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The role of AI in engineering: Towards rapid inverse blast analysis 

A. Jay Karlsen, University of Sheffield, United Kingdom 
B. Sam E. Rigby, University of Sheffield, United Kingdom 

ABSTRACT 

As artificial intelligence grows increasingly commonplace in areas of analysis that were once the exclusive 
domain of the engineer, it is critical to establish the scope for cooperation and competition between the 
two. This paper therefore evaluates their individual performance in addressing a problem of extreme 
practical significance: increasing the computational efficiency of inverse explosion analysis. At present, 
methods for determining the equivalent yield and position of an explosive lack the speed necessary to 
meaningfully inform life-saving, post-blast response; a consequence of their use of inefficient exhaustive 
‘brute force’ algorithms. Therefore, this paper details and evaluates two alternative searching routines, one 
representative of AI and the other physics-informed. Aiming to retain the equivalent charge yield and 
position estimation accuracy of traditional methods, but with reduced computation time, the first scheme 
is a genetic algorithm that uses the principles of machine learning optimisation to more efficiently explore 
the domain. The second, trilateration, continues to employ an exhaustive search, but on a smaller domain 
that is strategically constrained using prior understanding of the governing physics. The schemes’ 
predictive accuracy and computation time are then assessed through the inverse analysis of blast wave 
arrival time data from six small-scale, free-field experiments. The alternative algorithms exhibit an 
insignificant reduction in accuracy compared to exhaustive search; the maximum increase in estimation 
error is 6.6 mm for position and equates to 0.21% of the true charge mass for the yield. There is, however, 
considerable increases in computational efficiency, with the genetic algorithm and trilateration requiring 
1,600- and 109,000-times fewer computational iterations to complete, respectively. Overall, the 
implementation of a more intelligent searching routine within iterative inversion is proven to generate 
considerable reductions in computation without a significant loss in accuracy, thereby supporting the rapid 
analyses necessary to meaningfully inform the coordination of life-saving, post-blast response. 
Additionally, while artificial intelligence is seeing increasing integration within engineering, this work 
demonstrates the immense value that continues to be brought by a deep, physical understanding.

 
 

1. BACKGROUND 
 
Explosive incidents, be they accidental or 
intentional, induce high-magnitude pressures and 
impulses which have the potential to result in 
significant structural damage and loss of life. The 
consequences of an explosion strongly depend on its 
yield, and distance from the source. As such, in order 
for effective and immediate life-saving action to be 
taken, the size and location of an explosion need to 
be accurately and rapidly estimated.  
 

This necessitates some form of inverse analysis 
(effect → cause), typically where the forward 
problem (cause → effect) is iteratively solved until 
the difference between model and observation has 
been minimised. This is particularly challenging in 
the field of blast analysis due to the strongly 
nonlinear nature of shock waves. Further, more 
sophisticated methods for solving the forward 
problem (e.g. finite element analysis or 
computational fluid dynamics) – especially given the 
often excessive number of iterations required to 
solve the inverse problem – render current methods 
prohibitively time-consuming and lacking the 
versatility, robustness and accuracy needed to 
reliably estimate both charge yield and position. 

 
 
The focus of this paper is therefore to investigate two 
types of schemes for expediting the inversion. The 
first, ‘trilateration’, developed in [1], exploits an 
understanding of blast wave physics to strategically 
constrain the exhaustive search, improving its 
efficiency. The second scheme is a genetic algorithm, 
an example of Machine Learning (ML) optimisation 
[2], that biases its search of the domain, focussing on 
the regions most likely to contain the optimal solution. 
The latter is considered a proxy for artificial 
intelligence (AI) herein, given its use of ML 
optimisation principles. With AI seeing increased 
integration into engineering, it is imperative to 
understand its role within design, particularly the 
circumstances in which its application is more 
effective and efficient than other available techniques. 
 
