticides by earthworms. A
large experimental data set was used to develop relationships to
predict earthworm uptake and elimination rate constants based
on chemical, soil, and earthworm properties. These rate
constants were incorporated into a first-order kinetic model
that was evaluated against a large, independent data set
obtained from the literature and against the performance of
existing models.

2. MATERIALS AND METHODS

2.1. Generating Predictive Models for kin and kout.
Initially, we used our previous experimental data to generate
predictive equations for kin and kout. Li et al.13 determined
values of uptake and elimination rate constants from
experimental data for five pesticides (lenacil, flutriafol, dieldrin,
hexachlorobenzene and p,p′-DDT), five soils and three
earthworm species (Lumbricus terrestris, Eisenia fetida, and
Aporrectodea caliginosa) following standardized OECD 317
guidelines20 and under consistent experimental conditions.
This generated 75 uptake (kin) and elimination (kout) rate
constants each for adult earthworms for both soil porewater
and bulk soil concentrations (Table S1). The uptake rate
constants calculated based on porewater or bulk soil
concentrations ranged from 0.02 to 4392 L porewater kg−1

earthworm d−1 and 0.02 to 2.30 kg soil kg−1 earthworm d−1,
respectively. kout, elimination rate constants calculated based
on porewater or bulk soil concentrations, ranged from 0.02 to
3.84 d−1 and 0.02 to 4.40 d−1. The five pesticides are relatively
persistent in soil and are not rapidly biotransformed by
earthworms (Pesticide Property Database; https://sitem.herts.
ac.uk/aeru/ppdb/). Log Kow (octanol−water partition coef-
ficient) ranged from 1.69 to 6.63, log Kom [measured sorption
coefficient (Kd, the ratio of chemical concentration in soil to
concentration in porewater) normalized to soil organic matter
(OM)] ranged from 1.22 to 5.23 and TPSA (fragment-based
polar surface area from N, O, S, P polar coefficients) ranged
from 0 to 50.9 Å2. Soil OM content ranged from 0.97 to 39.9%,
clay content (clay) from 4.02 to 50.0%, cation exchange
capacity (CEC) from 1.41 to 88.8 cmol+/kg and pH from 5.11
to 6.97. The three earthworm species had lipid contents

(Lipid) ranging from 1.55 to 2.64% (wet weight) and specific
surface areas (SSA) ranging from 0.70 to 1.45 m2 kg−1.
Stepwise multiple-linear regression analysis in SPSS (version

25.0) was used to develop models for estimating kin and kout
based on readily measurable pesticide, soil, and earthworm
properties using the data reported in Li et al.13 Chemical
properties included were log Kd, log Kom, log Kow and TPSA.
Soil properties were OM, clay, CEC, and pH. Earthworm
properties were lipid, SSA, and SSAlipid (i.e., SSA multiplied
by lipid). Intercorrelation between chemical, soil, and earth-
worm descriptors was analyzed using Pearson statistical
bivariate correlation analyses in SPSS. Significant intercorrela-
tion (p < 0.01) existed between chemical descriptors (log Kow,
log Kom, and TPSA), soil descriptors (OM, clay, CEC, and
pH), and earthworm descriptors (lipid, SSA, and SSAlipid).
Only one descriptor (that resulted in the highest R2 value of
the resultant regression) from each intercorrelated group was
included in the regression analysis to avoid multicollinearity
(variance inflation factor < 2). The best model was identified
based on the determination coefficient (R2), the adjusted
determination coefficient (adjusted R2), and the root-mean-
square error (RMSE) when all the descriptors in the model
were significant at 95% confidence level. The robustness and
reliability of the developed models were assessed internally
using the leave-one-out cross-validated correlation coefficient
(QLOO

2) and the leave-one-out cross-validated concordance
correlation coefficient (CCC), using caret and DescTools
package, respectively, in R software (R version 3.5.1). The
calculation of RMSE, QLOO

2 and CCC are provided in the
Supporting Information.
2.2. Testing the kin and kout Models with a First-Order

Kinetic Model against Literature Data. We incorporated
the kin and kout relationships that we derived into a first-order
kinetic model (eq 1) of the type frequently used to describe
uptake and elimination of pesticides in earthworms.17,18,20,21

