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Abstract: The optimisation of electric vehicle battery boxes while preserving their structural perfor-

mance presents a formidable challenge. Many studies typically involve fewer than 10 design variables

in their optimisation processes, a deviation from the reality of battery box design scenarios. The

present study, for the first time, attempts to use sensitivity analysis to screen the design variables and

achieve an efficient optimisation design with a large number of original design variables. Specifically,

the sensitivity analysis method was proposed to screen a certain number of optimisation variables,

reducing the computational complexity while ensuring the efficiency of the optimisation process.

A combination of the Generalised Regression Neural Network (GRNN) and the Non-Dominated

Sorting Genetic Algorithm II (NSGA-II) was employed to construct surrogate models and solve the

optimisation problem. The optimisation model integrates these techniques to balance structural

performance and weight reduction. The optimisation results demonstrate a significant reduction

in battery box weight while maintaining structural integrity. Therefore, the proposed approach in

this study provides important insights for achieving high-efficiency multi-objective optimisation of

battery box structures.

Keywords: battery box; multi-objective optimisation; generalised regression neural network;

non-dominated sorting genetic algorithm II; lightweight design

1. Introduction

Electric vehicles (EVs) are increasingly popular due to their environmental benefits.
Lightweight designs enhance EV efficiency by extending driving range and battery lifes-
pan [1,2]. Over the past few decades, with the rapid development of the automotive
industry, researchers have achieved significant progress in the lightweight design of tra-
ditional fuel-powered vehicle structures. Examples include advancements in lightweight
designs for the vehicle bodies [3], suspension control arms [4], bumpers [5,6], and vehicle
doors [7]. Topology optimisation, size optimisation, and topography optimisation are often
used in lightweight automotive designs because of their powerful optimisation effects [8,9].
Unlike traditional fuel-powered vehicles, EVs feature unique battery systems. This presents
unique challenges for the lightweight design of EV components and parts. For example, an
electric vehicle’s battery box must be stronger to protect the battery pack from impacts that
could result in accidents and injure passengers [10]. However, a higher-strength battery
box will inevitably affect the progress of the vehicle’s weight. Therefore, it becomes a focal
point to realize the lightweight design of EVs to ensure that the battery box has sufficiently
high strength.

In recent years, considerable efforts have been made in the structural optimisation
of battery boxes for EVs. For example, Dong et al. [11] proposed a design concept for
a two-level protection scheme, optimising the battery box’s sheet metal structure into a
frame-type structure. Zhao et al. [12] conducted shape optimisation on the upper enclosure
of the battery box to obtain the distribution of free-reinforcing ribs. Pan et al. [13] proposed

Technologies 2024, 12, 93. https://doi.org/10.3390/technologies12070093 https://www.mdpi.com/journal/technologies



Technologies 2024, 12, 93 2 of 16

a lightweight design method for battery enclosure based on size optimisation. Overall,
size optimisation methods are the most popular and widely used in battery box structural
design [13–15], primarily because batteries are composed of sheet metal.

Improving the mechanical performance of the battery box is also a hot research
issue [16–20]. In the process of lightweight design while reducing the weight of the
design object, it is essential to ensure that the stiffness, vibration characteristics, and other
performance parameters of the battery box are minimally affected [13,21]. This makes the
study become a multi-objective optimisation problem (MOOP). When tackling a MOOP,
the most common approach currently used is to employ a combination of surrogate models
and optimisation algorithms [22–24]. The surrogate model methods and optimisation
algorithms utilised in the open literature are presented in Table 1.

Table 1. Overview of surrogate models and optimisation algorithms applied to lightweight design.

