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Abstract

A graph is called odd (respectively, even) if every vertex
has odd (respectively, even) degree. Gallai proved that
every graph can be partitioned into two even induced
subgraphs, or into an odd and an even induced sub-
graph. We refer to a partition into odd subgraphs
as an odd colouring of G. Scott proved that a connected
graph admits an odd colouring if and only if it has an
even number of vertices. We say that a graph G is k-odd
colourable if it can be partitioned into at most k odd
induced subgraphs. The odd chromatic number of G,
denoted by x,4q(G), is the minimum integer k for
which G is k-odd colourable. We initiate the systematic
study of odd colouring and odd chromatic number of
graph classes. We first consider a question due to Scott,
which states that every graph G of even order n has
Xoad (G) < c/m, for some positive constant ¢, by prov-
ing that this is indeed the case if G is restricted to
having girth at least seven. We also show that any
graph G whose all components have even order satis-
fies ) 44 (G) <2A — 1, where A is the maximum degree
of G. Next, we show that certain interesting classes
have bounded odd chromatic number. Our main results
in this direction are that interval graphs, graphs of
bounded modular-width all have bounded odd chro-
matic number. In particular, every even interval graph is
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6-odd colourable, and every even graph is 3mw-odd
colourable, where mw is the modular width of a graph.

KEYWORDS
colouring variant, graph classes, odd colouring, upper bounds,
vertex partition problem

1 | INTRODUCTION

A graph is called odd (respectively even) if all its degrees are odd (respectively even). Gallai
proved the following theorem (see [10], Problem 5.17 for a proof).

Theorem 1. For every graph G, there exist:

« a partition (4, V5) of V (G) such that G[Vi] and G[V5] are both even;
« a partition (V4, V%) of V(G) such that G[V1] is odd and G[V] is even.

This theorem has two main consequences. The first one is that every graph contains an
induced even subgraph with at least IV (G)I/2 vertices. The second is that every graph can
be even coloured with at most two colours, that is, partitioned into two (possibly empty) sets
of vertices, each of which induces an even subgraph of G. In both cases, it is natural to
wonder whether similar results hold true when considering odd subgraphs.

The first question, known as the odd subgraph conjecture and mentioned already by Caro [4]
as part of the graph theory folklore, asks whether there exists a constant ¢ > 0 such that every
graph G contains an odd subgraph with at least IV (G)|/c vertices. In a recent breakthrough
paper, Ferber and Krivelevich proved that the conjecture is true.

Theorem 2 [9]. Every graph G with no isolated vertices has an odd induced subgraph of
size at least 1V (G)1/10, 000.

Note that the requirement that G does not have isolated vertices is necessary, as those
cannot be part of any odd subgraph.

The second question is whether every graph can be partitioned into a bounded number of
odd induced subgraphs. We refer to such a partition as an odd colouring, and the minimum
number of parts required to odd colour a given graph G, denoted by y,44(G), as its odd
chromatic number. This can be seen as a variant of proper (vertex) colouring, where one seeks
to partition the vertices of a graph into odd subgraphs instead of independent sets. An
immediate observation is that to be odd colourable, a graph must have all its connected
components be of even order, as an immediate consequence of the handshake lemma.
Scott [13] proved that this necessary condition is also sufficient. Therefore, graphs can generally
be assumed to have all their connected components of even order, unless otherwise specified.

Motivated by this result, it is natural to ask how many colours are necessary to partition
a graph into odd induced subgraphs. Unsurprisingly, on the computational side, it was
shown by Belmonte and Sau [2] that the problem of deciding whether a graph is k-odd
colourable is solvable in polynomial time when k <2, and NP-complete otherwise, similarly
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to the case of proper colouring. Scott showed [13], there exist graphs with arbitrarily large
odd chormatic number. More precisely, he showed that there exist graphs of order n that
require ®(</n) colours. In particular, the subdivided clique, i.e., the graph obtained from a
complete graph on n vertices by subdividing every edge once requires exactly n
colours. More generally, given any connected graph G, the graph H obtained from G by
subdividing every edge once has x,,q(H) = x(G), and H is odd colourable if and only if
IV (H)l =1V (G)l + IE(G)!l is even.
As an upper bound, best known general bound is the following.

Theorem 3 Scott [13]. Every connected graph G of even order n has
Xoaq (G) < cn(loglogn)~'/2, for some constant ¢ > 0.

Scott conjectured that this bound is far from being best possible, and that the aforemen-
tioned lower bound of </ is the right order of magnitude.

Conjecture 1 Scott [13]. Every connected graph G of even order n has
Xodad (G) <A + 0(1))c/n, for some constant ¢ > 0.

A related conjecture about a general upper bound is due to Aashtab et al. [1], who con-
jectured that a Brooks-type result for graph colouring should extend to odd colouring.

Conjecture 2 Aashtab et al. [1]. Every connected graph G of even order has
Xodad (G) <A + 1, where A is the maximum degree of G.

In this work, we study the above two conjectures, which have not yet been given much
attention. We first show that the conjecture of Aashtab et al. [1] holds if one is allowed 2A — 1
colours. Next, we use this to prove Scott's conjecture for sparse graphs. Then we study specific
classes of graphs (such as interval graphs and graphs of bounded modular-width), showing that
these have small odd chromatic numbers.

The rest of the work is structured as follows. In Section 3, we prove that every graph G of
even order and maximum degree A has y, 44 (G) <2A — 1, extending the result of Aashtab et al.
on subcubic graphs to graphs of bounded degree. We actually prove a more general result,
which provides additional corollaries for graphs of large girth. In particular, we obtain that
planar graphs of girth 11 are 3-odd colourable. We also obtain that graphs of girth at least 7 are
O(</n)-odd colourable, hence obtaining Scott's conjecture for sparse graphs. While this bound
is not constant, it is of particular interest since subdivided cliques have girth exactly 6. In
Section 4, we prove that every graph with all connected components of even order satisfies
Xodd (G) <3 - mw(G), where mw(G) denotes the modular width of G. This significantly gen-
eralizes a result on cographs from Belmonte and Sau [2] and provides an important step
towards proving that graphs of bounded rank-width have bounded odd chromatic number,
which in turn would imply that the Opp Curomatic NumBER is FPT when parameterized by
rank-width alone. Finally, we prove in Section 5 that every interval graph with all components
of even order is 6-odd colourable. It was pointed out to us by Miiller [11] that our proof, albeit
with more tedious notation, yields the exact same bound for the larger class of AT-free graphs.
Additionally, we show that every proper interval graph with all components of even order is
3-odd colourable, and this bound is tight. An overview of known results and open cases is
provided in Figure 1 below.
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FIGURE 1 Overview of known and open cases. [Color figure can be viewed at wileyonlinelibrary.com]

2 | PRELIMINARIES

For a positive integer i, we denote by [i] the set containing every integer j such that 1 <j <i.
We consider a partition of a set X to be a tuple P = (P, ..., P;) of subsets of X such that
X = Uie P, and B, N P; = @, that is, we allow parts to be the empty set. Let P = (P,, ..., P;) be a
partition of X and Y C X. We let Ply be the partition of Y obtained from (P, NY, .., P, NY) by
removing all empty parts. A partition (Qy, ..., Q) of X is a coarsening of a partition (P, ..., Py) of
X if for every P, and every Q; either , N Q; = @ or B, N Q; = P, i.e., every Q; is the union of F;'s.

Every graph in this work is simple, undirected and finite. We use standard graph-theoretic
notation, and we refer the reader to Diestel [7] for any undefined notation. The degree (resp.
open neighbourhood) of a vertex v € V (G) is denoted by dg(v) (resp. Ns(v)). We denote the
subgraph induced by S by G[S]. G\S = G[V (G)\S]. The maximum degree of any vertex of G is
denoted by A. We denote paths and cycles by tuples of vertices. The girth of G is the length of a
shortest cycle of G. Given two vertices u and v lying in the same connected component of G, we
say an edge e separates u and v if they lie in different connected components of G\{e}.

A graph is called odd (even, respectively) if every vertex has odd (respectively, even) degree.
A partition (V4, ..., Vi) of V (G) is a k-odd colouring of G if G[V;] induces an odd subgraphs of G
for every 1 <i <k. We say a graph is k-odd colourable if it admits a k-odd colouring. The odd
chromatic number of G, denoted by x.44(G), is the smallest integer k such that G is k-odd
colourable. The empty graph (i.e., the graph such that V (G) = @) is considered to be both even
and odd. Since odd colouring exists only for graphs whose every component has even size and
the colouring of each component does not affect the colouring of the others, we can consider
each component separately. Therefore, it suffices to prove the statements for connected graphs
of even order.

