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A B S T R A C T

Masonry lined tunnel condition assessment is a predominantly manual process. It consists primarily of a visual 
inspection followed by a lengthy and subjective manual defect labelling process. There is therefore much po-
tential for automation. Masonry spalling is a key indicator of a masonry tunnel’s condition. To obtain actionable 
detail about a tunnel’s condition, it is also necessary to determine the spalling severity, defined by the depth of 
spalling. This study presents an automated workflow to identify the depth of spalling from masonry tunnel 3D 
point cloud data obtained by lidar. Firstly, a tunnel point cloud is unrolled using a cylindrical projection and the 
points are rasterised into a 2D image taking pixel values of the offset of each point from the cylinder. Then, a 2D 
U-Net pretrained on both real and synthetic masonry lining data, is used to segment masonry joint locations to 
isolate individual blocks. A separate U-Net is used to segment areas of masonry damage and data obstructions, 
which are then masked out before a surface plane representing the theoretical undamaged surface location is 
fitted to each masonry block from the remaining points. This allows the depth of spalling to be measured directly. 
As a result, this method can automatically determine the depth of spalling despite the curved and often deformed 
nature of a masonry tunnel profile. Experiments show results competitive with those obtained by human 
assessors.

1. Introduction

A substantial proportion of the world’s railway tunnels are masonry 
lined and were constructed before the creation of modern design stan-
dards during the rapid expansion of railway networks in the mid-19th 
century. The variety of their design and often lack of construction 
documentation makes them difficult and costly to analyse. In addition, 
due to their age, the tunnel linings have deteriorated and often contain 
large areas of defects including deformation, cracking, spalling and 
efflorescence (Atkinson et al., 2021; Chiu et al., 2015). It is therefore 
vital to conduct regular condition assessments to identify the location 
and severity of damages to monitor the overall health of the structure 
(NR, 2016). Spalling is one of the most time-consuming damages to 
identify and analyse, relying on manual visual inspection of the struc-
ture on site and from lidar surveys. In addition, the presence of extensive 
spalling often makes it difficult to visually determine the severity of 

other damages. For example, when a deviation in the lining surface 
location is observed, it can be difficult to differentiate between brick loss 
caused by spalling and movements of the lining which may be an indi-
cator of more serious structural deficiencies.

Automation of condition assessment tasks has the potential to reduce 
costs and improve the repeatability of the assessment results (Koch et al., 
2015). While past research has been conducted investigating automated 
concrete spalling detection (Dong and Catbas, 2021; Koch et al., 2015; 
Sjölander et al., 2023; Spencer et al., 2019), the authors could not find 
published research that investigates automatic determination and 
localisation of masonry spalling depth. This paper presents an auto-
mated workflow for masonry lined tunnel spalling severity assessment. 
Expanding upon work conducted by Smith et al. (2023), this paper in-
vestigates how deep learning methods can be effectively integrated into 
a robust industry standard condition assessment workflow. The devel-
oped workflow combines deep learning with a geometric block 
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orientation analysis to automatically extract the spalling locations and 
label the depth of spalling. The scientific contribution of the work per-
formed is threefold:

• A new automated workflow is proposed for masonry spalling severity 
segmentation that has the potential to reduce the labour required for 
masonry lined tunnel condition assessment, while improving the 
repeatability and explainability of the process.

• Deep learning methods for automated masonry joint segmentation 
and automated masonry defect segmentation from lidar data are 
investigated. Optimum trained networks are proposed for use in the 
workflow.

• A method of isolating individual masonry blocks within a point cloud 
is proposed. This will aid with tunnel documentation.

2. Background

The world’s railway networks provide connectivity vital for eco-
nomic prosperity (Oxera, 2014; Williams Rail Review, 2019). As one of 
the most environmentally friendly modes of transport, encouraging 
passenger growth and freight usage by increasing railway network 
reliability and reducing costs is important to encourage the modal shift 
away from road travel required to meet upcoming net-zero targets. In 
addition, with increasing urbanisation, more efficient use must be made 
of the underground space to ensure that our cities are sustainable into 
the future (Paraskevopoulou et al., 2019; 2022a). This includes 
upgrading underground railway infrastructure to cope with projected 
increased passenger numbers. Since the construction of new tunnels can 
be both costly (Paraskevopoulou and Benardos, 2013; Paraskevopoulou 
and Boutsis, 2020; Paraskevopoulou et al., 2022b) and disruptive, where 
possible, it is more sustainable to better utilise existing and disused 
tunnels by extending their lifespan.

Within the UK, there is approximately 31,251 km of operational 
railway track (ORR, 2021), the majority of which was constructed in the 
second half of the 19th century when most railway tunnels were ma-
sonry lined. The condition of these tunnels has often deteriorated after 
around 150 years of usage. Ideally, the tunnels would be upgraded to 
modern standards (Atkinson et al., 2021). However, due to funding 
constraints, in most cases they are monitored and subject to ad-hoc re-
pairs to prevent further deterioration. It is therefore important to 
accurately characterise the serviceability state of each tunnel to facili-
tate timely remediation work and prevent disruptive and costly line 
closures.

While there are a range of non-destructive and in-situ testing 
methods available to analyse the condition of masonry (Hussain and 
Akhtar, 2017; Schuller, 2003); the majority of these require specialist 
equipment with expert operators and substantial post-analysis. Due to 
the extent of masonry condition assessment required within the UK’s 
railway tunnels, these techniques are not routine and are commonly 
only applied to areas of particular concern. As a result, the industry 
methodology for masonry lined tunnel condition assessment consists 
primarily of an onsite visual and limited tactile inspection, with tunnel 
pathologies indicated by the presence of observable lining defects. 
Within the UK, this is followed by completion of a TCMI (Tunnel Con-
dition Marking Index) in a standardised process outlined within NR/L3/ 
CIV/006 (NR, 2016) and shown in Fig. 1.

Increasingly, lidar surveys are conducted during the inspection to 
enable further post-inspection analysis from a 3D point cloud and 

confirm damage severity classifications. The severity scores obtained 
can be used to prioritise maintenance and inform future monitoring 
approaches. The TCMI also uses these to calculate an overall condition 
score for the structure, which can be used for planning larger scale 
improvement works and inform asset management. Despite this stand-
ardisation, identification of defect locations and determination of 
severity values is still highly labour intensive and subjective, with 
conclusions based on the perception and engineering judgement of in-
dividual assessors. As a result, the outcome of assessments is highly 
variable and can result in deterioration going unnoticed. This leads to 
more challenging repairs being required in the future and is a known 
problem across condition assessment disciplines as noted by Laefer et al. 
(2010) and Phares et al. (2004). There is therefore a need for an 
explainable and consistent workflow that can reduce the manual labour 
required for masonry tunnel condition assessment.

Masonry spalling is typically the most widespread defect observed on 
a masonry tunnel’s lining (Chiu et al., 2015) and as a result, is one of the 
most time-consuming to document. Spalling is generally caused by 
chemical and moisture content changes within the masonry causing 
expansion and shrinking of the blocks. This results in a deterioration in 
the masonry’s structural properties leading to overloading (McKibbins 
et al., 2010). This may also be more directly caused by changes in 
loading conditions. Deep spalling reduces the effective thickness of the 
masonry arch and therefore reduces the overall loading capacity of the 
tunnel. Deformations in the lining or changes in the lining thickness will 
adjust the location of the arch thrust line. A significant change in the 
thrust line can also result in arch instability, which in extreme cases can 
lead to the formation of a mechanism and ultimately collapse (Heyman, 
2014). Depth of spalling is therefore used to quantify spalling severity.