Number
Sampling

Method

Surrogate Model

Methods

Optimisation

Algorithms

Number of

Design Variables
Reference

1 OED Response surface models NSGA II 6 [25]

2 CCD Artificial neural network NSGA-II 6 [2]

3 LHS Genetic programming NSGA-II 4 [26]

4 LHS The kriging model MOGA 5 [27]

5 NA RBF neural network structure NSGA-II 3 [15]

6 LHS Response surface models NSGA-II 7 [21]

However, the research objects in the above studies have relatively few design variables,
which means that the optimisation methods may not be suitable for practical battery boxes
with a large number of design variables. When it comes to optimising battery box structures
with a significant number of original design variables, it is crucial to consider how to choose
the appropriate optimisation algorithm and how to establish suitable selection criteria for a
certain number of design variables so as to reduce computational complexity. The current
literature has not yet discussed these important considerations in detail. Hence, the present
study attempts to incorporate sensitivity analysis into the optimisation process to improve
the efficiency of optimisation methods for battery boxes with numerous optimisation
variables. Specifically, sensitivity analysis is introduced to determine the influence of each
optimisation variable on the overall optimisation objective. Based on the sensitivity analysis
results, an appropriate number of variables are selected for optimisation, significantly
reducing computational costs while ensuring the reliability of the optimisation results. This
study will use the battery box of a Formula Student car as a case study to highlight the
superiority of the optimisation method proposed in this study.

2. Research Methodology

Figure 1 illustrates the overall workflow of the present study. For the first part, the 3D
model of the battery box was created using Catia. On this basis, the finite element model
of the battery box was developed using Abaqus. Subsequently, the torsional stiffness and
frequency of the initial model were evaluated.

For the second part, sensitivity analysis was introduced to select key panels for
optimisation to reduce computational effort. First, three sensitivity analysis evaluation
metrics from modal analysis were defined: mass, torsional stiffness, and first-order natural
frequency. Mass evaluates the weight reduction, which is crucial for the racing car’s perfor-
mance. Torsional stiffness ensures structural integrity under dynamic loads. First-order
natural frequency prevents resonance issues, maintaining safety and performance [3,28].

The sensitivity test results show variations in these three parameters as panel thickness
changed from the original 3.00 mm to 1.50 mm. Subsequently, based on the established
panel selection principles, certain panels were chosen from all panels as the optimisation
variables going forward.
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For the third part, the design of experiments based on the Optimal Latin Hypercube
Sampling (OLHS) method was performed to select appropriate samples and provide reli-
able training data for the surrogate model. Matlab R2023a was used to modify the Abaqus
input file (.inp), which defines the geometry, material properties, boundary conditions,
and loads for batch analysis of various design scenarios. After Abaqus completed the
simulations, the resulting displacement and stress data were extracted from the result
files to obtain accurate and reliable training samples, the Generalised Regression Neural
Network (GRNN) method was utilised to develop the surrogate model, enabling the pre-
diction of output design responses based on input thickness variables. Subsequently, by
defining suitable design objectives, constraints, and responses, a mathematical optimisation
model was formulated. Finally, a Non-Dominated Sorting Genetic Algorithm II (NSGA-II)
was implemented to find the optimal structural design solution based on the established
optimisation model.

Figure 1. The overall workflow of the present study

3. FE Modelling and Sensitivity Test

This section will provide a detailed explanation of the process and basis for developing
the finite element model. After that, the methods and the results of the sensitivity analysis
testing will be thoroughly introduced.

3.1. FE Modelling

The 3D model of the battery box comprises four components: cover, side cover, parti-
tions, and main body. It is attached to the vehicle’s frame via eight lugs. The dimensional
details, design parameters of the battery box model, and mounting locations are presented
in Table 2 and Figure 2.

Currently, the materials used for battery boxes include three types: high-strength
steel [13], carbon fibre composites [29], and aluminium alloys [14]. To reduce material
costs, DC01 (a European standard cold-rolled quality low-carbon steel flat product for cold
forming) was selected as the material for the battery box. The material properties of DC01
are shown in Table 3.
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Table 2. Dimensional details and design parameters for the battery box.

Parameter Value Unit

Length 420 mm

Width 450 mm

Height 260 mm

Number of battery cells 105 NA

Weight of battery cell 0.305 kg

Number of fixed lugs 8 NA

Figure 2. Example 3D model of the battery box

Table 3. Material properties of DC01 [30].

