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A density of states-based approach to determine temperature-dependent
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2)Departamento de F́ısica, Universidade Federal deViçosa (UFV),Av. P.H.Rolfs, s/n, 36570-900, Viçosa,
Brazil.
3)School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom.

Here we establish an approach to determine temperature-dependent aggregation rates in terms of thermosta-
tistical quantities which can be obtained directly from flat-histogram and statistical temperature algorithms
considering the density of states of the system. Our approach is validated through simulations of an Ising-like
model with anisotropically interacting particles at temperatures close to its first-order phase transition. Quan-
titative comparisons between the numerically obtained forward and reverse rates to approximate analytical
expressions corroborate its use as a model-independent approach.

Over the last three decades, the so-called flat-
histogram algorithms like multicanonical1, entropic sam-
pling2, broad histogram3, Wang-Landau4, and those
based on statistical temperature5,6, have been explored
as powerful numerical tools in the study of phase transi-
tions in finite systems7,8. One advantage is that such al-
gorithms yield estimates for the system’s density of states
Ω(E) over a wide range of energies E, and, by knowing
Ω(E), one can access any thermostatistical information
about the system by means of its microcanonical entropy
S(E) = kB lnΩ(E). In fact, one can obtain not only the
usual thermodynamics quantities from S(E), but it also
provides a way to perform systematic analyses through
the inflection points of its derivatives9,10, e.g., the micro-
canonical inverse temperature b(E) = k−1

B (dS/dE)N,V

and γ(E) = (db(E)/dE)N,V .
While quantities obtained from Ω(E) have been rou-

tinely explored in equilibrium-related thermostatistics
analyses11–19, the possibility of using energy-dependent
free-energy profiles (FEPs) in the assessment of phase
change kinetics has been only recently considered in the
literature20. As argued in Ref.20, a kinetic approach
based on FEPs would be of considerable interest in the
study of aggregation in finite systems which display first-
order phase transitions21. This because, in practice,
assumptions based either on the capillarity approxima-
tion22 or on an arbitrary shape for the aggregates have
proven to be difficult to accommodate even for the sim-
plest systems23,24, e.g., systems where the anisotropy
in the particles’ interaction leads to the formation of
filament-like aggregates.
Besides the attempts carried out in Ref.20 to esti-

mate rates from energy-based FEPs, additional efforts
have been made in Refs.25,26. Although the authors
in Ref.20 considered distinct three-dimensional systems
with either Lennard-Jones particles or polymer chains,
they included estimates for the aggregation rates only
at the transition temperature. In Ref.26, on the other
hand, approximated temperature-dependent expressions

a)Electronic mail: lerizzi@ufv.br (Corresponding author)

were introduced, but their quantitative agreement with
the numerically obtained rates was assessed only for one-
dimensional Markovian models. Since the kinetics of
collective coordinates projected from a highly dimen-
sional space, such as the energy E, is expected to be
non-Markovian27,28, reliable procedures for the evalua-
tion of temperature-dependent rates for more detailed
systems and comprehensive simulations have yet to be
developed. Hence, here we perform simulations using a
two-dimensional Ising-like model with anisotropically in-
teracting particles23,24,29,30. Then, for comparison, we
evaluate the forward and reverse rates near the transi-
tion temperature of its phase transition via different pro-
cedures, including the one based on Ω(E).

The model consists of N particles that can be in any of
the L × L sites of a square lattice with periodic bound-
ary conditions. In particular, we assume L = 200 and
N = 400 so that the system has a constant concentra-
tion ρ = N/L2 = 10−2. Aligned nearest-neighbor (NN)
particles interact through a stronger effective interaction
denoted by ψs, while non-aligned NN particles present
an effective interaction strength given by ψw, so that the
anisotropy of the interaction is given by ξ = ψs/ψw.
Although Monte Carlo (MC) simulations do not nec-
essarily reproduce real diffusive dynamics, there is evi-
dence that it could be used to describe it as long as only
physical movements are considered31,32. Hence, diffusive-
like dynamics are implemented in the model through lo-
cal Kawasaki movements33 where the particles can move
only to their unoccupied NN sites. Each time step cor-
responds to one MC sweep where N attempts are made
to rotate and move selected particles to one of their ran-
domly selected NN sites.