Due to the time-limited nature of tunnel inspections, instead of 
manually measuring spalling depth onsite, it is increasingly calculated 
post-inspection directly from a point cloud obtained by lidar. This re-
quires an engineer to manually draw a surface representing the un-
damaged profile of the tunnel to measure off the depth of spalling. 
However, it is complicated by two factors. Firstly, the as built tunnel 
profile is typically unknown and has also often substantially deformed 
since construction. This is in addition to local deformations to the lining 
caused by changes in the loading conditions, voids behind the lining or 
mortar/brick loss. This makes determining the unspalled block face 
profile challenging. Secondly, mortar and crack locations need to be 
manually masked out in order to only consider block face areas and 
isolate brick spalling from mortar loss or masonry cracking.

Due to the need to reduce costs yet increase the efficiency and 
effectiveness of condition assessment tasks, there has been substantial 
research across engineering disciplines into developing improved in-
spection and assessment methodologies for all asset types. There is a 
particularly significant potential to reduce costs through automation of 
the damage detection and classification step of the condition assessment 
process. Research has been aided by the recent increased accessibility 
and effectiveness of computer vision methods using deep learning 
(Schmidhuber, 2022). Multiple reviews of the field have been conducted 
(Deng et al., 2022; Dong and Catbas, 2021; Koch et al., 2015; Spencer 
et al., 2019; Ye et al., 2019).

2.1. Machine learning for tunnel condition assessment

Neural networks are a machine learning method consisting of layers 
of interconnected neurons, each containing a simple equation (Lecun 

Fig. 1. Typical UK industry workflow for railway tunnel condition assessment.
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et al., 2015). Backpropagation allows the equation parameters to be 
optimised for transforming data from an input to a desired output. Deep 
learning refers to neural networks with many layers. Since these net-
works typically have millions of trainable parameters, the reasoning 
behind their outputs for each specific task is challenging to interrogate 
and so they are largely a black box method. Nevertheless, they have 
revolutionised machine learning research, by enabling more complex 
relationships to be understood within larger volumes of data. Convolu-
tional Neural Networks (CNNs) are an effective neural network design 
for computer vision tasks. They involve layers of image convolutions, 
effectively image filters, being applied at varying scales to the image to 
bring out salient features and build a description of the image (Simonyan 
and Zisserman, 2014). The nature of the filters is learnt during the 
training process. Much research has been conducted using deep learning 
and CNNs for defect segmentation in concrete tunnel linings (Sjölander 
et al., 2023). The majority of studies consider concrete cracking, spal-
ling, or water ingress and take advantage of the homogeneous appear-
ance of a concrete surface and relative lack of tunnel damage or 
deformation found in newer concrete lined tunnels.

Initially, CNN architectures were only developed for classification 
tasks, so studies such as Protopapadakis et al. (2019) and Huang et al. 
(2018) split tunnel lining images up into overlapping patches. Damaged 
areas were identified by sliding a window of focus between these 
patches and using the difference in predicted damage likelihoods to 
determine the exact location of damage on the tunnel lining. Later 
research using R-CNNs enabled boundary boxes to be placed around 
identified damaged areas (Gao et al., 2019). Subsequently, Mask R-CNNs 
were developed that could semantically segment damage within each 
boundary box (Xu et al., 2021). Finally, encoder-decoder based net-
works, such as the U-Net (Feng et al., 2023) and domain specific 
adaptions including CrackSegNet (Ren et al., 2020) or U-CliqueNet (Li 
et al., 2020) have enabled pixelwise semantic segmentation of damage 
in lining images and form the most popular and well documented 
damage identification and localisation vision technique. Encoder- 
decoder designs follow the standard CNN encoder architecture with a 

decoder that rebuilds a segmented image from the description generated 
by the encoder.

Many of these methods, however, do not perform well when faced 
with less homogenous tunnel lining surfaces and the poor, uneven 
lighting conditions found in many tunnels. Some researchers have 
modified standard deep learning semantic segmentation networks to 
overcome this. Dong et al. (2019), for example, developed Fl-SegNet for 
concrete tunnel lining multi damage detection from photographic data. 
By combining the existing SegNet with a focal loss function, they 
increased the mean intersection over union score for crack and spalling 
segmentation in challenging low-light conditions.

An alternative approach is to investigate the tunnel geometry 
directly using 3D point clouds obtained by lidar or photogrammetry. 
Lidar is extensively used for documentation and analysis during the 
construction of new tunnels, as it produces a comprehensive 3D dataset 
within a short time and for a reasonable cost. It is therefore considered 
the preferred data collection method for automated tunnel analysis 
workflows (Allen et al., 2023). Lidar technology is also increasingly 
being integrated into autonomous robotic and drone-based inspection 
systems (Sjölander et al., 2023), so working with lidar data sets the 
groundwork for end to end automation of the inspection and condition 
assessment process.

2.2. Deep learning with 3D point clouds

There are four main approaches for applying defect detection and 
segmentation algorithms to 3D data: point based, voxel, multiview and 
single surface projection. A comparison of the key methods is shown in 
Table 1, while more detailed reviews of the application of deep learning 
to point cloud classification and segmentation can be found in Che et al. 
(2019), Guo et al. (2021) and Zhang et al. (2023).

Single surface projection has been used for segmenting damage on 
concrete-lined tunnel point clouds (Feng et al., 2023; Huang et al., 2020; 
Zhou et al., 2021) by using a cylindrical tunnel projection strategy. The 
studies rasterised radial offset, colour and intensity values to segment 

Table 1 
Methods of preparing 3D point clouds for semantic segmentation using deep learning.

Method Description Major use cases Relevant architectures Advantages and Disadvantages

Pointwise Operates directly on unstructured 3D 
point cloud data.

Segmentation of 3D shapes, e.g., 
Identification of tunnel structural 
components (Grandio et al., 2022; Soilán 
et al., 2020). Limited use for concrete 
cracking and spalling segmentation  
(Bolourian et al., 2023).

PointNet (Charles R Qi 
et al., 2017), Pointnet++ (
Charles R. Qi et al., 2017)

Takes full advantage of spatial location 
data. No data loss during preprocessing. 
Low efficiency at operating on features of 
different scales  
(Guo et al., 2021).

Voxel Points are rasterised onto a 3D grid. Segmentation of objects within 3D 
internal scans. Used for underground 
pipe, subsidence and crack detection 
from GPR data 
(Li et al., 2021). 

VoxNet (Maturana and 
Scherer, 2015), 
GPR-RCNN 
(Li et al., 2021)

Works well when data points inside an 
object are involved. Grid structure retains 
spatial relations of points. Large memory 
requirements. Algorithms struggle with 
data sparsity. Down sampling often 
required, leading to information loss  
(Guo et al., 2021).

Multiview 
projection

The point cloud is rasterised onto 
multiple 2D surfaces. 3D information is 
captured by training neural networks to 
understand the different image 
perspectives.

Object and shape classification. Point 
Cloud to BIM workflows

MVCNN, MHBN, View-GCN Integration of standard 2D CNNs enables 
good segmentation of local features in 
addition to global 3D shapes. 
The field is relatively undeveloped. 
Success is dependent on view selection; 
some points may be lost through 
occlusion.

Single 
surface 
projection

The point cloud is projected onto a 
surface and unwrapped, then rasterised 
into pixels on a 2D image. 3D 
information is captured by setting the 
pixel values as the projection distance. 
Standard 2D computer vision techniques 
are then applied.

Segmentation of surface features and 
textures on an isolated object. 
Segmentation of cracking, spalling and 
leakage on concrete tunnel linings using a 
cylindrical projection (Feng et al., 2023; 
Huang et al., 2020; Zhou et al., 2021).

