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Let ψ : N → [0,∞), ψ(q) = q−(1+τ) and let ψ-badly approximable points be those vectors in Rd that are
ψ-well approximable, but not cψ-well approximable for arbitrarily small constants c > 0. We establish
that the ψ-badly approximable points have the Hausdorff dimension of the ψ-well approximable
points, the dimension taking the value (d+ 1)/(τ + 1) familiar from theorems of Besicovitch and Jarník.
The method of proof is an entirely new take on the Mass Transference Principle (MTP) by Beresnevich
and Velani (Annals, 2006); namely, we use the colloquially named “delayed pruning” to construct a
sufficiently large lim inf set and combine this with ideas inspired by the proof of the MTP to find a
large limsup subset of the lim inf set. Our results are a generalisation of some 1-dimensional results
due to Bugeaud and Moreira (Acta Arith, 2011), but our method of proof is nothing alike.

1 Introduction

Throughout let ψ : N → (0,∞) be a monotonic decreasing function. We will use the notation ψτ when

ψ(q) = q−τ for τ ∈ (0,∞). The set of ψ-well approximable points, denoted byWd(ψ), is defined to be the set

Wd(ψ) :=
{
x ∈ [0, 1]d : max

1≤i≤d

∣∣∣∣xi −
pi
q

∣∣∣∣ <
ψ(q)

q
for i.m. (p, q) ∈ Zd × N

}
,

where i.m. denotes infinitely many. The main object of interest in this article is the Hausdorff dimension

of the ψ-badly approximable points; those points of Wd(ψ) for which the approximation by ψ cannot be

improved by an arbitrarily small constant. More precisely,

Badd(ψ) := Wd(ψ)\
∞⋂

k=1

Wd

(
1

k
ψ

)
.

In [10, Question 1] Beresnevich and Velani asked for the Hausdorff dimension of Badd(ψ) and conjec-

tured that the Hausdorff dimension was equal to the dimension of Wd(ψ). We prove this conjecture

true for a certain class of approximation functions.
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The Dimension of the Set of ψ-Badly Approximable Points | 10823

We recall the definition of Hausdorff measure and dimension. (For more details on such notions see

for example [18, 31].) For s ≥ 0 the Hausdorff s-measure of a set F ⊂ Rd is defined as

Hs(F) := lim
ρ→0+

inf

{ ∞∑

i=1

|Bi|s : F ⊂
∞⋃

i=1

Bi and |Bi| < ρ ∀ i

}
,

where | · | denotes the diameter of a set. The Hausdorff dimension of set F ⊂ Rd is defined as

dimH F := inf
{
s ≥ 0 : Hs(F) = 0

}
.

In the case when s = d, the ambient dimension of our setting, Hausdorff s-measure coincides (up to

a constant) with Lebesgue measure, which we denote by λd. The literature surrounding the metric

properties of Badd(ψ) is extensive, and we only highlight some of the main results below.

For approximation function ψ1/d, the set Badd(ψ1/d) = Badd is the classical set of badly approximable

points. As a consequence of a landmark theorem of Khintchine [27] we know that λd(Badd) = 0 (This

can be proven by a range of methods, see [6] for an overview of techniques). It is then natural to ask,

what is the Hausdorff dimension of Badd. Jarník [23] and Schmidt [33] showed that despite the set being

null, it has full Hausdorff dimension in the cases where d = 1 and d > 1, respectively. That is,

dimH Badd = d .

In the direction of ψ-well approximable points, Besicovitch [12] and Jarník [24] independently proved

that whenever τ > 1
d

dimH Wd(ψτ ) =
d + 1

τ + 1
.

Dodson extended this result to the case of general approximation functions ψ [17, Theorem 2]. As

Badd(ψ) ⊂ Wd(ψ), these results give immediate upper bounds for the Hausdorff dimension of Badd(ψ).

As is often the case, establishing the corresponding lower bound is the main obstacle in determining

the exact dimension.