Before discussing the aggregation kinetics, we include
in Fig. 1 the equilibrium free-energy profiles, i.e., FEPs,
β∗∆F (E), which were computed from the microcanon-
ical entropies S(E). Here, the microcanonical entropies
S(E) were numerically evaluated through the recursion
steps of the multicanonical algorithm34,35, where we con-
sidered Nr = 500 recursion steps with Ns = 106 MC
sweeps each. As discussed in Refs.26,36, the FEPs can
be obtained as β∗∆F (E) = (S∗(E) − S(E))/kB , where
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FIG. 1. Free-energy profiles, i.e., FEPs, β∗∆F (E) obtained for both (a) isotropic and (b) anisotropic cases. Free-energy

barriers and latent heats are indicated by β∗∆F † and ∆E† = Ed−Ea, respectively, while ∆E‡
a = E∗

−Ea and ∆E‡
d = E∗

−Ed

denote energy differences as defined in Eqs. 1 and 2. Dotted lines correspond to quadratic functions near the maxima and the
minima of the FEPs, that is, β∗∆F (E) ≈ β∗∆F †

− (γ∗/2)(E−E∗)2 and β∗∆F (E) ≈ (γa(d)/2)(E−Ea(d))
2. Here, to illustrate

their suitability, the parameters γ∗, γa, and γd were determined from the numerical data displayed in Fig. 2 (see also Table I).

S∗(E) = kBβ
∗(E −Ea) + S(Ea), with Ea being the low-

est energy where the FEP has a minimum, and β∗ =
1/kBT

∗, with T ∗ being the transition temperature deter-
mined through a Maxwell-like construction25,26,30,36 and
which separates the aggregated and the diluted phases
(here denoted by the subscripts “a” and “d”, respec-
tively). As is seen in Fig. 1, such free-energy profiles
are characterized by both their barrier height β∗∆F †

and latent heat ∆E†. In addition, the asymmetry of
the free-energy profiles can be characterized by the en-

ergy differences ∆E‡
a = E∗−Ea and ∆E‡

d = E∗−Ed, as
well as by curvature-related parameters that are evalu-
ated around the maximum and the minima of the FEPs,
which are given by γ∗ = (db(E)/dE)|E=E∗ > 0 and
γa(d) = −(db(E)/dE)|E=Ea(d)

> 0 (see the caption of

Fig. 1). The results in Fig. 1 show that the values of
both β∗∆F † and ∆E† are higher for the anisotropic case
where ξ = 3. Here we include results for these two val-
ues of ξ to illustrate the difference between the cases of a
very low barrier (i.e., the isotropic case with ξ = 1), and
a case which should be representative of systems with
higher barriers (i.e., the anisotropic case with ξ = 3).
Nonetheless, it is worth noting that, for this model, the
behavior of the free-energy barrier is non-monotonic as a
function of the anisotropy30.

Now we change our attention to the kinetic aspects
of the transition. In contrast to the multicanonical sim-
ulations used to determine S(E), for the data produc-
tion runs the system is assumed to be in contact with
an implicit thermal bath at a specific temperature T so
the simulations are carried out in the NVT ensemble via
the usual Metropolis algorithm33. One should note that
near the transition temperature T ∗ = 1/kBβ

∗, the sys-
tem makes transitions between the diluted and the ag-
gregated phases. Hence, for each temperature, one can

estimate temperature-dependent rates as κa = 1/τd→a

and κd = 1/τa→d, where τa→d and τd→a correspond to
the mean first passage times (MFPTs), here evaluated
directly from the energy time series using the method of
labeled walkers described in Ref.37 (see also Ref.25). In
order to perform such estimates at each given tempera-
ture T = 1/kBβ, we initiate the system’s configuration
with randomly placed and oriented particles at the dilute
phase, and the analysis starts once the first transition be-
tween energies Ea and Ed is completed, then we compute
the MFPTs between these two energies with at least 102

roundtrips37. Figure 2 shows results for the temperature-
dependent rates for both the isotropic (ξ = 1) and the
anisotropic (ξ = 3) cases. One striking feature which is
common to both cases is that the rates κa and κd do
display a non-Arrhenius behavior, even though the equi-
librium constants κeq seem to be linear in a mono-log
plot (i.e., similar to the usually observed van’t Hoff’s be-
havior).