Parameter Value Unit

Young’s Modulus 2.1 × 105 MPa

Poisson’s Ratio 0.3 NA

Density 8000 kg/m3

Yield Strength 210 MPa

Ultimate Tensile Strength 270 MPa

Based on the original design of the battery box model, the initial thickness of each
battery box panel was set to 3 mm. Shell elements with an edge length of 4 mm were utilised
for meshing in Abaqus. Before partitioning the mesh, it is necessary to create rectangular
surfaces from the ones with polygons to improve mesh quality. It should be noted that
the surface partitioning process should be performed before establishing the connection
relationships to avoid any interference with the connections and prevent them from being
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invalidated. Figure 3 presents a comparison of the mesh division. The final finite element
analysis model consists of 91,209 mesh elements.

Figure 3. Comparison of the mesh before and after surface partitioning.

3.2. Mesh Convergence Test

Along with the torsional stiffness analysis of the battery box, a mesh independence
analysis was conducted to validate the accuracy of the selected mesh size, with the results
shown in Figure 4. Five finite element models with varying mesh sizes, ranging from large
to small, were created initially. The stress values in the same region were then extracted
from the results of these five models and plotted in Figure 4. The mesh convergence testing
involved varying only the mesh size as the sole variable to ensure result accuracy. From
Figure 4, it can be observed that as the mesh size decreases, the rate of stress variation also
decreases. When the mesh size is reduced to 4mm, the stress variation rate is already below
5%. Therefore, it can be considered that the influence of mesh size on the stress results has
been minimised and falls within an acceptable range. Considering that further reducing
the mesh size would increase computational time and decrease computational efficiency, a
final decision was made to choose a mesh size of 4mm. This result verifies the accuracy of
the mesh size.

64 32 16 8 4
0%

10%

20%

30%

40%

C
ha

ng
e 

ra
te

Mesh size (mm)

 Change rate

0.0

0.2

0.4

0.6

0.8

1.0

 Stress

St
re

ss
 (M

pa
)

Figure 4. Mesh independence analysis result

3.3. Boundary and Load Condition

In real-world conditions, the load on the battery box is primarily due to the weight
of the five battery modules installed inside—other components, like wires, controllers,
resistors, etc., have negligible weights and are ignored. The load acts at the two bolt fixation
points and the bottom contact surface. To simulate this, the centre of gravity of the five
modules was created and coupled to the two bolt points and bottom surface using the
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couple command. This ensured loads at the centroids were transmitted to the entire box.
Schematics of the centre of gravity and connections are shown in Figure 5a.

Due to its connection with the vehicle frame, the battery box experiences the torsional
force exerted on the frame. As a result, the battery box undergoes certain deformation due
to the applied torsional force, posing a threat to the safety of the battery modules inside.
Therefore, ensuring that the battery box possesses good torsional stiffness is essential to
minimise deformation under torsional loads. Torsional stiffness conditions were established
as a basis for subsequent sensitivity analysis. The schematic diagram of the torsional
load applied to the battery box is shown in Figure 5b. To determine if resonance could
structurally damage the battery box, the natural frequencies of the battery box also need to
be evaluated. Figure 5c shows the loading condition for measuring natural frequencies.

(a)

(b)

(c)

Figure 5. Battery box loading procedure. (a) The centre of gravity and the connection relationship,

(b) diagram of the torsional load on the battery box, (c) battery box loading procedure for frequency

measurement.
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3.4. Sensitivity Test

This project utilises a commonly employed size optimisation method for the battery
box to achieve the lightweight design objective. Figure 6 shows that the battery box consists
of 50 panels. Optimising all of the panels would increase computational workload and make
finding the optimal solution difficult, due to the excessive number of variables. To address
this, a sensitivity test approach is adopted, which involves selecting a certain number
of battery box panels based on their impact on three evaluation criteria of the battery
box for further optimisation. The mass, torsional stiffness, and first natural frequency
obtained from the constrained modal analysis of the battery box were introduced as the
three evaluation metrics for the sensitivity analysis.

Figure 6. The battery box consists of 50 panels.

Sensitivity analysis is an essential tool in design optimisation that helps identify the
influence of each design variable on the performance metrics. It provides a quantitative
measure of how changes in design variables affect the objectives and constraints of the
optimisation problem. To be specific, the sensitivity test measures the extent to which a
change in the independent variable of panel thickness affects a dependent variable (battery
box overall mass, torsional stiffness, and frequency). In general, the sensitivity of the
battery box panel thickness to a specific evaluation metric for the battery box can be defined
as Equation (1):

Si =
∂e

∂ti
(1)

where e is the specific evaluation indicator, and ti is the thickness of the ith panel. In this
study, the variation range of the thickness variable is from 50% to 100% [28]. Since the
initial thickness is 3 mm, the variation range of the thickness variable is 1.5 mm to 3 mm.