CNNs (Simonyan and 
Zisserman, 2014), U-Net (
Ronneberger et al., 2015), 
U-Net++ (Zhou et al., 
2018)

Performs well at segmentation of local 
surface features and on objects with a 
simple global shape. It is possible to use 
and finetune pretrained networks from the 
well-developed field of 2D image 
segmentation. Loses some spatial 
relativity during rasterisation. Not 
effective at object segmentation within a 
larger 3D scene. Success is dependent on 
the unwrapping strategy  
(Gao et al., 2019).
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tunnel lining damage using 2D image based neural networks. Since the 
majority of concrete-lined tunnels are built with a cylindrical profile and 
have little lining deformation, cylindrical projection can accurately 
flatten the point cloud. However, the heavily deformed nature of a 
typical historic masonry-lined tunnel’s profile prohibits direct applica-
tion of their research to masonry spalling segmentation. Despite this, 
compared to pointwise, voxel and multiview methods, single surface 
projection methods are better developed for surface texture characteri-
sation (Zhou et al., 2021). In addition, they have the lowest compute 
requirements.

2.3. Machine learning for masonry tunnel assessment

While much research has been conducted on automating concrete 
lined tunnel condition assessment, Smith et al. (2023) is the only pub-
licly available study that could be found to have used deep learning for 
analysing masonry tunnel surfaces or to have applied deep learning to 
masonry point cloud data. The uneven and varied nature of masonry 
surfaces coupled with the variety of masonry materials and geometries 
has rendered deep learning based masonry condition assessment chal-
lenging. Masonry joints complicate defect segmentation, as they can be 
misidentified as cracks. Mortar loss can also easily be confused with 
masonry spalling. Ibrahim et al. (2020), Loverdos and Sarhosis (2022)
and Smith et al. (2023) have trained encoder-decoder CNNs to detect 
joint locations within masonry walls as a necessary prerequisite to 
further analysis. This enables individual block locations to be isolated, 
allowing analysis to focus either on the blocks themselves or at the 
boundary between them. Nevertheless, masonry wall crack detection 
using deep learning has mostly been conducted without prior block 
isolation (Brackenbury and Dejong, 2018; Dais et al., 2021; Hallee et al., 
2021; Karimi et al., 2023; Loverdos and Sarhosis, 2022). These studies 
used encoder-decoder networks trained on colour photographic data of a 
variety of masonry walls. Valero et al. (2019) and Wang et al. (2019)
used patch based RCNN methods to segment masonry containing 
spalling.

2.4. Automated severity assessment

While identification of the presence and location of structural defects 
is useful, for condition assessments to provide actionable information 
about the structural condition it is important to classify defects into 
meaningful severity categories. However, there has been little research 
considering automation of structural defect severity classification. For 
concrete structures, Flah et al. (2020) used deep learning to identify 
concrete crack sizes and orientations. These parameters were then used 
within existing codified severity assessment procedures to assess struc-
tural damage severity. In assessing concrete spalling severity, Nguyen 
and Hoang (2022) considered the existence of exposed rebars as indic-
ative of severe concrete spalling and trained deep learning networks to 
detect these.

However, despite the existence of codified masonry tunnel spalling 
severity classifications (NR, 2016), no research could be found that 
investigated masonry spalling severity location segmentation or looked 
at automated generation of spalling depth maps. Determination of 
spalling depth is a vital part of the routine masonry lined tunnel con-
dition assessment process, as it provides a strong indication of the health 
of the tunnel without requiring destructive testing that is unsustainable 
over the long lifespan of the structure. Given the current laborious 
process for spalling depth determination and severity classification 
outlined in section 2.1, an automated method would reduce the labour 
cost and improve the reliability of the assessment procedure. For an 
automated method to be successful, it must be applied in a standard 
procedure that is easily repeatable, understandable for operators and 
can generalise to work with most masonry tunnels on the railway 
network.

The often deformed and non-homogenous surface of masonry lined 

tunnels precludes the direct application of existing deep learning based 
concrete lined tunnel spalling detection methods to the task of masonry 
tunnel spalling segmentation. To obtain the benefits of condition 
assessment automation within masonry lined tunnels, this paper pro-
poses a fully automated workflow that is robust to tunnel deformations 
and varying masonry joint geometries. By combining a geometric 
analysis of block locations and orientations with the use of deep learning 
for joint detection and damage detection, the workflow enables robust 
masonry spalling segmentation for each block of masonry on the tunnel 
lining. In addition, the workflow is the first to automate the analysis of 
masonry spalling severity by segmenting and classifying masonry spal-
ling depth.

3. Methodology

The proposed workflow automatically locates the areas of spalling 
that fall into each severity category on the lining of a masonry tunnel 
from a lidar survey of the structure. It then visualises these locations on a 
3D point cloud. The workflow replaces the manual spalling labelling and 
severity categorisation steps of the condition assessment process shown 
in Fig. 1 with those shown in green within Fig. 2. To deal with the wide 
variety of masonry tunnels and reduce the amount of data labelling 
required when a new tunnel needs to be analysed, it is proposed that the 
method can be trained on a short 10 m section of tunnel, before being 
applied to other areas of tunnel with similar masonry styles and surface 
characteristics.

The method operates on 3D point cloud data using the following 
theory. Spalling severity is defined by the depth of spalling which is 
calculated as the offset from where the masonry face would be if it was 
unspalled. Therefore, the workflow must determine what the surface 
location and orientation of each block would be if it was unspalled. This 
differs from the as-built tunnel lining surface location, as the tunnel 
shape has likely since deformed. The unspalled lining surface is obtained 
by identifying undamaged surface points within the tunnel using a 2D 
convolutional neural network. The network uses a single-surface pro-
jection method to operate on the 3D point cloud data. An unspalled 
surface is fitted to the undamaged points. It is necessary, however, to 
account for differing masonry block orientations and geometries. As a 
result, the workflow uses a separate convolutional neural network to 
isolate individual masonry block locations by segmenting out the ma-
sonry joints. This enables a flat plane to be fitted to each individual 
block.

The complete workflow is shown in Fig. 3 and consists of 5 primary 
stages:

1. Unfold the tunnel 3D point cloud and rasterise point cloud parame-
ters onto a 2D image

2. Use deep learning to identify masonry joint locations and isolate 
individual blocks

3. Use deep learning to identify areas of block face damage and remove 
damaged locations

4. Fit planes to the remaining undamaged points on each block repre-
senting the unspalled masonry surface

5. Measure the depth of spalling from the unspalled masonry face 
planes to calculate damage severity

There are multiple advantages of this method. Firstly, by utilising 
point cloud data that is increasingly routinely collected by lidar during 
structural inspections, it is possible to slot this workflow into the current 
assessment methodology without requiring a change in overall proced-
ure or expensive new equipment. This paves the way for autonomous 
structural inspections that would reduce the disruption to railway op-
erations from line closure. As historic tunnels can be a hazardous envi-
ronment with dangers from falling masonry and dust, it also has positive 
impacts on the health and safety of tunnel inspections. The modularity 
of the workflow enables future developments in masonry damage 
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segmentation and masonry joint segmentation to be easily integrated 
into the method, by switching out the relevant deep learning network. 
The method also creates multiple additional outputs such as the location 
of each masonry block and the locations of masonry deformations. These 
provide additional documentation on the state of the structure and are 
useful analysis aids for an engineer. While it may also be possible to use 
deep learning to directly determine the depth of spalling, due to the 
black box nature of deep learning, it would be challenging to verify the 
results without a complete manual reassessment. It is easier to visually 
check the joint and damage detection steps separately for erroneous 
results. In addition, since the output defect depth value has a geometric 
basis, it produces a useful visualisation for the engineer and is easy to 
adjust to differing severity definitions.

3.1. Dataset

3D point cloud data of the linings of two masonry lined tunnels were 
provided by Bedi Consulting Ltd with the support of Network Rail for 
this study. They both contain operational railway lines and are named 
here only as Tunnel 1 (T1) and Tunnel 2 (T2). Point clouds of 20 m long 
sections of each were obtained by lidar and used as case studies to 
investigate the effectiveness of the workflow. T2 is predominantly lined 
with brick masonry, while T1 has a stone masonry lining. The age and 
condition of these tunnels is typical of those in operation on the British 
railway network and they represent the two most common masonry 
lining designs. Due to the geometric and surface texture differences 
between the two tunnels, the machine learning aspects of the workflow 
were trained on sections from each of them to enable the workflow to 
operate robustly on both types.