Both methods are used to perform inverse analysis of 
blast wave arrival time data from six small-scale, free-
field experiments. Their accuracy in predicting 
equivalent charge yield and position, alongside the 
computational efficiency of the respective analyses, is 
then compared to the datum set by an exhaustive 
search. This work aims to establish the benefits and 
drawbacks of solutions employing artificial 
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intelligence and those founded upon prior 
understanding of the governing physics. Whilst the 
work herein is focussed on the context of blast 
analysis, the overarching philosophical discussion 
applies more widely within engineering and data 
science. 
 
2. EXPERIMENTAL CASE STUDY 

 
Farrimond et al. [3] conducted a series of free-field 
experiments to measure blast parameters from 250 𝑔 
hemispherical PE10 charges. This paper uses data 
from six of those tests. The arena schematic is 
depicted in Figure 1, in plan view, detailing the 
charge positions in each trial and the four fixed gauge 
locations.  

Figure 1: Schematic of the free-field experimental set-up, from 
Farrimond et al. [3]. All dimensions in metres. 

 
It is the relative blast wave time of arrival (TOA) that 
is used in the subsequent inverse analyses, given its 
reported reliability for such purposes [4,5]. Note, the 
original publication contained only the reflected 
gauge data and the incident values were subsequently 
published elsewhere [1]. 
 
The values of equivalent charge yield and position 
are to be found via the subsequent inversion. Mass is 
assumed to vary between 1-1000 𝑔௉ாଵ଴ and the 
explosive can be located anywhere in the 5×10 m 
experimental arena. 

3. ITERATIVE INVERSION 
 

3.1 PROCEDURE OVERVIEW 
 
The general procedure for iterative inversion is 
summarised in Figure 2. It highlights the three 
principal processes within iterative inversion: 
forwards-direction prediction (FDP), iteration 
evaluation, and an iterative algorithm. While the 
nature of the scheme overall is largely invariant 
between applications, the specific details of these 
processes are dictated by the context to which iterative 
inversion is applied. Consequently, the three 
governing components of the solver are detailed 
herein with respect to determining a charge’s 
equivalent yield and the x- and y-coordinates of its 
position from measured blast wave time of arrival. 
 
3.2 FORWARDS-DIRECTION PREDICTION 

 
Many practical applications of post-blast iterative 
inversion may demand the use of computational fluid 
dynamics (CFD) for forwards-direction effect 
prediction, e.g., due to the significant influence of 
blast-obstacle interaction effects on wave propagation 
[6]. However, the free-field nature of the experimental 
case study instead facilitates employing well-validated 
empirical laws for the modelling of blast effects with 
significantly less computational expense. 
 
Equation 1 is used as the FDP for modelling blast 
wave TOA, 𝑡௔ (ms). It was developed by Rigby et al. 
[7] as a convenient approximation for the semi-
empirical free-field predictions of Kingery and 
Bulmash [8] that are well-validated over a large range 
of scaled distances [9-11]. Through scaled distance, 𝑍 =  𝑅 𝑊ଵ/ଷൗ , the inputs to Equation 1 are the 
assumed values of equivalent charge yield, 𝑊 (𝑘𝑔்ே்), and equivalent charge position (𝑅 (m): the 
stand-off distance from the charge centre to the point 
of interest). For compatibility with the experimental 
case study, a TNT-equivalency for PE10 of 1.22 is 
used [3]. 

Figure 2: Flowchart describing the iterative inversion algorithm. 
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𝑙𝑜𝑔 ൭ 𝑡௔𝑊ଵଷ൱ =   0.717 ∙ (𝑙𝑜𝑔 𝑍)ହ − 0.0567 ∙ (𝑙𝑜𝑔 𝑍)ସ                      − 0.3192 ∙ (𝑙𝑜𝑔 𝑍)ଷ + 0.1495 ∙ (𝑙𝑜𝑔 𝑍)ଶ                       + 1.8165 ∙ 𝑙𝑜𝑔 𝑍 − 0.3215 
 
 
3.3 ITERATION EVALUATION 

 
For some assumed initial conditions, the deviation of 
the arrival times modelled by the FDP from those 
observed during the real event, 𝑡௘௫௣, at 𝑛 number of 
measurement locations, is found for each individual 
data point, 𝑗. This deviation is quantified as the mean 
squared error, MSE, using Equation 2. 
 𝑀𝑆𝐸 =  1𝑛 ෍൫𝑡௘௫௣,௝ − 𝑡௔,௝൯ଶ௡

௝ୀଵ  

 
An MSE of zero implies that the assumed values of 
charge yield and position exactly match those of the 
true event; while this perfect case is desired, it is 
practically impossible due to, e.g., variability/noise 
in the observation data, imprecision in the assumed 
initial conditions, inaccurate assumptions within the 
FDP, etc. Therefore, the values of assumed initial 
conditions that generate the lowest MSE are 
considered to be most closely representative of the 
real-life event. 
 
