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Abstract: The present study deals with the investigation of the oscillatory morphology of guided slow

body MHD modes in inhomogeneous magnetic waveguides that appear in the solar photospheric

plasmas in the forms of pores or sunspots. The eigenvalues and eigenfunctions related to these

waves in an isothermal plasma are obtained numerically by solving a Sturm-Liouville problem with

Dirichlet boundary conditions set at the boundary of the waveguide. Our results show that the

inhomogeneities in density (pressure) and magnetic field have a strong influence on the morphology

of waves, and higher-order more are sensitive to the presence of inhomogeneity. Our results suggest

that he identification of modes just by a simple visual inspection can lead to a misinterpretation of

the nature of modes.

Keywords: magnetohydrodynamic (MHD) waves; plasma inhomogeneity; magnetic field; guided

waves; sunspots and pores

1. Introduction

The investigation of the nature, properties and propagation of magnetohydrodynamic
(MHD) waves in solar magnetic structures has received a new impetus thanks to the
available high resolution and high cadence observational facilities. Waves generated in
the solar photosphere are able to transport mass and momentum into the upper solar
atmosphere, contributing to the heating of upper layers. Waves have also been used to
infer quantities characterising the state of the plasma and magnetic field that cannot be
estimated by the current observational facilities.

Recent observations have revealed the existence of multiple MHD modes in large solar
magnetic structures using intensity, line-of-sight (LOS) velocity, and polarisation signals
within the magnetic structures such as pores and sunspots [1–7]. The modification in the
perturbed area of magnetic structure has been used to infer the properties of sausage MHD
modes [8–11]. Sausage modes in a flux tube generate periodic changes in the area of the flux
tube (contraction and expansion), due to variations in the plasma density and magnetic field
within the structure as the wave passes along it. Using empirical decomposition methods
on time variations of the size of magnetic pores, ref. [12] found multiple signatures of
magnetoacoustic sausage modes with periods in the range of 30–450 s. The study by [13]
found upwardly propagating (slow surface) sausage modes in a magnetic pore, with a
period range of 181–412 s. Furthermore, ref. [14] identified both surface and body sausage
modes in several magnetic photospheric pores, with frequencies in the range 2–12 mHz.
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Oscillations that preserve the cross-sectional area of the tube, but imply transversally
swinging oscillations of the symmetry axis of the tube are labelled as kink modes [15,16].
These modes are nearly incompressible and, therefore, more difficult to dissipate their
energy compared to, for instance, sausage modes. Very often kink modes are generated
by lateral buffeting of flux tubes by granular motion. Sausage and kink modes have often
been simultaneously detected in a number of the above-mentioned studies proving that
these modes coexist in the same magnetic concentration and can interact with each other
due to the coupling of their oscillatory motions [2–5,7].

The magnetic field that permeates the solar atmospheric plasma has a major role in
structuring the plasma environment and magnetic structures are currently observed in all
regions of the solar atmosphere (e.g., [17]). Plasma and field inhomogeneities can strongly
modify the properties of waves, including changes in the waves’ spectral properties, wave
amplification, mode conversion, etc. ([3,4,12,18–21] to name a few). Sunspots, pores,
spicules, prominences, or coronal loops are just a few examples of magnetic waveguides
that are frequently observed in the solar atmosphere in various wavelengths. A boundary
can be found in the magnetic field strength or in intensity data that are somehow connected
to a jump in the plasma density. Inhomogeneities in the magnetic field or density pose a
serious challenge when describing the properties of waves, because the equations that one
has to solve, will have inhomogeneous (i.e., coordinate-dependent) coefficients. On the
other hand, traversal inhomogeneities are necessary requirements to describe the plasma
heating by waves, i.e., the effectiveness of transferring waves’ kinetic energy into heat
requires strong inhomogeneities (see the very large number of studies on phase mixing,
resonant absorption or turbulence).

The most simplistic and natural inhomogeneity is the one conferred by the gravita-
tional stratification that, in the case of an isothermal plasma, leads to an Klein-Gordon
differential equation for slow MHD waves describing the spatial and temporal variation of
physical parameters (see, e.g., [22–28]). This sort of inhomogeneity is known to modify the
properties of waves in many ways, for instance the appearance of cut-off frequencies (the
stratified atmosphere plays the role of a low-frequency filter), the increase in the amplitudes
of waves due to the decay of density and their evolution into shocks that could heat the
non-magnetic atmosphere, etc. When the inhomogeneity is present in the transversal
direction (e.g., the radial direction of a flux tube) the nature of waves’ spectrum is modified
in the sense that the spectrum of slow and Alfvén waves becomes continuous, while the
spectrum of fast waves remains a discrete one. When the frequency of an externally imping-
ing wave matches one of the frequencies in the continuum spectrum, resonant absorption
or phase mixing is taking place that are very efficient ways to damp waves’ energy. In
this case the governing equations become singular and the values of eigenfunction can
be determined by using, e.g., Frobenius series (see, e.g., [29–32]). More recently resonant
absorption was proposed as the mechanism responsible for damping of kink oscillations
of coronal loops when the global standing kink waves are resonantly coupled with local
Alfvén waves [33–37].