The following refinement of Wd(ψ) and Badd(ψ), first introduced in [7], is useful as they can be used

to define sets whose points satisfy more delicate approximation properties. Let ψ ,φ : N → (0,∞) be

monotonic decreasing functions with ψ(q) > φ(q) for all q ∈ N and denote

Dd(ψ ,φ) :=

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
x ∈ [0, 1]d : φ(q)/q ≤︸ ︷︷ ︸

for all (p, q) ∈ Zd × N

with q sufficiently large

max
1≤i≤d

∣∣∣∣xi −
pi
q

∣∣∣∣ < ψ(q)/q︸ ︷︷ ︸
for i.m. (p, q) ∈ Zd × N

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= Wd(ψ)\Wd(φ).

With these sets defined, the set of ψ-badly approximable points can now be alternatively written as

Badd(ψ) =
⋃

k∈N

Dd

(
ψ ,

1

k
ψ

)
,

and the set of exact approximation order ψ is

Exactd(ψ) :=
⋂

k∈N

Dd

(
ψ ,

(
1 −

1

k

)
ψ

)
= Wd(ψ)\

∞⋃

k=1

Wd

((
1 −

1

k

)
ψ

)
.

Trivially Exactd(ψ) ⊂ Badd(ψ) ⊂ Wd(ψ) and so Exactd(ψ) can be used for lower bounds of dimension.
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10824 | H. Koivusalo et al.

One of the first results on the set Exact1(ψ)was given by Jarník [25] who,using the theory of continued

fractions, proved that Exact1(ψ) 	= ∅ for functions ψ(q) = o(q−1). Without the condition ψ(q) = o(q−1)

the theory becomes significantly more complicated. In particular, a classical result of Hurwitz tells us

that W1

(
1√
5
ψ1

)
= [0, 1] and so

Exact1(ψ1) ⊂ W1(ψ1)\W1

(
1

√
5

ψ1

)
= ∅ .

Conversely, if ψ(q) = cq−1 for some c > 0 small it is not necessarily true that Exact1(ψ) = ∅. In fact,

for c → 0, Moreira showed that the Hausdorff dimension of Exact1(ψ) tends to one [30, Theorem 2].

Nevertheless, throughout we will suppose the approximation function satisfies ψ(q) = o
(
q−1/d

)
.

Since the result of Jarník there has been gradual progress towards establishing the Hausdorff

dimension of Exact1(ψ). In [20] Güting proved that

dimH

(⋂

k∈N

D1

(
ψτ ,ψτ+ 1

k

))
= dimH W1(ψτ ) =

2

1 + τ
,

for τ > 1. In [7], Beresnevich, Dickinson, and Velani improved upon Güting’s result by calculating the

Hausdorff measure at the dimension and showed that

H
2

1+τ

(⋂

k∈N

D1

(
ψτ ,ψτ+ 1

k

))
= ∞ .

Furthermore, they considered approximation functions with “logarithmic error” and showed that for

τ > 1
d

dimH

(⋂

k∈N

Dd

(
ψτ , q �→ q−τ (log q)−

1
k

))
=

d + 1

τ + 1
.

This was established by comparing the Hausdorff measures of the two approximation sets Wd(ψτ )

and Wd

(
q �→ q−τ (log q)−ε

)
for small ε > 0. However, the technique used here cannot be applied in the

“constant error” case as the Hausdorff measure of the two sets would be the same. In a series of papers

Bugeaud [14, 15] and Bugeaud and Moreira [16] proved a complete result in one dimension, showing

that

dimH Exact1(ψτ ) =
2

1 + τ
.

(Indeed, this result of Bugeaud andMoreira does not only hold for ψτ but also for general approximation

functions ψ . We state this special case for simplicity as it is the relevant statement for the purposes of

the current work.) It is then a consequence of the inclusions W1(ψ) ⊃ Bad1(ψ) ⊃ Exact1(ψ) that

dimH Bad1(ψτ ) =
2

1 + τ
,

Furthermore, in [14, Theorem 2] Bugeaud also showed that

H
2

1+τ (Bad1(ψτ )) = ∞ .

The series of papers by Bugeaud and Moreira rely on results from the theory of continued fractions.