3.4 ITERATIVE ALGORITHM 

 
In order for the initial conditions of an explosive 
event to be inversely estimated with confidence, 
modelling and evaluation of a single potential 
solution is insufficient. Instead, the domain of 
potential solutions must be rigorously explored by 
trialling several paired values of assumed charge 
yield and position. Previous related works have 
adopted an exhaustive search for this [12,13], 
however this entails significant computational 
inefficiency that renders the approach impractical in 
applications where rapid estimation is required. An 
alternative searching algorithm is therefore needed, 
and this paper assesses two potential options on the 
basis of their accuracy and computational efficiency 
with respect to traditional iterative inversion. These 
two methods are described in the following section. 
 
 
 
 
 

4. ALTERNATIVE ALGORITHMS 
 
4.1 ARTIFICIAL INTELLIGENCE 

 
4.1 (a) Machine learning 
 

The comprehensive search of a high-complexity, 
multi-dimensional optimisation space is a challenge 
encountered frequently across engineering disciplines 
[14]. In many such cases, the time-intensity of 
exhaustive search demands its replacement on the 
basis of practicality and expense, and machine 
learning is a common solution, e.g., [15-17]. It is 
therefore considered for integration into post-blast 
iterative inversion. 
 
Machine learning is an application of AI that enables 
a scheme to “learn” from the data it encounters, 
detecting patterns in the performance of past iterations 
to inform subsequent ones [18]. Effectively the search 
is biased to focus on the regions most likely to contain 
the optimum, whereas an exhaustive search gives 
equal consideration to the entire domain which then 
increases the total number of iterations required. The 
learning mechanism is dictated by the optimisation 
approach adopted, and this selection is broadly 
governed by the availability of the gradient of a 
scheme’s loss function with respect to the variables of 
interest [19]. When the gradient is not directly 
calculable and it is infeasible to estimate, as is the case 
with more generalised blast effect FDPs (like CFD), 
then zeroth-order ‘random search’ routines are 
favoured. A random search is also robust to non-
convexity [20], a critical benefit considering the 
intrinsic and extrinsic variability inherent in blast 
events [21,22]; gradient-based solutions present a 
susceptibility to the associated saddle points and local 
minima, potentially preventing the identification of 
the optimum [23,24]. 
 

The specific metaheuristic ML optimisation selected 
for evaluation as an alternative to exhaustive search is 
the genetic algorithm as it is a solution favoured by 
other simulation-based optimisation schemes [25]. 
 
4.1 (b) Genetic algorithm for post-blast inversion 

 
Inspired by the mechanics of Darwinian evolution 
[26], the genetic algorithm (GA) is an adaptive 
heuristic search that drives optimisation through the 
competition of iterations via natural selection [27]. 
The general scheme of a simple GA is summarised in 
Figure 3 wherein the relative performance of several 
unique trialled solutions is evaluated and the highest-

(2) 

(1) 
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performing individuals are randomly selected to 
inform the subsequent generation of ‘children’. 
Through this process, the least erroneous variable 
values are largely retained whilst those that perform 
poorly are removed; the variety introduced through 
sharing traits from multiple ‘parents’ facilitates the 
strategic exploration of the domain with bias towards 
zones expected to improve performance. 
Additionally, population stagnation is mitigated 
through the random ‘mutation’ of inherited variable 
values [28]. The procedure is terminated when some 
end condition is satisfied, e.g., the achievement of 
sufficient convergence, performance stagnation 
and/or the exceedance of an allocated budget [29]. 
 