C
k

k
C (1 e )t k

earthworm
in

out

out
= · ·

·

(1)

where Cearthworm is the concentration of substance in the
earthworm (mg kg−1 wet weight); C is the concentration of
substance in either the porewater (mg L−1) or bulk soil (mg
kg−1 dry weight); kin is the uptake constant for tissue related to
either porewater (L porewater kg−1 earthworm d−1) or soil (kg
soil kg−1 earthworm d−1) concentrations, kout is the elimination
rate constant (d−1); t is time since initial exposure (d).
The models we developed are specifically for adult

earthworms, as the training data were derived from adult
specimens. Since growth dilution was not observed in the
training data reported by Li et al.,13 this component is not
included in the model. To evaluate the predictive performance
of this approach we compiled a large independent data set
from the literature, based on all available data published
between 2002 and 2022. Details of search terms used are
provided in the Supporting Information (Section S1.2). The
data set comprised 21 studies providing 402 internal
earthworm concentration data points, of which 130 are
situated slightly outside the applicability domain of the
developed models (Table S5). The concentrations range
from 0.002 to 46.9 mg kg−1 wet weight, collected from
accumulation time series of up to 42 days for 23 organic
chemicals, including four ionizable compounds and 19
nonionizable compounds (Table S2). 84 data points were
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measured between Day 1 and Day 6 of exposure, 242 data
points between Day 7 and Day 20, and 76 data points between
Day 21 and Day 42. The evaluation data cover four earthworm
species (E. fetida and E. andrei: 360 data points, A. caliginosa:
21 data points, and L. terrestris: 21 data points). Of the 402
data points, 217 represented either steady state concentrations
or a maximum concentration at the end of the exposure period.
Log Kow values of the compounds in the data set range from
1.99 to 8.19; soil OM contents range from 0.31 to 34.7%.
One parameter included in our regression for predicting kin

was Kom, the ratio of the pesticide concentration in porewater
to bulk soil normalized to the soil OM. Applying these
relationships to the independent test data required a porewater
concentration. However, porewater concentrations were only
measured in Carter et al.21 providing 24 data points across 4
compounds (Table S2). When none was available, we
calculated a value for the porewater concentration using eq 2.

C
C

K
pw

soil

d

=

(2)

In these cases, the value of Kd used was determined from a
relationship derived by a stepwise multiple-linear regression
analysis on data from our experimental study.13 This study
includes 75 sorption coefficients (Kd) determined for the five
pesticides, five soils, and three earthworm species treatments
(Table S1); the different earthworm treatments used different
temperatures and quantities of soil. Chemical (log Kow, and
TPSA) and soil (OM, CEC, and pH) properties were initially
included in the regression. The regression analysis suggested
use of a combination of the chemical’s hydrophobicity (log
Kow) and the soil OM content to predict the Kd of neutral
pesticides. We extrapolated the model to monovalent ionizable
organic compounds by replacing log Kow with the pH-adjusted
octanol−water partition coefficient (log Dow, which has the
same value as log Kow for neutral compounds). The model
equation is given below

K Dlog 0.436 log 0.742 logOM 0.451d ow= · + · (3)

With N = 75, R2 = 0.591, adjusted R2 = 0.580 (p < 0.05),
RMSE = 0.749, QLOO

2 = 0.557, CCC = 0.722.
The applicability domain of the model parameters log Dow

and OM ranges from 1.69 to 6.63 and 0.97 to 39.9%,
respectively. When the independent published studies that we
used to test our model reported porewater or bulk soil
concentrations at different time points (19 of the 21 studies,
Table S2), we fitted a first-order kinetic model to the data to

describe the degradation kinetics (eq 4) following the OECD
Guideline 317.20 The other two studies reported that initial
concentrations did not decrease over time.

C C e
t k

0
0

= ·
·

(4)

where C0 is the initial concentration of substance in porewater
(mg L−1) or bulk soil (mg kg−1 dry weight), and k0 is the
degradation rate constant (d−1) calculated based on chemical
concentrations in porewater or bulk soil.
Substituting this value of C into eq 1, gave eq 520

C
k

k k
C (e e )t k t k

earthworm
in

out 0
0

0 out
= ·

· ·

(5)

All kinetic models were implemented using the ODE solver
in Matlab (R2021b) with the BYOM modeling platform
(version 6.0) (http://debtox.info/byom.html). The ordinary
differential equations for eqs 1 and 4 are provided in the
Supporting Information.
2.3. Evaluation and Comparison of the Developed

Model with Existing Models. We compared the perform-
ance of our newly developed model to that of an existing EP
model22 and a kinetic model,14 which we had previously found
to be the best performing of existing models for estimating
bioconcentration of organic compounds in earthworms.12 The
EP model of Belfroid et al.22 calculates steady-state internal
concentration of earthworms as the sum of chemical uptake
from interstitial water, via passive diffusion as determined by a
bioconcentration factor, and soil ingestion as determined by
soil uptake rate (estimated by feeding rate multiplied by uptake
efficiency) and the total elimination rate. Its performance was
evaluated using a subset of our independent data taken from
the literature (Table S3) comprising 217 data points
representing steady-state or maximum internal concentrations
in earthworms. The data were taken from 18 studies, with 210
data points for E. fetida and E. andrei, and only seven data
points for L. terrestris. Of the total 19 organic compounds in
this subset, 15 were nonionic and four were ionic. The
compounds ranged from relatively hydrophilic to relatively
hydrophobic, with log Kow ranging from 1.99 (metalaxyl) to
8.19 (orlistat). The kinetic model of Jager et al.14 estimates
earthworm internal concentrations over time by calculating net
uptake flux across the outer epidermis and gut. The model is
parametrized for PCB 153 for a single soil type (OM 10.5%)
and earthworm species (E. Andrei). Therefore, we used PCB
153 data from our independent data set to evaluate the
performance of this model (Table S4). This comprised 44