Higher dimensional versions of continued fractions have been extensively studied; see, for example,

[13, 34] and [11, 26] for more recent approaches. However, trying to apply arguments from 1-dimension

to higher dimensions often fails and in particular, the methods of Bugeaud and Moreira do not seem to

be applicable to the study of Badd(ψτ ).
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The Dimension of the Set of ψ-Badly Approximable Points | 10825

In the current work we compute the Hausdorff dimension Badd(ψτ ) for any dimension d. That is, we

prove the following:

Theorem 1. Let ψτ (q) = q−τ with τ > 1
d , and let B ⊂ [0, 1]d be any open ball. Then,

dimH Badd(ψτ ) ∩ B =
d + 1

1 + τ
.

The proof of our result has been inspired by the techniques used to prove theMass Transference Prin-

ciple (MTP) of Beresnevich and Velani [9]. The MTP is a powerful technique, introduced to Diophantine

approximation in 2006, when it was used to prove a Hausdorff measure version of the Duffin-Schaeffer

conjecture. The original MTP states, loosely speaking, that if a limsup set of balls has full Lebesgue

measure, then the limsup set of the same balls shrunk in a controlled way satisfies a dimension lower

bound. The MTP has since been adapted, for example, for other measures, and other shapes; see [1, 28,

35, 36] and [2, 3] for recent surveys. However, in studying ψ-badly approximable points, we are facing a

set-up not covered by themany generalisations: we need aHausdorff dimension estimate for the limsup

set given by balls centred outside of the zero measured set in which we would like the dimension lower

bounds to hold! The proof we present relies on a few key ideas: We emulate Badd(ψτ ) by a set of almost

full measure (see § 3), and for “positive” approximation we use balls centred at rationals that are not

too far away from this set (see § 4). These allow us to approach the dimension bound in the spirit of the

proof of MTP, although there are some further geometric obstacles to overcome (see § 5).

Ourmain result is actually a consequence of the following result, which we also state for comparison

to the series of results of Moreira and Bugeaud on dimension of Exact1(ψτ ).

Theorem 2. Let ψτ and B ⊂ [0, 1]d be as above with τ > 1
d . Then there exists constant 0 < C < 1

dependent only on B, τ and d such that

dimH Dd (ψτ ,Cψτ ) ∩ B =
d + 1

1 + τ
.

Remark 1. Note that Theorem 2 immediately implies Theorem 1, since Dd (ψτ ,Cψτ ) ⊂ Badd(ψτ ).

The constant C > 0 is implicit in our proofs and hasn’t been optimised. However, we cannot

make it arbitrary close to 1, and so we cannot prove any result on Exactd(ψτ ). (After the

completion of our work it was announced by Bandi and de Saxcé that they have proven the

result for Exactd(ψ) [4]. Our techniques vary significantly. Their proof approaches the problem

from dynamics perspective while our proof is more geometric in nature.) Recently Fregoli has

proven a restricted higher dimensional version of the results of Bugeaud and Moreira [14–

16] for n ≥ 3 and τ > 1. The technique used by Fregoli took their results and lifted it to

higher dimensions by a clever observation. Briefly, for x = (x1, y) ∈ Rd if x1 ∈ Exact1(ψτ ) and

y ∈ Wd−1(ψτ ) then x ∈ Exactd(ψτ ). The dimension result can then be proven via the result of

Bugeaud and Moreira and a Theorem of Jarník on fibres. See [19] for more details, we only

wish to point out that our technique is significantly different. For other notions of size it was

recently shown by Schleischitz that for certain functions ψ the set Exactd(ψ) has full packing

dimension; see [32, Theorem 3.6 & Corollary 7].

Remark 2. For this set of approximation functions the restriction that τ > 1
d is appropriate. If

τ = 1
d then as previously mentioned Badd(ψτ ) = Badd, that is, the classical set of d-dimensional

badly approximable points that has full Hausdorff dimension [33]. If τ < 1
d then Badd(ψτ ) = ∅

since Wd(cψτ ) ⊇ Wd(ψ1/d) = [0, 1]d for any constant c > 0 and so Badd(ψτ ) ⊂ Wd(ψτ )\[0, 1]d = ∅.