(1) Mass sensitivity
The mass sensitivity is calculated by taking the derivative of the total mass with
respect to the thickness of each panel. The detailed calculation method is as follows.
The total mass of the battery box is given as the following equation:
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M =
ni

∑
i=1

mi =
ni

∑
i=1

ρiVi =
ni

∑
i=1

ρi Aiti (2)

where ρi is the density of the ith panel, Vi is the volume of the ith panel, and Ai is the
surface area of the ith panel. The sensitivity of the panel thickness to the mass of the
whole battery box becomes:

SM(ti) =
∂M

∂ti
= ρAi (3)

Since all panels use the same material, they share the same density. Based on
Equation (3), the mass sensitivity of each panel is a constant value equal to the
product of the panel’s surface area and density.

(2) Torsional stiffness sensitivity
The torsional stiffness sensitivity involves more complex calculations that consider
the structural geometry. It is derived from the torsional moment equation and the
strain energy due to the applied torque. The equation to calculate the torsional
stiffness of the battery box is as follows [28].

RT =
T

φ
=

F · L

arctan
(

u
L

) (4)

in which T is the torque due to the force applied to the battery box, φ is the torsional
angle, F is the lumped force, L is the length of the battery box (y-direction), and u is
the strain caused by F. The sensitivity of the panel thickness to the torsional stiffness
of the whole battery box is shown in Equation (5):

SRT
(ti) =

∂RT

∂ti

=
−F

arctan
(

u
L

)
· [1 + (uL)2]

·
∂u

∂ti

(5)

(3) Frequency sensitivity
The sensitivity of the natural frequency to panel thickness is related to the structural
dynamics of the battery box. It is calculated using the eigenvalue problem of the
system and considering the mass and stiffness matrices. As for the model analysis,
the eigenvalue equation is given in Equation (6).

([K]− ωn[M])ϕn = 0 (6)

where ωn is the nth eigenvalue, φn is the eigenvector, [K] and [M] is the structure
stiffness and structure mass, respectively. The sensitivity of the panel thickness to
the natural frequency obtained from the constrained modal analysis of the battery
box becomes

S f (ti) =
∂ωn

∂ti

=
{φn}

T
(

∂[K]
∂ti

− ωn
∂[M]
∂ti

)
{φn}

{φn}
T [M]{φn}

(7)

Based on the established finite element model, the sensitivity analysis results were
solved in Abaqus. This involved determining the variation in the three evaluation indica-
tors, i.e., the battery box’s overall mass, torsional stiffness, and the first natural frequency
from the constrained modal analysis, for each panel’s thickness in the range of 1.5 mm
to 3 mm. The results are depicted in Figure 7. Positive sensitivity indicates a positive
correlation, e.g., battery box overall mass increases with panel thickness, and negative sensi-
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tivity represents a negative correlation. It can be observed that, for the same panel, there are
differences in the magnitude and sign of the sensitivity results for the three evaluation indicators.

Figure 7. Sensitivity analysis result.

To address this issue, this project proposes two selection principles for identifying
suitable panels for subsequent optimisation design. The mathematical expressions for the
two selection principles are shown in Equation (8).

{
SM > 4.8%

SRT
< 0 and S f < 60

(8)

The first principle is that the mass sensitivity should be greater than 4.8%. The rationale
for this principle is that selected panels with high mass sensitivity cannot be ignored during
optimisation; otherwise, significant lightweighting effects would be hindered. The selection
of 4.8% as the lower threshold for mass sensitivity is grounded in rigorous data analysis
and optimisation strategies. To adhere to the first principle and identify approximately
half of the panels (totalling 50), an initial screening revealed a sensitivity range starting
at 4.95%. However, closer examination highlighted a concentrated distribution of data
points within the 4.8% to 4.95% mass sensitivity interval, suggesting these panels possess
greater potential impact and influence on lightweight design efforts. Therefore, 4.8% was
established as a prudent lower limit for mass sensitivity to ensure the optimisation process
effectively leverages panels with higher sensitivity.