In order to perform a mathematical analysis of wave propagation and solve the
governing equation, the inhomogeneous equilibrium has to be rather specific so that the
complexity is reduced. One typical example was used earlier by [19], where the authors
investigated the physical structure of slow body modes and their propagation (phase)
speeds assuming that the plasma-β is constant. A similar approach will be applied here,
too, where we will assume that the inhomogeneity in all the equilibrium physical quantities
(magnetic field, pressure, density) is such that the plasma remains isothermal, i.e., the
plasma pressure and density vary following the same dependence on coordinates.

The current analysis and the numerical recipe that is developed and used to solve the
governing equation can be viewed as a follow-up attempt in the exploration of waves in
realistic solar photospheric waveguides, where equilibrium density profile inhomogeneity
generated from observations can be built in the study of the property of slow body MHD
waves. The aim of our study is to investigate the modification of the spatial structure of
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slow MHD waves propagating in a photospheric magnetic flux tubes in the presence of
plasma and field inhomogeneity.

The structure of our paper follows: in Section 2 we discuss the properties of the
considered equilibrium inhomogeneity in density and pressure, and we derive the form
of the equilibrium inhomogeneous magnetic field based on the principle of conservation
of the total pressure, i.e., equilibrium of forces. The governing equation for the spatial
variation of eigenfunctions is derived in Section 3 and we introduce key assumptions that
will be necessary to solve the derived Sturm-Liouville problem. The spatial structure of
modes is obtained numerically in Section 4 and these are compared to the results obtained
in the case of a homogeneous waveguide. Finally, our results are summarised and research
conclusions are drawn in Section 5.

2. Variation of Equilibrium Quantities

Our analysis will focus on the changes in the spatial structure and phase speed of slow
body MHD waves in a magnetic flux tube with circular symmetry, when all equilibrium
parameters (density, pressure, magnetic field) have radial and azimuthal dependence.
One of the key ingredients in our analysis is the result by [38], which showed that in the
case slow body modes the total pressure perturbations are negligible at the boundary
of the waveguide. In this case the slow body waves under photospheric conditions, the
dispersive character of waves and their properties can be confidently described by solving
a Helmholtz differential equation upon which we impose Dirichlet boundary condition,
i.e., at the boundary of the waveguide the total pressure perturbation becomes zero. For the
specific inhomogeneity we consider here the sound speed is going to be a constant quantity,
i.e., we are dealing with an isothermal magnetic flux tube.

In our model the inhomogeneous equilibrium plasma density profile is given as a
local density enhancement/depression as a function on the radial and azimuthal variables,
r and θ, as [19],

ρ0(r, θ) = ρ2χ(r, θ), (1)

where ρ2 is the homogeneous density of the annulus surrounding the inhomogeneous
density distribution and the dimensionless quantity χ(r, θ) is is given by

χ(r, θ) =

{

1 +
(σ − 1)

2

[

1 − tanh

(

ψ(r, θ)− τ

ξ

)]}

,

with σ = ρ1/ρ2 being the density ratio between the maximum value inside the inhomoge-
neous density region (ρ1) and the homogeneous density in the annulus between the density
enhancement/depletion and the circular waveguide. The function ψ(r, θ), that contains all
the information regarding the inhomogeneous character of density, is defined as

ψ(r, θ) =
√

(r cos(θ)− ϵ1)2 + (r sin(θ)− ϵ2)2, (2)

where ϵ1 and ϵ2 give the center of the density enhancement/depletion’ location, τ represents
the ratio of the radii of the density inhomogeneity and the circular magnetic flux tube, and
the parameter ξ denotes the width of the region with the gradual transition of the density.
The case ϵ1 = ϵ2 = 0 corresponds to the concentric case, while for any other pair of values,
we are dealing with so-called eccentric cases.

Our working assumption of isothermal plasma implies that the equilibrium plasma
pressure has a similar dependence on the coordinates, therefore the equilibrium plasma
pressure inhomogeneity will be represented by a localised enhanced or depleted region
and it can be written as
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p0(r, θ) = p2χ(r, θ), (3)

where now p2 represent the pressure outside the inhomogeneous region. Thanks to our
choices of equilibrium density and pressure, the sound speed will a constant quantity and
is defined as CS =

√

γp2/ρ2.
We consider an equilibrium magnetic field oriented along the z-axis (the longitudinal

symmetry axis of the cylindrical waveguide, i.e., B0 = (0, 0, B0(r, θ)), where B0(r, θ) is an
unknown function that can be determined using the radial and azimuthal components of
the equilibrium momentum Equation (11). Indeed, taking into account the inhomogeneous
nature of the equilibrium pressure and magnetic field, these two equation can be written as











∂p0
∂r + 1

2µ
∂B2

0
∂r = 0,

∂p0
∂θ + 1

2µ
∂B2

0
∂θ = 0,

(4)

Let us integrate the first equation with respect to the radial coordinate r, that leads to
p0(r, t) + B2

0(r, θ)/2µ = C(θ), where C(θ) is an integration constant that depends on the
variable θ. Combining this relation with the other equilibrium equation in the system (4)
leads to dC(θ)/dθ = 0, i.e., C is a genuine constant, which we will denote by a. As a result
we have

B2
0(r, θ) = 2µa − 2µp0(r, θ). (5)

In order to determine the constant quantity a, let us consider the particular case when
the inhomogeneity is placed in the center of the waveguide, i.e., we are dealing with a
concentric case that corresponds to ε1 = ε2 = 0 in Equation (1). The equilibrium pressure
at r = θ = 0 can be written as

p0(0, 0) = p2

{

1 +
(σ − 1)

2

[

1 + tanh

(

τ

ξ

)]}

.