Remark 3. In the current work we have not considered general approximation functions ψ .

Analogous to the results of Bugeaud and Moreira [14–16], we suspect that for monotonic

decreasing ψ(q) of order o(q− 1
d )

dimH Badd(ψ) = dimH Wd(ψ),
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10826 | H. Koivusalo et al.

where the Hausdorff dimension of dimH Wd(ψ) is known [17].We believe that itmay be possible

to adapt our argument to deduce this result in the case
∑∞

q=1 ψ(q)d < ∞. The case where∑∞
q=1 ψ(q)d = ∞ appears significantly harder.

Remark 4. The theory of exact approximation has also been studied in a range of other settings.

ZL Zhang proved a version of Bugeaud and Moreiras’ result in the setting of the field of formal

series [37], and He and Xiong [21] have proven an analogue in the setting of approximation by

complex rational numbers. Both papers appeal to results from the theory of continued fractions

in their respective setting to prove their main theorem. Very recently Bandi, Ghosh, and Nandi

[5] have proven a general theory in the setting of exact approximation. In their paper they

obtain a result on exact approximation sets in hyperbolic metric spaces. However, as far as

we can see the d-dimensional real result presented here cannot be deduced from the general

theory presented in their paper.

The rest of the paper is organised as follows. In the following section we give an outline of the proof

of Theorem 1. In § 3 we find a subset Cτ (N) ⊂ Badd(ψτ ) of large measure, as quantified in § 3.1. In § 4 we

define the subset of rationals Q(N, τ) that we consider for positive approximation on Cτ (N), and show

that this subcollection of rationals is not too small. In § 5 we present a construction of a Cantor set and

a mass distribution, following the general outline of the proof of MTP, but relying on a new geometric

approximation Lemma 7.

2 Outline of the Proof of Theorem 1

Before going into the proof of Theorem 1 we give an overview of the methodology used.

Firstly, since Badd(ψτ ) ⊆ Wd(ψτ ) the upper bound follows from the Jarník-Besicovitch Theorem.

The main substance of the proof is in establishing a corresponding lower bound. To accomplish this

we construct a Cantor subset D(B) of Badd(ψτ ) ∩ B where B is any arbitrary open ball in (0, 1)d. The

construction of D(B) can be split into three main steps.

Step 1: We construct a set that avoids “dangerous balls”, that is, parts of the unit cube that lie “too

close” to rational points. The name “dangerous balls” is taken from the analogous set that is removed

when constructing a Cantor subset of badly approximable points; see, for example, [8, §7]. In this setting,

given N ∈ N and τ > 1
d , we construct a set Cτ (N) such that

Cτ (N) ∩
⋃

p
q ∈Qd∩[0,1]d

B

(
p

q
, cNq

−1−τ

)
= ∅ ,

for some constant cN > 0, where B(x, r) = {y ∈ Rd : ‖x − y| < r} denotes the open ball with centre x ∈ Rd

of radius r > 0 and ‖ · ‖ is the standard supremum norm in Rd. This set, and properties of Cτ (N) that will

be required later in the proof of the main result, are dealt with in §3.

Step 2: We then construct a limsup subset of Wd(ψτ ) such that each ball in the limsup set retains

a positive proportion of its mass when intersected with Cτ (N). We achieve this by constructing a set

Q(N, τ) ⊂ Qd such that for any p
q ∈ Q(N, τ) the inequality

λd

(
Cτ (N) ∩ B

(
p

q
, q−1−τ

))
≥ κλd

(
B

(
p

q
, q−1−τ

))

holds for some fixed constant κ > 0 independent of p
q . This is established in the course of proving

Lemma 5.

Step 3: The final part of the argument is to construct a Cantor subset and a mass distribution,

inspired by the MTP (a now standard tool for proving metric results on limsup sets; see [3]). A key

step in the construction of the Cantor set D(B) is to show that for every ball B̃ = B
(
p
q , q

−1−τ
)
with p

q ∈ Q

there exists a finite disjoint collection of balls of the form B
(
p′

q′ , q′−1−τ
)
with p′

q′ ∈ Q that are contained

in B̃ and intersect a positive proportion of Cτ (N). A crucial lemma to ensure this happens is Lemma 7 of

§5. This statement is the counterpart of the KG,B lemma from the proof of the MTP [9].
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The Dimension of the Set of ψ-Badly Approximable Points | 10827

This methodology is sufficient to prove Theorem 2, which in turn implies Theorem 1.