Table 1. Multiple Linear Regression Models for Predicting kin and kout
a

exposure route model N R2 adjusted R2 RMSE QLOO
2 CCC equation

porewater kin 75 0.964 0.962 0.276 0.960 0.979 k Klog 1.267 log 0.621 logOM 1.052 logSSAlipid 1.506in om= · + · + ·

kout 75 0.805 0.800 0.258 0.749 0.858 klog 0.021 TPSA 0.301 logOM 1.057out = · + ·

soil kin 75 0.738 0.727 0.255 0.709 0.833 k Klog 0.266 log 1.193 logSSAlipid 0.31 logOM 0.687in om= · + · · +

kout 75 0.880 0.875 0.234 0.818 0.901 klog 0.026 TPSA 0.397 logOM 0.336 logSSAlipid 0.632out = · + · + ·

akin: uptake rate constant in tissue from porewater (L porewater kg−1 earthworm d−1) or bulk soil (kg soil kg−1 earthworm d−1), respectively; kout:
elimination rate constant (d−1) calculated based on chemical concentrations in the porewater or bulk soil, respectively.; N: number of observations;
R2 and adjusted R2: determination coefficient and adjusted determination coefficient (p < 0.05 for all values), respectively; RMSE: root-mean-
square error; QLOO

2: leave-one-out cross-validated correlation coefficient; CCC: leave-one-out cross-validated concordance correlation coefficient;
log Kom: measured distribution coefficient normalized by soil OM (1.22−5.23); OM: soil organic matter content (0.97−39.9%); SSAlipid:
earthworm specific surface area (0.70−1.45 m2 kg−1) multiplied by earthworm lipid content (1.55−2.64%). TPSA: fragment-based polar surface
area from N, O, S, P polar coefficients (0−50.9 Å2). The applicability domain of each model parameter (log Kom, OM, SSA and lipid) is provided in
the parentheses. The QSAR Model Reporting Formats (QMRF) for the developed regression models are provided in the Supporting Information.
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uptake kinetic data points (internal concentrations as part of a
time series) from five studies involving two earthworm species
(E. fetida, E. andrei) and 18 soil types with OM contents
ranging from 0.81 to 34.7%. Predictions of both models were
compared to those of our newly developed models and
assessed through Nash−Sutcliffe Efficiencies (NSE) (see
Supporting Information) and the percentage of predictions
within a factor of 10, 5, and 3 of the measured values. When
NSE equals 1, predicted values match observed values
perfectly. As model performance decreases NSE values
decrease and become negative.

3. RESULTS AND DISCUSSION

3.1. Regression Models for Predicting kin and kout. In
our study, the best model for predicting uptake rate constants
(kin) produced by stepwise regression of our data used a
combination of a chemical descriptor (log Kom), a soil
descriptor (OM), and an earthworm descriptor (SSAlipid); it
explained 96.4 and 73.8% of the variation in the experimentally
determined porewater-based and bulk soil-based uptake rate
constants, respectively (Table 1).
Log Kom explained the largest variation in kin according to

the R2 change and F change (F-statistic, see Tables S6 and S8),
followed by OM or SSAlipid. Chemical hydrophobicity (log
Kow) has been identified previously as the primary factor
driving uptake rates of organic compounds in earth-
worms.18,23,24 In our study, log Kom had a strong positive
correlation with log Kow (r = 0.72, p < 0.01) and a negative

correlation with TPSA (r = −0.87, p < 0.01). Regression
analysis showed that log Kom was superior to log Kow and TPSA
in capturing the variance in pesticide uptake rate constants of
earthworms. In addition to properties of the chemical to which
the earthworm was exposed, previous studies indicate that soil
OM,23 and earthworm properties such as lipid content19,25 and
SSA19 also influence uptake rates of organic compounds by
earthworms. Our study is consistent with this, and incorpo-
ration of these soil and earthworm descriptors significantly
improved model fit.
TPSA and OM were the best predictor combination for

porewater-based elimination rate constants (kout) accounting
for 80.5% of variation in values (Table 1). TPSA explained the
majority of the variation in porewater-based kout (72.3%),
slightly outperforming log Kow (66.2%). Inclusion of an
earthworm property (SSAlipid) as an additional model input
slightly improved the model fit for bulk soil-based elimination
rate constants (kout, R

2 = 0.88). The dependence of elimination
rate constants on hydrophobicity (log Kow or TPSA) is
consistent with previous studies,26−28 which demonstrated that
the strong binding of hydrophobic compounds to earthworm
lipids may retard elimination. For example, Matscheko et al.27

observed a strong negative correlation between elimination
rate constants and log Kow (which itself is correlated negatively
to TPSA) for polycyclic aromatic hydrocarbons and poly-
chlorinated biphenyls. In addition, it has been reported that
OM facilitates elimination of organic compounds by earth-
worms due to sorption of the compounds to excreted OM.17,23

Our results confirm that OM plays a role in determining kout.