We would like to point out here that the definition of odd colouring used in this work is not
to be confused with the one introduced by Petrusevski and Skrekovski [12], which is a specific
type of proper colouring.
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Modular width A set S of vertices is called a module if, for allu, v € S, N (u)\S = N (v)\S.
A partition M = (M, ..., My) of V(G) is a module partition of G if every M; is a module in G.
Without loss of generality, we further ask that any module partition M of G, unless G = K, is
nontrivial, that is, M has at least two nonempty parts. Given two sets of vertices X and Y, we
say that X and Y are complete to each other (completely nonadjacent, respectively) if uv € E(G)
(uv ¢ E(G), respectively) for everyu € X, v € Y. Note that for any two modules M and N in G,
either M and N are nonadjacent or complete to each other. We let Gy, be the module graph of
M, that is, the graph on vertex set M with an edge between M; and M; if and only if M; and M;
are complete to each other (nonadjacency between modules M;, M; in Gy, corresponds to M; and
M; being nonadjacent in G). We define the modular width of a graph G, denoted by mw(G),
recursively as follows. mw(K;) = 1, the width of a module partition (M, ..., My) of G is the
maximum of k and mw(G [M;]) for all i € [k] and mw(G) is the minimum width of any module
partitions of G.

3 | GRAPHS OF BOUNDED DEGREE AND GRAPHS OF
LARGE GIRTH

In this section, we study Scott's conjecture (Conjecture 1) as well as the conjecture made by
Aashtab et al. [1] which states that y 44 (G) <A + 1 for any graph G. We settle Conjecture 1 for
graphs of girth at least 7, and prove that y, 44 (G) <2A — 1 for any graph G, thus obtaining a
weaker version of the conjecture of Aashtab et al. To this end, we prove the following more
general theorem, which implies both of the aforementioned results.

Theorem 4. Let 'H be a class of graphs such that:

« K, eH

o H is closed under vertex deletion and

« there is a k >2 such that any connected graph G € H satisfies at least one of the
following properties:
(I) G has two pendant vertices u, v such that Ng(u) = Ng(v) or
(I) G has two adjacent vertices u, v such that dg(u) + dg(v) <k.

Then any connected graph G € H of even order has x,44(G) <k — 1.

Proof. First notice that H is well defined as K; has the desired properties. The proof is by
induction on the number of vertices. Let IV (G)| = 2n.

For n =1, since G is connected, we have that G = K, which is odd. Therefore,
Xoda (G) =1 <k — 1 (recall that k >2). Let G be a graph of order 2n. Notice that we only
need to consider the case where G is connected as, otherwise, we can apply the inductive
hypothesis to each of the components of G. Assume first that G has two pendant vertices
u, v such that Ng(u) = Ng(v) = {w}. Then, since G — {u, v} is connected and belongs to
‘H, by induction, there is an odd colouring of G — {u, v} that uses at most k — 1 colours.
Let (4, ..., Vi_1) be a partition of V (G)\{u, v} such that G[V;] is odd for alli € [k — 1]. We
may assume that w € V;. We give a partition Vi,..,Vi_; of V(G) by setting
Vi=WVu{u,v}and Vi =V for all i € [k]\{1}. Notice that for all i € [k — 1], G[V]] is
odd. Therefore, y,4q4(G) <k — 1.
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Thus, we assume that G has an edge uv € E(G) such that dg(u) + dg(v) <k. Note
that we may assume that k > 3 for otherwise the theorem follows. We consider two cases;
G[V (G)\{u, v}] is connected and G[V (G)\{u, v}] is disconnected.

Assume that G[V(G)\{u,v}] is connected. Since G[V(G)\{u,v}] has
IV (G)\{u, v}l = 2n — 2 and belongs to H, by induction, there is an odd colouring of it
that uses at most k — 1 colours. Let (V4 ..., Vi_1) be a partition of V (G)\{u, v}, such that
G[V/]is odd of all i € [k — 1]. We give a partition of G into k — 1 odd graphs as follows.
Since INg ({u, v})| <k — 2, there exists ¢ € [k — 1] such that V, N Ng({u,v}) = @. We
define a partition (U, ..., Uy_1) of V(G) as follows. For all i € [k — 1], ifi # ¢, we define
U; = V, otherwise we set U; = V; U {u, v}. Notice that for all i # ¢, G[U] is odd since
U, = V;. Also, since Ng[y,[ul = Ng[y[v] = {u,v} and G[V,] is odd, we conclude that
G[U] is odd. Thus, y,4q(G) <k — 1.

Now, we consider the case where G\{u, v} is disconnected. First, we assume that there
is at least one component in G\{u, v} of even order. Let U be the set of vertices of this
component. By induction, x4 (G[U]) <k — 1 and x4 (G\U) <k — 1. Furthermore,
INg ({u, v}) N Ul <k — 3 because G\{u, v} has at least two components. Let (U, ..., Ur_1)
be a partition of U such that G[U;] is odd for all i € [k — 1]. Also, let (W, ..., Vi_1) be a
partition of V(G)\U such that G[V/] is odd for all i € [k — 1]. We may assume that
Vin{u,v} =@ for all i € [k — 3]. Since IN;({u, v}) n Ul <k — 3, there are at least two
indices I, I' € [k — 1] such that U; n Ng({u, v}) = Uy N Ng({u, v}) = @. We may assume
thatl = k — 2 and I' = k — 1. We define a partition (V, ..., Vi_,) of V(G) as follows. For
alli € [k — 1] we define V' = V; U U,. We claim that G[V]] is odd for alli € [k — 1]. To
show the claim, we consider two cases; either V| N {u, v} = @ or not. If Vi N {u, v} = @&,
since the only vertices in V (G)\U that can have neighbours in U are v and u, we have
that G[V]] is odd. Indeed, this holds because U; N N5(V;) = @ and both G[U;] and G[V}]
are odd. If Vin{u,v} # @, then i =k — 2 or i = k — 1. In both cases, we know that
U, n Ns(V;) = @ because the only vertices in V (G)\U that may have neighbours in U are
v and u and we have assumed that u, v do not have neighbours in U,_, U Uy—_;. So, G[V]
is odd because U; N Ng(V}) = @ and both G[U;] and G[V;] are odd.

Thus, we can assume that all components of G\{u, v} are of odd order. Let £ > 0 be the
number of components, denoted by V4, ..., Vo, of G\{u, v} and note that £ must be even.
We consider two cases, either for all i € [¢], one of G[V; U {u}] or G[V, U {v}] is
disconnected, or there is at least one i € [¢] such that both G[V; U {u}] and G[V; U {v}]
are connected.

In the first case, for each V;, i € [¢€] we call w; the vertex in {u, v} such that G[V; U {w;}]
is connected. Note that w; is uniquely determined, that is, only one of u and v can
be w; for each i€ [¢]. Now, by induction, for all i€ [¢],G[V,U {w}] has
Xoad (GIV; U {wi}]) <k — 1. Let, for each i € [¢], (Vi .., Vi_) denote a partition of
Vi U {w;} such that G[VS] be odd, for all j € [k — 1]. Furthermore, we may assume that

for eachi € [¢],ifv € V, U {w;}, thenv € Vi _,. Also, we can assume that for eachi € [#],
ifu € V; U {wj}, thenu € Vi_,. Finally, let I = {i € [¢]lw; = v} and J = {i € [¢]lw; = u}.

We consider two cases. If Il is odd, then IJ1 is odd since ¢ = Il + IJI is even. Then, we
claim that for the partition (U, ..., Ur—1) of V (G) where U; = Uj[¢] Vl-j it holds that G[U;]
is odd for all i € [k — 1]. First notice that (U, ..., Uy_1) is indeed a partition of V (G).
Indeed, the only vertices that may belong in more than one set are u and v. However, v
belongs only to some sets V' _,, and hence it is no set U; except Uy._,. Similarly, u belongs
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to no set U; except Uy—_. Therefore, it remains to show that G[U] is odd for alli € [k — 1].
We will show that for any i € [k — 1] and for any x € U, IN5(x) n Ul is odd. Let
x € U\{u, v}, for some i € [k — 1]. Then we know that Ng(x) n U; = Ng(x) N Vij for
some j € [¢]. Since G[Vl-j] is odd for all i€ [k — 1] and j € [¢] we have that
INg(x) N Ul = INg(x) N V{I is odd. Therefore, we only need to consider u and v. Notice
thatv € Uiz = Ujepe Vi—z (respectively, u € Ui—1 = Ujee Vi_l). Also, v (respectively, u)
is included in Vi_z (respectively, Vi_l) only if j € I (respectively, j € J). Since G[Vi_z]
(respectively, G[V,{_l]) is odd for any j € [¢] we have that IN (v) N Vi_zl (respectively,
IN (u) N V{;_ll) is odd for any j € I (resp. j € J). Finally, since IIl and IJ1 are odd, we have
that [Ng() N Ur—al = 5 IN(W) N V{_,| and INg() N Ugoal = 3, IN @) N V]_j| are
both odd. Therefore, for any i € [k — 1], G[U;] is odd and y 44 (G) <k — 1.