The second principle is that torsional stiffness sensitivity should be less than 0, and
frequency sensitivity should be less than 60. The selection of 60 as a threshold for fre-
quency sensitivity is based on data analysis showing that the 0–60 range contains a dense
concentration of data points. Panels with a frequency sensitivity greater than 60 have an
average frequency sensitivity greater than 600, indicating significant influence. Optimising
these panels can increase the battery box’s torsional stiffness while ensuring a controlled
frequency reduction. Based on the above selection principles, a total of 17 panels have been
chosen as the subsequent optimisation variables (highlighted in red in Figure 6).

4. Optimisation Process

In this section, the generation process of initial samples for training the surrogate
model will first be presented. Next, the selection process, principles, and development
of the surrogate modelling method will be explained, along with the evaluation process
for the predictive accuracy of the surrogate model. Finally, the principles of the chosen
optimisation algorithm and the results will be presented.

4.1. Design of Experiment

Different sampling methods can impact the fitting accuracy of surrogate models [2,31,32].
It has been proven that the Optimal Latin Hypercube Sampling (OLHS) method has
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significant advantages in fully exploring the design space [33]. Optimal Latin Hypercube
Sampling (OLHS) is a sampling technique that stratifies the entire design space prior to
sampling. As a result, it has advantages in achieving uniform sampling in multidimensional
space. Therefore, the OLHS method was selected for sampling in the present study. In
the present study, the total sample consisted of the thicknesses of 17 panels, with each
panel’s thickness ranging from 1.5 mm to 3 mm. In order to save costs and ensure the
manufacturing accuracy of the raw material for the battery box panels, the panel thickness
accuracy was determined to be 0.01 mm. Therefore, the sampling interval was set at
0.01 mm. The number of sampling points was set to 100. After completing the sampling
process, Abaqus was utilised to calculate the response values (battery box weight, torsional
stiffness, and the first natural frequency from the constrained modal analysis) for the
100 samples. The above process is depicted in Figure 8.

Figure 8. Surrogate modelling process.

4.2. Surrogate Modelling

Different surrogate models exhibit varying levels of accuracy when fitting different
engineering problems. As a result, it is common practice to employ multiple methods to
construct surrogate models and then select the one with the highest accuracy as the final
surrogate model [2,3,26]. Three methods, namely Kriging, Generalised Regression Neural
Network, and Response Surface Method were utilised to develop surrogate models for
predicting the relationship between the thickness of 17 panels and the torsional stiffness
and the natural frequency of the battery box. To determine the surrogate model with
the highest predictive accuracy among the three methods, the following four statistical
evaluation criteria are introduced:

(1) Coefficient of determination (R2)
The coefficient of determination measures the model’s goodness of fit to the depen-
dent variable (the target variable) and ranges between 0 and 1. A higher R2 value
indicates a better fit, with 1 representing a perfect fit and 0 indicating a poor fit. The
equation for the coefficient of determination is shown in Equation (9).

R2 = 1 −
∑

N
i=1 (yi − ŷi)

2

∑
N
i=1 (yi − ȳi)

2
, (9)

where N is the number of the samples, yi is the actual values, and ŷi is the predicted
values from the surrogate model.

(2) Root Mean Squared Error (RMSE)
The Root Mean Squared Error (RMSE) measures the average error between the
model’s predicted and actual values. A smaller RMSE indicates a better predictive
performance of the model. The equation for the RMSE is shown in Equation (10).

RMSE =

√√√√ 1

N

N

∑
i=1

(yi − ŷi)2 (10)
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(3) Average Relative Deviation (ARD)
The Average Relative Deviation (ARD) measures the average relative error between
the model’s predicted values and the actual values. A smaller ARD indicates better
predictive performance. The expression for the ARD is shown in Equation (11).

ARD =
1

N

N

∑
i=1

|
yi − ŷi

yi
| (11)

(4) The Maximum Relative Error Rate
The Maximum Relative Error Rate measures the maximum relative error between
the model’s predicted values and the actual values. The equation for the maximum
relative error is shown in Equation (12).