A continuous genetic algorithm [30] is adopted for 
incorporation into a post-blast iterative inversion 
scheme that analyses the experimental case study 
introduced in Section 2. The specific procedures of 
the scheme are detailed herein with respect to the 
general structure depicted in Figure 3. The 
hyperparameter values impacting analytical 
performance were optimised using a coarse grid 
search with manual tuning [31]. 
 
The population is initialised as a scattering of guesses 
generated randomly using a uniform distribution. 
This is because strategically seeding the population 
with better-than-random individuals produces no 

meaningful increase in computation efficiency [20]. 
The hypothetical effects of these iterations are 
simulated using Equation 1 as the FDP, with 
individual performance then quantified using the 
MSE. 
 
The end condition specified in this work is a limit on  
the total number of permitted iterations. This is 
adopted to facilitate an effective comparison between 
the GA and an exhaustive search because the 
evaluative parameters being considered are both 
dependent on generation number. For a simple GA, the 
estimation accuracy incurs diminishing returns with 
increasing iteration, whilst the computation time 
grows linearly [20]. Section 5.2(c) therefore 
undertakes a sensitivity analysis to optimise this limit. 
 
Should the end condition not be satisfied, then a 
subsequent generation of iterations is created through 
the reproduction of parents. To cultivate 
improvements in accuracy, it is advantageous to 
propagate the positive traits of only the highest-
performing individuals. However, this cannot be done 
exclusively else the population’s diversity will 
stagnate, reducing the exploration of the optimisation 
domain and limiting estimation accuracy [33]. 
Consequently, stochastic selection via a ‘roulette-
wheel’ [34] is adopted. Inspired by simulated 
annealing [35], an individual’s probability of selection 

Figure 3: Flowchart describing the simple genetic algorithm [32]. 

Figure 4: A demonstration of the genetic algorithm’s generational convergence, where marker size is proportional to assumed 
charge yield. (a) 1st generation. (b) 2nd generation. (c) 10th generation. 
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increases exponentially with fitness to promote the 
propagation of proven performance whilst 
supporting diversification. 
 
To maintain a steady population size, two breeding 
parents must produce two children. The children 
inherit parental traits via ‘genetic crossover’ which is 
the stochastic mixing of the parents’ variable values. 
Arithmetic crossover, the weighted averaging of 
parental variable values by some randomly generated 
proportion, [36] is adopted in this work. Finally, a 
generated child may be subjected to mutation in 
order to further diversify the population, supporting 
the avoidance of early convergence within local 
minima [28]. For each independent variable of each 
generated child, there is a probability that its value is 
adjusted by a random increment. 
 
The successful generation of a new population of 
children enables their performance evaluation, with 
the cycle then repeating per Figure 3 until the end 
condition is satisfied. Across the generations, 
convergence towards a common solution manifests – 
as illustrated in Figure 4. Ultimately, the highest-
performing, fittest individual with the minimum 
MSE is output as the scheme’s best estimate for the 
true event’s initial conditions. 
 
4.2 PHYSICS-INFORMED 

 
In response to the need for a rapid post-blast 
inversion tool, Karlsen et al. [1] developed a novel 
implementation of ‘trilateration’ that is founded upon 
an engineering understanding of blast wave 
behaviour. This technique is to be trialled as a 
potential alternative to an exhaustive search within 
post-blast iterative inversion. 
 
Trilateration is a well-established source localisation 
method, seeing applications in seismology [37] and 
the Global Positioning System [38]. It estimates the 
geospatial coordinates of a point of interest by 
measuring its distance from several probes whose 
locations are known. Karlsen et al. [1] adapted this 
for post-blast applications by leveraging the physical 
behaviours of blast waves, namely the scalability of 
blast effects fundamentally inherent in the free-field 
[21]. Critically, by framing the problem in terms of 
Hopkinson-Cranz scaled distance [39,40], the 
dependency between an explosion's unknown initial 
conditions can be exploited to reduce the search 
domain exclusively to charge yield. Therefore, 
despite trilateration employing brute force 
incrementation, it is considerably more efficient than 
a traditional exhaustive search which must also trial 

all possible spatial coordinates. 
 
