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Abstract: In recent decades, the issue of building energy usage has become increasingly significant,
and U-values for building envelopes have been key parameters in predicting building energy con-
sumption. This study comprehensively reviews the U-values (thermal transmittances) of building
envelopes made from conventional and bio-based materials. First, it introduces existing studies
related to the theoretical and measured U-values for four types of building envelopes: concrete,
brick, timber, and straw bale envelopes. Compared with concrete and brick envelopes, timber and
straw bale envelopes have lower U-values. The differences between the measured and theoreti-
cal U-values of timber and straw bale envelopes are minor. The theoretical U-values of concrete
and brick envelopes ranged from 0.12 to 2.09 W/m2K, and the measured U-values of concrete and
brick envelopes ranged from 0.14 to 5.45 W/m2K. The theoretical U-values of timber and straw
bale envelopes ranged from 0.092 to 1.10 W/m2K, and the measured U-values of timber and straw
bale envelopes ranged from 0.04 to 1.30 W/m2K. Second, this paper analyses the environmental
factors influencing U-values, including temperature, relative humidity, and solar radiation. Third,
the relationship between U-values and building energy consumption is also analysed. Finally, the
theoretical and measured U-values of different envelopes are compared. Three research findings in
U-values for building envelopes are summarised: (1) the relationship between environmental factors
and U-values needs to be studied in detail; (2) the gaps between theoretical and measured U-values
are significant, especially for concrete and brick envelopes; (3) the accuracy of both theoretical and
the measured U-values needs to be verified.

Keywords: U-values; concrete envelopes; brick envelopes; timber envelopes; straw bale envelopes;
building energy

1. Introduction

Building energy use continues to increase significantly around the world. The build-
ing sector accounts for around 30% of final energy use [1,2]. This exacerbates fossil fuel
consumption, making it imperative to decrease energy use in the building sector [3]. In ad-
dition, this sector is also regarded as one of the most cost-efficient fields in which to reduce
energy use [4]. Thus, many researchers have focused on building energy consumption in
recent years [5–7].

In existing studies, building energy simulation has proven to be an important method
for predicting building energy consumption [8–10]. To obtain building energy prediction
results, accurate envelope parameters need to be entered into the simulation software. The
thermal transmittances (U-values) of building envelopes are crucial thermal parameters [11,12].
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The U-value is the rate of heat transfer across a building envelope. As shown in Equation (1),
Φ is the heat transfer, A is the area in square meters, and ∆T is the temperature difference
between the interior and exterior sides of the building envelope.

U = Φ/(A × ∆T) [W/(m2
·K)] (1)

The U-value shows the thermal insulation property of the building envelope. It is
important for predicting building energy consumption and understanding the impacts of
buildings on the environment. There are two types of U-values in existing studies: theoreti-
cal U-values obtained by formulas and measured U-values obtained by experiments.

1.1. Theoretical U-Values of Building Envelopes

The theoretical U-values of envelopes are calculated according to the ISO 6946
method [13]. Under this method, the U-value of a building envelope can be estimated by
related envelope parameters, as shown in Equations (2) and (3):

U = 1/(Rse + Rsi + Rsum)[W/(m2
·K)] (2)

R = D/λ[(m2
·K)/W] (3)

where Rse and Rsi are thermal resistances of the external and internal surfaces of the
building envelope, correspondingly. Rsum is the sum of the thermal resistances of all layers
within the building envelope. R is the thermal resistance of each layer, D is the thickness of
each layer, and λ is the thermal conductivity of each layer in the building envelope.

Theoretical U-values may be reasonable for the initial phase of design. However,
detailed parameters about some existing buildings are not available or are not maintained.
The U-values of many existing building envelopes are difficult to calculate using the
theoretical method.

1.2. Measured U-Values of Building Envelopes

In order to obtain U-values of envelopes in actual conditions, both laboratory and
in situ measurements can be reasonable approaches. The common U-value measurement
methods are shown in Figure 1. For laboratory measurement, the Hot Box Test (HBT)
is a common method. Both ASTM C1363 and ISO 8990 standards are used to regulate
measurement equipment and procedures [14,15]. Guarded hot box (GHB) and calibrated
hot box (CHB) are two common types in HBT, as shown in Figure 1a,b. Both methods
require steady-state conditions and are suitable for full-scale building components. A U-
value measurement system includes (1) several heat flow sensors; (2) several temperature
sensors; and (3) a data logger. The measured U-value can be calculated by Equation (4).

U =
∑

n
j=1 qj

∑
n
j=1

(

Tij − Tej
) [W/(m2

·K)] (4)

where U is the U-value of the tested envelope during the measurement period, qj is the
heat flow density at time j, and Tij and Tej are the temperature in the indoor and outdoor
environment at time j, respectively. n is the number of recorded samples during the
measurement period.

Many researchers have used these methods to measure the U-values of different types
of envelopes [16–18]. For example, Yang et al. used the GHB method to investigate the
U-values for straw bales with different structural details. The results showed that straw
bales with plastering had lower U-values [16]. Chen et al. applied a CHB to study the U-
values of double-glazing units. Comparing the measurement results with simulation results
revealed a difference of less than 5%, which can be considered negligible [19]. However,
the temperature and relative humidity are fixed values in laboratory measurements, and
laboratory conditions are different from the actual conditions of buildings.
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Figure 1. Schematic diagrams of laboratory and in situ U-value measurement methods.