Now, suppose that both Il and lJI are even. We consider the partition (Uj, ..., Uy_1) of
V(G) where, for all i€ [k—3]U = Uy Vl-j, Ui, = UjEJVi_z U UjeIVi_l and
U1 = Uje,vi_z U Ujes Vi_l. We claim that for this partition it holds that G[U]] is
odd for all i € [k — 1]. First notice that (U, ..., U,_;) is indeed a partition of V (G).
Indeed, this is clear for all vertices except for u and v. However, v only belongs to sets of
type Vi_, for i € I, and u only belongs to sets of type Vi_, for i € J. Therefore, u or v
belong to no set U; except Uy_;. We will show that for any i€ [k — 1] and
x € U, INg(x) n Ul is odd. Let x € U;\{u, v}, for some i € [k — 1]. Then we know that
Ng(x) N U; = Ng(x) n V! for some j € [¢]. Since G[V]] is odd for all i € [k — 1] and
j € [¢] we have that INg(x) N Ul = INg(x) n VI is odd. Therefore, we only need to
consider u and v. Note that u,v € U,_;. Since both IIl and IJI are even and
U1 = UjelVi_z U UjejVi_l, we have that IN;(v) N Up_;\{u}l and INg(u) N U \{v}I
are both even. Finally, since uv € E (G) we have that INg(u) N Ug_;l and INg(v) N Uy_4
are both odd. Hence, x,,4(G) <k — 1.

Now we consider the case where there is at least one i € [¢] where both G[V, U {u}]
and G[V; U {v}] are connected. We define the following sets I and J. For each i € [¢]

o i €1,if G[V; U {u}] is disconnected and
o« i €J,if G[V; U {v}] is disconnected.

Finally, for the rest of the indices, i € [¢], which are not in T U J, it holds that both
G[Vi U {u}] and G[V; U {v}] are connected. Call this set of indices X and note that by
assumption IX| > 1. Since lIl + Ul + 1X|is even, it is easy to see that there is a partition of
X into two sets X; and X, such that both I’ := I U X; and J' := J U X, have odd size. Let
Vi = UierVi and V; = Uier Vi. Now, by induction, we have that y, 4 (G[V; U {v}]) <k — 1
and x,4q (G[V; U {u}]) <k — 1. Assume that (V],..,Vi_;) is a partition of V; and
(V4, .., Vi_)) is a partition of V; such that for any i € [k — 1], G[V!] and G[V]] are odd.
Without loss of generality, we may assume that v € V1 andu € V{_;. Since IX| > 1, note
that both dg(u) and dg(v) are at least two, which implies that dg(u) <k — 2 and
dg(v) <k — 2. Therefore, there exists iy € [k —2] such that Ng(v) N Vi =9
and j, € [k — 1]\{1} such that Ng(v) n V§0 = @. We reorder the sets V, i € [k — 2], so
that i, = 1 and we reorder the sets V/, i € [k — 1]\{1} so that Jo = k — 1. Note that this
reordering does not change the fact that v € V{ and u € Vj_;. Consider the partition
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(Uy, ..., Ui_y) of V(G), where Uy = V! u V/. We claim that for all i € [k — 1], G[U]
is odd. Note that for any x€ U, we have Ng(x)NU=Nsx)nV/ or
Ng(x) N U; = Ng(x) n V{. Since for any i € [k — 1], G[V!] and G[V]] are odd we
conclude that G[Uj] is odd for any i € [k — 1]. O

Notice that the class of graphs G of maximum degree A satisfies the requirements of
Theorem 4. Indeed, this class is closed under vertex deletions and any connected graph in the
class has least two adjacent vertices u, v such that dg(u) + dg(v) <2A. Therefore, the following
corollary holds.

Corollary 1. Any connected graph G of even order and maximum degree A has
Xoad (G) <2A — 1.

Next, we prove Conjecture 1 for graphs of girth at least seven.

Corollary 2. Any connected graph G of even order and of girth at least 7 has

Xodd (G) < 3? + 1 where n = IV (G)L.

Proof. Let G; be the class of graphs of girth at least 7. Note that G, is closed under vertex
deletion. Therefore, we need prove that any connected graph G € G; of even order that
does not satisfy the property (I) of the Theorem 4 has at least two adjacent vertices u, v
such that dg(u) + dg(v) <3+/n /2 + 2. Then, the corollary follows from the Theorem 4.

Claim 1. Let G be a graph in G, of order n. If G does not have two pendant vertices
u,v such that Ng(u) = N5(v), then it has two adjacent vertices u’,v’ such that

d(;(u/) + dG(V’) < % + 2.

Proof of Claim. Assume that for any two adjacent vertices u,v such that
deg(u) + dg(v) >3 /2 + 3. Let G’ be the graph we obtain after we remove all
pendant vertices of G. Since each vertex of G had at most one pendant vertex we have that
for any edge uv € E(G'), dy(u) + dy(v) >3/2/m + 1. Also notice that G’ does not
contain any pendant vertices as otherwise this vertex was attached to a pendant vertex of
G and this gives us an edge uv € E such that dg(u) + dg(v) = 3 <3/n /2 + 2.

Let w be a vertex such that dy(w) >3+/n /4 + 1/2. We consider all the vertices of
distance at most 3 from w in G'. Let V] be the set of vertices of distance one from w, V; be
the set of vertices of distance two from w and V5 be the set of vertices of distance three
from w. Notice that, since G has girth at least 7 we have that both ; and V, are
independent sets, no two vertices in 14 have a common neighbour in V,, and no two
vertices in V; have a common neighbour in V3.

We will compute the minimum number of vertices in these sets. For any j € {1, 2}, let
Vil = my, vy, i € [my], be the vertices of V; and d;; = dg'(v;,;) for alli € [my;]. For each vertex
Vi i € [my], selecti’ € [my] such that v,y € Ng(vy,;)\{w}. We note that the selected vertices
i’ are necessarily distinct for each vertex vi; € Vi. We have INg [{vi;, var}]\ (W}l =
di+dy—1>3/n/2. It follows that |V (G)] zzie[mll(sﬁ/z) =m(3Jn/2) >
9n/8 + 3/n /4 > n. This is a contradiction since G has n vertices. 1
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One may wonder if graphs of sufficiently large girth may have bounded odd chromatic
number. In fact, this is far from being true, which we show in the next proposition. Recall that
the chromatic number x(G) of a graph G is the smallest integer k such that V (G) can be
partitioned into k sets each of which is independent.

Proposition 1. For every integer g and k, there exist graphs of even order and of girth at
least g such that x,44(G) > k.

Proof. 'We use a classical result of Erd6s [8], which states that for all sufficiently large n,
there exists a n-vertex graph G of girth at least g and x (G) > k. Let G be such a graph,
with n even. We may assume that G has no component of odd order (otherwise, we can
add an edge between any pair of odd components without affecting the girth or
decreasing the chromatic number). Let H be the graph obtained from G by subdividing
each edge of G once. We claim that y 44 (H) > k. Suppose that x 44 (H) <k — 1 and let
Ui, ...Ug_1 be a partition of V (H) such that G[U] is odd for each i € [k — 1]. Since
x(G) >k, there must exist two adjacent vertices u, v € V (G) such that both {u, v} € Uj
for some i € [k — 1]. But we know that there is a vertex wy, in H with Ny (w,,) = {u, v}.
Let U; be the set containing w,,. Then U; is not odd, a contradiction. O

Remark 1. In fact, by using a stronger result of Bollobas [3], it is possible to show that
for every g, there is € > 0 such that for all even n sufficiently large, there exist connected
graphs G of order n and girth at least g, with yx, 44 (G) > n®.

Next, we obtain the following result for sparse planar graphs.

Corollary 3. Any connected planar graph G of even order and of girth at least 11 has
Xoad (G) <3.

Proof. Let G be the class of planar graphs of girth at least 11. Notice that this class is
closed under vertex deletion. We will show that for any graph G € G at least one of the
following properties holds:

(I) G has two pendant vertices u, v € V (G) such that Ng(u) = Ng(v) or
(II) G has an edge uv € E(G) such that dg(u) + dg(v) <4

Assume that G does not satisfy the property (I). We construct G’ by deleting all
pendant vertices of G. If the minimum degree of G’ is 1, then the property (II’) holds for G.
Indeed, if G’ has a pendant vertex u, then must have a pendant vertex v in G. Therefore,
d(;(u) + d(;(\)) =2+4+1<L4.