Fig. 2. Automated workflow within overall condition assessment procedure.

Fig. 3. Key steps of the automated workflow.
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3.1.1. Tunnel 1 (T1)
T1 is located at a shallow depth in an urban area and was built in the 

1870s. The tunnel is predominantly lined with blocks of oolitic lime-
stone, although some areas have been infilled with brick masonry. The 
circumference of the tunnel lining surface is 18.96 m. There is a sub-
stantial quantity of spalling and efflorescence on the tunnel lining, 
although in most areas it is of low severity. It is apparent from visual-
ising the point cloud data that the tunnel was constructed as a three 
centred arch. The presence of mortar loss and joint opening near to the 
crown suggests that inwards deformation is also present.

3.1.2. Tunnel 2 (T2)
Built during the 1850s, T2 is a deeper tunnel located in a suburban 

area. The tunnel lining cross-section forms a circular arc on top of curved 
sidewalls. It appears to have been originally lined with stone, but has 
been largely relined at some point with brick masonry. This masonry is 
in a relatively good condition with small areas of spalling.

3.1.3. Point cloud preparation
The obtained point clouds contain complete scans of the tunnel 

interior. These point clouds were manually cropped to remove the track 
bed, service cables and any vegetation growth to leave only points 
representing the tunnel lining. Isolated outliers were also removed 
manually. The resulting cloud had substantially larger point densities 
closer to the scanner locations. Therefore, to reduce the computational 
cost and reduce the impact of varying point densities on the results, the 
cloud was subsampled to minimum 4 mm point spacings. Further local 
outlier removal using statistical outlier removal was not undertaken, as 
it was found to reduce the number of points representing mortar and 
damaged areas, hindering the performance of the algorithm. Finally, the 
clouds were split into separate 10 m lengths for training and testing. 
Sections of these were used for assessment both of the overall workflow, 
and the neural network aspects.

3.2. Manual spalling segmentation

Both tunnels were assessed to NR/L3/CIV/006 (NR, 2016) by an 
engineer at Bedi Consulting Ltd using a manual workflow. The output of 
this analysis was used as the ground truth for assessment of the proposed 
automated workflow. The manual analysis was conducted by fitting a 
hypothetical undamaged surface to the tunnel lining through a combi-
nation of surface fitting and smoothing algorithms. Spalling depth was 
then measured as any outwards offset of points from this surface. 
Initially, areas of spalling, masonry joints and lining deformations were 
highlighted. The surface location was then refined using trial and error 
by adjusting the smoothing parameters until local spalling and masonry 
joints were visually distinguished from large scale tunnel deformations. 
Spalling locations and severities were determined using thresholding. A 

final visual analysis was conducted to remove masonry joints from the 
detected spalling areas.

4. Workflow development

The development and testing of each stage of the workflow is 
described here using the provided data as a case study. The workflow 
was implemented in Python and takes a point cloud cleaned of abnor-
malities and non-lining points as input. The cleaned T2 and T1 point 
clouds are visualised in Fig. 4.

4.1. Point cloud flattening

The first step of the workflow is to transform the 3D point cloud data 
such that it can be rasterised onto a 2D image compatible with the 2D 
semantic segmentation neural networks used for joint and damage 
segmentation. This must be conducted in a way that preserves the lin-
ing’s local morphology. While the tunnel lining data is 3D, it forms a 
single surface, so a single surface projection method can be used. Due to 
its computational simplicity and broad similarity to a tunnel profile, a 
cylindrical projection was chosen. For most masonry tunnels, this should 
capture every part of the lining without occlusion, ensuring no data loss 
during the rasterisation step. While the deep learning stages of the 
workflow are designed to operate with distorted images, the 
morphology of the unrolled surface must be constrained to limit dis-
tortions in the rasterised image. As a result, the maximum deviation of 
the unrolled tunnel surface from a plane is set as 30 degrees to ensure 
that the deep learning models operating on the rasterised point cloud 
can be trained in a reasonable time with the provided volume of data. To 
ensure that this limit is not exceeded, the tunnel point cloud must first be 
split into sections where the alignment deviates a maximum of 30 de-
grees from a straight line. As the alignment curvature of T1 and T2 is less 
than this, the full sections are used.

For the case of tunnels on adhesion railways, the maximum incline is 
typically 4%, so the cylinder can be aligned horizontally, with the centre 
set as the centroid of the point cloud. Rotation of the cylinder in the 
horizontal plane is then set using principal component analysis of the 
cloud’s convex hull. The direction of the 1st eigenvector is set as the 
tunnel centreline orientation.

Each tunnel point is projected onto the cylinder then unrolled using 
cylindrical co-ordinates. The offset of each point from the cylinder forms 
the offset depth parameter used for analysis in the subsequent stages of 
the workflow. Due to varying as-built profiles and long-term lining de-
formations, the unrolling produces an uneven surface for most tunnels as 
shown in Fig. 5. As a result, for the workflow to operate effectively, the 
neural network stages must be trained for a variety of uneven data. Steps 
taken to improve neural network generalisation performance can be 
applied to enable the networks to accurately segment local features from 

Fig. 4. Cleaned point clouds of T1 and T2 used as input to workflow (colour data shown to aid visualisation).
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the wavy global profile of the offset depth. Provided that the relevant 
areas are still visibly prominent, this enables the workflow to operate on 
a range of tunnel lining profiles.

4.2. Masonry joint and damage segmentation

This part of the workflow uses one neural network to semantically 
segment masonry joint locations and another to segment locations of 
lining damage. The process used for designing each neural network is 
visualised within Fig. 6, while each stage is explained in detail in the 
following subsections.

4.2.1. Rasterisation
The offset of each point from the fitted cylinder was chosen as the 

parameter to rasterise into a 2D image compatible with the 2D neural 
network approach chosen. The work conducted within Smith et al. 
(2023) identified a combination of defect depth, normal variation, sur-
face roughness and intensity parameters forming a 4-channel image to 
be the most effective, with a SegAN (Xue et al., 2017) generative 
adversarial segmentation network achieving the best segmentation 
performance. Despite this, the single channel defect depth parameter 
(depth offset) was adopted, as it was used in the best performing single 
channel network. A single channel network is substantially faster to 
train, with lower memory requirements. In addition, it enables the 
method to operate when colour or intensity data is not available or of 
poor quality.

For training and testing both neural networks, input data was taken 
from the unwrapped T1 and T2 point clouds. Each point offset value was 
projected vertically downwards onto a 2D plane and rasterised onto a 
2D, 32bit single-precision floating-point format image. The resolution of 
the rasterised image can be manually set, although a minimum best case 
resolution with no data loss is automatically calculated. Points are 
binned into their nearest neighbour pixel. In the case where multiple 
points are assigned to the same pixel, then an average value is taken. 
Empty pixels receive a linearly interpolated value. The transformation 
from point cloud to image was recorded so that output images can be 

accurately projected back onto the initial point cloud to aid visual-
isation. A 11.7x13.9 m section of T1 and a 3.7x3.2 m section of T2 were 
taken for training the neural networks. These included 10,353,454 and 
633,222 3D points respectively, before rasterisation. Because T2′s bricks 
are smaller than the predominantly stone blocks found within T1, more 
T1 than T2 data was used, with the generated images containing 
approximately 500 individual masonry blocks per wall. A 5x1.5 m sec-
tion of T1 and a 0.9x2.3 m section of T2 were used for testing.