The in situ U-value measurements have been conducted to investigate U-values in
actual situations. Four methods are commonly used: the heat flow meter (HFM), the
simple hot box-heat flow meter (SHB-HFM), the thermometric (THM), and the quantitative
infrared thermography (QIRT). As shown in Figure 1c, the HFM method is a standardized
method for in situ U-value measurement, and it is governed by ISO 9869-1 and ASTM
C1155 standards [20,21]. The equipment in the HFM method includes several heat flow
sensors, several temperature sensors, and a data logger. After the data have been collected,
the U-value can be calculated by Equation (4). Many studies have measured the U-values
of building envelopes by the HFM method on various occasions [22–24]. For example, the
U-values of seven masonry envelopes were measured by this method [25], and the results
showed that there was a discrepancy between the measured and theoretical U-values. The
shortcoming of this method is that when the temperature difference is unstable, there may
be a large error in the measured U-values.

To avoid this drawback, the SHB-HFM method was developed. In this method, a
simple hot box is attached to one side of the test envelope, as shown in Figure 1d. This
box has heating equipment to control the temperature difference between indoor and
outdoor environments. The U-value can be calculated by Equation (4) as well. Meng et al.
proposed this method and verified its feasibility through an in situ U-value measurement.
The results showed that the test error of the U-value by the SHB-HFM method was only
−5.97% relative to the theoretical U-value [26]. This method requires additional specialised
equipment; hence, the applications of this method are limited.

The THM method is a low-cost method which needs less equipment than other
methods. It requires several temperature sensors and a data logger, as shown in Figure 1e.
The calculation method of measured U-values in the THM method is shown in Equations (5)
and (6) [27].

Uj =
hi(Tij − Tsij)

Tij − Tej
[W/(m2

·K)] (5)

U =
∑

n
j=1 Uj

n
[W/(m2

·K)] (6)

where Uj is the U-value of the tested envelope at time j, and Tij and Tej are the temperature
of the indoor and outdoor environment at time j, correspondingly. Tsij is the internal
surface temperature of the tested envelope at time j. hi is the heat transfer coefficient of the
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internal surface of the tested envelope. U is the U-value of the tested envelope during the
measurement period. n is the number of recorded samples during the measurement period.

Bienvenido analysed eight tested envelopes to evaluate the advantages and short-
comings of this method. The results showed that the U-values obtained through the
THM method were valid in winter, while it was difficult to obtain valid results in warmer
seasons [27]. This method needs very stable indoor conditions. Thus, it is less adapted.

The QIRT method has been used widely in recent decades. This method can be
conducted according to ISO 9869-2 and ASTM C1060 standards [28,29]. This method
is expensive and requires specialist training. In the QIRT method, an infrared cam-
era, temperature sensors, heat flow sensors, and a data logger are needed, as shown in
Figure 1f. Compared to other methods, the QIRT method is a newer method that has
been developed in recent years. There is no universal equation for calculating the U-value
in this method [30]. Each new method of calculating the U-value is related to the actual
conditions of in situ measurements [31]. Mahmoodzadeh et al. used the QIRT method
to study the U-values of timber-framed building envelopes. They found that estimated
U-values were not identical on different days due to variations in outdoor environmental
parameters [32]. Climate conditions and air pollution can also influence the results obtained
by the QIRT method.

In the existing literature, the theoretical U-values of building envelopes were different
from the measured U-values [32–35]. The type of U-values entered into the building energy
simulation affects the building energy prediction results and the energy management in
the building sector. Thus, it is important to understand the differences between theoretical
and measured U-values for different building envelopes. In this paper, U-values of both
inorganic and bio-based envelopes (including concrete, brick, timber and straw bale en-
velopes) will be examined. In Section 2, theoretical and measured U-values of these four
types of envelopes will be shown according to the data from existing related studies. The
environmental factors affecting the U-values of building envelopes will be analysed in
Section 3, while in Section 4, the studies related to energy impacts caused by U-values will
be reviewed. A comparison of the theoretical and measured U-values and research gaps
will be analysed in Sections 5 and 6, respectively.

2. Theoretical and Measured U-Values of Inorganic and Bio-Based Envelopes

Inorganic and bio-based envelopes are two important types of envelopes. Concrete and
brick envelopes are inorganic envelopes, which are the most common worldwide [36,37].
Both timber and straw bales have been paid more attention due to the lower environmental
impacts in recent years [38–41]. Using life cycle assessment (LCA), the carbon emissions of
bio-based material buildings are lower than inorganic material buildings [42–44]. In this
section, concrete, brick, timber, and straw bale envelopes will be the objects of the study,
and existing studies will be examined to assess both the theoretical and measured U-values
of these four types of envelopes.

2.1. Concrete Envelopes

As shown in Table 1, the theoretical U-values of concrete envelopes range from 0.12 to
1.61 W/m2K with most concentrated around 0.15–0.50 W/m2K. In U-value measurements
for concrete envelopes, more research applied in situ measurements than laboratory mea-
surements, and most used the HFM method. Reinforced concrete (RC) envelopes have been
studied more than other concrete envelopes. The measured U-values of concrete envelopes
range from 0.14 to 5.45 W/m2K with most concentrated around 0.15–0.60 W/m2K. The
measured U-values in a few studies are much larger than the theoretical U-values. For
example, O’Hegarty et al. found that the measured U-values of the concrete envelopes
were around twice their theoretical U-values [33]. Some researchers conducted in situ
measurements in winter. Because of the larger temperature difference between indoor and
outdoor environments in winter, a steady heat flow can be generated in the envelopes,
which can improve the accuracy of the measurement results. Several researchers mea-
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sured the U-values of concrete envelopes with different orientations [23,45], and the results
showed that the U-values of the north envelopes were smaller than the U-values of the
envelopes with other orientations.