The complete methodology of post-blast inversion 
with trilateration is detailed and discussed in [1] 
wherein it is successfully applied in the inverse 
analysis of the 2020 Beirut explosion. 
 
5. RESULTS AND DISCUSSION 

 
5.1 EVALUATION STRATEGY 

 
In order to establish a datum for performance to which 
the proposed alternative searching algorithms can be 
evaluated, exhaustive search is first used to inversely 
analyse the experimental data from Section 2. Both the 
accuracy of the inverse estimate and its computational 
efficiency are the parameters by which algorithmic 
performance is measured. The metric for mass 
estimation accuracy is 𝑊௘௥௥, the relative error between 
the estimated charge yield and the true value 
(250 𝑔௉ாଵ଴), averaged across the six experiments. 
Similarly, the quality of the position estimate is 
measured as the scaled distance between the true 
charge centre and the estimated one, termed “radial 
error”, 𝑍௘௥௥. 
 
It is appreciated that the FDP adopted herein is not 
reflective of the sophistication likely to be demanded 
in practical post-blast inversion. Whereas the 
analytical run-time of Equation 1 is comparable in 
magnitude to the algorithmic procedures, a practical 
FDP, e.g., CFD, is likely to render the algorithmic time 
insignificant, with the efficiency therefore being 
directly proportional to the number of FDP 
simulations required. Therefore, the metric for 
computational efficiency used throughout this paper is 
the total number of FDP simulations required to 
complete an inverse analysis of the six experimental 
case studies, termed 𝑁௦௜௠. 
 
5.2 PERFORMANCE ASSESSMENT 

 
5.2 (a) Exhaustive search 

 
The grid-based nature of exhaustive search demands 
the user to specify the fidelity of the routine. A 
searching increment of 1 𝑔௉ாଵ଴ in equivalent charge 
mass is specified, alongside a 1 cm grid for each of the 
charge position’s Cartesian coordinate axes. The mean 
performance of the defined exhaustive search in the 
post-blast iterative inversion of the six Section 2 
experimental case studies is detailed in Table 1. 
 
Note, the estimation accuracy achieved by exhaustive 
search is indicative of the upper-bound on the 
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accuracy of any iterative inversion scheme that uses 
Equation 1 as the FDP (for the user-defined precision 
presented). This is because exhaustive search trials 
all possible solutions and thus is guaranteed to 
identify the global minimum in MSE that lies on the 
search grid. 
 
  5.2 (b) Trilateration 
 
Trilateration continues to employ an exhaustive 
search, but on a strategically constrained domain 
having removed the need to increment through 
assumed charge position. Consequently, only the 
charge yield increment must be input and this is again 
selected to be 1 𝑔௉ாଵ଴. The mean performance 
metrics for trilateration in its analysis of the 
experimental case study are summarised in Table 1.  
  
 5.2 (c) Genetic algorithm 
 
Unlike trilateration and exhaustive search, the 
genetic algorithm is not constrained by a grid search. 
Instead, however, GA’s stochastic nature means that 
any two repeat analyses of the same problem can 
generate different values of the estimated equivalent 
charge yield and position. With a lack of confidence 
in the outputs of a single routine, there is a need to 
perform several repeats to increase reliability, taking 
the average of the estimate outputs as being 
representative of the true scenario. To ensure 
statistical significance through the law of large 
numbers [41], 30 repeat analyses are adopted. 
 
As discussed in Section 4.1(b), both the estimation 
accuracy and computation time increase as the 
number of permitted GA generations increases. With 
both of these parameters being the basis for the 
evaluation of the algorithm’s performance, it is 

critical that they be optimised. Figure 5 displays the 
sensitivity to the number of permitted generations of 
both output accuracy and the number of required FDP 
simulations. 
 
It is shown that accuracy is efficiently maximised after 
500 generations, with subsequent computation 
effectively becoming redundant. Consequently, the 
performance of the algorithm following 500 
generations is selected as representative of the wider 
scheme ahead of comparison to exhaustive search and 
trilateration; its performance is summarised in 
Table 1. 