4.2.2. Synthetic data
There are three well documented methods of preparing the dataset 

and neural network to improve performance and generalisability once 
trained (Seib et al., 2020):

• Transfer learning by pretraining networks on large general datasets 
and tasks before fine-tuning for the relevant task and domain.

• Applying image augmentations to transform the dataset into a vari-
ety of realistic alternatives.

• Creating synthetic data with similar features to the real dataset and 
combining it with the real training data.

All three of these methods were used in this study. Synthetic data 
representing damaged masonry was generated and added to the training 
and validation sets. This data was created in 7 stages:

1. 1024x1024 images were created and random horizontal and vertical 
joint spacings were applied.

2. Masonry joints were modelled as normal distributions. Horizontal 
joints were placed first, followed by vertical joints between them. 
The vertically repeating vertical joint offset pattern was given a 50% 
likelihood of being randomised. Otherwise, a random standard ma-
sonry bonding pattern was selected.

3. Areas of damage were added to the images. Randomly placed control 
points were used to generate Bezier curves delineating the area of 
damage. These were defined as either representing spalling or 
efflorescence and can overlap each other. Damage areas representing 
spalling were curtailed at the joint locations.

4. Within an area of spalling, the depth of spalling was modelled as 
having a randomised uniform gradient that is generated by a distance 
transform within the boundary of the spalling area. Further de-
viations were added by introducing small areas with random offsets. 
These were smoothed into the image, by applying a Gaussian blur.

5. Efflorescence was modelled by taking the magnitude of small scale 
Perlin noise and subtracting it from the image. Perlin noise (Perlin, 
1985) was developed for generating pseudorandom computer 

Fig. 5. A section of T1 unrolled using the cylindrical projection approach.

Fig. 6. Neural network training procedure.
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graphics textures. It has a more organic appearance than standard 
noise functions and tunable levels of smoothness.

6. Large scale Perlin noise was applied to model both deformations of 
the lining and the overall gradient in the real training images caused 
by the tunnel unwrapping method.

7. Gaussian noise was applied to model the masonry roughness.

Realistic upper and lower bounds to the randomised parameters 
were obtained through trial and error with comparison to the T1 and T2 
data. These are outlined in Table 2. A visualisation of the underside of a 
synthetically generated image is shown in Fig. 7 and a comparison be-
tween a real and synthetic data patch is shown in Fig. 8.

4.2.3. Masonry joint segmentation labelling
In order to train the masonry joint segmentation network, binary 

masks were drawn representing the ground truth joint locations. While 
typically for semantic segmentation tasks pixels are labelled individu-
ally, in this case often the areas of mortar are very thin, and the exact 
pixel location of a joint can be challenging to determine. Since the aim of 
this stage is to isolate each masonry block by determining the joint lo-
cations, ensuring that the full length of each joint is identified is more 
important than generating exact pixel wise segmentation of the width of 
the mortar area in each joint. To assist the network in predicting joint 
locations that are difficult to identify independently without knowledge 
of adjacent joint locations, the joint masks were created containing lines 
of constant thickness at the joint locations.

4.2.4. Damage segmentation labelling
The aim of the damage segmentation network is to identify areas of 

damaged masonry in order to remove their pixels from each block. The 
training masks were created by defining damage as any area with an 
offset of 5 mm from a manually determined undamaged block surface. 
Areas of masonry joints were included. Since masonry joint locations are 
also identified and removed by the joint detection network, including 
joint detection in the damage detection network has no impact on the 
operation of the overall workflow.

4.2.5. Data augmentation
The training images were augmented to increase the effective 

amount of training data and improve the generalisability of the method. 
The parameters and probabilities of the transforms being applied were 
optimised to create a wide variety of training images, while ensuring 
that the images were representative of possible real world masonry 
configurations and conditions. The following augmentations were 
applied using the Albumentations Python library:

• Vertical and horizontal flips. Since masonry typically follows hori-
zontally and vertically aligned patterns, these transformations pro-
duce realistic geometries.

• Elastic transform and grid distortion. These transformations were 
applied with a low intensity to model deformation of the masonry in 
the plane of the tunnel lining and non-flat masonry courses. Grid 
distortion was applied before the image cropping to better represent 
deformations over a larger scale.

• Random brightness shifts to represent varying depth magnitudes 
dependant on the diameter of the tunnel and the cross-sectional 
profile relative to a cylinder.

• Random contrast shifts to represent varying magnitudes of masonry 
homogeneity and varying mortar depths.

• Perlin noise to represent deformations perpendicular to the plane of 
the lining and those resulting from the cylindrical unwrapping pro-
cess in different tunnel geometries.

• Small levels of gaussian noise representing possible variations of true 
point locations within the accuracy limit of the lidar equipment.

An example of the augmentation workflow on a section of T2 is 
shown in Fig. 9 and optimum augmentation parameters are shown in 
Table 3.

Table 2 
Synthetic data parameter limits.

Stage Description Parameter Lower Bound Upper Bound

1 Block length Number of 
pixels

50 350

1 Block height Number of 
pixels

Block_length/ 
2.6

Block_length/ 
1.3

2 Horizontal offset 
between vertical 
joints

Number of 
pixels

0 Block_length

3 Bezier curve 
control points

Scale = 0.8 − −

3 Bezier curve 
control points

Number of 
points

3 15

3 Generate Bezier 
curve

Rad 0 1

3 Generate Bezier 
curve

Edgy 0 10

4,5 Probability of 
damage

p = 0.7 − −

4,5 Number of 
damaged locations

N 0 17

4,5 Depth of damage Scale factor 0 5
4,5 Height of damage Number of 

pixels
Block_length/ 
6

Block_length*4

4,5 Width of damage Number of 
pixels

Block_length/ 
6

Block_length*4

6 Add small scale 
Perlin noise

Scale = 1 
Octaves = 8 
Persistence 
= 0.85 
Lacunarity =
2.0 
Variation =
0.3

− −

6 Add large scale 
Perlin noise

Scale = 1 
Octaves = 2 
Persistence 
= 0.2 
Lacunarity =
2.0 
Variation =
0.3

− −

7 Add Gaussian noise Limit 0 0.15

Fig. 7. 3D visualisation of area of synthetically generated masonry (offset 
depth axis stretched to aid visualisation).
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4.2.6. Neural network design
In order to ensure that the optimum neural network design was 

chosen for each task, a variety of neural network architectures were 
assessed. The U-Net developed by Ronneberger et al. (2015) and the U- 
Net++ adaption by Zhou et al. (2018) were tested with different en-
coders as their backbone. A comparison of the different encoders is 
shown in Table 4. While there are many architectures that achieve state 

of the art semantic segmentation performance in a range of domains, 
these networks were chosen to examine the workflow potential due to 
their popularity and past performance on masonry images (Ibrahim 
et al., 2020; Loverdos and Sarhosis, 2022; Smith et al., 2023). The 
workflow is designed such that other neural networks could replace 
these following developments in semantic segmentation technology.

The U-Net is one of the most popular architectures for semantic 

Fig. 8. 2D depth offset images used for neural network training.

Fig. 9. Crop and augment workflow with all possible augmentations applied to a patch of T2.
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segmentation, as it was the first to demonstrate excellent results with 
transfer learning and only limited domain specific training. It follows a 
standard encoder-decoder design, with added skip connections between 
the encoder and decoder. These enable the decoder to incorporate 
spatial details from the input at the relevant encoder level with feature 
information from the deeper levels of the network. This produces more 
accurate pixelwise segmentation at class boundaries than designs 
without skip connections.

The U-Net++ is a more complex development of the original U-Net 
design which was developed to give the network more flexibility. The 

design fills in the centre of the U-Net with further convolutional and 
upsampling modules that enables it to perform in effect as a series of 
nested U-Nets of varying depths. This helps the overall network better 
characterise features at different scales.