Table 1. Existing studies related to U-values of concrete envelopes.

Year Envelope Type
Measurement
Type

Measurement
Method

Theoretical
U-Value
(W/m2

·K)

Measured U-Value
(W/m2

·K)
Reference

2006 Concrete envelopes with
vacuum-insulation

Laboratory
measurement

GHB NA

3.74

[46]

0.16
0.17
0.19
0.21
0.25
0.29

2014
6 types of concrete block
envelopes with different
structures

In situ
measurement

HFM

0.23 0.22

[47]

0.25 0.34
0.27 0.34
0.30 0.37
0.32 0.56
0.33 0.39

2014
Hollow reinforced precast
concrete envelopes

In situ
measurement

HFM NA

1.459 (north envelope
in summer)

[45]1.803 (east envelope
in summer)

2014 A cavity envelope In situ
measurement HFM 0.20 0.26 [48]

2015 A concrete block envelope In situ
measurement SHB-HFM 1.315 1.22–1.26 [26]

2016 An RC envelope In situ
measurement HFM 0.22 0.23–0.35 [49]

2017 Hollow concrete blocks In situ
measurement HFM NA 2.1–2.7 [50]

2017 7 types of RC envelopes In situ
measurement

HFM

0.431 0.475 (in winter)

[51]

0.429 0.479 (in winter)
0.418 0.434 (in winter)
0.312 0.316 (in winter)
0.280 0.273 (in winter)
0.269 0.269 (in winter)

2018 An RC envelope In situ
measurement HFM 0.270 0.250–0.265 [24]

2018 A concrete block envelope In situ
measurement HFM 0.153 0.176 (in winter) [52]

2019
RC envelopes; lightweight
concrete envelopes

In situ
measurement

QIRT
0.480; 0.480

[53]0.252 0.261

2020 RC envelopes In situ
measurement HFM 0.333

0.400 (north envelope in
summer); 0.522 (south
envelope in summer);
0.393 (north envelope in
winter); 0.536 (south
envelope in winter)

[23]

2020 A lightweight concrete
envelope

Laboratory
measurement HBT 0.313 0.314–0.323 [54]

2020 Thin precast concrete
envelopes

Laboratory
measurement HBT NA 0.144–0.555 [55]

2020
Translucent concrete
envelopes

Laboratory
measurement

CHB NA
4.25

[56]5.45
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Table 1. Cont.

Year Envelope Type
Measurement
Type

Measurement
Method

Theoretical
U-Value
(W/m2

·K)

Measured U-Value
(W/m2

·K)
Reference

2021
7 types of concrete
envelopes with different
structures

In situ
measurement

HFM

0.144 0.46 (in summer)

[33]

0.165 0.18 (in spring)
0.14 0.56 (in spring)
0.118 0.21 (in autumn)
0.191 0.64 (in winter)
0.381 1.02 (in winter)
1.612 1.46 (in winter)

2021 A lightweight concrete
block envelope

In situ
measurement HFM 2.01 1.363–1.782 [35]

2021 A 3D-printed concrete
envelope

In situ
measurement QIRT NA 0.54–1.00 [57]

2022 A concrete envelope In situ
measurement HFM 0.21 0.17–0.41 [22]

2024 A concrete envelope with
internal insulation

In situ
measure-ment HFM 0.145 0.136–0.148 [58]

2024 An autoclaved concrete
block envelope

Laboratory
measurement HBT NA 0.795–1.23 [59]

2.2. Brick Envelopes

In existing studies related to the U-values of brick envelopes, the main types have in-
cluded clay, limestone, hollow, perforated, red, solid, ceramic, and silica brick envelopes. As
shown in Table 2, the theoretical U-values of brick envelopes range from 0.22 to 2.09 W/m2K.
The thickness of the insulation is an influencing factor. For example, Albatici et al. calcu-
lated the theoretical U-value of the brick envelope as 0.225 W/m2K. The thickness of the
insulation is 8 cm [60]. Marshall calculated the theoretical U-value of the brick envelope as
2.09 W/m2K. This envelope is a 222.5 mm solid brick envelope without insulation [61].

In U-value measurements for brick envelopes, more researchers applied in situ mea-
surement methods, the most common of which was the HFM method. The measured
U-values of brick envelopes range from 0.15 to 5.26 W/m2K. The majority of studies found
that the theoretical U-values were close to the measured U-values with a deviation of less
than 20%. However, a minority of studies found theoretical U-values to be much larger
or much smaller than the measured U-values. For example, Evangelisti et al. found that
the measured U-value of a tuff brick envelope was only 40% of the theoretical U-value [62].
Ratnieks et al., on the other hand, found that the measured U-value of a ceramic brick
envelope was twice the theoretical U-value [52].

Table 2. Existing studies related to U-values of brick envelopes.