As discussed in Refs.25,26, one has that, near the tran-
sition temperature, the forward and the reverse rates can
be estimated, respectively, as

κa =
1

τd→a
≈ Ad exp

[

−∆E‡
d(β − β∗)−

γ̄d
2
(β − β∗)2

]

,

(1)
and

κd =
1

τa→d
≈ Aa exp

[

−∆E‡
a(β − β∗)−

γ̄a
2
(β − β∗)2

]

,

(2)

where ∆E‡

a(d) = E∗ − Ea(d) and γ̄a(d) = (γa(d))
−1 +

(γ∗)−1. In addition, these two rates can be used to eval-
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FIG. 2. Temperature-dependent rates κa, κd, and the equi-
librium constant κeq for both (a) isotropic and (b) anisotropic
cases. Symbols denote results determined numerically from
the MFPTs obtained from the energy time series, while con-
tinuous lines correspond to the fit of Eqs. 1, 2, and 3 to the
numerical data. Numerical fits were done with the pre-factors
defined by Eq. 4 in (a) and Eq. 5 in (b). Vertical dashed and
dash-dotted (grey) lines indicate the inverse of the tempera-
tures β∗ and βm, respectively.

uate the equilibrium constant as

κeq =
κa
κd

≈ A exp

[

∆E‡(β − β∗) +
∆γ̄

2
(β − β∗)2

]

.

(3)
where ∆γ̄ = γ̄a − γ̄d = (γa)

−1 − (γd)
−1 and ∆E‡ =

Ed − Ea. It is worth noting that the pre-factors in the
above expressions are slightly different depending on the
relative intensity of the free-energy barrier. For low bar-
riers, one has that25

Aa(d) = (D∗/|∆E‡

a(d)|)
√

γ∗/(2π)e−β∗∆F †

, (4)

so that A = |∆E‡
a|/|∆E

‡
d|, while for higher free-energy

barriers one should use a Kramers-like approximation26

and the pre-factors are instead given by

Aa(d) = (D∗/2π)
√

γ∗γa(d) e
−β∗∆F †

, (5)

so that A =
√

γd/γa (i.e., in either case the pre-factor
of the equilibrium constant κeq is given by A = Aa/Ad).

One should note that, except for the value of D∗, which
corresponds to a diffusion coefficient related to the ran-
dom walk of the system in the projected energy space,
all other quantities can be estimated directly from the
free-energy profiles β∗∆F (E) displayed in Fig. 1.
In order to get an estimate for D∗, we consider the

function ZC,1 that is related to the cut-based free-energy
profiles of generalized reaction coordinates27,38. For a
given sampling interval ∆tk = k∆t0 and using the energy
E as a reaction coordinate, it can be computed as27

ZC,1(E; ∆tk) =
1

2

∑

i

′ |E((i+ 1)∆tk)− E(i∆tk)| , (6)

where the prime indicates that the sum is performed
over all i that E is in between the values E(i∆tk) and
E((i + 1)∆tk) taken at “successive” time steps39. As
discussed in Ref.38, ZC,1(E; ∆tk) can be related to the
mean-squared displacement of the reaction coordinate,
thus one can use it to estimate the energy- and time-
dependent diffusion coefficient numerically as

D(E; ∆tk) =
ZC,1(E; ∆tk)

∆tkH(E; ∆tk)
, (7)

where H(E; ∆tk) is the usual (non-normalized) his-
togram obtained from the energy series with the sampling
interval ∆tk. In addition, since Eqs. 1 and 2 assume an
effective energy-independent diffusion coefficient, we also
evaluate the following average

D(∆tk) =

∫ Ed

Ea

D(E; ∆tk)p
∗(E)dE , (8)

where p∗(E) is the equilibrium distribution at T ∗, and
is related to the FEP as p∗(E) ∝ e−β∗∆F (E). In Fig. 3
we display the time-dependent diffusion coefficient given
by Eq. 8 for both the isotropic and anisotropic cases.
Accordingly, D(∆tk) becomes almost constant for large
k, indicating that the dynamics of the projected energy
coordinate are nearly diffusive at large time scales, so for
each case, we took the corresponding limiting value of it
as the proper estimate for the effective parameter D∗.
We note that, since the diffusion coefficient D(∆tk)

changes with ∆tk for small k, i.e., it displays a subd-
iffusive behavior with powerlaw exponents around −0.5
and −0.6, one can infer from the results shown in Fig. 3
that ZC,1(E; ∆tk) may also depend on the sampling in-
terval (i.e., the dependence on ∆tk of the histogram,
H ∼ ∆t−1

k , cancels out with ∆tk in Eq. 7). The depen-
dence of both D(∆tk) and ZC,1 on ∆tk (data not shown)
strongly suggests that, at short time scales, the dynam-
ics of the projected coordinate E is non-Markovian27.
This result agrees with the general behavior expected
from Ref.40, which asserts that the self-assembly of par-
ticles that follow deterministic Newtonian dynamics is
not a Markovian process. Hence, although the numerical
approach considered here assumes diffusive-like motion
for the interacting particles, our simulations achieved
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FIG. 3. Diffusion coefficient D(∆tk) given by Eq. 8 as a func-
tion of the sampling index k with ∆t0 = 20MCs for both
(a) isotropic and (b) anisotropic cases. The limiting val-
ues of D(∆tk) at large k correspond to D∗ = 0.0058 and
D∗ = 0.0136 for ξ = 1 and ξ = 3, respectively.