Combining this result with Equation (5), the constant quantity a can be expressed as

a =
B2

0(0, 0)

2µ
+ p2

{

1 +
(σ − 1)

2

[

1 + tanh

(

τ

ξ

)]}

,

where B(0, 0) = B0(r = 0, θ = 0). With this, Equation (5) becomes

B2
0(r, θ) = B2

0(0, 0)

{

1 +
p2

B2
0(0, 0)/2µ

σ − 1

2

[

tanh

(

τ

ξ

)

+ tanh

(

ψ(r, θ)− τ

ξ

)]

}

. (6)

In what follows we are going to denote the dimensionless quantity p2/[B2
0(0, 0)/(2µ)] = β1,

that is defined like a plasma-beta parameter, however this is just apparent, as it involves the
ratio of kinetic pressure from the homogeneous annulus (p2) and the value of the magnetic
field at the centre (inside the inhomogeneous region). As a result, the equilibrium magnetic
field can be written as

B0(r, θ) = B0(0, 0)

{

1 + β1
σ − 1

2

[

tanh

(

τ

ξ

)

+ tanh

(

ψ(r, θ)− τ

ξ

)]}1/2

. (7)

The above result can be generalised in a straightforward way for an arbitrary position of the
position of the inhomogeneity. Let us consider that in the eccentric case the inhomogeneity
is centered in a position where r̂ = (ϵ2

1 + ϵ2
2)

1/2 and θ̂ = tan−1(ϵ2/ϵ1). In this case the
profile of the inhomogeneous equilibrium magnetic field is given as

B0(r, θ) = B0(r̂, θ̂)χB, (8)



Universe 2024, 10, 334 5 of 17

where

χB =

{

1 + β̂
σ − 1

2

[

tanh

(

ψ(r, t)− τ

ξ

)

− tanh

(

ψ̂ − τ

ξ

)]}1/2

, (9)

and

ψ̂ =
√

(ar̂ cos θ̂ − ϵ1)2 + (br̂ sin θ̂ − ϵ2)2.

Here the quantity β̂ is defined as β̂ = p2/[B2
0(r̂, θ̂)/(2µ)].

3. Governing Equation

The spatial and temporal variation of plasma and field parameters is described by the
set of MHD equations that contains highly nonlinear terms and mathematical progress can
be achieved in the so-called linear approximation. In this approach each physical quantity
is expressed as the sum of the background (equilibrium) value denoted by the index
0, and its perturbation. That is why we write all variables as the sum between their
equilibrium value and their perturbation. We assume that the perturbations are just small
changes of equilibrium quantities, therefore, every term consisting of the product of two
perturbations becomes negligibly small. The equilibrium state will be considered to be
static and stationary.

We assume a straight magnetic cylinder (with the usual cylindrical coordinates (r, θ, z))
having constant radius, R. The inhomogeneous equilibrium magnetic field aligned with
the longitudinal axis of the tube is B0 = B0(r, θ)ẑ and ρ0(r, θ) is the inhomogeneous
equilibrium plasma density. In this case the system of linearised MHD equations becomes

∂ρ

∂t
+ ρ0∇ · v = 0, (10)

ρ0
∂v

∂t
= −∇p +

1

µ0
(∇× b)× B0, (11)

∂p

∂t
− C2

S

∂ρ

∂t
= 0, (12)

∂b

∂t
= ∇× (v × B0), (13)

∇ · b = 0, (14)

where v = (vr, vθ , vz), b(br, bθ , bz), p, ρ, denote the perturbation of velocity, magnetic field,
pressure and density, C2

S = γp0/ρ0 is the square of the constant adiabatic sound speed and
µ0 is the permeability of free space.

The perturbation of various physical quantities will Fourier-analysed with respect to z
and t and we write them proportional to the factor ei(kz−ωt), with k being the wavenumber
along the symmetry axis of the cylinder. In this case the linearised and ideal MHD equations
transform into

−iωρ(r, θ) + ρ0(r, θ)

[

1

r

∂

∂r

(

rvr(r, θ)

)

+
1

r

∂vθ(r, θ)

∂θ
+ ikvz(r, θ)

]

+vr(r, θ)
∂ρ0(r, θ)

∂r
+

vθ(r, θ)

r

∂ρ0(r, θ)

∂θ
= 0, (15)

iωρ0(r, θ)vr(r, θ) =
∂p(r, θ)

∂r
−

B0(r, θ)

µ

(

ikbr(r, θ)−
∂bz(r, θ)

∂r

)

+
bz(r, θ)

µ

∂B0(r, θ)

∂r
, (16)

iωρ0(r, θ)vθ(r, θ) =
1

r

∂p(r, θ)

∂θ
+

B0(r, θ)

µ

(

1

r

∂bz(r, θ)

∂θ
− ikbθ(r, θ)

)

+
bz(r, θ)

µr

∂B0(r, θ)

∂θ
, (17)
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iωρ0(r, θ)vz(r, θ) = ikp(r, θ)−
1