Year Envelope Type
Measurement
Type

Measurement
Method

Theoretical
U-Value (W/m2

·K)
Measured U-Value
(W/m2

·K)
Reference

2003 A clay brick envelope
Laboratory
measurement

CHB 0.302 0.304 [63]

2010 Brick envelopes
In situ
measurement

QIRT 0.225 0.285 [60]

2011
2 types of limestone
brick envelopes

Laboratory
measurement

The Hot Disk
technique NA

3.03
[64]5.26

2011
3 perforated brick
envelopes

In situ
measurement

QIRT 1.39
1.51

[65]1.31
1.63



Buildings 2024, 14, 2434 7 of 20

Table 2. Cont.

Year Envelope Type
Measurement
Type

Measurement
Method

Theoretical
U-Value (W/m2

·K)
Measured U-Value
(W/m2

·K)
Reference

2012 A ceramic brick
In situ
measurement

HFM NA 0.97–2.56 [66]

2014
3 types of lightweight
clay bricks NA NA

0.62
NA [67]0.54

0.55

2015
3 types of brick
envelopes

In situ
measurement

QIRT
0.30 0.37 (in winter)

[68]0.57 0.62 (in winter)
0.44 0.51 (in winter)

2015
A fired-clay brick
envelope

In situ
measurement

HFM NA 1.32 [69]

2015
2 types of hollow brick
envelopes

Laboratory
measurement

CHB NA
1.24

[70]1.20

2015 5 types of hollow
bricks

Laboratory
measurement

HBT NA

0.25

[71]
0.17
0.15
0.15
0.16

2015 A solid brick envelope
In situ
measurement

HFM NA
0.428–1.933
(in summer)

[72]

2015
A tuff brick envelope;
2 types of hollow brick
envelopes

In situ
measurement

HFM
1.897 0.750

[62]0.734 1.072
0.945 0.810

2016
3 types of hollow brick
envelopes

In situ
measurement

HFM
0.72 0.75 (in winter)

[73]2.35 2.40 (in winter)
0.49 0.59 (in spring)

2016
3 types of solid brick
envelopes

In situ
measurement

HFM
0.683 0.926

[74]0.947 0.687
0.678 0.797

2016 A brick envelope
Laboratory
measurement

HBT 0.56 0.62 [17]

2017
2 types of historic red
brick envelopes

In situ
measurement

HFM
1.05 1.23

[75]0.24 0.21

2017 Solid brick envelopes
In situ
measurement

HFM 1.00–1.25 0.80–0.85 [76]

2018
8 types of hollow brick
envelopes

In situ
measurement

THM

1.18 1.03

[27]

0.57 0.59
1.50 1.39
0.56 0.45
1.10 0.98
0.76 0.38
0.45 0.48
0.48 0.88

2018
A solid brick envelope
with gypsum plaster

In situ
measurement

QIRT 2.09 1.57 [61]

2018 Solid brick envelopes In situ
measurement

HFM NA

1.740 (in spring)

[77]
1.27 (in spring)
1.98 (in spring)
1.815 (in spring)

2018
2 types of ceramic brick
envelopes

In situ
measurement

HFM
0.151; 0.161 (in winter)

[52]0.159 0.320 (in winter)
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Table 2. Cont.

Year Envelope Type
Measurement
Type

Measurement
Method

Theoretical
U-Value (W/m2

·K)
Measured U-Value
(W/m2

·K)
Reference

2019
2 types of hollow brick
envelopes; a perforated
brick envelope

In situ
measurement

QIRT
0.657 0.654

[53]0.362 0.404
0.586 0.559

2020 A silica brick envelope In situ
measurement

HFM;
0.244

0.221 (in winter)
[54]QIRT 0.229 (in winter)

2024
A pumice block
envelope, two clay
block envelopes

Laboratory
measurement

HBT NA
0.887–1.65

[59]1.16–2.07
0.718–0.83

2.3. Timber Envelopes

As conventional building materials have serious impacts on the environment, bio-
based building materials have been given more attention in recent decades [78–80]. Such
materials can store carbon and reduce carbon emissions [42]. As an important bio-based
building material, timber envelopes have gradually re-emerged because timber envelopes
not only have a low environmental impact but also have a simple manufacturing process
and can have high prefabrication rates [81,82].

Due to the popularity of timber envelopes, there have been a growing number of stud-
ies investigating the U-values of timber envelopes in the last decade, as shown in Table 3.
In existing studies related to the U-values of timber envelopes, the main types of timber
envelopes include cross-laminated timber (CLT) envelopes, oriented strand board (OSB) en-
velopes, light timber envelopes, plywood panel envelopes and timber frame envelopes with
different insulations. The theoretical U-values of these timber envelopes range from 0.15 to
1.10 W/m2K with most concentrated around 0.15–0.20 W/m2K. Theoretical U-values were
not calculated in some of these studies. This may be due to the lack of information on the
thermal conductivity of some bio-based building materials, such as wood–hemp insulation
panels and wheat chaff insulation panels [83,84]. Future studies on thermal conductivity
will need to increase the variety of tested bio-based building materials.

In measuring the U-values of timber envelopes, in situ measurements were used
more than laboratory measurements with the QIRT and HFM methods being adopted
the most often. The measured U-values of these timber envelopes range from 0.04 to
0.98 W/m2K with most concentrated around 0.20–0.25 W/m2K. There are deviations
between the theoretical U-values and measured U-values with the ratio of measured U-
values to theoretical U-values ranging from 25% to 165%. For example, Williamson et al.
investigated the thermal performance of two residential buildings using the HFM method
to measure the U-values of two OSB external envelopes. The results showed that the
measured U-values could be up to 1.65 times the theoretical U-values [85].