3 Step 1: The Construction of Cτ (N)

The following “Simplex lemma” is a crucial element in the construction of Cτ (N). The proof can be found

in [29].

Lemma 1. Let d ≥ 1 be an integer and Q ∈ N. Let E ⊂ Rd be a convex set of d-dimensional Lebesgue

measure

λd(E) ≤ (d! )−1Q−(d+1).

Suppose E contains d + 1 rational points with denominator 1 ≤ q ≤ Q. Then these rational

points lie on some hyperplane of Rd intersected with E.

By splitting up the construction of Cτ (N) into suitable levels, this result tells us that regions containing

“dangerous balls” will look like thickened (d − 1)-dimensional hyperplanes in [0, 1]d. Each of these

hyperplanes will be contained in some cube I, which will be clear from the construction. Hence, when

we refer to a hyperplane we generally mean the bounded part of a hyperplane contained in some cube

I, rather than the hyperplane as a subset of Rd.

Fix some N ∈ N. (We will need to take this N large enough along the course of the proofs, but it will

eventually be fixed.) Construct Cτ (N) as follows:

1) Split [0, 1]d into td cubes of sidelength t−1 for some t ∈ Nwhere t is chosen to satisfy t > (d! )1/d. Now

split each of these cubes into Nd+1 cubes I each with side-length t−1N− d+1
d and volume t−dN−(d+1).

Let C1 denote the set of cubes constructed in this way. Note there are tdN(d+1) cubes in total.

2) Within each cube I we want to eventually remove the rational points (
p1
q , . . . ,

pd
q ) with q bounded

by 1 ≤ q < N. Apply Lemma 1 to each cube in I ∈ C1 to establish that any such rational points are

contained in some hyperplane L that we choose to be the minimal such affine subspace. That is, if

there is only a single point p
q ∈ I then L is a point, if there are two points p

q ,
p′

q′ ∈ I then L is the unique

line between p
q and p′

q′ intersected with I and so on. Lemma 1 tells us that at worst L could be a

(d − 1)-dimensional affine hyperplane in Rd. For simplicity we will call any such L a hyperplane.

Let L1 denote the collection of all hyperplanes L constructed in this manner for each cube in C1.

Remember these sets for later.

3) Repeat this process; assume that levels up to n−1 have been constructed.At the nth level split each

cube I ∈ Cn−1 into Nd+1 cubes each with side length t−1N−(n−1) d+1
d × N− d+1

d = t−1N−n d+1
d and volume

t−dN−n(d+1). Let Cn denote all cube constructed in this layer. For a cube I ∈ Cj for j = 1, . . . ,n − 1

let Cn(I) denote all cubes in Cn, which are contained in I. Apply Lemma 1 to each I′ ∈ Cn to find

a hyperplane L containing all rational points (
p1
q , . . . ,

pd
q ) ∈ I′ with 1 ≤ q < Nn. Let Ln denote the

collection of all level n hyperplanes L constructed in this way. For a cube I ∈ Cj for j = 1, . . . ,n−1, let

Ln(I) denote the set of all hyperplanes that correspond to cubes I′ ∈ Cn(I).Observe that a hyperplane

L ∈ Ln contains all the rational points with denominators

Nn−1 ≤ q < Nn.

4) Removal of the hyperplanes: Recall we eventually want to remove all dangerous balls B
(
p
q , cq

−(1+τ)
)

for some constant c > 0. Choose

cN = t−1N−u(1+τ)

with u ∈ N constant such that

u > 3 > 2 +
(d + 1)(d − 1)

(1 + τ)d2
. (1)
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10828 | H. Koivusalo et al.