While parameter gradients are calculated through backpropagation, 
optimisers provide the method for iterating towards a set of parameters 
that minimises the loss function. Three different optimisers were tri-
alled, SGD, ADAM (Kingma and Ba, 2014) and ADAMW (Loshchilov and 
Hutter, 2017). A soft dice loss function was chosen, as it has been shown 
to be effective for semantic segmentation tasks with large class imbal-
ances (Sudre et al., 2017).

4.2.7. Training configuration
The neural networks were trained using the PyTorch library on a 

Nvidia GTX 970 GPU, with 4 GB of VRAM. The system used an Intel i7 
2600k CPU with 16 GB of RAM. The created training images were split 
between training and validation sets in a 4:1 ratio. There is a compro-
mise between the speed of training, the training image dimensions used 
and the convergence of the training loss. If a larger image dimension is 
used for training, then the network will be better able to capture larger 
scale image features, such as whole masonry block geometries. How-
ever, the number of training images will be reduced, potentially leading 
to overfitting and poor generalisation performance. As a result, it was 
determined that randomly sized and located crops of 1024x1024 
patches would be taken and then rescaled to 256x256 for training. This 
enables a batch size of 4, while training the network on both larger and 
smaller scale features.

For each task, the U-Net and U-Net++ were trained with the selected 
encoders for a maximum of 500 epochs. A grid search was performed on 
the network, encoder and optimiser combinations, by selecting the top 
performing trained model at the epoch with the lowest validation loss 
for testing. For the task of masonry joint segmentation, the network 
hyperparameters of the best performing networks were optimised using 
trial and error. The selected hyperparameters are shown in Table 5 and 
were reused for the damage segmentation task.

4.2.8. Joint segmentation results
Joint segmentation results are shown in Table 6. The Intersection 

over Union score (IoU) was used to quantify semantic segmentation 
performance. This is calculated by dividing the union of predicted and 
ground truth classified pixels on an image, by their intersection. A vis-
ualisation of intersection and union is shown in Fig. 10. This rewards 
true positives and punishes both false positives and false negatives. A 
score of 0.5 or above is considered a standard performance target.

All of the fully optimised networks in Table 6 achieve acceptable 
performance. These results are in line with or superior to those produced 
by (Smith et al., 2023) using a manually flattened point cloud for the 
same task. As their method had no distortions or offsets in the training 
and testing images, these results show that appropriate augmentations 
and synthetic data enable the networks to learn to work effectively with 
minorly deformed raster images. Although the larger ResNet34 encoder 
performs better on the more complex T1 task, MobileNet_v2 performs 
best on T2 and on average over both tunnels. The smaller MobileNet_v2 

Table 3 
Data augmentation parameters.

Augmentation Probability Parameter

Horizontal Flip 0.5 −

Vertical Flip 0.5 −

Elastic Transform 0.5 Alpha = 500, Sigma = 40, Alpha_affine = 8
Grid Distortion 0.5 Num_steps = 5
Random Brightness 

Random Contrast
0.7 
0.7

Brightness_limit = 0.5 
Contrast_limit = 0.2

Gaussian Noise 0.7 Var_limit = [0,0.15]
Perlin Noise 0.4 Variation = 0.3, Octaves = 2, 

Persistence = 0.2, Lacunarity = 2.0

Table 4 
Encoders assessed.

Encoder No. of 
parameters

No. of 
layers

Date Description

VGG19 20M 19 2014 This was the first very deep 
CNN and created the 
baseline CNN encoder 
architecture. Greater 
depth without an 
unreasonable number of 
parameters is achieved by 
using small 3x3 
convolution filters

ResNet34 21M 34 2015 ResNet introduced 
residual blocks into the 
encoder design. These add 
skip connections between 
layers that bypass image 
convolutions allowing 
higher level convolutions 
to remain relevant deeper 
into the network. This 
allows deeper networks as 
it helps to overcome the 
vanishing gradient 
problem.

ResNet101 45M 101 2015 This is a deeper version of 
resnet34 and was tested to 
evaluate the effect of using 
a network with more 
trainable parameters.

ResNet18 11M 18 2015 This is a shallower version 
of resnet34 and was tested 
to evaluate the effect of 
using a network with 
fewer trainable 
parameters.

ResNext50_32x4d 22M 50 2017 Introducing the variable of 
cardinality, ResNeXt adds 
a split-transform-merge 
strategy to ResNet

MobileNet_v2 2M 15 2018 With only 2 million 
parameters, Mobilenet was 
developed to operate in 
low memory environments 
by introducing inverted 
bottleneck residual 
modules.

Table 5 
Selected hyperparameters.

Parameter Value

Learning rate 0.001
Image dimension 256 x 256
Weight decay 0
Pretrain ImageNet
Eps 0.00000001
Dropout 0
Learning rate 0.001
Batch size 4
Loss function Soft Dice
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generalises better due to not overfitting to the training data. The better 
flexibility of U-Net++ allows it to outperform the U-Net model on 
average.

To help select the best network for both datasets, it is important to 
understand the typical training pathways. Fig. 11 shows the output of 
the ResNet34 U-Net when trained with the ADAM optimiser on the test 
images at different epochs. The network initially generates a large 
proportion of false positive pixels for both T1 and T2 when trained for 
only 40 epochs. T1 requires more training than T2 for the IoU to plateau 
and final performance is better on T2 than T1. This demonstrates the 
increased training requirements caused by the complexity of the stone 
masonry in the T1 dataset, compared to the more regular and less 
damaged masonry in the T2 dataset. The best performer overall, the U- 
Net++ MobileNet_v2 network, is chosen as the optimum network.

4.2.9. Damage segmentation results
The top performing networks for damage segmentation are shown in 

Table 7. As the joint locations were determined in the previous stage of 
the workflow, the joints were masked out of the images prior to IoU 
calculation. The impact of this is shown in Fig. 12. A U-Net++ with a 
MobileNet_v2 encoder was determined to be the best overall and is 
chosen for the workflow, as it achieves an IoU of 0.3890 on average 
between T1 and T2. The network is shown in Fig. 12 to identify the 
locations of the largest areas of spalling. Damage segmentation perfor-
mance is lower than joint segmentation performance, although is qual-
itatively considered adequate due to the robustness of the overall 
workflow.

4.3. Block isolation

Following joint detection, it is necessary to identify the location of 
each masonry block. However, since small areas of masonry joint are 
often undetected by the masonry joint detection network, many blocks 
do not have the complete closure required for block isolation. (Ibrahim 

Table 6 
Top performing U-Net and U-Net++ models for masonry joint segmentation.

Tunnel T1 T2 Combined average

Network U-Net U-Net++ U-Net U-Net++ U-Net U-Net++

IoU 0.513 0.5554 0.600 0.635 0.569 0.570
Encoder ResNet34 ResNet34 MobileNetv2 MobileNetv2 MobileNetv2 MobileNetv2
Optimiser Adam Adam AdamW Adam AdamW Adam
Number of trainable parameters 24430097 26072337 6628369 6824145 6628369 6824145

Fig. 10. Intersection over Union (IoU) visualisation.

Fig. 11. ResNet34 U-Net masonry joint semantic segmentation prediction on test data after varying numbers of epochs.
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et al., 2020) tackled this by applying watershed segmentation to the 
output of the joint detection network. Their method was trialled; 
However, it was necessary to manually determine different watershed 
algorithm parameters when applied to each of T1 or T2. As a result, a 
simpler geometric joint fitting algorithm was developed. This method 
relies on masonry being oriented with the horizontal and vertical joints 
being close to perpendicular. Lines are fitted in the positions of the 
masonry course joints if the output of the joint detection network pro-
duces a mask that covers at least 80% of a horizontal line across an 
image. Then between these lines, vertical lines are drawn at each loca-
tion there is a greater than 90 % connection between each masonry 
course. Although the method fails at locations where the masonry type 
changes from brick to stone or if large deformations are present, overall 
the joint detection IoU increases for the top performing U-Net++

MobileNet_v2 network trained with ADAM. The performance on T1 in-
creases from 0.5255 to 0.5361 and the output is shown in Fig. 13. A key 
restriction on this method is that it can only operate when masonry 
vertical and horizontal joints are perpendicular and there is limited in- 
plane deformation over each image patch. It fails at boundaries be-
tween blocks with different heights.