µ

bθ(r, θ)

r

∂B0(r, θ)

∂θ
−

br(r, θ)

µ

∂B0(r, θ)

∂r
, (18)

br(r, θ) =
−k

ω
B0(r, θ)vr(r, θ), (19)

bθ(r, θ) =
−k

ω
B0(r, θ)vθ(r, θ), (20)

bz(r, θ) = −
iB0(r, θ)

ωr

∂

∂r

(

rvr(r, θ)

)

−
ivr(r, θ)

ω

∂B0(r, θ)

∂r

−
iB0(r, θ)

ωr

∂vθ(r, θ)

∂θ
−

ivθ(r, θ)

ωr

∂B0(r, θ)

∂θ
. (21)

The above equations can be combined into the expression of the total pressure perturbation,
(PT) is given by

PT = p +
1

µ
B0(r, θ)bz(r, θ). (22)

Combining the above relations results in a second-order differential equation for the total
pressure of the form

∂

∂r

[

r

ρ0

(

ω2 − k2V2
A

)

∂PT

∂r

]

+
1

r

∂

∂θ

[

1

ρ0

(

ω2 − k2V2
A

)

∂PT

∂θ

]

+
n2

0r

ρ0(ω2 − k2V2
A)

PT = 0, (23)

where the magnetoacoustic parameter, n2
0 is given as [15]

n2
0 =

(

ω2 − k2C2
S

)(

ω2 − k2V2
A

)

(

C2
S + V2

A

)(

ω2 − k2C2
T

) . (24)

We should mention here that although the form of n2
0 is identical with its analogue known

in a homogeneous plasma, in our case all characteristic speeds depend on the variables r
and θ. Our investigation will limit itself to the wide flux tube limit, i.e., the case when the
radius of the tube is much larger than the wavelength of waves (kR ≫ 1). Our working
hypothesis is that in this case the slow body MHD wave behave in a similar fashion as their
counterparts in a homogeneous flux tube [15], so their phase speed of waves is given as
ω2/k2 ≈ C2

S(1 − κ), where κ > 0 is a small dimensionless quantity and κ = 1 − ω2/k2C2
S.

We can rewrite the governing equation Equation (23) in a dimensionless form by
employing the new variable r̃ = r/R. In what follows the tilde will be omitted for the sake
of simplicity. In this dimensionless form the parameter τ takes vales between 0 and 1. In
addition, the magnetoacoustic parameter becomes

n2
0 = −k2

(

1 −
ω2

k2C2
S

)(

1 −
γβ̂χ

2χ2
B

)

, (25)

where the quantities χ and χB contain the information on the dependence of the equilibrium
pressure and magnetic field on the coordinates r and θ. Furthermore, the coefficient
functions of governing equation contain the expression ρ0(C

2
S − V2

A) that can be written as

ρ0(C
2
S − V2

A) =
B2

0(r̂, θ̂)

µ

(

γβ̂χ

2
− χ2

B

)

=
B2

0(r̂, θ̂)

µ
F−1(r, θ). (26)
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After applying all the above considerations, the governing equation for PT in dimensionless
form can be written as

∂

∂r

(

rF(r, θ)
∂PT

∂r

)

+
1

r

∂

∂θ

(

F(r, θ)
∂PT

∂θ

)

− (kR)2

(

1 −
ω2

k2C2
S

)

2

γβ̂χ
rPT = 0, (27)

which constitutes a Sturm-Liouville eigenvalue equation. We will employ numerical
methods to determine the eigenvalues and the associated eigenfunctions for given inhomo-
geneous density distribution considering that the value of PT(r, θ) = 0 when r = 1.

4. Slow Body MHD Modes with Inhomogeneous Density and Magnetic
Field Distributions

In this section, we will analyze the modification of the spatial structure of the total
pressure perturbation corresponding to trapped slow body MHD modes propagating in a
cylindrical waveguide in the presence of inhomogeneous equilibrium under photospheric
conditions, assuming a short wavelength limit and an isothermal plasma. The particular
values of the constants used in our simulations are shown in Table 1.

Table 1. Values of the physical quantities in numerical modeling. In all our investigations we take

kR = 4 and β̂ = 3 × 10−3.

σ τ ξ ϵ1 ϵ2

C1: Uniform density 1

C2: Density enhancement

C2.1: concentric 2.5 0.5 9.1 × 10−2 0 0

C2.2: right eccentric 2.5 0.5 9.1 × 10−2 0.5 0

C2.3: upper right eccentric 2.5 0.5 9.1 × 10−2 0.3 0.3

C3: Density depletion

C3.1: concentric 0.5 0.5 9.1 × 10−2 0 0

C3.2: right eccentric 0.5 0.5 9.1 × 10−2 0.5 0

C3.3: upper right eccentric 0.5 0.5 9.1 × 10−2 0.3 0.3

Solutions of the governing Equation (27) are obtained numerically using the Galerkin
finite element method (FEM) and QZ-factorisation. This method is able to handle our
eigenvalue problem in a most efficient way. The built-in MATLAB function ‘polyeig’
(based on the QZ factorization) is employed to determine the generalized eigenvalues and
eigenvectors of the problem.