The Maximum Relative Error Rate = max |
yi − ŷi

yi
| (12)

Figure 9 presents the comparative results of the three surrogate models across the four
statistical evaluation metrics. Ultimately, since the Generalised Regression Neural Network
(GRNN) outperformed the other two methods across the four metrics, it was selected as
the approach for building the surrogate model.
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Figure 9. Comparative results of the three surrogate models. (a) Coefficient of determination (R2),

(b) Average Relative Deviation (ARD), (c) Maximum Relative Error Rate, (d) Root Mean Squared

Error (RMSE).

4.3. Optimisation Result

In the research process of structural optimisation, there are various algorithms applied.
In this project, the Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) was selected
from among various algorithms used for structural optimisation problems due to its low
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computational complexity and its ability to find the optimal set of solutions through the
most robust and direct approach [34,35]. NSGA-II was first proposed by Deb et al. [34]
in 2002 as a fast nondominated sorting method based on the original Nondominated
Sorting Genetic Algorithm (NSGA), significantly improving the algorithm’s convergence
and simplicity. The mathematical model for optimisation study in this paper is represented
as Equation (13).





find T = (T1, T2, . . . , T17)

Obj. Min f (x)

Max ST(x)

Max fT(x)

S.t. f
(min)
T < fT

S
(min)
T < ST

d.v. T
(min)
i ≤ Ti ≤ T

(max)
i

(13)

where M is the total mass of the battery box, ST is the torsional stiffness, fT is the first
natural frequency of the battery box from the constraint modal analysis, and Ti is the panel
thickness of the ith panel. The definitions of the other symbols are summarised in Table 4.
The model aims to find the battery box structure with the lowest mass within a certain
range of panel thicknesses while ensuring that the torsional stiffness and natural frequency
are within a predetermined range.

Table 4. The definition of the other symbols for the mathematical model in Equation (13).

Symbol Meaning Value

f
(min)
T The lower limits of the natural frequency 60 Hz

S
(min)
T The lower limits of the torsional stiffness 7000 N· m/deg

T
(min)
i The lower limits of the panel thickness 1.5 mm

T
(max)
i The upper limits of the panel thickness 3 mm

The NSGA-II algorithm was employed to solve the aforementioned multi-objective
deterministic optimisation design model in MATLAB, with the algorithm’s parameters
given in Table 5.

Table 5. The NSGA-II algorithm’s parameters.

Parameter Value

Population Size 1000

Generations 100

Pareto fraction 0.4

Tolerance level 1 × 10−10

In MOOP, the objectives often exhibit conflicting or competing natures, leading to
no single design point being superior in all the optimisation objectives. Therefore, the
optimisation result consists of a set of solutions rather than a single optimal solution,
known as the Pareto solution. Based on the results obtained from NSGA-II, the Pareto
solutions are shown in Figure 10. According to Equation (13), within this Pareto solution,
the solution with the lowest mass while meeting specific ranges for torsional stiffness and
natural frequency was selected as the final optimisation result for this study. This selected
point is also marked in Figure 10. Torsional stiffness and frequency are shown in the graphs
as the negative of the actual values to accommodate the optimisation results.



Technologies 2024, 12, 93 13 of 16

Figure 10. The set of optimal solutions found according to NSGA-II

After selecting the appropriate optimisation result, the corresponding thicknesses
of the 17 panels are extracted and validated using Abaqus. The optimisation results
and original data of the battery box are given in Table 6. It shows that the final chosen
optimisation result achieves the initial lightweight design target (10%), maintaining the
structural performance to meet the design requirements. Although the natural frequency
has decreased significantly, its value is still sufficiently high to avoid resonance.

Table 6. Comparison of optimised and original results.