Figure 1. Evaluation of the predictive performance of our new kinetic model based on porewater concentrations against the independent data for
phenanthrene, pyrene, and other organic compounds. “Others” (in green) is the full evaluation data set excluding data for phenanthrene and
pyrene. “p,p (3)” and “p,p (7−21)” and “phenanthrene, pyrene (Day 3)” and “phenanthrene, pyrene (Day 7−Day 21)” are the evaluation data sets
for phenanthrene and pyrene measured in the uptake phase at Day 3 (red triangles) and for Days 7 to 21 (blue squares), respectively. The central
black solid line represents a perfect model fit (1:1 line). The gray dotted, gray dashed, and outer solid lines represent a 3-fold, 5-fold, and 10-fold
difference between the predicted and observed values, respectively.
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Carter et al.19 noted that the effect of interspecies differences
on porewater-based kout is negligible but that the effect of
interspecies differences on bulk soil-based kout has not yet been
fully investigated. Our results also indicate that interspecies
differences had a negligible effect on porewater-based kout,
whereas they had a slight but significant impact on bulk soil-
based kout.
As shown in Table 1, all the developed models demonstrate

high robustness (QLOO
2 > 0.709) and reliability (CCC >

0.833) based on internal cross-validation. The developed
models were better able to predict kin from soil porewater
concentrations than bulk soil concentrations, whereas the
reverse was true for kout. Although our models were developed
using both measured porewater and bulk soil concentrations,
almost all the independent data used to test the models only
reported bulk soil concentrations; we predicted pore water
concentrations using eq 2. This may, in part explain the
similarity in accuracy of prediction against the independent
evaluation data. Because of this similarity, only the results of
model evaluation based on predicted porewater concentrations
are presented in the main manuscript. Additional model
evaluation results based on bulk soil concentrations are
provided in the Supporting Information.
3.2. Evaluation of Developed Kinetic Models against

Independent Data. Although the evaluation data set covers a
wider range of chemicals (both nonionizable and ionizable),
soils, and earthworm species than the data used to produce our
new models, the newly derived models worked well; they
predicted internal concentrations of the majority of organic
compounds in earthworms based on both porewater and bulk

soil concentrations with an overall NSE of 0.690 and 0.643,
respectively. Over 95.5, 86.1, and 71.4% of body load
predictions based on porewater concentrations were within a
factor of 10, 5, and 3 of the corresponding observed values,
respectively (Figure 1). Predictions based on bulk soil
concentrations were also good, with more than 93.5, 84.3,
and 67.2% of predictions being within a factor of 10, 5, and 3
of the corresponding observed values, respectively (Figure S1).
Further model evaluation used subsets of our independent data
set to consider model performance for nonionizable versus
ionizable compounds, phenanthrene and pyrene, for different
exposure times, and for different earthworm species. Perform-
ance for nonionizable and ionizable compounds was similar
and is presented in Figure S6. Performance for data points
falling inside the applicability domain of the developed models
(NSE > 0.706) is slightly better than for data points outside
the applicability domain of the model (NSE > 0.440) and is
presented in Figure S7. The performance of the model for the
other subsets is presented and discussed below.

3.2.1. Phenanthrene and Pyrene Predictions. The
developed models produced accurate predictions for 21 of
the organic compounds in the evaluation data set; these are
compounds for which earthworm internal concentrations
either reached a steady state or decreased slightly after 21
days of exposure. In contrast, the models performed slightly
less well for phenanthrene and pyrene. Earthworm internal
concentration of these compounds reached a peak within the
first few days of exposure followed by a substantial decline after
about 7 days despite the exposure experiment still being in the
uptake phase. This could be due to biotransformation of the

Figure 2. Evaluation of the predictive performance of our new kinetic model based on porewater concentrations against the independent data at
different exposure time periods. Data for phenanthrene and pyrene are excluded. “1−6”, “7−20”, and “21−42” and “Day 1−Day 6”, “Day 7−Day
20”, and “Day 21−Day 42” are the subsets of the evaluation data set for uptake from Days 1 to 6 (green circles), Days 7 to 20 (red triangles), and
Days 21 to 42 (blue squares), respectively. The central black solid line represents a perfect model fit (1:1 line). The gray dotted, gray dashed, and
outer solid lines represent a 3-fold, 5-fold, and 10-fold difference between the predicted and observed values, respectively.
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compound, the initiation of active excretion mechanisms or
increased adsorption of the compound to the soil reducing
bioavailability.29−32 Any of these processes would result in a
lower internal concentration of parent compounds than the
model predicted.
The model performed well during the early uptake phase,