As a benchmark for our study that allows us to discern the alterations in wave proper-
ties resulting from a non-uniform plasma and field equilibrium, first we show the results
we obtain in the case of homogeneous equilibrium, i.e., when the value of the parameter σ
is equal to one. These results cover the earlier findings by [15]. The results presented in our
earlier study [19] suggest that the effect of inhomogeneity is more pronounced for higher
order modes, therefore, here we consider the results not only for the standard sausage,
kink and fluting modes, but also for several higher order modes. Figure 1 displays the
dimensionless phase speeds and the spatial structure of slow body modes of various radial
and azimuthal order in the case of a homogeneous equilibrium, i.e., when σ = 1. The
equilibrium density and magnetic field distribution are shown in the first two panels of
the upper row and they have a constant value, expected from a homogeneous density
and magnetic field distribution. The remaining panels stand for the spatial structure of
fundamental slow body sausage mode (third panel), the two orthogonally polarised fun-
damental slow kink modes (last panel of the first row and first panel of the second row),
the pair of the fluting mode of order n = 2 (second and third panels of the second row),
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slow sausage overtone (fourth panel, second row), the pair of fluting mode of order n = 3
(first two panels of the third row), the pair of slow body kink overtone (last two panels
of the third row), the pair of the slow body fluting mode of order n = 4 (first two panels
of the fourth row), and the pair of the fluting overtone mode of order n = 2 (last two
panels of the fourth row). In addition, we chose to represent the corresponding orthogonal
companion of particular waves (kink, fluting). In a homogeneous plasma these modes
would appear identical with their counterpart, however shifted by a 90 degree rotation.
In an inhomogeneous plasma, the inhomogeneity will influence these modes differently,
depending on the direction of their polarisation.

As our problem involves the short wavelength limit, all dimensionless speeds (shown
on the top of each panel) are converging to one, i.e., the constant sound speed. The obtained
results provide clear evidence that, under the assumption of a homogeneous equilibrium,
the eigenmodes exhibit global harmonic oscillations and possess well-known symmetrical
characteristics along their respective axes. The colour bars represent the amplitude of the
total pressure perturbation normalised by its maximum value for each mode. The red/blue
regions denote to the maxima/minima of the total pressure’s amplitude. This result also
proves our working assumption, i.e., the vanishing total pressure condition will not modify
the meaning of the outcome of the dispersion relation obtained for slow body modes (as
suggested by the study [38]). The modes are listed in the descending order of their phase
speed in units of the constant sound speed.

Figure 1. The spatial structure of slow body waves in the case of a homogeneous (σ = 1) cylindrical

waveguide under photospheric conditions together with the density and magnetic field distribution

(first two panels in the first row). The remaining panels show the spatial structure of slow body

modes sausage (top row, third panel), followed by kink and its corresponding orthogonal mode. The

second row contains the two orthogonally polarised fluting mode of order n = 2 (second and third

panel), followed by slow sausage overtone, the fluting modes of order n = 3 (first two panels in the

third row) and the pair of slow body kink overtones, the pair of slow body fluting modes of order

n = 4 (the first two panels of the fourth row, and the pair of fluting overtone of order n = 2.

The modifications in the morphology of slow body MHD waves and the associated
dimensionless phase speed as functions of the parameters of local equilibrium plasma
density given by Equation (1) and magnetic field (Equation (8)) will be discussed in the
specific situations when the inhomogeneity is given by a enhanced local density (σ > 1)
and depleted density (σ < 1). We should note here that due to the requirement of the
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conservation of the equilibrium total pressure, an enhancement in density (or pressure)
would mean that the magnetic field will be depleted. The changes in the oscillatory patterns
of waves are analyzed for three particular locations of the equilibrium inhomogeneity, e.g.,
concentric (case C2.1), right eccentric (case C2.2), and upper right eccentric (case C2.3). The
values of model constants chosen for the specified three cases are given in Table 1.

4.1. The Modifications in the Morphology of Slow Body Modes Induced by Concentric and
Eccentric Equilibrium Density (Pressure) Enhancements

The modification in the values of the radial distribution of equilibrium density, pres-
sure and magnetic field will result in modifications to the dimensionless phase speed and
the oscillatory morphology of slow body modes represented by the changes in the total
pressure perturbation. Let us first discuss the case of a concentric loading (Figure 2), for
which the parameters used in finding numerically solutions to Equation (27) are given by
case C2.1 in Table 1. The panels in Figure 2 show the equilibrium density and magnetic field
distributions (first two panels in the upper row), the spatial structure of the fundamental
slow body sausage mode (third panel) and the two orthogonal fundamental slow body kink
modes (last panel of the upper row and first panel of the second row), the two orthogonal
fluting mode of order n = 2 (second and third panel of the second row) the two orthogonal
fluting modes of order n = 3 (last panel of second row and first panel of the third row),
the sausage overtone (second panel of the third row), the two orthogonal fluting modes
n = 4 (the last two panels of the third row), the pair of kink overtone (first two panels of the
fourth row) and the pair of n = 5 fluting mode (the last two panels of the fourth row). As
before, in all panels the amplitude of the total pressure was normalised by the maximum
value of this quantity.

Figure 2. Here we show the same modes as in Figure 1, however the findings are displayed consider-

ing a concentric density (and magnetic field) enhancement. All values of model constants used in

these solutions are given by case C2.1 in Table 1.