Table 3. Existing studies related to U-values of timber envelopes.

Year Envelope Type
Measurement
Type

Measurement
Method

Theoretical
U-Value (W/m2

·K)
Measured U-Value
(W/m2

·K)
Reference

2010
A light timber external envelope; a
CLT envelope

In situ
measurement

QIRT
0.29 0.38

[60]0.148 0.194

2014 2 types of vapour open timber
frame envelopes

In situ
measurement HFM NA 0.17–0.46 (in summer) [86]

2014 Block and wood envelopes In situ
measurement

THM 1.1
0.67–0.98
(before retrofit) [87]
0.26 (after retrofit)

2015 2 types of light timber envelopes In situ
measurement

QIRT
0.17 0.14 (in winter)

[68]0.18 0.16 (in winter)
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Table 3. Cont.

Year Envelope Type
Measurement
Type

Measurement
Method

Theoretical
U-Value (W/m2

·K)
Measured U-Value
(W/m2

·K)
Reference

2015 Timber frame envelopes with
wood-hemp insulation

In situ
measurement HFM NA 0.20–0.31 (in winter) [83]

2016 2 types of OSB envelopes In situ
measurement

HFM
0.10 0.11 (in winter)

[85]0.23 0.38 (in winter)

2018 A timber frame envelope with
wheat chaff insulation

Laboratory
measurement HBT NA 0.307 [84]

2018
A wood panel envelope; a
modular plywood panel envelope

In situ
measurement

HFM
0.150 0.174 (in winter)

[52]0.154 0.201 (in winter)

2020 CLT envelopes Laboratory
measurement

HBT
0.16 0.148

[81]0.15 0.199

2020 Timber envelopes In situ
measurement HFM 0.50 0.60–0.65 [88]

2021 A four-layered spruce wood
envelope

Laboratory
measurement HBT NA 0.375 [89]

2021 3 types of wood-framed envelopes
with different structures

In situ
measurement

QIRT
0.23 0.09–0.25

[90]0.16 0.04–0.21
0.16 0.20–0.26

2022 4 types of wood-framed envelopes
with different structures

In situ
measurement

QIRT NA

0.43

[32]
0.31
0.26
0.24

2.4. Straw Bale Envelopes

Although straw bale has been used widely as a construction material since the 20th cen-
tury, the benefits of this material have been recognised in the last decade. The notable
advantages are impressive physical properties, including thermal and acoustic insulation,
an energy-efficient manufacturing process and a carbon storage capacity [91–93]. In recent
years, more researchers have focused on the U-values of straw bale envelopes. In related
studies, the most common structure of straw bale envelopes is the straw bale envelope
with a timber frame, as shown in Table 4. An alternative to this is a metal frame structure,
such as a light-gauge steel frame [94]. There are also many different types of straw, such as
wheat straw, rice straw, oat straw and corn straw.

There is limited research on the theoretical U-values for straw bale envelopes. In
existing studies, Miljan et al. studied the theoretical and measured U-values of a straw bale
envelope [95]. The results showed that the measured U-value (0.125 W/m2K) differed from
the theoretical U-value, which was 0.092 W/m2K. As a new building envelope type, there
is limited information related to the thermal conductivity of different straw bales. Thus, it
is difficult to calculate theoretical U-values of straw bale envelopes with different structures
and materials. More quantitative research on the thermal conductivity of different straw
bales needs to be conducted to fill this research gap in the future.

Most studies have focused on the measured U-values for straw bale envelopes. Labo-
ratory measurements were applied in the majority of these with the remainder applying
in situ measurements. The measured U-values range from 0.12 to 1.30 W/m2K with most
concentrated around 0.2 W/m2K. The wide range of measured U-values may be related to
the envelope materials. For example, Sun et al. applied the CHB method to explore the
measured U-values of the straw bale envelopes with light-gauge steel frames. The results
showed the measured U-value of the envelope with the paper straw board (0.669 W/m2K)
was lower than that with the wheat straw strand board (0.912 W/m2K) [94].
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Table 4. Existing studies related to U-values of straw bale envelopes.

Year Envelope Type
Measurement
Type

Measurement
Method

Theoretical U-Value
(W/m2

·K)
Measured U-Value
(W/m2

·K)
Reference

2015 A straw bale envelope
with a timer frame

In situ
measurement HFM 0.092 0.125 [95]

2016 A straw bale envelope
with a timer frame

Laboratory
measurement CHB NA 0.20 ± 0.016 [96]

2017 Two straw bale envelopes
with timber frames

In situ
measurement

HFM NA

0.119 ± 0.041
(in winter)

[97]0.253 ± 0.085
(in winter)

2018 Straw envelopes with
timber frames NA NA 0.72 NA [98]

2019 A straw bale envelope
with a timber frame

Laboratory
measurement HBT NA 0.281 [99]

2020
A multi-sheet straw bale
envelope with a timber
frame

Laboratory
measurement HBT NA 0.154 [100]

2021 Straw bale envelopes with
plywood frames

In situ
measurement THM NA 0.3–1.3 [101]

2021 Straw bale envelopes with
different structures

Laboratory
measurement GHB NA 0.48–0.53 [16]