Day 3, with 91.7% of predictions (N = 12) within a factor of 3
of the measured values (Figure 1). However, the model tended
to overestimate internal concentrations from Days 7 to 21 of
the uptake phase, with only 52.9% (N = 68) of predictions
falling within a factor of 3 of the corresponding measured
values and the fit of predictions to the measured values having
a negative NSE value (Figure 1). Phenanthrene and pyrene are
not the only compounds for which this behavior might be
observed. For example, it has been reported that the
biotransformation process in earthworms strongly influences
the bioconcentration of some pesticides such as endosulfan,33

and R-cypermethrin.34 Therefore, future model development
should take into account reasons for the shape of uptake curves
that show decreases in internal concentration during uptake.

3.2.2. Exposure Time. When evaluated against the
independent data set, excluding phenanthrene and pyrene,
the models developed from both porewater and bulk soil
concentrations accurately predicted internal concentrations of
organic compounds in earthworms during the early (Day 1 to
Day 6), mid (Day 7 to Day 20), and late (Day 21 to Day 42)
uptake phases (NSE > 0.707) (Figures 2 and S2). Comparing
model performance across different exposure time periods, the
developed models provided slightly better predictions in the
late-uptake phase than in mid- and early uptake phases

according to the percentage of predictions within a factor of 3
and 5 of the measured values (Figure 2). This suggests that our
models were slightly better able to capture variation in the
bioconcentration of organic compounds once a steady state
was reached compared to during the rapid accumulation phase
early in uptake experiments. Moreover, even though
experimental concentrations in porewater changed over time
due to degradation, this had no significant effect on the
performance of the developed models when corrected for using
eq 4.

3.2.3. Earthworm Species. Existing studies indicate that
interspecies differences in physiology, metabolism, and ecology
could significantly influence uptake kinetics of organic
compounds in earthworms.19,25 However, our previous study
demonstrated that physiological characteristics of earthworms,
i.e. lipid content and SSA, are the predominant factors
explaining interspecies variation in uptake of pesticides.13

The developed models incorporate both of these earthworm
properties (SSAlipid), and achieved a good prediction of
bioconcentration of pesticides for all four earthworm species,
with at least 90.5% of predictions falling within a factor of 10 of
measured values (Figure 3). Comparing model performance
across earthworm species, the developed models provided
accurate and comparable predictions for E. fetida, E. andrei, and
L. terrestris, but slightly less accurate predictions for A.
caliginosa, as indicated by the percentage of predictions within
a factor of 3 and 5 of measured values (Figure 3).

A. caliginosa survives drought by establishing aestivation
chambers in the topsoil, a physiological adaptation that is not
observed in L. terrestris or E. fetida.35 However, aestivation

Figure 3. Evaluation of the predictive performance of our new kinetic model based on porewater concentrations against the independent data for
different earthworm species. Data for phenanthrene and pyrene are excluded. “EF/EA” (green circles), “LT” (red triangles), and “AC” (blue
squares) represent data for the earthworm species E. fetida, E. andrei, L. terrestris, and A. caliginosa, respectively. The central black solid line
represents a perfect model fit (1:1 line). The gray dotted, gray dashed, and outer solid lines represent a 3-fold, 5-fold, and 10-fold difference
between the predicted and observed values, respectively.
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behavior was not observed in the training data reported by Li
et al.13 In addition, L. terrestris, being larger, likely has a lower
metabolic rate compared to the smaller E. fetida but A.
caliginosa is a similar size to E. fetida.36,37 For these reasons, the
predictive performance of the developed models is unlikely to
be significantly affected by physiological differences in
earthworms. The developed models are as simple as possible
while showing great potential for generalization to predict
bioconcentration across earthworm species, addressing a
significant limitation of existing EP and kinetic models.12,13

However, the data available in the literature to test our models
for L. terrestris and A. caliginosa are relatively few and show
limited variation. A large and high-quality data set on uptake
kinetic data for earthworm species other than E. fetida and E.
andrei is required for further evaluation of our models.
3.3. Comparisons of Model Performance against the