A connected components analysis is used to isolate each individual 
block instance after joint fitting has ensured that each block is 
completely enclosed. This uses the 8-way connectivity Spaghetti label-
ling algorithm developed by Bolelli et al. (2020) and was implemented 
using the OpenCV library.

4.4. Plane fitting and spalling severity calculation

The final step of the workflow is to identify the spalling severity of 
each point on the original 3D point cloud. There are 6 stages, each 
demonstrated in Fig. 14:

1. All pixels representing areas of masonry joints or lining damage are 
removed from the raster image generated in section 4.2.1, using the 
masks generated by the neural networks in sections 4.2.7 and 4.2.8.

2. Using the pixel coordinates of each block calculated in section 4.3, 
the remaining pixels within each block are isolated. Stage 3 is then 
applied to each block individually. If the proportion of a block’s 
pixels that contain damage is greater than the damage proportion 
threshold (DPT) parameter, then 3(a) is conducted, otherwise 3(b) is 
applied.

3. (a) If a block is not too badly damaged, a best fit plane is applied to 
the depth values of the remaining pixels of the block. Each block is 
iterated over individually using a 2D linear least squares fit. This is 
evaluated using the LAPACK dgelsd routine (“LAPACK: dgelsd,” n. 
d.). The resulting best fit planes create an image representing the 
location of the hypothetical unspalled surface.

3. (b) It is determined that the block is too heavily damaged to reliably 
calculate the block’s undamaged surface using its points alone. The 
block’s undamaged surface is therefore interpolated from adjacent 
blocks that are not heavily damaged. The nearest horizontally 
adjacent blocks that have less than the defined DPT% damage are 
identified each side of this block. The right edge pixels of the left side 
block and the left edge pixels of the right-side block are taken from 
those blocks’ fitted undamaged planes and an average gradient is 
calculated from the top to the bottom of the block. With the vertical 
gradient set, the horizontal gradient of the block is set as a best fit 
between the two adjacent undamaged blocks.

4. The pixel offset values from step 1 of the overall workflow are sub-
tracted from the fitted plane location values to produce a map of 
offsets from the undamaged surface. Pixels with positive values show 
spalling depth.

5. Depending on whether the wall consists of stone or brick masonry, 
the spalling severity categories are obtained from the table shown in 

Table 7 
Top performing U-Net and U-Net ++ models for masonry damage segmentation.

Tunnel T1 T2 Combined average

Network U-Net U-Net++ U-Net U-Net++ U-Net U-Net++

IoU 0.413 0.459 0.321 0.319 0.367 0.389
Encoder ResNext50 MobileNet_v2 ResNext50 MobileNet_v2 ResNext50 MobileNet_v2
Optimiser Adam Adam Adam Adam Adam Adam
Number of trainable parameters 31986705 6824145 31986705 6824145 31986705 6824145

Fig. 12. Section of masonry damage semantic segmentation on T1.

Fig. 13. Masonry joint segmentation before and after application of joint fitting algorithm.
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Fig. 14 (NR, 2016) and applied as thresholds to the offset image. This 
creates maps showing the locations of masonry that have each level 
of spalling severity.

6. Using the 3D point index to pixel location mapping saved during the 
rasterisation step of the complete workflow, the spalling severity 
maps are projected back onto the relevant points on the original 3D 
point cloud and set as a scalar field for easy visualisation. The images 
generated during the intermediate steps, such as joint positions, 
areas of damage and undamaged surface plane locations can also be 
projected onto the point cloud in this way.

5. Workflow results and discussion

The full workflow takes approximately 30 min to evaluate on a 10 m 
length of T1 with no manual input, using default parameters. It produces 
a final 3D visualisation of spalling severity locations as shown in Fig. 15. 
With the manual workflow output set as the ground truth, Table 8 shows 
the IoU of the automated workflow for each level of spalling severity 
segmented. As performance is evaluated on the damage locations 
reprojected onto the point cloud, the IoU is evaluated per point. For T1, 
S1 performance is greater than S2 and S3, although all IoU scores are 
acceptable.

Performance on T2 is worse than T1. For S3 spalling, this is most 

likely because of poorer damage segmentation performance on T2 due to 
the smaller size and resulting lower resolution of each masonry block. 
The accuracy of the lidar scanner used appears to be insufficient in some 
areas, with substantial levels of noise limiting the neural network ma-
sonry joint segmentation performance. The Leica ScanStation P30/P40 
series is a typical lidar scanner used for tunnel condition assessments. 
They have a 3D point location accuracy of 3 mm at 50 m range. Since 
each scan would usually be taken of a section of tunnel shorter than 40 
m, and 3 mm is less than the minimum S3 spalling threshold of 10 mm, 
the range does not cause a major issue. However, the point location 
accuracy is one third of the range of values used for thresholding S3 level 
spalling (20 mm > S3 > 10 mm) in brickwork, so the accuracy will have 
a notable effect on the level of S3 spalling segmented. Furthermore, 
some tunnels may have the mortar joints offset only a couple of milli-
metres from the masonry face, so the lidar accuracy may be insufficient 
for effective joint segmentation.

The small amount of S2 and S1 spalling within the T2 test data yields 
the S1 and S2 results for T2 inconclusive.

For both tunnels, S3 spalling is substantially more extensive than S1 
and S2. It is also more difficult to manually segment, as the small 10 mm 
threshold makes it challenging to identify against noise. For the auto-
mated workflow, to achieve a similar level of S3 segmentation perfor-
mance, the damage segmentation neural network performance needs to 

Fig. 14. Top: Output of each stage of the plane fitting and severity thresholding algorithm for a three block section of T1. Bottom: Network Rail masonry spalling 
severity thresholds (No Concern category non-standard, but generally accepted).
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be greater than that for S2 and S1. This is because small changes in the 
fitted plane location will have a greater impact on the predicted S3 
spalling locations.

Conversely, poor S1 and S2 performance is typically caused by the 
spatial extent of spalling being greater than around S3. This leads to 
adjacent blocks being used for plane fitting, an approximation which 
impacts the accuracy of the output defect depth map. S1 and S2 sever-
ities have a substantially greater significance to the health of the 
structure than S3 and typically require imminent repairs after an 

inspection. For S3 spalling, during manual analysis small quantities are 
typically ignored and larger areas do not need accurate localisation. 
Only a notification of the presence of S3 in a broad area is required, to 
mark it for future inspections. Table 9 shows a comparison of the extent 
of spalling within each severity category against the ground truth. As 
expected, the performance of total S3 spalling extent is greater for both 
tunnels than the pixelwise segmentation performance and the workflow 
achieves adequate S3 localisation accuracy against that typically 
required for both T1 and T2. For all severity levels, T1 produces a more 

Fig. 15. Progression of the overall workflow (a) Input point cloud (colour data shown). (b) Output of workflow showing defect depth values. (c) Spalling severity 
output (key in table).

Table 8 
Pointwise IoU score for different severity categories for each tunnel.