Assume that G’ has minimum degree 2. Since G’ is also planar and has girth at least 11
we can apply the Theorem 4.11 (Chang and Duh [5]), which states that there exists an
edge uv € E(G’) such that dy (u) = dg (v) = 2. We consider two cases: either one of u
and v were attached to a pendant vertex v in G or none of them were attached to a
pendant vertex of G. In the first case, we may assume that u is attached to a pendant
vertex w of G. Then we have dg(u) + dg(w) = 3 + 1 <4, therefore G satisfies the
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property (II). In the latter case, both u and v have dg(u) = dg(v) = 2. Then G satisfies
the property (II).
Now, by applying Theorem 4 to the class G the corollary follows. O

Remark 2. The upper bound presented in Corollary 3 is tight as Cy4, the cycle of length
14, has ) 4q (C1a) = 3.

4 | GRAPHS OF BOUNDED MODULAR-WIDTH

In this section, we consider graphs of bounded modular-width and show that we can upper
bound the odd chromatic number by the modular-width of a graph.

Theorem 5. For every graph G with all components of even order, xy44(G) <3mw(G).

The following is an easy consequence of Theorem 1 which will be useful to colour modules
and gain control over the parity of parts in the case the module is of even size.

Remark 3. For every nonempty graph G of even order, there exists a partition (W4, V3, V3)
of V(G) with IV, IV4l being odd such that G [V1] is odd and G [V5], G [V5] are even. This can
be derived from Theorem 1 by taking an arbitrary vertex v € V (G), setting V; := {v} and
then using the existence of a partition (14, V5) of V (G)\{v} such that G[V{] is odd and
G[V,] is even.

To prove Theorem 5, we first show that every graph G is 3-colourable for which we have a
module partition M such that the module graph Gy, exhibits a particular structure, that is, is
either a star Lemma 1 or a special type of tree Lemma 2. (Figure 2).

Lemma 1. For every connected graph G of even order with a module partition
M = {M,, ..., My} such that Gy is a star, x,44(G) <3.

Proof. Assume that in Gy, the vertices M,, ..., M have degree 1. We refer to M; as the
centre and to M,, ..., My as leaves of Gy,. We further assume that IM,, ..., IM,l are odd and
IMg1l, ..., IMy| are even for some € € [k]. We use the following two claims.

Claim 2. If W C V(G) such that G[W n M;] is odd for every i € [k], then G[W] is
odd.

Proof of Claim. First observe that the degree of any vertex v e Wn M; in G[W] is
dorwam (V) + Zﬁ;len M. Since dgwnm(v) is odd and IW N Ml is even for every
i € {2, ..., k} (which follows from G [W n M;] being odd by the handshake lemma) we get
that dgrw(v) is odd. For every i € {2, ..., k} the degree of any vertexv € W N M; in G[W]
is dgiwamy(v) + IW N Ml which is odd (again, because IW N Mjl must be even). Hence
G[W] is odd. O

Claim 3. IfW C V (G) such that G[W n M| is even for every i € [k], IW n Ml is odd
and I{i € {2, ..., k} : IW n Myl is odd}! is odd, then G[W] is odd.
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FIGURE 2 Schematic illustration of the three cases in the proof of Lemma 1. Depicted is the module
graph Gy, along with a partition of the modules into sets 1}, V5 and V5 such that G [V;] is odd fori € [3]. Specifically,
the left figure depicts the case where the centre is of odd size, the middle figure depicts the case where the centre is
of even size and there is no odd sized leaf and the right figure depicts the case where the centre is of even size and
there is at least one odd sized leaf. [Color figure can be viewed at wileyonlinelibrary.com]

Proof of Claim. Since Gy, is a star and M, its centre we get that the degree of any
vertex v e Wn M, for any i € {2, ..., k} is dgpwamy(v) + IW N Mjl. Since IW N Ml is odd
and dgwnm(v) is even we get that every vertex v e W N M, for every i € {2, ..., k} has
odd degree in G[W]. On the other hand, the degree of ve Wn M is dgiwnam(V)+
Zf:2|Wn M. Since dgwnmy(v) is even and I{i € {2, .., k}: IW N Ml isodd}l is odd
dgw)(v) is odd. We conclude that G[W] is odd. O

First, consider the case that Ml is odd. Since G is of even order this implies that there
must be an odd number of leaves of Gy of odd size and hence ¢ is even. Using Theorem 1,
we let (W3, W)) be a partition of M; such that G[W'] is odd and G[W}] is even for every
i € [k]. Note that since G[W'] is odd IW!| has to be even and hence |W'| is odd if and only
ifi € [¢]. We define V] := Uicy Wi and V5 := U W5 Note that (V;, V3) is a partition of
G. Furthermore, G [V{] is odd by Claim 2 and G [V4] is odd by Claim 3. For an illustration,
we refer the reader to Figure 2.

Now consider the case that IM;| is even. We first consider the special case that € = 1,
that is, there is no i € [k] such that IMjl is odd. In this case, we let (W3, W}, W5) be a
partition of M; for i € {1,2} such that G[W] is odd, G[W}], G[W'] are even and
IWLl, IWil are odd which exists due to Remark 3. For i € {3, ..., k} we let (W}, W) be a
partition of M; such that G[W!]is odd and G[W}] is even which exists by Theorem 1. We
define Vi := Uiy W1, Vo := Uiy W5 and V3 := W3 U W3. As before we observe that
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(W, V3, W3) is a partition of V (G), G[W] is odd by Claim 2 and G[V5], G[V4] are even by
Claim 3. For an illustration see Figure 2.

Lastly, consider the case that IM;l is even and € > 1. By Remark 3 there is a partition
(W1, Wi, W) of M; such that G[W1]] is odd, G[W}], G[W}] are even and IW3, W}l are
odd. For i € {2, ..., k} we let (Wi, W) be a partition of M; such that G[W] is odd and
G[W}] is even which exists by 1. We define Vi == Ujcy Wi, V5 = W3 u Ul; W) and
Vs == W1 U W3. Note that (V, V5, V4) is a partition of V (G). Furthermore, G [V{] is odd by
Claim 2 and G[V3] is odd by 3. Additionally, since IMj! is even there is an even number of
i € {2, ..., k} such that IMjl is odd. Since for each i € {2, ..., k} for which IMjl is odd, IW}|
must be odd, we get that I{i € {2, ..., k} : IV} n Ml is odd}! is odd (note that Vi N M, = @
because W2 C V4). Hence we can use Claim 3 to conclude that G[V5] is odd. For an
illustration see Figure 2. O

Let G be a connected graph of even order with module partition M = (M, ..., M) such that
G\ is a tree. For an edge e of Gy we let X, and Y, be the two components of the graph obtained
from Gy, by removing e. We say that the tree Gy is colour propagating if the following
properties hold.

i) Ml >3.
(i) Every non-leaf module has size one.
(iif) 1Uwmev (x,)M| is odd for every edge e € E (Gyq) which is not incident to any leaf of Gy,.

Lemma 2. For every connected graph G of even order with a module partition
M = (M, ..., My) such that G is a colour propagating tree, x,q4q4(G) <2.

Proof. To find an odd colouring (V;, V5) of G, we first let (W', W) be a partition of M;
such that G [W!]is odd and G [W}] is even for every i € [k]. The partitions (W', W5) exist
due to Theorem 1. Note that (ii) implies that for every module M; which is not a leaf
W5 =1 and W' = @. We define V; := Ujcjg Wi and V3 == Uicpi) W

To argue that (W4, V,) is an odd colouring of G first consider any v € V (G) such that
v € M; for some leaf M; of Gy. Condition (i) implies that Gy, must have at least three
vertices and hence the neighbour M; of M; cannot be a leaf due to Gy being a tree. Hence
IMjl = 1 by (ii). Hence, if v € W', then depy(v) = dgwiy(v) since W{ = @ and therefore
dgy(v) is odd. Further, if v e Wi, then doiy, (v) = dewy(v) + 1 since IWél =1 and
hence dg,)(v) is odd. Hence the degree of any vertex v € M; is odd in G[Vi], G[V5]
respectively.