their purpose in obtaining a projected reaction coordi-
nate which has physically admissible dynamics.
Now, by imposing the values obtained for D∗ from

Fig. 3 and the values for β∗ and for the free-energy barrier
β∗∆F † determined from Fig. 1, but allowing the energy

differences ∆E‡

a(d) and the curvature-related parameters,

i.e., γ∗, γa, and γd, to act as free parameters, we are able
to examine the fit of Eqs. 1, 2, and 3 to the numerical
data presented in Fig. 2. Remarkably, given the approx-
imated character of those expressions, Table I indicates
a fair agreement between the values directly determined
from the free-energy profiles displayed in Fig. 1 and the
values indirectly obtained from the numerical fits shown
in Fig. 2. Evidently, the free-energy profiles are not per-
fectly quadratic functions near their extrema, so the eval-
uation of the curvature-related parameters is not precise
(i.e., it depends on how far from the extrema one consid-
ers the fit to the data). However, as one can see from the
dotted lines displayed in Fig. 1, the values determined
from the kinetic data lead to an acceptable description
of the FEPs, even though the values of γ∗, γa, and γd are
slightly different from the best values that were directly
extracted from the FEPs (see Table I).
The results displayed in Fig. 1 for both ξ = 1 and

ξ = 3 indicate that γd > γa, which means that the val-
leys related to the diluted state are narrower than the
ones associated with the aggregated state. In a broad
sense, the validation of Eqs. 1, 2, and 3 suggests that the
values obtained for their parameters may help one to de-
scribe equilibrium free-energy profiles from kinetic data.
Conversely, estimates for the rates could be readily ob-
tained from the FEPs, and that may be widely explored
since flat-histogram algorithms1–4 have been extensively
used to determine the microcanonical entropy S(E) in
finite systems with first-order phase transitions11–13. In
those cases, it is worth noting that β∗ is related to the
temperature T ∗ where the depths of the valleys of the
FEP are equal, but, with the exception of the cases of
fully symmetric FEPs, where the widths and curvatures
of the valleys are identical, that will be not the same as

TABLE I. Parameters obtained both directly from the FEPs
displayed in Fig. 1, and indirectly from the fits of Eqs. 1, 2,
and 3, to the numerical data presented in Fig 2.

ξ = 1 ξ = 3
from FEP from fit from FEP from fit

β∗∆F † 0.53 − 0.88 −

β∗ 2.73087 − 1.61744 −

∆E‡ 106 107 227 217
∆E‡

a 64 68 140 132

∆E‡
d −42 −39 −87 −85

γ∗ 0.7× 10−3 1.6× 10−3 4.0× 10−4 6.8× 10−4

γa 0.8× 10−3 1.5× 10−3 1.5× 10−4 2.9× 10−4

γd 2.0× 10−3 2.4× 10−3 7.2× 10−4 8.0× 10−4

the temperature Tm = 1/kBβm where κeq = 1, that is,
where κa = κd. As discussed in Refs.25,26, the tempera-
ture Tm is related to the situation where the phases have
the same steady-state probability, i.e., equal area criteria.
Nevertheless, one can show that the two temperatures are
related to each other as βm = β∗+δ, where the correction

factor is either δ = |∆E‡|−1 ln |∆E‡
d/∆E

‡
a| if the free-

energy barrier is small25, or δ = (2|∆E‡|)−1 ln(γa/γd),
for higher free-energy barriers26. The relationships be-
tween these temperatures are indeed corroborated by the
numerical results presented in Fig. 2 for both ξ = 1 and
ξ = 3. Accordingly, as Ref.30 indicates, the latent heat
increases linearly with L for the different anisotropies, so
one may expect that the correction factor goes to zero as
δ ≈ L−1 at the thermodynamic limit, where one should
have β∗ ≈ βm.
Finally, it is worth mentioning that the numerical pro-

cedures as well as the equations that were examined here
are model-independent, so it is straightforward to ap-
ply them to the description of the aggregation kinetics
in more detailed systems which exhibit first-order phase
transitions. These may include not only more realistic
systems which display, e.g., the aggregation of peptide
chains41 but also those with charged macromolecules42,
which have been hardly considered in the literature, in
part, because of the limitations of the existing approaches
when competing long-range interactions are present in
the system.
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