2023 Light-gauge steel-framed
straw envelopes

Laboratory
measurement CHB NA 0.661–0.912 [94]

Figure 2 summarises the theoretical and measured U-values for four types of envelopes
in Tables 1–4. Compared with inorganic envelopes, bio-based envelopes have lower U-
values, and the differences between the measured and theoretical U-values of bio-based
envelopes are smaller. It indicates that the thermal performances of bio-based envelopes are
close to expectations. However, related data are not sufficient. More related measurements
need to be conducted in the future. Among the two types of inorganic envelopes, the
ranges of both theoretical and measured U-values are large for brick envelopes due to the
greater variety of brick envelopes. Concrete envelopes have a small range of theoretical
U-values and a large range of measured U-values, suggesting that the actual insulation
performances of concrete envelopes may be lower than expected.

ff

ff
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ff

ff

ff

tt

Figure 2. Theoretical and measured U-value distribution of four types of envelopes.
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3. Environmental Factors Influencing U-Values

As the U-value represents the heat transfer capacity of the envelope in the actual
environment, the environmental factors influencing the U-value are complex. The main
environmental factors include temperature, relative humidity and solar radiation. There
is limited research on the factors influencing U-values, and there is a positive correlation
between the U-value of the envelope and the thermal conductivity of the envelope material.
This section will also summarise articles related to the thermal conductivities of building
materials, as shown in Table 5.

The thermal conductivities of building materials can be affected by changes in the
thermal conductivities of air and water due to temperature changes. When temperature
increases from 10 to 40 ◦C, air and water conductivities will increase by 10% and 8%,
respectively. Regarding the high amount of air with water vapour in the envelopes, the
increase in air and water conductivities is not negligible. Existing studies have quantified
the effects of temperature on the thermal conductivities of both conventional and bio-
based building materials. Wang studied the thermal conductivity of aerogel-incorporated
concrete (AIC). The results indicated that the thermal conductivity of AIC increased by
15.5% from 20 to 90 ◦C [102]. Danovska studied dynamic thermal conductivity functions
dependent on temperature for some timber materials. The results indicated that the thermal
conductivities of CLT, woodchips, and wood–fibre panels increased 10.2%, 26%, and 21%
from 10 to 50 ◦C [103]. However, there is limited research examining the quantitative
relationship between temperature and the U-values of various envelopes.

In terms of relative humidity effects, relative humidity can change the moisture
contents of building materials, affecting the thermal conductivities of building materials
and thus the U-values of envelopes. The moisture content of a building material in an
actual situation is related to its hygroscopicity, which is mainly related to the composition,
porosity and pore characteristics. Several studies have quantified the effects of relative
humidity and moisture contents on the thermal conductivity of building materials and
U-values of envelopes [104]. Various types of building materials and envelopes are studied.
There is more research on insulation materials. This may be because insulation materials
are usually porous, and their thermal conductivities are more susceptible to the effects
of relative humidity. For example, Wang et al. investigated the relationship between the
relative humidity and the thermal conductivity of common insulation materials. The result
showed that the thermal conductivities of these materials increased by more than 100%
when relative humidity increased from 0% to 100% [105]. Boukhattem et al. analysed the
influence of moisture content on the thermal conductivity of the date palm fibre (DPF)
insulation board. The result showed that the thermal conductivity of the DPF board could
increase four times from a dry stage to its saturation state [106].

In addition, solar radiation is also a factor influencing U-values. It has been found
that solar radiation can increase the heat flow through envelopes and thus increase the
U-values of the envelopes. Evangelisti et al. conducted in situ U-value measurements
in both summer and winter in Italy. As the building being tested was located in the
northern hemisphere, the solar radiation intensity and sunlight hours were higher on the
south envelope than on the north envelope. The results showed that the U-values of the
south envelope were approximately 25% higher than the U-values of the north envelope
in both winter and summer [23]. Ahmad et al. also found that the U-values of the east
envelope were approximately 23% higher than the U-values of the north envelope in
Saudi Arabia [45]. This is because the north envelope is exposed to solar radiation for a
shorter time than the east envelope, which leads to a lower heat flow through the north
envelope. However, limited studies have been conducted to quantify the relationship
between U-values and solar radiation. This needs to be systematically studied in the future.
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Table 5. Environmental factors influencing U-values of envelopes.

Factors Year Building Material Influence Reference

Temperature

2016
Hemp concrete, flax concrete
and rape straw concrete

The thermal conductivity increases by
approximately 10% for hemp and flax and
18% for rape straw from 10 to 40 ◦C.

[107]

2019
AIC with different aerogel
volume admixtures

The thermal conductivity increases by 15.5%
from 20 to 90 ◦C.

[102]

2022 Common insulation materials
The thermal conductivity increases by 12.6%
from 20 to 60 ◦C.

[105]

2022
CLT panels; woodchip
insulation panels; wood–fibre
insulation panels

The thermal conductivity increases by 10.2%
for CLT, 26% for woodchips and 21% for
wood–fibre from 10 to 50 ◦C.

[103]

Relative humidity

2012 Mineral wools
The thermal conductivity increases from
0.10–0.14 W/m K to 0.7–0.9 W/m K (from low
moisture contents of 5–20% to saturation).

[104]

2014
Stone wool panels; hemp
panels

U-values of both stone wool panels and hemp
panels increase in 56–90% RH.