Now consider any vertex v € V (G) such that M; = {v} for some non-leaf M; of Gy,. Let
M;, ..., M;, be the neighbours of M; in Gy. Let ¢; be the edge M;M;, € E(G) for every
J € [¢]. Without loss of generality, assume that M; & V (X,,) for every j € [¢]. By (iii) we
have that IUMGV(Xej)M | is odd whenever M; is not a leaf in Gy. Hence, by (ii),
|UM6V(XL,J.)M | = IM;| (mod 2) for every j € [¢] for which M;, is not a leaf in Gy. On the
other hand, as a consequence of the handshake lemma we get that IWiz"I is odd if and only
if IM;] is odd. Hence the following holds for the parity of the degree of v in G[V3].
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dopy ) = I{j € [m] : dg, (M) 22} + Y IW§ =1V (G)\Mil (mod 2).
J€lm]
dg (Mip=1

Since G has even order we conclude that dg[y,)(v) is odd and hence (¥4, V5) is an odd
colouring of G. O

We now show that, given a graph G with module partition M, we can decompose the
graph in such a way that the module graph of any part of the decomposition is either a star or a
colour propagating tree. Here we consider the module graph with respect to the module
partition M restricted to the part of the decomposition we are considering. To obtain the
decomposition we use a spanning tree Gy, and inductively find a non-separating star, i.e., a star
whose removal does not disconnect the graph, or a colour propagating tree. To handle parity
during this process we might separate a module into two parts of the decomposition.

Lemma 3. For every graph G of even order and module partition M = (Mj, ..., M) there
is a partition M of V (G) with at most 2k many parts such that there is a coarsening P of M
with the following properties. |P! is even for every part P of P. Furthermore, for every part P
of P we have that ﬂlp is a module partition of G[P] and G [P]zy,, is either a star (with at
least two vertices) or a colour propagating tree.

Proof. We use the following extensively throughout the proof.

Claim 4. If N is a module partition of a graph H and W C V (G) such that Ny has
at least two nonempty parts, then Ay is a module partition of G[W].

Proof of Claim. Assume that this is not the case and there is a part N of My, which is
not a module in G[W]. By construction, there is a part N’ of N such that N C N'. Since
N is not a module in G[W] there are vertices u,v € N,w € W\N such that
uw € E(G[W]) and vw ¢ E(G[W]). Since N C N’ this implies that N’ cannot be a
module in G, a contradiction. O

We use an induction on the number of modules in M to find partitions M and P.
Observe that in case Gy is a star or a colour propagating tree we can set M = M and
P := (V(G)) which satisfies the conditions of the statement. Hence assume that Gy, is
neither a star nor a colour propagating tree. We use the two following claims to conduct
our inductive argument.

Claim 5. Let H be a graph with module partition A = (N, ..., N) such that Hy is
neither a star nor a colour propagating tree. If Hy is a tree, then there is a partition

N = (N, . N2) of V(G) with 2 <¢ + 1 and a coarsening Q = (Q;, Q) of N with the

following properties. IQ;l is even and NIQI. is a module partition of H[Q;] for i € [2].
Furthermore, H [Q,] is connected and H [QZ]M@ is either a star or a colour propagating

tree. Additionally, for any fixed index i € [¢] we can enforce that N; N Q; # @&.

Proof of Claim. First observe that since Hy is a tree but neither a colour propagating
tree nor a star we know that either
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« there is a nonleaf vertex N in Hy with INI > 1 which has at least one non-leaf
neighbour or
« there is an edge e € E (Hy) not incident to any leaf of Hy and IUyey (x,) NI is even.

Assume we have fixed i € [¢] (N; will be the part which is guaranteed to be partially
contained in Q,). For any part N # N; of A/ we let ey be an edge incident to N which
separates N from N;. Let Xy be the component of Hy after removing ey which contains
N. Let Z be the set of nonleaf parts N # N; in Hy such that either INI > 1 or ey is not
incident to a leaf and Xy is of even order. Note that by our previous observation, we know
that Z U {N;} cannot be empty. Finally, we in case Z # @ we let N € Z be a part with
minimum IV (Xy)! among all parts in Z. In case Z = @ we define N := N,. In this case, we
let ey be an edge incident to N; and some other non-leaf vertex and Xy the component
containing N; after removing ey. Observe that in case Z = @ we get as an immediate
consequence that INj > 1 and IXy! is odd. Now observe that in any case, our choice of N
guarantees that IN'l =1 for every nonleaf part N'# N of Xy and for every edge
e € E(Xy) not incident to a leaf of Xy we have that IUy'cv (x,)N'l is odd. Furthermore,
since N is not a leaf Xy has more than one vertex.

First, consider the case that INI =1. We set N = N, Qz:= UnevixyN' and
Q,:=V(H)\Q,. Since Ne€ Z and INI =1, we know that |Q;| and 1Q,l are even.
Furthermore, Claim 4 implies that Mo, is a module partition of H[Q;] for i € [2]. By
construction H [Q,] is connected and H [QZ]ﬁloz is a colour propagating tree. Lastly,
observe that by choosing ey to be an edge separating N from N; (since INl = 1 we get
N # N;) we get that N; C Q; as required.

Now consider the case that INl > 1. First, assume that all neighbours of N in Xy are
leaves. In this case, let N’ C N such that N' # @ and IN" U Unrev x,)N”! is even. Now we
define AV to be the partition obtained from A by removing part N and adding N’ and
N\N’'. We further let Q;:=N"U UnwevN” and Q; := V(H)\Q,. By construction
1Q4l, 1Q,l are even. Furthermore, J/\/'\ lo, must contain at least two parts since Hy is not a
star. Hence ﬁIQi is a module partition of H[Q;] for i € [2] by Claim 4. Furthermore,
H(Q,) is connected and H [Q2]Wloz is a star. In case N = N; recall that Xy is of odd order
and hence we can pick N’ such that N\N’ # @ which implies N; N Q; # @. Finally, in
case N # N; we get N; C Q; as in the previous case.

On the other hand, assume that N has at least one nonleaf neighbour N’ in Xj.
Choose an arbitrary vertex n € N. We define N to be the partition obtained from N by
removing N and adding {n} and N\{n}. We additionally set Q, := {n} U Un»cvx,)N" and
Q: := V(H)\Q;. Note that since NN’ is an edge between non-leaf vertices we get that
IUnvev (x,yyN" is odd and hence 1Q;| and 1Q,| must be even. Since N\{n} # @ we get that
M, contains at least two parts and hence WIQI. is a module partition of H [Q;] for i € [2]
by 4. Additionally, since N\{n} # @ we have that H(Q;) must be connected. Finally,
H [QZ]/THQZ is a colour propagating tree. The condition that N;n Q; # @ is trivially
satisfied in case N = N; and follows as before in case N # N.. O

Claim 6. Let T be any spanning tree of Gy,. If there exists an edge e € E(Gu)\E (T),
then there is a partition N = (7\\/'1, ...,ﬁg) of V(G) with ¢<k+1anda coarsening
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Q =(0Q, Qy) of ﬁ with the following properties. 1Q;l is even and ﬁ lo, is a module
partition of G[Q;] for i € [2]. Furthermore, G[Q,] is connected and G [QZ]MQZ is either a

star or a colour propagating tree.

Proof of Claim. For any edge e = MM’ € E(Gy)\E(T) we let e, e; € E(T) such that
e; is incident to M, e, is incident to M’, (T\{ey, e;}) U {e} has exactly two components and
M is in the same component as M’ in (T\{ey, e;}) U {e}. Fore = MM’ € E(G\)\E(T) let
C. be the subgraph of Gy, induced by the vertices of the component of (T\{ey, e;}) U {e}
which contains M and M’. We now define e to be an edge minimizing IV (C,)!. This
means that C, must be a tree. First consider the case that C, is of even order and C, is a
colour propagating tree. First consider that Gy(\C, has at least two vertices. In this case,
we can set N = M, Q= Unmev(c,yM and Q; := V (G)\Q; satisfying all requirements.

Hence assume that Gy,\C, consists of one vertex N. Hence in particular e;, e, must be
incident to N. Since C, is of even order INI must be even. Partition N into two parts N N’
of odd size and obtain A from M by removing N and adding N "and N’. Furthermore,
since C, is a colour propagating tree we get that |Uxcv x,) X! is odd where X, is one of the
two components of C, after removing e. Now observe that since N’ is odd and adjacent to
precisely one module of X, the graph Gy([V (X,) U N']is a colour propagating tree. Hence
we can set Q; := N’ U Uxev(x,)X and Q; := V (G)\Q, which satisfies all requirements.

On the other hand, consider the case that C, is not a colour propagating tree. First
assume that C, is of even order. Since C, is not a colour propagating tree we can use
Claim 5 on C, with module partition Mly, where V, := Unev(c,)N. We obtain a partition
N’ = (Ny, s N') of V, with &' <1V (C,)! + 1 and a coarsening Q" = (Qy, Q3) of N’ such
that M; N Q; # & as in Claim 5 where M; is one of the modules incident to e. We obtain
N by removing all parts in V (C,) from M and adding the parts from N’. We further set
Q; == Q) and Q, = V(G)\Q,. Note that since M; N Q; # &, Gy,\C,., G[Q}] are connected
and either e; or e, is incident to both M; and some vertex in Gy\C, we get that G[Q,] is
connected. All other properties follow from Claim 5.