Type Mass (kg) Frequency (Hz)
Torsional Stiffness

(N· m/deg)

Original 25.91 143.58 8309.35
NSGA-II solution 21.99 63.55 7050.73

Change rate −15.13% −55.74% −15.15%

5. Superiority of the Optimisation Approach

To highlight the advantages of the proposed approach, it is compared with the optimi-
sation method involving all variables. By comparing the calculation time and optimisation
results of the two methods, the superiority of the proposed method is highlighted, which
is summarised in Table 7. The solution duration for the optimisation with 17 panels was
significantly shorter (0.21 h) compared to 50 panels (0.89 h). This demonstrates a con-
siderable reduction in computation time by 323.81% when using variable screening. The
method proposed in this paper maintained the effectiveness of the optimisation process.
For instance, the mass and torsional stiffness were comparable in both scenarios, with
the mass slightly decreasing by 0.63% and torsional stiffness increasing by 21.96% for the
17 panels scenario. The frequency saw a notable increase of 54.61%, indicating enhanced
performance. Therefore, using sensitivity analysis to select an appropriate number of
design variables has been proven to be a relatively superior multi-objective optimisation
approach for battery boxes.

Table 7. Summary of surrogate models and optimisation algorithms.

Type Solution Duration (h) Mass (kg) Frequency (Hz) Torsional Stiffness (N· m/deg)

optimised results for 17 panels 0.21 22.09 70.17 7175.45
optimised results for 50 panels 0.89 21.85 108.49 5599.8

Relative change 323.81% −0.63% 54.61% 21.96%

To demonstrate the reliability of the optimisation results, the final results were vali-
dated through the finite element analysis model, with the validation results presented in
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Table 8. From the table, it can be seen that all the errors are less than 10%, which proves
that the optimisation process ensures better accuracy while maintaining efficiency.

Table 8. Comparison of predicted and actual data.

Type Mass (Kg) Frequency (Hz)
Torsional Stiffness

(N·m/deg)

Actual(Abaqus) 22.09 70.17 7175.45
Predicted 21.99 63.55 7050.73

Relative error 0.45% 9.43% 1.74%

6. Concluding Remarks

This study introduced an efficient approach applicable to multi-objective lightweight
design optimisation of battery boxes, including FE modelling, sensitivity analysis, and
multi-objective optimisation based on GRNN method and NSGA-II. The main conclusions
of this study are as follows:

• Applying sensitivity analysis in the lightweight design process to select a certain
number of panels as variables effectively reduced computational complexity while
ensuring sufficient optimisation potential during the process.

• The relative error assessment between predicted and actual values indicated that the
surrogate model based on the GRNN method has high accuracy.

• Leveraging the precise finite element model and high-fidelity surrogate model, the
optimisation algorithm successfully achieved a lightweight design of the battery box.

Section 2 discussed the thought process behind establishing the research flowchart.
This exploration provided valuable insights into the coherent progression of the study,
elucidating the intricate interconnections among its diverse components. In Section 3, the
relationship between the FEA model and the real-world scenario was considered, as well
as the data processing of sensitivity analysis results. These discussions highlighted the
importance of ensuring the accuracy of the finite element analysis model and the signifi-
cance of effectively handling sensitivity analysis results. The two-panel selection principles
proposed in this section lay the foundation for a subsequent, efficient optimisation process.
In Section 4, the thought process behind selecting the sampling method, surrogate model
construction method, and optimisation algorithm was discussed. These discussions were
crucial as they determined the rigour and reliability of the analytical results obtained
throughout the study.

In the context of multi-objective optimisation problems, the various objectives often
exhibit conflicting or competing characteristics, leading to the absence of a single data point
that is optimal for all optimisation goals. As a result, optimisation outcomes consist of a set
of solutions, rather than a singular optimal solution. Therefore, the process of selecting the
most suitable results from the entire set of optimised solutions is crucial for multi-objective
optimisation problems.

The present study effectively addressed the multi-objective optimisation problem for
battery boxes with numerous variables. The presented approach in this paper offers valu-
able insights for performing efficient multi-objective optimisation of battery box structures
containing numerous original design variables. The optimisation approach incorporating
sensitivity analysis can also be applied to other areas of automotive structures, to aid in
designing safe and reliable mechanical structures. Future research in these areas can be
pursued in the following three aspects:

• Experimental verification: conduct structural testing on the battery box to validate the
accuracy of the finite element analysis results, thereby ensuring the reliability of the
optimisation outcomes.

• Reduce optimisation algorithm complexity: There might be combinations of surrogate
model methods and optimisation algorithms with higher precision to optimise the
structure of the battery box. Thus, this becomes a focal point for future research.
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