Algorithm 𝑊௘௥௥ 
[%] 

𝑍௘௥௥ 
[𝑚/𝑘𝑔்ே்ଵ/ଷ] 

𝑁௦௜௠ 

Exhaustive search 4.15 0.166 1.2 × 10ଵ଴ 

Trilateration 4.15 0.175 1.1 × 10ହ Genetic algorithm 4.36 0.169 7.2 × 10଺ 
 
5.3 PERFORMANCE ASSESSMENT 

 
5.3 (a) Comparison to exhaustive search 

 
The performance of the alternative algorithms’ with 
respect to the both evaluative criteria, inverse 
estimation accuracy and computational expense, are 
assessed relative to exhaustive search in Figure 6. 
 

Figure 5: Sensitivity of the genetic algorithm’s analytical performance to the number of permitted generations. 
(a) Equivalent yield estimation accuracy. (b) Charge centre estimation accuracy. (c) Computational expense. 

Table 1: Mean analytical accuracy and 
computational expense of each of the iterative 
algorithms in the inversion of the case study. 
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Figure 6(a) demonstrates trilateration to perform 
equally as well as exhaustive search for the 
estimation of equivalent charge yield through 
iterative inversion. GA incurs a slight reduction in 
accuracy, generating an output that is 5% more 
erroneous but this deviation is of little practical 
significance, however, as it equates to just 0.21% of 
the true charge yield (~0.5 𝑔௉ாଵ଴). 
 
Both GA and trilateration incur additional error in the 
estimation of equivalent charge position over 
exhaustive search (1.8% and 5.5%, respectively), per 
Figure 6(b). The deviation of the former is attributed 
to its aforementioned asymptotic convergence, 
whilst trilateration’s error is a consequence of 
removing charge position as a degree of freedom 
within the search. Effectively, exploration of the 
MSE domain with respect to charge yield alone 
identifies the saddle along which the global 
minimum is located, but it cannot be pinpointed 
exactly due to an inability to locally explore the 
position variables. The reduction in position 
estimation accuracy is, however, relatively 
insignificant as the error increases by a maximum of 
just 6.2 mm, which is less than 1/10th of the charge’s 
diameter (assuming the nominal density of PE10 to 
be 1.55 𝑔/cm3 as reported [3]). 
 
Therefore, the equivalent charge yield and position 
estimation accuracy of both trilateration and the 
genetic algorithm is deemed to be nominally 
identical to exhaustive search as any discrepancy in 
their estimation is minor and considered practically 
inconsequential. 
 
Performance against the second criterion, 
computational expense, is evaluated in Figure 6(c) 

which directly compares the average number of FDP 
simulations required by each algorithm to conduct 
their inversion. Both alternative algorithms are 
evidenced to be more computationally efficient than 
an exhaustive search, with them each demanding 
significantly fewer FDP simulations to achieve a 
successful inversion. The GA completed its inverse 
analysis of the experimental case studies using 0.06% 
of the FDP models required by an exhaustive search 
(1,600-times faster). Trilateration generated an even 
greater reduction in computation having completed its 
inversion after using just 0.0009% of the FDP 
simulations required by an exhaustive search 
(109,000-times faster). 
 
Therefore, both alternative algorithms are deemed to 
be demonstrably superior to exhaustive search for 
post-blast applications of iterative inversion and can 
be readily incorporated to obtain a decrease in 
computation time with no meaningful reduction in 
estimation accuracy. 
 
  5.3 (b) Competing the alternative schemes 
 
The intention of this work is to support the 
development of a rapid post-blast analytical tool for 
informing the coordination of emergency response 
efforts. Comparing the relative performance of 
trilateration and the genetic algorithm in this regard, it 
may then be concluded that the former is the more 
effective routine, having completed its inversion in 
two orders of magnitudes less time than the latter. 
However, this is only true for the narrow case study 
analysed in this paper. In practice, trilateration cannot 
be realistically adopted due to its free-field assumption 
considerably restricting applicability. 
 