On the other hand, if C, is of odd order, then either X, or Y, must be of even order
where X,, Y, are the two connected components of C, after removing e. Without loss of
generality let X, be of even size. Note that removing e and e; from Gy splits Gy into
precisely two component of which one is X,. In the case that X, is a colour propagating

tree or star we can set N := M, Q2 :== UpevixyM and Q; := V(G)\Q,. On the other
hand, if X, is not a colour propagating tree, we can use the same argument as above only
considering X, in place of C,. O

Note that since Gy is not a star or colour propagating tree the premise of either Claim 5
or Claim 6 must be satisfied. We obtain a partition N = (N, ..., N?) of V(G) with
¢<k+1anda coarsening Q = (Qy, Q) of N as in the two claims. Since N lo, must
contain at least two modules we get that ﬁIQl has strictly less modules than M. Let k' < k

be the number of modules of A/ lo,- Hence we can recursively obtain a partition M’ of
G [Qq] with at most 2k’ parts and a coarsening P’ of M’ with the following properties. IP! is
even, M'lp is a module partition of G[P] and G[P]ry, is either a star or a colour
propagating tree for every part P of P. We obtain the partition M of V(G) by adding all

parts of N, to M’ and the coarsening P of M by adding P, to P’. Note that the number of
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parts of M is at most 2k’ + (i\ — k') <2k. Hence M and P satisfy the conditions of the
statement. |

Proof of Theorem 5. Without loss of generality assume that G is connected.
Furthermore, let k := mw(G) and M = (M, ..., M) be a module partition of G. Let M
be a partition of V (G) with at most 2k parts and P be a coarsening of M as in Lemma 3.
First observe that A/le must contain at least two parts for every part P of P as M lpisa
module partition of G[P]. Since M has at most 2k parts and P is a coarsening of P this
implies that P has at most k parts. Since G [P]zy, is either a star or a colour propagating
tree we get that x, 44 (G [P]) <3 for every part P of P by Lemma 1 and Lemma 2. Using a
partition (WE, W2, WP) of G[P] such that G[W?] is odd for every i € [3] for every part P
we obtain a global partition of G into at most 3k parts such that each part induces an odd
subgraph. l

Since deciding whether a graph is k-odd colourable can be solved in time 20¢™(©) [[2],
Theorem 6] and rw(G) < cw(G) < mw(G), where cw(G) denotes the clique-width of G and
rw(G) rank-width, we obtain the following as a corollary.

Corollary 4. Given a graph G and a module partition of G of width m the problem of
deciding whether G can be odd coloured with at most k colours can be solved in time 200

5 | INTERVAL GRAPHS

In this section, we study the odd chromatic number of interval graphs and provide an upper
bound in the general case as well as a tight upper bound in the case of proper interval graphs.
We use the following lemma in both proofs.

Lemma 4. Let G be a connected interval graph and P = (p,, ..., p,) a maximal induced
path in G with the following property.

(*) €, = min{é, : v € V(G)} and for every i € [k — 1] we have that r,  >r, for every
v € Ns(py).

Then every v € V (G) is adjacent to at least one vertex on P.

Proof. Towards a contradiction, assume that there is v € V(G) such that v is not
adjacent to any vertex of P. Note that v & {p,, ..., p;}. Furthermore, by the assumption
that v is not adjacent to any vertex of P either €, <r, < &, or ¢, < €, <r, for every
i € [k]. Pick i € [k] to be the maximum index such that r, < ¢,. Observe that i is well
defined as by property (*)¢, = min{é, : v € V(G)} <r, < 6,. First consider the case that
i < k. But thenr, < 6, <r, < ¢, which contradicts that p; and p,,, are adjacent. Hence
i = k. Since G is connected there must be a path Q = (g, ..., q,) from p, tov. Let j € [¢]
be the last index such that £; <7, . Since g, = p, we know that g; exists and is adjacent to
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some vertex in P. Indeed j < ¢ as r, < ¢, and g, = v. Therefore g, , exists and further
991 € E(G) and ¢, > 1, (by choice of j). We conclude thatr, < rg.Ifq; is adjacent to
Dy—;» this contradicts the property (*). On the other hand, if g; is not adjacent to p,_,, then
the set {v € V(G) : p,_,v € E(G),p,v € E(G)} is not empty which contradicts the
maximality of P. Hence v has to be adjacent to at least one vertex of P. O

To prove that the odd chromatic number of proper interval graphs is bounded by three we
essentially partition the graph into maximal even sized cliques greedily in a left to right fashion.

Proposition 2. For every proper interval graph G with all components of even order,
Xoad (G) <3.

Proof. We assume that G is connected. Fix an interval representation of G and denote
the interval representing vertex v € V(G) by I, =[4,r] where 4,r € R. Let
P =(p;,...p,) be a maximal induced path in G as in Lemma 4. For every vertex
v € V(G)\{p;, ... P} leti, € [k] be the index such that p;, is the first neighbour of v on P.
Note that this is well defined by Lemma 4. For i € [k] we let Y; be the set with the
following properties.

(Im); peVv(G): =Y Clve V(G :i=iU{p,py}
(I12); p; € Y, if and only if I{p;, ..., p;_1} U Ujei—11{v € V(G) : i, = j}! is even.
(I13); p;,, € Y if and only if l{p;, ..., p;} U Ujei{v € V(G) : iy, = j}l is odd.

First observe that (Y3, ..., Y;) is a partition of V (G) as (I12); and (I13); imply that every p,
is in exactly one set Y;. Furthermore, |Y; is even for every i € [k] since (IT1); and (I13);
imply that IY; U {p;, ..., p;} U Ujefi-11{v € V(G) : iy, = j}I is even and (I12); implies that
[({pys s P} U Ucri-11lv € V(G) : iy, = j}P)\Yl is even. Since v € V(G)\{p;, ..., p;} is not
adjacent to p; _; we get that ¢, € I, . Since G is a proper interval graph this implies that
Ip, <t and hence v is adjacent to p; ,,. Hence (I11); implies that G [Y;] must be a clique
since Y; N {p;, ... p,} € {p;, p;;1} for every i € [k]. Furthermore, N;(Y) and Y5 are
disjoint since r, <r,  for every v € ¥; by property (*) and r, < €, . <r, for every
w € Y,z since P is induced. Hence we can define an odd-colouring (V3, V5, V3) of
G in the following way. We let Vj:= Uizjmoan Y for j € [3]. Note that since
Ng(Y) N Vi3 = @ we get thatdgyy(v) = dgv;(v) fori = j (mod 3) which is odd (as Y; is
a clique of even size). Hence G[V}] is odd for every j € [3]. O

Remark 4. The upper bound presented in Proposition 2 is tight. Consider the graph G
consisting of a K, with two added pendant vertices u, w adjacent to different vertices of
K,. Clearly, G is a proper interval graph and further x4, (G) = 3.

We use a similar setup (i.e., a path P covering all vertices of the graph G) as in the proof of 2
to show our general upper bound for interval graphs. The major difference is that we are not
guaranteed that sets of the form {p,} U {v € V (G) : i, = i} are cliques. To nevertheless find an
odd colouring with few colours of such sets we use an odd/even colouring as in 1 of
{ve V(G) :i, = i} and the universality of p,. Hence this introduces a factor of two on the
number of colours. Furthermore, this approach prohibits us from moving the p; around as in

85UB017 SUOWIWOD 3AERID 3|l idde au Aq paupob afe SBPIe YO ‘85N JO S9N 104 ARIGIT BUIIUO /8|1 UO (SUOIPUOD-PU-SULBYWI0D" A3 | 1M ARe1q)1 U1 UO//SA1Y) SUORIPUOD puUe SR | 34} 88S *[202/TT/20] U0 ARIqIT8UIUO A8|IM *AriqT UOLBLROIE BY L SPSaT JO AISieAIUN Ag 002€2'161/200T OT/10p/L0D A8 1M Ateq 1 BUI|UO//SANY WO} PBPEOIUMOQ 0 ‘8TTOL60T



18 BELMONTE ET AL.
—I—Wl LEY

the proof of Proposition 2. As a consequence, we get that the intervals of vertices contained in a
set Y; span a larger area of the real line than they do in the proof of Proposition 2. This makes
the analysis more technical (Figure 3).

Theorem 6. For every interval graph G with all components of even order, xy4q(G) <6.