First of all, it is evident that the eigenvalues of the studied waves exhibited a very
small decrease in comparison to the uniform case. Comparing Figures 1 and 2, it becomes
apparent that the modes exhibit symmetry in relation to the central axis of the circular
waveguide. The findings indicate that the presence of a concentric inhomogeneous equilib-
rium density enhancement leads to an incremental decrease in the eigenvalues of modes,
however the oscillating modes have global harmonic oscillations character, as compared to
the scenario where the density enhancement is uniform. The most affected modes appear
to be the kink overtone and the fluting overtone of order n = 2 shown in the last row of
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Figure 2. When comparing the concentric density enhancement case to the uniform case, it
is evident that the phase speed of the sausage overtone decreases and becomes less than
the phase speed of the fluting mode of order n = 3. Furthermore, the kink overtone’s phase
speed decreases relative to the order n = 4 fluting mode’s phase speed. Remarkably, in the
first eighteen low order slow body modes, the concentric density enhancement case does
not exhibit the sausage overtone of order n = 2, and the overtone fluting of order n = 2
drops below the phase speed of the fluting mode of order n = 6.

The enhanced eccentric equilibrium inhomogeneity distribution in density and mag-
netic field corresponds to an inhomogeneity loading whose position is moved away from
the origin and the position of its centre is determined by the values of the parameters, ϵ1

and ϵ2. As a matter of fact, the position of the localised inhomogeneity can be arbitrary.
We define specific directions along which the inhomogeneity will be displaced. First the
horizontal direction corresponds to a direction that starts at the origin of the polar coordinate
system and points in the horizontal direction (similar to the x-direction in a Cartesian
coordinate system), the vertical direction as the direction perpendicular to the horizontal one
(corresponding to the y-direction in a Cartesian coordinate system) and the direction along
the first bisector, i.e., along the line that starts in the origin and has the property that any
point along this line is at equal distance from the horizontal and vertical axes. In the present
investigation we analyse only cases that correspond to the inhomogeneous density shifted
along the horizontal axis (see Figure 3), with model constants given by case C2.2), and a
position where both quantities describing the location of the density load are different from
zero (Figure 4, with parameters given by case C2.3 in Table 1). All the figures we are going
to present display the morphology of the normalised total pressure of the same slow body
modes as before.

The interplay between the effects of inhomogeneous density and magnetic field leads
to some interesting patterns in the oscillatory morphology of waves. Compared with the
spatial structures of modes we obtained when only the equilibrium density was considered
inhomogeneous (Figures 4 and 5 in the study by [19]), the difference in the oscillatory
patterns of the studied modes highlights the effect of the magnetic field homogeneity.
While for the results shown in [19] the conclusion on the behaviour of modes was clear
(i.e., waves were shifted to regions of decreased density), for the case presented in this
study, a unified conclusion on the behaviour of waves is difficult to draw. The presence
of magnetic field inhomogeneity affects the studied modes in a differential way, clearly
the higher order modes are the most affected. In contrast to the results obtain in the
case of only the density inhomogeneity, the modes do not migrate towards lower den-
sity regions (as the regions where body wave solutions were allowed shrunk), here the
magnetic field inhomogeneity compensates the effect of inhomogeneous density enhance-
ment, extending the size of the regions where modes are possible. Equally, the effect of all
considered inhomogeneities results in a different effect on waves depending on whether
the polarisation direction of waves coincides with the radial direction along which the
inhomogeneous regions are shifted. As a result, the symmetry of the modes is distorted,
and a categorisation of certain higher order modes based on a simple visual inspection is no
longer possible.

When the inhomogeneous region is displaced along the horizontal axis, compared to
the concentric density enhancement case, it is evident that the phase speed of the sausage
overtone decreases and becomes less than the phase speed of the fluting mode of order
n = 3. Furthermore, the kink overtone’s phase speed decreases relative to the order n = 4
fluting mode’s phase speed. Remarkably, in the first eighteen low order slow body modes,
the concentric density enhancement case does not exhibit the sausage overtone of order
n = 2, and the overtone fluting of order n = 2 drops below the phase speed of the fluting
mode of order n = 6. Low order modes such as the sausage, kink, and kink overtone
fluting modes of order n = 2 and n = 3 can still be distinguished in terms of their spatial
structure. Their orthogonal slow body modes, on the other hand, exhibit contradictory
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behaviour, with some modes shifting leftward and others rightward in the direction of the
higher density.

When this inhomogeneity is placed along the first bisector the changes in the morphol-
ogy of wave modes persists qualitatively the same (see Figure 4) as the one presented when
the inhomogeneity loading was placed along the horizontal axis.

Figure 3. Here we display the oscillatory morphology of the same MHD modes as in Figure 1,

however here we show the results obtained considering an eccentric density (and magnetic field)

inhomogeneity, displaced along the horizontal direction. The model constants employed for these

results are shown by Case C2.2 in Table 1.