Best-Performing Existing Models. 3.3.1. EP Model of
Belfroid et al.22 In this study, we found that our new
porewater-based model (Figure S4A) and bulk soil-based
model (Figure S4B) outperformed the best existing EP model
by Belfroid et al.22 (Figure S4C) in predicting both steady-
state concentrations and, when a steady state was not reached
in studies, the maximum reported internal concentrations for
earthworms during the uptake phase. The porewater-based
model achieved the best predictive performance overall. In
particular, our new model performed better than that of
Belfroid et al.22 for larger earthworm species (i.e., L. terrestris)
and for hydrophilic compounds (i.e., metalaxyl) (all
predictions within a factor of 5, Figure S4A, B), thus providing
a superior alternative to the EP model of Belfroid et al.22 for
risk assessment.
The Belfroid et al.22 model consistently overestimated

internal concentrations of L. terrestris by up to a factor of 35.
This is most likely because the model parameters including
uptake efficiency and feeding rate were calibrated for the
relatively smaller earthworm E. andrei, and are unlikely to be
applicable to L. terrestris. Feeding rate can vary over at least 2
orders of magnitude and varies with substrate and species.38 As
far as we are aware there are no studies that determine uptake
efficiency for species other than E. andrei and the E. andrei
studies all come from the group of Belfroid et al.39,40 These
studies indicate that uptake efficiency can vary between one to
2 orders of magnitude. Further study is required to investigate
the effect of interspecies variation on uptake efficiency and
feeding rate and incorporate this influence into the model. This
could improve the performance of the Belfroid et al.22 model
though we note that our new model already performs well
across species.
The Belfroid et al.22 model also overestimated internal

concentrations of metalaxyl by a factor of up to 19. This
herbicide is the most hydrophilic compound in the evaluation
data set (log Kow 1.99), and is at the bottom of the applicability
domain of the Belfroid et al.22 model which was calibrated for
compounds in the range log Kow 2−7. The Belfroid et al.22

model assumes two uptake routes, ingestion and uptake from
the bulk soil and dermal uptake from the soil solution.
Hydrophilic compounds do not partition strongly onto the
soil, instead remaining in solution. Consequently, the use of a
universal uptake efficiency value for the ingestion route
overestimates the importance of this route for compounds
that preferentially partition into the soil porewater. Our new
model avoids this issue as it is based on regression
relationships for overall uptake.

3.3.2. Kinetic Model of Jager et al.14 We previously found
that of the three existing kinetic models, that of Jager et al.14

performed best.12 Our current study confirms that this model
works fairly well when applied to independent data for PCB
153. When the model was implemented using the parametrized
values for all input parameters provided in Jager et al.,14 only
56.8% of predicted internal concentrations of PCB 153 in E.
fetida and E. andrei fell within a factor of 3 of measured values
(Figure S5C). Both the porewater-based and bulk soil-based
models developed in the present study achieved a more
accurate prediction, with over 70.5% of the predictions falling
within a factor of 3 of the corresponding measured values
(Figure S5A, B).
Moreover, the kinetic model of Jager et al.14 contains a large

number of input parameters to describe separately dermal and
intestinal uptake routes for earthworms in soil. These model
parameters, such as rate constants for exchange across skin (ks)
and gut wall (kg) as well as fixed values for feeding process
parameters, are chemical and species-dependent, and therefore
have to be parametrized for a specific chemical or species of
interest prior to making a prediction.14 Jager et al.14

parametrized their model for tetrachlorobenzene, hexachlor-
obenzene, and PCB 153, and the earthworm species E. andrei.
The significant experimental requirements to support calibra-
tion limit the applicability and generalizability of the model to
nonparameterised chemicals and earthworm species. Further-
more, to obtain dermal uptake data, earthworms were
prevented from feeding by glueing their mouths closed; the
stress this places upon the earthworms impacts their behavior
and may change the efficiency of dermal uptake.14 We
attempted to use our experimental data to parametrize ks
and kg in Jager et al.’s14 model to produce predictive equations
for these terms, but this was unsuccessful as the values were co-
correlated. By comparison, our new models contain fewer
parameters while still having a mechanistic basis, and are
applicable across a range of chemicals, soil types, and
earthworm species without having to differentiate between
various uptake and elimination pathways. Such models require
no additional parametrization and exhibit better applicability,
generalizability and accessibility, which makes them more
practical for application in risk assessment.

4. ENVIRONMENTAL POLICY IMPLICATIONS

The variation of pesticide uptake and elimination rate
constants of earthworms was captured by the regression
models developed in this study. These models accounted for
the key mechanisms involved in bioconcentration by
incorporating chemical, soil, and earthworm properties. Our
first-order kinetic models were developed using data from five
pesticides with a wide range of properties in a wide variety of
soils; the models were tested against compounds and soils with
a wider range of properties. For both porewater and bulk soil
concentrations, our new models displayed a strong and robust
capability to predict the uptake of organic compounds by
earthworms across pesticides, soils, earthworm species, and
various exposure times. This result indicates that differentiating
between different uptake and elimination pathways, is
unnecessary for predicting bioconcentration in earthworms.
In terms of porewater and soil exposure routes, our model was
developed using measured values for both porewater and soil
concentrations. However, the independent test data used
porewater concentrations modeled from soil concentrations.
Although our results suggest that it is unnecessary to
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differentiate between these exposure routes, independent
measured porewater concentration data are needed to fully
confirm this.
The models presented here were developed using exper-