Proof. We assume that G is connected. First, we fix an interval representation of G.
We denote the interval representing vertex v € V (G) by I, = [4,, ,] where 4,, 1, € R.
Let P =(p;,...,p,) be a maximal induced path in G as in Lemma 4. Let Y be
V (G)\{p,, ..., ;). For every v € Y we define i, € [k] to be the minimum index such that
v is adjacent to p; . Note that this is well defined by Lemma 4.

We now recursively define a partition (Y3, ..., Y;) of Y such that for every i € [k] the
following properties hold.

(P1); Every vertex in Y; is adjacent to p;.
(P2); Ifl{p;,...,p} U{v e Y:i, <i}lis even, then U3:1 Yi=pveY:i< i}:
(P3); If I{pl,. P} U{v € Y:i, <i}lis odd, then either Ifv € Y : i, <i}\Uj=; Yjl = 1 or

=1 Yy={veY:i<i}and Ng(p, ) NY = 2.

(P4); Ifi, <iforw ¢ -, Y}, thenw € Ng(p,,,) andi,, = max{i, <i:v € Y N Ng(p, )}

Fixi € [k] and assume that we have defined Vi, ..., ¥;_; satisfying (P1);, (P2);, (P3);, (P4); for
every jE[i— 1] In the following, we show how to construct Y. Define

={ve Y\U : i, <i}. Note that Y; U U Y;={ve Y:i, <i}. In the case that
elther I{p;, ...,pi} U {v €Y:i,<i}liseven or Y;nN NG(le) = @ we set Y, := Y]. Other-
wise, pick w € Y| n Ns(p,,,) such that i, = max{i, <i:v € Y;n Ng(p,,,)} and define

pi
Pi—1
Di_2 even
pi—s even |Yim1 \j\\\
e 777] N
i / Todd Y,
even Al MNNNS
\ nR \\\\\\\\ \
j% AR ‘\{\\\\\\\\\\\\\\\\\ki\ NN §&§\§§§i§i:§
odd Yi 2
RN V=

Yi_4

% Vlz‘—1 V;_l ‘7;—1

FIGURE 3 Schematic representation of the partition (17;_1, ves Vi;l) in the case thati, = i — 2 in the proof

of Claim 9. Note that in the figure ¥; is coloured in the two colours of the indices j, = 3 and j, = 2 we obtain in
this case. [Color figure can be viewed at wileyonlinelibrary.com]
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Y .= Y{\{w}. Note that w is well defined since we are considering the case that
Y: N Ng(p,,,) # @. Observe that properties (P2); and (P3); are true by construction of ¥;. To
argue that property (P1); is true we observe that by (P4);_; every vertex w € Y| with i,, < i
has to be adjacent to p;. Since in addition every vertex v with i, = i is adjacent to p, by choice
of i,, property (P1); holds. To argue that property (P4); holds we observe that every vertex
v € Y with i, = i is contained in Y;. Hence, if max{i, <i:v € Y n Ng(p,,,)} = i, then we
would choose w with i,, = i. In the case that max{i, <i:v € Y n Ng(p,,,)} < i then (P4);
follows directly from (P4);_;. This concludes the construction of the sets Yj, ..., Y. The
following two claims allows us to reuse the colours used to colour Y; for sets Yi, ., Yi; 2, ... for
some small constant c.

Claim 7. For every vertex ve€Y it holds that L nI,=@ for every
i & {iy, i, + 1,1, + 2}. In particular, Ng(v) N {p,, ..., p;} is contained in {p;,p; .1, P; 1>}
for every vertexv e Y.

Proof of Claim.  First observe that I, N I, = @ for every i < i, by definition of i,. Since
P is an induced path r, <&, . On the other hand, r, <7, by property (*). Hence
n < €piv+3 < ¢p, for every i > i, + 3. Hence I, N I, = & for every i > i, + 3 concluding the
proof of the statement. O

As a consequence of Claim 7 we get the following claim.

Claim 8. IfY, C{veY:i,>il, then

« No({p;}) is disjoint from {p} U Y; for any j <i — 3 and
* Ng(Y) is disjoint from {p;} U Y; for any j <i' — 2.

Proof of Claim. From Claim 7 we get that nov € Y with i, <i — 3 can be adjacent to
{p;}. Furthermore, P is an induced path so p; is nonadjacent to p; for every j <i — 2.
Therefore, N;({p;}) is disjoint from {pj} U Y; for every j <i — 3.

To prove the second property, observe that the property (*) and P being an induced
path imply that for every v € {p,, ..., py_,} U U?;f Y; we have that r, S- rp, . Since every
w € Y; satisfies that iy, >i’ we get that every v € {p,, ... py_,} U UjZ7 Y} cannot be
adjacent to any vertex in Y; (note that this is not true for p; in case i =i’ as €, <r,_).
Since by construction of V;, ..., Yy forevery j <i’ — 2wehaveY; C {v € Y : i, <i’ — 2} we
get that N;(Y;) is disjoint from Y; for any j <i’ — 2. O

Using the sets Y}, ..., Y, Claim 7 and Claim 8 we can now find an odd colouring of G.
To colour G we use a recursive argument. In the i-th step we find a partition of the set
{py, ..} U U=, Y; into six (possibly empty) parts Vi, .. Vi with the following
properties.

(C); If i{py, ... p}U Ui V)l is even, then (Vi,..,V§) is an odd colouring of
G[{pla eeey pl} Y U;:l Y}]
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(C2); If H{pyy P} U U;:l Yjl is odd, then there is j, € [6] such that G[V;] is odd for
every j #j,p;, € V;l_ and in G [Vij,-] every vertex apart from p; has odd degree.
(C3); {p} VY is contained in the union of at most two parts of the partition Vi, ..., VD).

(C4); For every j € [6], any pair of vertices v, w € V' can be separated in G[V'] by
removing an edge of the path P if there are two indices i’ # i” such that
ve{puY andwe {p,} U Y.

Let us fix i € [k] and assume we have partitioned {p;, ..., p,_;} U Uj;ll Y; into six parts
Vil .., Vi with properties (C1);, (C2);, (C3); and (C4); for every j <i — 1. Our goal is
to find a partition (W3, W5) of {p;} U Y; and two indices j, # j, € [6] such that the par-
tition obtained from (Vi~', ..., V¢™") by adding W; to V" and W to V! is a partition of
{py D} U Uij-zl Y; with properties (C1);, (C2);, (C3); and (C4);.

To define the partition (W}, W5) we use a partition (W1, W75) of G[Y;] such that G[W7{]
is odd and G[W7] is even which exists due to Theorem 1. Note that in the case that Y; is
empty we simply obtain the partition (@, @) which is sufficient for our purpose. We
define W := W1 and W5 := W) U {p}. Observe that G[W] being odd implies that Wl is
even by the handshake lemma. Hence IW?] is odd if and only if ¥l is odd. Since every
vertex in W7 is adjacent to p, by (P1);, we obtain that every vertex in W has odd degree in
G[W;] and p; has odd degree in G [W5] if and only if 1Y is odd. Note that we can get a
colouring with 12 colours at this point without much further analysis. Obtaining a
colouring with six colours requires careful analysis.

The following claim will provide us with possible choices for indices j, and j,. Note
that the indices from the claim will not in every case be a suitable choice.

Claim 9. There is a partition (V} |, .., V5 ) of { Py - D1} U UTZY Y with properties
(C1);, (C2);, (C3);, (C4); for every j <i — 1 and indices JAI #fz € [6] such that Ng(W,) is

disjoint from Vlfl_l and Ng(W5) is disjoint from V%l.

Proof of Claim. First consider the case that Y C {v € Y : i, € {i, i — 1}}. In this case,
we will set 173-_1 := V! for every j € [6]. Since ¥; C {v € Y : i, € {i,i — 1}} we obtain
using Claim 8 that both Ng(W;) and Ng(W5) are disjoint from any set {pj} U Y; with
Jj <i— 3. Since (C3);, j < i implies that {p;, ,, p,_;1} U ¥,_, U Yi_; is contained in at most
four parts of the partition (V; ', ..., Vi ) we can find Ji»J, € [6],], # J, with the following
properties. I//\ij{1 and 1732_1 do not contain any element from {p, ,, p,_;} U ¥, U Y;_;. This
choice guarantees that Nz (W) is disjoint from 173?1_1 and Ng (W) is disjoint from 1732_1.

Now consider the case that Y; contains a vertex w with i,, < i — 1. Observe that in this
case we get that i, = i — 2 as a consequence of Claim 7. Figure 3 illustrates the layout of
intervals and the available colours we obtain in this case.