Figure 4. The oscillatory morphology of the same MHD modes as in Figure 1, however here we

display the findings obtained for an equilibrium density (and magnetic field) in an eccentric position,

displaced in the direction of the bisector. The model constants empoloyed for this numerical solution

are shown by Case C2.3 in Table 1.
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4.2. The Modifications in the Morphology of Slow Body Modes Induced by Concentric and
Eccentric Equilibrium Density (Pressure) Depletions

When the inhomogeneous density ((and consequently, plasma pressure) is represented
as a depleted region, the maximum value attained by the plasma density in the inhomo-
geneous region is less than the density of the homogeneous part of the waveguide, so we
consider the case when σ < 1. At the same time, given the requirement of the conservation
of the total pressure, the equilibrium magnetic field attains its maximum value inside the
inhomogeneous region. In this section we are going to investigate the modifications in the
spatial structure of the same slow body modes as before, when the inhomogeneity has a
concentric position (ϵ1 = ϵ2 = 0) and an eccentric position when the values of the centre of
inhomogeneity, ϵ1 and ϵ2 take any value but zero at the same time.

The values of model constants used for the numerical analysis are displayed in Table 1,
case C3). Figure 5, with parameters given by Case C3.1 shows the morphology of the
normalized PT corresponding to the same guided slow body MHD modes as before for a
concentric loading, while (Figure 6, Case C3.2 in Table 1) and (Figure 7, Case C3.3 in Table 1)
show the morphology of PT , in an eccentric position, when the density inhomogeneity
is placed along the horizontal axis and in a position along the first bisector. The modes
in the panels of the Figures 5–7 are listed in the descending order of their dimensionless
eigenvalues (propagation speed in units of the sound speed in the homogeneous region)
shown at the top of the panels.

Compared to the case when only the density inhomogeneity was considered [19],
the oscillatory morphology of the slow body modes we recovered in this case show a
distinctive behaviour, and this is due solely to the inhomogeneity in the equilibrium
magnetic field. Although from Figures 2 and 5 is evident that the central symmetry is
maintained (also similar to the symmetry in the homogeneous case), the spatial extent where
modes are possible has increased. The associated eigenmodes exhibit new pattern features
differing from those seen in the case of uniform and concentric densities in the presence
of concentric equilibrium depletion density inhomogeneities. These results demonstrate
that the eigenvalues have a very small decrease in the presence of concentric non-uniform
equilibrium density. As the spatial extent of size of modes’ space structure decreases, it
may become more challenging to detect them compared to the scenario where density
enhancement is uniform, particularly along the internal scattered nodes where centres
are more reduced. The overtones of fluting modes of order n = 2 (Figure 5) and the
kink overtones displayed in the last row of the figure appear to be the most affected
modes. Moreover, the spatial structure of these modes also tends to extend very near to
the boundaries in the case of concentric equilibrium density depletion, indicating that they
adhere to lower densities with less migration than that seen in the results when only density
was inhomogeneous [19]. These intriguing findings have significant ramifications for
optimising modal structures that may be viewed, compared, and correlated in observational
data as well as for constructing and organising modes in circular structures.

In a similar vein, the eigenmodes are associated with eccentrically balanced en-
hanced density inhomogeneities (placed along the horizontal axis and the first bisector,
Figures 3 and 4) differ from those obtained for an eccentrically placed depleted density
inhomogeneities shown in Figures 6 and 7, respectively. The investigated modes are dif-
ferentially affected by the presence of magnetic field and density inhomogeneities, with
the higher order modes being the most affected. Here, the magnetic field inhomogeneity
offsets the effect of inhomogeneous density, expanding the size of the regions where modes
are possible. This contrasts the results obtained in the case when only the density inhomo-
geneity was considered, where the modes migrated towards lower density regions (as the
regions where body wave solutions are possible shrunk). Similarly, depending on whether
the polarisation direction of the waves coincides with the radial direction along which the
inhomogeneous areas are shifted, the influence of all relevant inhomogeneities results in
a varied effect on waves. This leads to a distortion of the modes’ symmetry, making it
impossible to classify some higher order modes by a mere visual inspection. As before, the
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higher order modes are the most affected by the presence of density and magnetic field in
equilibrium. Similar to the conclusion obtained in the case of enhanced density, the spatial
structure (morphology) of slow body modes does remains invariant when the density
inhomogeneity is displaced along the horizontal or vertical axes. This result means that an
observation of wave pattern in the umbral region of a sunspot might serve as a mean for
the identification of the plasma and field inhomogeneity, even if this inhomogeneity cannot
be detected in observations.

Figure 5. The oscillatory morphology of same wave modes as in Figure 1, however here we display

the findings obtained considering a concentric depleted density (and magnetic field) enhancement.

The particular values of the model constants employed in these numerical solutions are given as case

C3.1 in Table 1.

Figure 6. The oscillatory morphology of the same modes as in Figure 1, however here we display the

results obtained considering an eccentric density (and magnetic field), displaced in the horizontal

direction. The model constants employed for these results are detailed as case C3.2 in Table 1.
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Figure 7. The oscillatory morphology of the same wave modes as shown in Figure 1, however here

we consider a depleted density region displaced in an eccentric position along the direction of the

main bisector. The model constants used for this visualization are detailed as case C3.2 in Table 1.

5. Conclusions

High resolution observations of the last few decades have shown that inhomogeneities
in plasma and field parameters are one of the basic ingredients of magnetic flux tubes, from
the solar photosphere to the solar corona. The mathematical description of wave propa-
gation in such media is cumbersome, as the inhomogeneous character poses difficulties
that cannot be resolved and the determination of the dispersion relation and properties of
waves cannot be conducted. Numerical solutions to this complex problem are the only way
forward. The solutions presented in our study aimed to emphasise the properties of waves
modelled in a realistic solar magnetic waveguide.