Plane fitting 
damage 
proportion 
threshold

IoU for spalling 
greater than S1

IoU for spalling 
greater than S2

IoU for spalling 
greater than S3

T1 
(>100 
mm)

T2 
(>50 
mm)

T1 
(>40 
mm)

T2 
(>20 
mm)

T1 
(>10 
mm)

T2 
(>10 
mm)

20% DPT 0.482 None 0.494 0.122 0.500 0.307
40% DPT 0.648 None 0.504 0.126 0.504 0.317
60% DPT 0.648 None 0.507 0.237 0.498 0.432
80% DPT 0.675 None 0.540 0.045 0.406 0.055

Table 9 
Measure of the difference in predicted spatial quantity of spalling, calculated 
within each severity category by taking the total number of predicted spalling 
points minus the number of ground truth points and dividing by the total 
number of ground truth spalling points within each test segment.

Deviation in predicted spatial quantity of spalling

S1 S2 and S1 S3, S2 and S1

T1 (>100 
mm)

T2 (>50 
mm)

T1 
(>40 
mm)

T2 (>20 
mm)

T1 (>10 
mm)

T2 (>10 
mm)

− 18.0% N/A − 37.3% +91.5% − 31.4% − 7.98%
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conservative segmentation, with more false negatives than false posi-
tives, while the reverse is true for T2.

The damage proportion threshold (DPT) is an important parameter 
that must be optimised to maximise workflow performance. Higher DPT 
values would be expected to perform better, as this reduces the number 
of blocks that must approximate their fitted unspalled surface from 
neighbouring blocks. However, a higher DPT also places more emphasis 
on points close to the edge of damaged areas for unspalled face plane 
fitting. The damage segmentation is more likely to be inaccurate close to 
the edges of damaged areas, so in these areas a higher DPT will use more 
points that are likely to be incorrect for unspalled plane fitting. As a 

result, a lower DPT should have a moderating influence, reducing seg-
mentation accuracy, but preventing large error magnitudes on the fitted 
planes and defect depth maps. Ideally, the performance of different 
tunnels would be robust to variations in the selected DPT values. A DPT 
value sensitivity analysis was therefore conducted, and the key results 
are shown in Table 7. While the IoU drops significantly for some very 
low or high values of DPT, overall the IoU is not considerably sensitive to 
the DPT chosen. For T1, a higher DPT yields better performance on se-
vere S1 spalling, while for S3 a DPT of around 40% is optimal. This is 
because for deeper spalling, the damage detection network is likely to 
achieve a more accurate segmentation. As a result, the remaining 

Fig. 16. Section of T1 with good algorithm performance.
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undamaged points have a higher level of certainty, so the plane fitting 
method can still achieve accurate results with fewer points. A DPT of 
60% achieves acceptable results for each severity category of T1.

An in-depth comparison of workflow performance on two areas of 
tunnel is visualised in Figs. 16 and 17. A comparison of the algorithm 
output on the entire testing dataset is included in Appendix A. The area 
of tunnel in Fig. 16 shows a qualitatively good segmentation with only 
small errors in the extent of each area of damage and no falsely classified 
regions of damage. There are also no regions where the difference be-
tween the output and ground truth has a significant magnitude.

Fig. 17 shows a typical cause of algorithm failure in T2. A noisy area 
in the top left of the image is too challenging to manually segment any 

defects or masonry joints. The block and damage segmentation neural 
networks both fail here. However, despite good performance by both 
neural networks outside of this area, some of the unspalled face planes 
are poorly fitted to the right of this area. This is due to the joint detection 
network not placing a joint at the edge of the noisy area, so the unspalled 
block face plane is fitted using some of the noisy points. In addition, 
there is a false negative area of spalling near to the middle of the image. 
This is caused by too many false negatives within the damage segmen-
tation neural network causing a underprediction of the spatial extent of 
damage. As it is challenging to determine the accuracy of the manual 
severity assessment output, it is possible that in some areas the auto-
mated method is producing more accurate results. Additionally, unlike 

Fig. 17. Section of T2 showing poor algorithm performance.
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the manual method, the algorithmic nature of the automated method 
ensures that the results are repeatable and understandable.

In order to better understand how the number of false positive and 
false negative predictions can be balanced, it is necessary to determine 
whether adjusting the defect depth threshold for each severity category 
could achieve a higher IoU. Fig. 18 shows how the optimal threshold 
varies for determining the amount of spalling that is greater than a 
corresponding defect depth target representing a hypothetical severity 
level within T1. The peak IoU appears at a threshold value lower than 
the semantically expected one for every severity level. This suggests that 
the workflow has too many false negative predictions, as a lower 
threshold would display a larger area of spalling. This could be coun-
teracted by empirically lowering the threshold for each spalling severity 
level.

Overall, accuracy could be improved by encouraging the damage and 
joint segmentation CNNs to generate fewer false negatives, but more 
false positives during training. This would prevent unspalled block face 
planes from being fitted to potentially damaged areas of masonry, or to 
incorrect blocks. However, too many false positives would result in not 
enough undamaged points remaining within each block for accurate 
undamaged face plane fitting.

6. Concluding remarks

This paper provides a proof of principle workflow for a fully auto-
mated method of masonry spalling detection, localisation and severity 
classification in masonry lined tunnels. The method uses a novel block 
isolation and undamaged surface fitting scheme to identify the depth of 
masonry spalling. Operating on 3D point cloud data circumvents the 
limitations of current state of the art photograph-based deep learning 
masonry damage segmentation methods that are unable to reliably 
determine spalling boundaries on noisy data. As a result, our method 
expands beyond masonry damage location segmentation to consider 
automation of masonry spalling depth map generation and masonry 
spalling severity classification. The benefits of this are twofold:

1. Accurately generating spalling severity maps enables asset managers 
to easily prioritise maintenance work and track the progression of 
damages between inspections.

2. Creating a spalling depth map enables the impact of spalling to be 
easily removed from a tunnel lining point cloud. Without the clutter 
of surface damages, an Engineer can then more easily analyse the 
location of structurally critical larger scale lining deformations.

As one of the most time-consuming desk-based tasks for the assessing 
engineer, this workflow has the potential to provide substantial labour 
savings to the overall condition assessment process. By combining 
geometrical and deep learning-based methods, the workflow is robust to 
localised areas of unclear data and provides explanation to the output. 
The method produces multiple intermediate deliverables including joint 
locations, damage locations, a record of the co-ordinates of each ma-
sonry block, and the location of a predicted unspalled masonry surface 
that may be utilised for lining deformation analysis. These can all be 
visualised on the original 3D point cloud, enabling each stage of the 
workflow to be fully scrutinised.

The workflow has potential application to masonry tunnel condition 
assessment worldwide and may be further modified for use with other 
masonry structures, such as masonry arch bridges. It was trained and 
tested on data from two different tunnels in the UK and was shown to 
perform particularly well overall on the stone lined tunnel test data. 
High severity spalling is captured well, however lower severity spalling 
has more uncertainty due to the higher accuracy required from the block 
isolation and damage detection steps in addition to greater uncertainties 
in the benchmark manual results.

Before a similar workflow can be applied within industry, there are 
three areas where further research is required. Firstly, an acceptable 

level of accuracy for an automated method needs to be determined. It is 
known that human assessors can obtain differing condition assessment 
results, however more research needs to be conducted to determine 
whether an automated method would fit acceptably within the existing 
levels of uncertainty. Secondly, as this study trained and tested the 
machine learning aspects of the workflow on only 2 different tunnels, it 
is unknown how well the trained models would generalise to other 
masonry tunnels. Although the data contained both stone and brick 
masonry and was augmented to mimic a variety of other masonry con-
ditions, historic masonry tunnels can contain a wide variety of different 
materials, levels of damage and geometries. In addition, while the 
method is trained for deviations from a cylindrical profile of up to 30 
degrees, it is unknown how well the method will perform when larger 
deformations are present. The geometrical limitations of the vertical and 
horizontal joint fitting method also needs to be addressed. Finally, 
research needs to be conducted into determining and fulfilling practical 
considerations to further reduce the required operator input. Required 
point cloud densities, processing power, development of a graphical user 
interface, and better adaption of the method to differing tunnel geom-
etries should be investigated.
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