imental data for nonionizable organic compounds, but they
work reasonably well for monovalent ionizable compounds
when log Kow is replaced with log Dow (Figure S6). For
complex ionizable substances, including zwitterionic com-
pounds, nonlinear models such as a nonlinear regression
model41 or a random forest model42 have shown a good
capability to capture intricate adsorption mechanisms. There-
fore, we suggest using these models to predict Kd when
necessary. In addition, our model achieved reasonable
predictions for data points outside the applicability domain
(NSE > 0.440), indicating that our models have captured the
main patterns involved in bioconcentration and possess wider
applicability (Figure S7). We recommend that future research
efforts expand the training data set to further enhance the
model’s generalizability. However, the developed models
exclude biotransformation within the earthworm and active
excretion as additional elimination pathways, and increased
adsorption of the compound to the soil reducing bioavail-
ability. Overestimation of bioaccumulation is likely for the few
compounds where these processes are significant. The impact
of biotransformation29,30,33,34 and changes in adsorp-
tion17,23,24,31 on bioaccumulation are well documented in the
literature. However, information on active excretion is
limited.43 Based on the fit of the external data to our model,
these processes appear to play a minor role for the majority of
substances and earthworm species. While any of these
processes, if significant, would result in a conservative risk
assessment, further work would be useful to optimize model
applicability in such circumstances.
Existing EP models, such as those developed by Jager44 and

Connell and Markwell,45 which are recommended by the
Technical Guidance Document9,10 for risk assessment of
secondary poisoning via earthworms perform less well than
those developed by Belfroid et al.12,22 In this study we show
that relative to our new models, the model of Belfroid et al.22

performs less well when different earthworm species are
considered, and provides less accurate predictions for hydro-
philic compounds. Additionally, the kinetic model of Jager et
al.14 has limited applicability and accessibility for assessing the
risks of pesticides to earthworms associated with time-varying
exposures due to its complexity. In general, a model should be
as complex as needed to explain the available data but no more
so. Our new models are functionally simpler than these existing
models and do not require additional parametrization, yet they
adequately explain the observed data and offer a better
predictive capability, all of which support their straightforward
implementation into risk assessment frameworks. Furthermore,
because earthworms move through the soil during exposure,
and exposure levels can vary with depth, risk assessment of
pesticides is improved if variable exposure is considered.
Because our new model is a kinetic model, it can be linked to
behavioral models in which earthworms move through the soil,
potentially encountering different concentrations of pesticides,
allowing ecological factors to be taken into account in risk
assessments.6,46 Thus, our models provide an attractive
alternative for risk assessment both for a constant exposure
concentration and with the potential for application to realistic
exposures that may vary in time and space.
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Büchi, L.; Charles, R.; Wächter, D.; Martin-Laurent, F.; Bucheli, T.
D.; Walder, F.; et al. Widespread occurrence of pesticides in
organically managed agricultural soils�the ghost of a conventional
agricultural past? Environ. Sci. Technol. 2021, 55, 2919−2928.
(3) Vasí̌c ̌ková, J.; Hve ̌zdová, M.; Kosubová, P.; Hofman, J.
Ecological risk assessment of pesticide residues in arable soils of the
Czech Republic. Chemosphere 2019, 216, 479−487.
(4) European Commission. Guidance Document on Terrestrial
Ecotoxicology Under Council Directive 91/414/EEC SANCO/
10329/2002-rev. 2 final, 2002. https://food.ec.europa.eu/system/
files/2016-10/pesticides_ppp_app-proc_guide_ecotox_terrestrial.pdf
(accessed January 10, 2024).
(5) Jänsch, S.; Frampton, G. K.; Römbke, J.; Van den Brink, P. J.;
Scott-Fordsmand, J. J. Effects of pesticides on soil invertebrates in

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.4c06642
Environ. Sci. Technol. 2024, 58, 14555−14564