Here we extended the study presented by [19] by considering not only the equilibrium
density as function of coordinates, but also equilibrium pressure and magnetic field, in
line with observations and numerical modelling. Analytical progress has been made by
considering that the plasma pressure and density vary following the same dependency
on coordinates, meaning that we are dealing with a constant sound speed (isothermal
equilibrium). The equilibrium density profile inhomogeneity was represented by a local
circular density enhancement or depletion whose strength, size and position can change.
The profile of the equilibrium magnetic field has been determined based on the principle of
force balance in the equilibrium state. Based on this physical requirement, a decrease in the
magnetic field would result from an increase in density or pressure due to the conservation
of the equilibrium total pressure. We derived a Helmholtz-like governing equation upon
which Dirichlet boundary conditions were used to determine the eigenvalues and eigen-
vectors as a Sturm-Liouville problem and a Galerkin FEM method was employed to solve
the governing equation.

In our analysis we concentrated on slow body waves in the short wavelength limit,
therefore, the dimensionless phase speed of waves is converging to one, i.e., the constant
sound speed. Our investigation dealt with the modifications in the oscillatory morphology
of waves driven by the presence of inhomogeneity. As expected, under the assumption
of a homogeneous equilibrium, the eigenmodes exhibit global harmonic oscillations and
possess symmetrical characteristics along their respective axes. Our results showed that
higher order modes are the most sensitive to the presence of localised inhomogeneities,
here we analysed several higher order modes to provide a clearer picture of the impact of
the considered inhomogeneities.
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First, compared to the uniform equilibrium scenario, the eigenvalues of the waves
under study showed a very slight drop. The corresponding eigenmodes in the presence
of concentric equilibrium density inhomogeneity are similar to those found in the case of
uniform density and the modes show symmetry with respect to the circular waveguide’s
centre axis. The kink overtone and the fluting overtone of order n = 2 were the most
affected modes.

The interaction between the inhomogeneous equilibrium magnetic field and density
causes some intriguing patterns in the spatial structure of waves. The spatial structure of
waves maintains its global character when compared to the spatial structures of modes
we obtained when only the equilibrium density was considered (eccentric cases along the
horizontal axis). However, the symmetry is distorted, making it impossible to categorise
certain higher order modes based only on a visual inspection.

The inhomogeneity of the magnetic field will offset the effect of density inhomogeneity,
in contrast to the results obtained in the case of only the inhomogeneous density. The
recovered modes do not migrate towards lower density regions (as the regions where
body wave solutions were allowed reduced). Modes tend to operate in the opposite way
and have their greatest amplitude in the regions that correspond to higher densities. The
modification of various higher order modes also depends on the direction in which the
inhomogeneity is shifted with respect to the central symmetry axis, the degree of distortion
is greater when the direction along which this inhomogeneity is moved coincides with the
direction of wave polarisation.

When the depleted inhomogeneous equilibrium density is placed in concentric posi-
tion the corresponding eigenmodes display novel pattern features that differ from those
observed in the case of uniform and concentric densities. As before, the eigenvalues exhibit
a negligible drop in the presence of concentric non-uniform equilibrium density depletion.
Compared to the case of uniform density augmentation, it may become harder to detect
modes when their spatial structure shrinks, especially along the interior scattered nodes
where the centres are more diminished. These results have important implications for opti-
mising the structures that can be observed, compared, and correlated in observational data.

Our investigations can be considered as a very first step in studying the properties
of waves in sunspots and pores in the presence of local inhomogeneities in the form
of umbral dots (UD) and light bridges (LB). Multi-structure density distributions (as
observations show) can often be replaced by a resulting structure that adequately captures
the effects of multiple UDs present in the sunspot umbra. This means that the equilibrium
density inhomogeneity profile is represented by a single local density inhomogeneity,
which simulates the UDs observed in the sunspot umbra region, assuming that they are
placed close to each other. Furthermore, the LB observed in sunspots can be modelled by
a single local density inhomogeneity that separates the sunspot umbra region. The more
complex the shape of the density inhomogeneity, the more complex the spatial structure
of modes will become. As a result, the pattern of possible waves loses the high-degree of
symmetry one can meet in homogeneous cases, especially for higher-order modes, which
means that the pattern is no longer global and, therefore, cannot be easily identified. Local
wave observations in sunspots may be a way to identify the location and size of density
inhomogeneities in the umbra region.

The existence of the location of modes in the presence of density inhomogeneity
determined for the density augmentation and depletion indicates one major implications
for observations. Even in cases when a density inhomogeneity in the umbral area is not
visible in observations, the location of the inhomogeneity may be determined by means of
a localised wave observation in a sunspot or pore.

Our study employed a series of simplifications in order to make the mathematics
tractable, probably the most stringent being the perfect symmetry of the waveguide. An
earlier study by the authors [7] showed that the shape of the waveguide (realistic) has
a strong influence on the spatial structure of modes. However, giving up the perfect
symmetry means that mathematical progress cannot be made and a full numerical analysis
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will be needed to address the problem. It is our intention investigate the nature and
morphology of waves in realistic waveguides in the near future.
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