Figure 6: Sensitivity of GA analytical performance to the number of permitted generations. 
(a) Equivalent yield estimation accuracy. (b) Charge centre estimation accuracy. (c) Computational expense. 

(b) (a) (c) 
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Moreover, this contrast offers insight into the 
qualities of the general analytical approaches being 
investigated. Physics-informed methods (by 
extension of trilateration) offer superior efficiency, 
whilst the GA and machine learning approaches, 
with no understanding of a problem’s physicality 
(and thus no restriction on application), support 
enhanced versatility. Thus far, throughout this paper, 
the two have been treated as being in competition but 
these traits are in fact complementary and thus the 
schemes would mutually benefit from acting 
compositely. This concept is presently driving the 
advancement of physically-valid analytical tools in 
many contexts, including the prediction of explosive 
effects, as discussed by Pannell et al. [42]. Therefore, 
it is concluded that a hybrid physics-informed 
machine learning optimisation algorithm offers the 
greatest potential for achieving practically-
applicable, rapid and robust post-blast iterative 
inversion. 
 
One conceptualised composite algorithm for post-
blast iterative inversion is inspired by the findings of 
Section 5.3(a). It may first employ a physics-
informed search to rapidly approximate the optimal 
solution before a metaheuristic scheme then relaxes 
the constraints to maximise analytical accuracy. The 
relative performance enhancements of such an 
approach are indicatively presented in Figure 7. 

Figure 7: Hypothetical performance of a hybrid physics-
informed machine learning optimisation algorithm for post-
blast iterative inversion. 

 
More generally, the above can be more generally 
considered a commentary on the integration of 
artificial intelligence within engineering practice. 
Where presently, there exists an anxiety that AI may 
invoke the obsolescence of the engineer [43], it is 
instead suggested that AI becomes another tool at the 
engineer’s disposal, which in no way diminishes the 
significant value uniquely offered by physical 
understanding and professional judgement. The two 
are thus free to act compositely for the benefit of the 
design process. 
 

This principle is elegantly summarised by Lagaros et 
al. [44]: “the expert needs the optimizer, but the 
optimizer also needs the expert”. 
 
6. CONCLUSIONS AND OUTLOOK 
 

Post-blast iterative inversion could support the 
efficient coordination of life-saving emergency 
response efforts in the event of an explosion. 
However, the scheme presently relies on an inefficient 
exhaustive searching routine, incurring prohibitively 
protracted computation times that render it impractical 
and ineffectual in these applications. This paper 
therefore investigated alternative searching algorithms 
in an effort to improve the computational efficiency of 
post-blast iterative inversion, without any significant 
loss in accuracy. 
 
Two schemes were proposed and evaluated against 
exhaustive search with respect to the accuracy of their 
inverse estimation of equivalent charge yield and 
position, and their associated computation time. The 
first alternative routine, a bespoke genetic algorithm, 
employed machine learning optimisation, as a proxy 
for artificial intelligence, to more efficiently explore 
the domain of potential solutions; it attained an 
accuracy nominally identical to an exhaustive search, 
but in just 0.06% of the time. Trilateration, a post-blast 
physics-informed inversion approach developed by 
Karlsen et al. [1], was the second searching algorithm 
evaluated. Its computational efficiency was also 
considerably greater than exhaustive search, 
completing its inversion 109,000-times faster, with no 
significant reduction in estimation accuracy. For the 
limited case study considered, both trilateration and 
the genetic algorithm are therefore practically-
superior alternatives to exhaustive search within post-
blast applications of iterative inversion. 
 
Finally, this study identified that machine learning 
should not be treated as being in competition with 
solutions founded upon physical understanding. The 
benefits of each are mutually complementary, and a 
hybrid physics-informed machine learning 
optimisation scheme may extend the post-blast 
iterative inversion performance improvements 
achieved in this work to scenarios beyond the free-
field. Furthermore, this may attest to the integration of 
AI within the engineering industry more broadly. 
Particularly that a perception of AI being in 
competition with the engineer may unhelpfully 
disguise their independent benefits, thereby inhibiting 
a collaboration that is ultimately more effective than 
the sum of its parts. 
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