14562

https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c06642/suppl_file/es4c06642_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c06642/suppl_file/es4c06642_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c06642?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c06642/suppl_file/es4c06642_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.4c06642/suppl_file/es4c06642_si_002.xlsx
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jun+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6430-9320
https://orcid.org/0000-0001-6430-9320
mailto:jun.li@york.ac.uk
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mark+E.+Hodson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-8166-1526
https://orcid.org/0000-0002-8166-1526
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Colin+D.+Brown"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7291-0407
https://orcid.org/0000-0001-7291-0407
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Melanie+J.+Bottoms"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Roman+Ashauer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-9579-8793
https://orcid.org/0000-0002-9579-8793
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tania+Alvarez"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c06642?ref=pdf
https://doi.org/10.1021/acs.est.2c09591?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.2c09591?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c06405?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c06405?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.est.0c06405?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.chemosphere.2018.10.158
https://doi.org/10.1016/j.chemosphere.2018.10.158
https://food.ec.europa.eu/system/files/2016-10/pesticides_ppp_app-proc_guide_ecotox_terrestrial.pdf
https://food.ec.europa.eu/system/files/2016-10/pesticides_ppp_app-proc_guide_ecotox_terrestrial.pdf
https://doi.org/10.1897/05-439R.1
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c06642?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


model ecosystem and field studies: a review and comparison with
laboratory toxicity data. Environ. Toxicol. Chem. 2006, 25, 2490−2501.
(6) Roeben, V.; Oberdoerster, S.; Rakel, K. J.; Liesy, D.; Capowiez,
Y.; Ernst, G.; Preuss, T. G.; Gergs, A.; Oberdoerster, C. Towards a
spatiotemporally explicit toxicokinetic-toxicodynamic model for
earthworm toxicity. Sci. Total Environ. 2020, 722, 137673.
(7) Ockleford, C.; Adriaanse, P.; Berny, P.; Brock, T.; Duquesne, S.;
Grilli, S.; Hernandez-Jerez, A. F.; Bennekou, S. H.; Klein, M.; Kuhl,
T.; EFSA Panel on Plant Protection Products and their Residues PPR;
et al. Scientific Opinion addressing the state of the science on risk
assessment of plant protection products for in-soil organisms. EFSA J.
2017, 15, No. e04600.
(8) Ashauer, R.; Wittmer, I.; Stamm, C.; Escher, B. I. Environmental
risk assessment of fluctuating diazinon concentrations in an urban and
agricultural catchment using toxicokinetic-toxicodynamic modeling.
Environ. Sci. Technol. 2011, 45, 9783−9792.
(9) European Chemicals Bureau, European Commission Joint
Research Centre. Technical guidance document on risk assessment
in support of Commission Directive 93/67/EEC on risk assessment
for new notified substances, Commission Regulation (EC) No. 1488/
94 on risk assessment for existing substances, Directive 98/8/EC of
the European Parliament and of the council concerning the placing of
biocidal products on the market. Part II. EUR 20418 EN/2, 2003.
https://op.europa.eu/en/publication-detail/-/publication/9aebb292-
39c5-4b9c-b4cb-97fb02d9bea2/language-en/format-PDF/source-
332843860 (accessed December 10, 2023).
(10) European Chemicals Bureau, European Commission Joint
Research Centre. Technical guidance document on risk assessment in
support of Commission Directive 93/67/EEC on risk assessment for
new notified substances, Commission Regulation (EC) No. 1488/94
on risk assessment for existing substances, Directive 98/8/EC of the
European Parliament and of the council concerning the placing of
biocidal products on the market. Parts III. EUR 20418 EN/3, 2003.
https://op.europa.eu/en/publication-detail/-/publication/212940b8-
3e55-43f8-8448-ba258d0374bb (accessed December 10, 2023).
(11) SCHER (Scientific Committee on Health and Environmental
Risks); SCENIHR (Scientific, SCCS (Scientific Committee)).
Addressing the New Challenges for Risk Assessment, 2013. https://
op.europa.eu/en/publication-detail/-/publication/0132ea87-0420-
4258-9ebf-ac49c9e4dcb0/language-en (accessed January 25, 2024).
(12) Li, J.; Hodson, M. E.; Brown, C. D.; Bottoms, M. J.; Ashauer,
R.; Alvarez, T. Evaluation of models to estimate the bioaccumulation
of organic chemicals in earthworms. Ecotoxicol. Environ. Saf. 2024,
275, 116240.
(13) Li, J.; Hodson, M. E.; Brown, C. D.; Bottoms, M. J.; Ashauer,
R.; Alvarez, T. Earthworm lipid content and size help account for
differences in pesticide bioconcentration between species. J. Hazard.
Mater. 2024, 468, 133744.
(14) Jager, T.; Fleuren, R. H.; Hogendoorn, E. A.; De Korte, G.
Elucidating the routes of exposure for organic chemicals in the
earthworm, Eisenia andrei (Oligochaeta). Environ. Sci. Technol. 2003,
37, 3399−3404.
(15) Jager, T. Modeling ingestion as an exposure route for organic
chemicals in earthworms (Oligochaeta). Ecotoxicol. Environ. Saf. 2004,
57, 30−38.
(16) Armitage, J. M.; Gobas, F. A. A terrestrial food-chain
bioaccumulation model for POPs. Environ. Sci. Technol. 2007, 41,
4019−4025.
(17) Svobodová, M.; Hofman, J.; Bielská, L.; Šmídová, K. Uptake
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