[86]

2016
Hemp concrete, flax concrete
and rape straw concrete

The thermal conductivity is proportional to
the water content.

[107]

2016 Solid brick envelopes
The transient U-values achieve higher values
within the moist stage.

[108]

2017
Insulating building materials
made from DPF mesh

Thermal conductivity increases with
water content.

[105]

2019
AIC with aerogel volume
admixtures

The thermal conductivity increases by 76.33%
from 0% to 100% RH.

[102]

2022 Common insulation materials
The thermal conductivity increases by 171.9%
from 0% to 100% RH.

[105]

2022
CLT panels; woodchip
insulation panels; wood–fibre
insulation panels

The thermal conductivity increases by 12%
for CLT, 18% for woodchips and 8% for
wood–fibre from low to high
moisture content.

[103]

Solar radiation
2014

Hollow-reinforced precast
concrete envelopes

The U-value of the north envelope was 37.3%
lower than that of the east envelope, because
the north envelope was exposed to solar
radiation for a shorter time than the
east envelope.

[45]

2020 RC envelopes
The obtained U-value can be heightened by
solar radiation.

[23]

4. Impacts of U-Values on Building Energy Consumption

The life cycle energy of buildings includes embodied energy and operational energy,
as shown in Figure 3. As an important thermal parameter of the envelope, the U-value
affects the building’s operational energy, especially energy consumption for cooling and
heating. In recent years, the number of studies on the relationship between operational
energy consumption and U-values of envelopes has increased rapidly, as shown in Table 6.
The types of buildings in these studies are mainly office and residential buildings. The types
of envelopes examined include inorganic envelopes (such as concrete envelopes and brick
envelopes) and bio-based envelopes (such as timber envelopes and straw bale envelopes).

According to existing studies, the U-values have a large impact on building operational
energy consumption, and the relationship between the U-value and operational energy
consumption varies in different climatic conditions. Lower U-values can save operational
energy in cold climates. For example, Fernandes et al. used dynamic simulation to study
the U-value impact on the thermal performance of residential buildings. The results showed
that operational energy consumption decreased as U-values decreased in cold climates [109].
However, the relationship between U-values and operational energy consumption needs
to be dependent on the specific situations in relatively warm climates. On the one hand,
some researchers have found that lower U-values can lead to higher operational energy
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consumption. For example, Ihara et al. investigated envelope properties in their study of
energy efficiency in Tokyo office buildings. The results showed that the decrease in the
U-value of the non-transparent parts of RC envelopes was observed to increase the yearly
energy use of some high-rise buildings [110]. On the other hand, some researchers have
reached the opposite conclusion. For example, Suleiman found that when U-values of
external envelopes are 3.03 W/m2k and 5.26 W/m2k, the corresponding estimated annual
energy consumption is 40.26 kWh/m2 and 69.93 kWh/m2 in North Africa [64].

ffi

ff

ffi ffi

ff

Figure 3. The life cycle energy of buildings.

Table 6. Impacts of U-values of envelopes on building energy consumption.

Year Building Use Envelope Type Influence on Energy Consumption Reference

2006 All use The breathing envelope
This envelope achieves ultra-low U-values. It is
responsible for a 10% reduction in space heating and
cooling energy.

[111]

2011 All use
Concrete-backed stone
masonry envelope

When U-values of external envelopes are 3.03 W/(m2
·K)

and 5.26 W/(m2
·K), the corresponding estimated annual

energy consumption are 40.26 kWh/m2 and
69.93 kWh/m2 in North Africa.

[64]

2012 All use Timber envelopes
There is a linear relationship between the average U-value
of the envelope and the cooling and heating energy
consumption.

[112]

2015 Office RC envelopes

The energy use decreased due to the reduction in the
U-values of windows. The energy use increased due to the
reduction in the U-value of the non-transparent envelopes
in high-rise buildings.

[110]

2015 Residential RC envelopes

In cold areas, the yearly heating energy use of buildings
modelled with the 3D dynamic method is 8–13% higher
than that modelled with the average method. In warm
areas, the yearly cooling energy use is underestimated by
17% with the average method.

[113]

2016 Residential RC envelopes
The equivalent U-value method underestimates heating
energy use by up to 15%.

[114]

2016 Residential Straw bale envelopes
Straw bale envelopes have a lower U-value than traditional
building materials and are more energy efficient in Estonia.

[96]

2016 Residential NA
The variability of U-values can underestimate the energy
performance of approximately 90% of residences.

[115]

2017 Residential
Concrete block
envelopes

The average U-value method underestimates yearly
heating energy consumption by 13%.

[116]
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Table 6. Cont.

Year Building Use Envelope Type Influence on Energy Consumption Reference

2018 All use
RC, brick, CLT, and
timber-frame envelopes

The U-values of building components impact the energy
performance of building components significantly.

[117]

2018 Office NA
In the hot–arid climate zone, U-values of the envelopes do
not impact energy performance significantly.

[118]

2018 Residential NA
Low U-values can increase building energy demand in
temperate regions.

[119]

2019 All use NA
In cold areas, building energy consumption decreased due
to the reduction in U-values. In warmer climates, low
U-values building increased energy consumption.

[109]

2021 All use Straw bale envelopes

The theoretical U-value of the straw bale envelope is
0.13 W/(m2

·K). The heat load loss is from 18% to 25%,
while heat load gain is from 3% to 10% in the whole
building.