We know that at least one set out of Wj, W is fully contained in{v € Y : i, = i} U {p;}
(i.e., the one not containing w) by (P3);. Without loss of generality assume that this is true
for W; (i.e., we do not use in the following argument that W, contains p;). By Claim 8 we
infer that Ng(W2) € Ns({p,} U Y;) is disjoint from any set {pj} uY; with j<i-4.
Furthermore, (C3);, j < i implies that {p,_;,p,_,} U ¥i_3 U ¥, is contained in at most
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four parts of the partition (Vi™%..,VE™Y). Hence, {p, 5 p,_,, P} U Yi3U Y, is
contained in at most five parts of the partition (Vi ..., Vi 1. Pick fz in such a way
that Vifz_l is disjoint from {p, 5, p;_,, p,_1} U ¥i—3 U Yi_,. In the following, we will argue
that we can, after potentially modifying the partition (V1% .., VL), assume that
{p,_1} U Yi_, is also disjoint from Vif‘l.
2

First observe that w € Y; with i, =i — 2 implies that ¥;_ 1 C {ve Y:i,=1i— 1} by
(P2);—, and (P3);—,. By Claim 8 we get that N;(Y—;) is disjoint from {pj} U Y; for any
Jj <i-—3. Since {p,_,}UY,_, is contained in at most two parts of the partition
(ViYL ., VY by (C3);, j < i we can pick j/,j” € [6],j" # j” distinct from J, such that
Vi Vit are disjoint from {p,_,} U Yi_,. By (C3);_; we know that {p, }U Yy is
contained in at most two parts of the partition (Vi ..., Vi), Assume Vi1, Viol are

m
those two parts and p,_, € V. In case {p,_,} U Y._; is contained in one part we let
m' = m". Define M’ := Vi1 0 UY,_,. Observe that m” # j, as Vi=! does not contain p,_,
m J2
by choice of j,. If m' # j, then Vil is disjoint from {p, 3, p, 5, pi1} U UiZi-; Y; and
hence with setting I//\lj_l = V! for every j € [6] we get that N (W5) is disjoint from !71;2_1.
Hence assume that m’ = j,. Since j’ # j” we get that m” is not equal to either j’ or j”.
Assume j' # m”. We define VI]-/_I = VijT1 UM, I//\lfz_l = V;:l\M’ and 17;-_1 = Vij_l for
2
j & {j’,J,}. To see that the partition Wy Ve of {Py - i1} U UZLY; satisfies
(C1);_1, (C2);_1, (C3);_1, (C4);_1 we make the following two observations. Since VI'J:l is
2
disjoint from {p,_5,p;_,,P;_1} U Y3 U Y, and Ng(M’) C Ng(Y;—;) is disjoint from
{ppuY; for any j<i—3 we get that M’ is a component of G [Vijsl]. Hence
2
dgpyey(v) = dgpty(v) for any vertex v € V%z—l\M’. Additionally, since V! is disjoint
from {p,_,} U Y;_, and Ng(M") C N5(Y;_,) is disjoint from {pj} U Y forany j <i— 3 we
get that M’ is a connected component of G [I//\;,_l], Hence dg (Vi ) = dG[Vi-,_l] (v) for any
J
vertex v € VZT1 and dgyin(v) = dG[‘y‘_,—l] (v) for any vertex v € M’. This argument shows
2 J

that (C1);_; and (C2);_; are satisfied. (C4);_; follows from the observation that M’ is a
connected component of G[I7lj/_1] and (Vi7L, ..., Vio1) satisfying (C4);_;. Furthermore,
(C3);_; is trivially satisfied.

To choose fl we first observe that Wi C {p;} U {v € Y : i, = i} implies that Ng(W}) is
disjoint from {pj} U Y] for every j <i — 3 using Claim 8. Since {p,_,,p,_;} U Y, U Y _;is
contained in at most four parts of the partition (?;—1’ v V;_l) by (C3);, j <i we can

choose j\l € [6] such that fl #* fz and Ng (W) is disjoint from I//\E1 as required. O

For the remainder of the argument we pick j,j, € [6] and (V.. Vi) as in the
statement of Claim 9. We define partition (V, ..., V1) in the following considering several
different cases.

First consider the case that I{p,, ..., p,_,} U U7z} Yjl is even. We set j, = jand j, =17,
and define V', = 173-1_1 UM,V = 173-2_1 U W and V' = 173-_1 for every j & {ji,j,}. Since
H{pys s P} U Uij_:l1 Y]l is even we get that G[I//\ij_l] is odd for every j € [6] by (C1);_;.
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Since additionally G[Wi] is odd and N (W) is disjoint from ‘7;1_1 we get that G [V;l] is
odd. Furthermore, recall that every vertex v € W;\{p,} has odd degree in G[W5] and p, has
odd degree in G[W5] if and only if Y] is even. Since {p;,...,p,_;} U Ui_1 Yjl is even,
I{p,, ..., p;} U U5 =1 Y]l is even if and only if 1Y}l is even (and p, has odd degree). Hence
(Vi ..., Vi) satisfies (C1); and (C2);. Additionally, (C3); is true because {p} U Y, are
contained in V' U V' . Lastly, (C4); follows from (C4);_; and the fact that Ng(W) is
disjoint from 173-1_1 and Ng(W5) is disjoint from 17;2_1

Now consider the case that I{p,..,p_;}UUZL Y] is odd. Assume j, € [6]
is the index such that p,_; € 173-2_1 and further set j, =j,. We define
Vi o= 17;]_1 UMW,V = 17;2_1 U W and V) = 17;_1 for every j & {j,,j,}. By (C1);_; and
(C2);_1 we directly conclude that G[V'] is odd for j & {ji,j,}.

Note that by Claim 9, we have that Ng(W)) is disjoint from 173-1_1. As W, is therefore a
connected component in G [Vi. ] and both G[Wj] and G [V [Aij_ 1] are odd we get that G [V;l] is
odd. Furthermore, property (C2);_; implies that d i ( D;_,) is even and dG[‘y 4 (v) is odd

for everyv € 4% i, \{ D;_;}. Additionally, dgw; (v) is odd for every v € ¥;\{p,}. To determine
the degree of p,_; in G[V‘jz] observe that (P3);_; ensures that Y, C {v e Y :i, = i} and
hence p,_; is nonadjacent to any v € Y. Since p, ; is adjacent to p, we get
dovi 1(piy) = dG[I?j;](pi—l) + 1 and hence the degree of p, , is odd in G[V) ] To
determine the degree of v € Vl- \{p,_,}, we first argue that (C4); holds for the partition
(Vi, ..., VE). Let G’ be the graph obtained from G[V' i ] by removmg all edges of the path P.
Then (C4);_; implies that every v € ij N {py - pi_r} UUZ3Y)) has to be in a
different component of G’ then any w € f/\i_l N ({pi_ 1} U Yi_l). Hence r, < &, for any pair
of vertices v € 17;2_1 N {py D} U Y) we V 'n ({p;_;} U Yi_y) apart from the
pair p,_,, p;,_;. Since Y_; N Ng(p,) = @ and Y, C{v e Y : i, = i} we further know that
r, < & for every v € ¥_;,w € {p;} U Y. Combined we get that r, < &, (and therefore v is
nonadjacent to w) for any v € 17;2_1 N {py, P} U UZLY), w € {p} U Y apart from
the pair p;_,, p;. Hence we argued that (C4); holds for the partition (Vi, ..., V¥). Since both
p;_; and p, are contained in V"j2 the property (C4); implies that dc[vijz](W) = dguy(w)
for every w €Y. Further, (C4); implies that dg [ng](w) = dG[‘?i;;l] (w) for every
we ‘73-2_1\{Pi—1}- Lastly, dG[vgz](Pi) =dgmy(p) + 1 since p; is adjacent to p, ;.
Furthermore, |{p,, ..., p;} U U3:1 Yjl is even if and only if 1Yl is odd since
H{pys s P} U Uij;l1 Y]l is odd. Since dgw;(p;) is even if and only if 1Y is odd we get
that dgvi )(py) is odd if and only if {p,, ..., p;} U Uj=1 Y]l is even as required. Therefore,
(C1); and (C2); hold for (V3 ..., V§). Addltlonally, (C3); is true by construction.

Finally, since |{p,, ..., p,} U U =1V (G)l is even (VX, ..., VE) is an odd colouring
of G by (C1)y. O

Observe that the proof of Theorem 6 only relies on the fact that interval graphs have a
so-called dominating pair (a pair of vertices u, v such that every path from u to v dominates all
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vertices). Since this property also holds for all connected AT-free graphs [6], the following
result can be shown analogously to Theorem 6.

Theorem 7 [11]. For every AT-free graph G with all components of even order,
Xoad (G) <6.
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