[91]

2022 Residential Straw bale envelopes

The U-value of straw bale envelope is 0.1 W/(m2
·K), the

U-value of the conventional envelope is 2.6 W/(m2
·K).

Straw bale reduced energy consumption in all climates
except for the warm–humid one in Iran.

[40]

2022 Residential
Brick and concrete
envelopes

Due to the variation in U-value, the yearly total heating
load increased by 26%, and the yearly total cooling load
increased by 13% in Beijing.

[120]

2022 All use
Brick and concrete
envelopes

In the Mediterranean climate, the change in U-value each
month is significant, providing deviances as much as 9.2%
in quarterly energy consumption.

[12]

The fluctuation of U-values can also have impacts on the predictions of building
operational energy consumption. U-values are dynamic because they are influenced by
environmental factors, such as fluctuations in temperature and relative humidity. If an
average U-value or a theoretical U-value is used to simulate building operational energy
consumption throughout the year, errors will arise. Bruno et al. applied the WUFI software
to study dynamic U-values of three different inorganic envelopes in the Mediterranean
climate. The results showed that the changes in the U-values each month were significant,
providing deviances of as much as 9.2% in quarterly energy consumption when compared
to the results obtained from a steady-state U-value [12]. The fluctuation of U-values is an
important issue for building energy prediction. However, related quantitative research
focusing on bio-based building envelopes is limited and needs to be investigated in detail.

5. Comparison of Theoretical and Measured U-Values

In recent years, many countries have established the range of U-values of envelopes
in building codes to save building energy use [121–123]. The U-values in these codes
are theoretical U-values. More existing studies have used theoretical U-values, and fewer
studies have applied measured U-values to simulate building operational energy. To predict
building operational energy accurately, it is important to obtain U-values of envelopes in
actual situations, so it is vital to understand whether the theoretical and measured U-values
correspond to the real-life scenario.

Firstly, theoretical U-values of envelopes are different from actual situations of en-
velopes in most situations because they can be affected by environmental factors, espe-
cially temperature and relative humidity. The temperature and relative humidity are
constantly varying in the real environment. Several researchers have focused on dynamic
U-values [124–126]. Their findings suggest that using theoretical U-values for building
energy simulation may lead to errors to some extent.



Buildings 2024, 14, 2434 15 of 20

Secondly, whether the measured U-values are close to the actual conditions of en-
velopes needs to be verified. Lots of research results showed that the theoretical U-values of
both inorganic and bio-based envelopes were different from their measured U-values. The
measured U-values may be closer to the actual situations of envelopes than the theoretical
U-values because the measured U-values take the influence of the environment into account.
However, errors in measured U-values may be caused by incorrect installation of equip-
ment and unstable measurement conditions [127]. Thus, it cannot be stated conclusively
that the measured U-values correspond to the actual situations of envelopes. It is worth
noting that most of the existing studies do not verify the measured U-values.

6. Conclusions

This study provides a systematic review of the existing studies related to the U-values
for envelopes of different materials. Both theoretical and measured U-values of four types
of envelopes (including concrete, brick, timber and straw bale envelopes) are introduced.
Environmental factors influencing U-values and the impacts of U-values on building energy
consumption are analysed. This study also discusses the accuracy of both theoretical and
measured U-values. Three research findings are summarised as follows:

(1) The relationship between environmental factors and U-values needs to be studied
in detail. Some studies have focused on the relationship between the environmental
factors and thermal conductivities of building materials. However, there is limited
research examining the quantitative relationship between important factors (such
as temperature, relative humidity and solar radiation) and the U-values of various
envelopes.

(2) The gaps between theoretical and measured U-values are significant, especially for
concrete and brick envelopes. The theoretical U-values of concrete envelopes range
from 0.12 to 1.61 W/m2K. Meanwhile, the measured U-values of concrete envelopes
range from 0.14 to 5.45 W/m2K. The theoretical U-values of brick envelopes range
from 0.22 to 2.09 W/m2K. Meanwhile, the measured U-values of brick envelopes
range from 0.15 to 5.26 W/m2K.

(3) The accuracy of both theoretical and the measured U-values needs to be verified. In
building energy simulation, it is also necessary to verify which type of U-value to
input can make the simulation results more accurate.
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Abbreviations

Nomenclature

U Thermal transmittance [W/(m2
·K)]

Φ Heat tranfer [W]
A Area [m2]

∆T
Temperature difference between the interior and exterior sides of the
building envelope [K]

R Thermal resistance
[

(m2
·K)/W

]

D Thickness of the material [mm]
λ Thermal conductivity of the material [W/(m·K)]
HBT Hot Box Test
GHB Guarded hot box
CHB Calibrated hot box
q Heat flow density

[

W/m2]

T Temperature [K]
HFM Heat flow meter
SHB-HFM Simple hot box-heat flow meter
THM Thermometric
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QIRT Quantitative infrared thermography
h Heat transfer coefficient [W/

(

m2
·K

)

]

LCA Life cycle assessment
RC Reinforced concrete
CLT Cross-laminated timber
OSB Oriented strand board
AIC Aerogel-incorporated concrete
Subscripts

sum Sum of all layers within the envelope
se External surface of the envelope
si Internal surface of the envelope
ij Indoor environment at time j
ej Outdoor environment at time j
n The number of recorded samples during the measurement period
sij Internal surface of the envelope at time j
i Internal surface of the envelope
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