Then,

⋃

Nn−1≤q<Nn

B

(
p

q
, cNq

−(1+τ)

)
⊂

⋃

Nn−1≤q<Nn

B

(
p

q
, t−1N−(n−1+u)(1+τ)

)
.

At layer

ℓ(1) :=
⌊
u

(1 + τ)d

d + 1

⌋

remove all cubes I ∈ Cℓ(1) that intersect the t−1N−u(1+τ)-thickening of all hyperplanes contained in

L1. That is, for a hyperplane L ∈ L1 constructed in the cube I′ ∈ C1 and

δ(1) = t−1N−u(1+τ) ,

let

Lδ(1) :=
{
x ∈ [0, 1]n : dist(x, L) = inf

(a1 ,...,ad)∈L

{
max
1≤i≤d

|xi − ai|
}

≤ δ(1)

}
. (2)

Notice the thickenings of the hyperplane may overlap into neighbouring cubes of I′. This is to

ensure when a rational point is close to the boundary between two cubes a sufficient neighbour-

hood is removed. Then, denoting Sℓ(1) as the first level surviving set of cubes in Cℓ(1), we have

Sℓ(1) :=

⎧
⎨
⎩I ∈ Cℓ(1) : I ∩

⋃

L∈L1

Lδ(1) = ∅

⎫
⎬
⎭ .

5) Iterative removal of hyperplanes: We follow the same step as the construction of the first layer of

surviving cubes, with the small exception that we only remove hyperplanes that still contain

’‘significant” rational points after the previous level pruning. That is, at layer

ℓ(n) :=
⌊
(n − 1 + u)

(1 + τ)d

d + 1

⌋
(3)

remove all cubes I ∈ Cℓ(n) that intersect the t−1N−(n−1+u)(1+τ)-thickening of all hyperplanes contained

in L∗
n, where

L∗
n :=

⎧
⎪⎨
⎪⎩
L ∈ Ln : ∃

p

q
∈ L with

⎧
⎪⎨
⎪⎩

i) Nn−1 ≤ q < Nn ,

ii) B
(
p
q , δ(n)

)
∩

⋃
I∈Sℓ(n−1)

I 	= ∅ .

⎫
⎪⎬
⎪⎭
.

That is, for a hyperplane L ∈ L∗
n and

δ(n) = t−1N−(n−1+u)(1+τ) ,

let

Lδ(n) :=
{
x ∈ [0, 1]n : dist(x, L) = inf

(a1 ,...,ad)∈L

{
max
1≤i≤d

|xi − ai|
}

≤ δ(n)

}
. (4)

Then, denoting Sℓ(n) as the surviving set of cubes in Cℓ(n), we have

Sℓ(n) :=

⎧
⎨
⎩I ∈ Cℓ(n) : I ∩

⋃

L∈L∗
n

Lδ(n) = ∅ & ∃ I′ ∈ Sℓ(n−1) s.t.I ⊂ I′

⎫
⎬
⎭ .
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The Dimension of the Set of ψ-Badly Approximable Points | 10829

For ease of notation in later stages let

L̂δ(n) :=
{
I ∈ Cℓ(n) : I ∩ Lδ(n) 	= ∅

}
,

so in particular

Sℓ(n) =

⎛
⎝ ⋃

I∈Sℓ(n−1)

Cℓ(n)(I)

⎞
⎠ \

⎛
⎝⋃

L∈L∗
n

L̂δ(n)

⎞
⎠ .

For any cube I ∈ Cj with j = 1, . . . , ℓ(n)−1 let Sℓ(n)(I) denote the set of cubes in Sℓ(n) that are contained

in I.

6) Let

Cτ (N) =
⋂

n∈N

⋃

I∈Sℓ(n)

I.

Observe that our constructed set Cτ (N) does indeed avoid all dangerous balls. We have the following

statement:

Lemma 2.

Cτ (N) ∩
⋃

p
q ∈Qd∩[0,1]d

B

(
p

q
, cNq

−(1+τ)

)
= ∅ .

Proof. Suppose there exists p
q ∈ Qd such that

B

(
p

q
, cNq

−(1+τ)

)
∩ Cτ (N) 	= ∅.

We show this to be false. Suppose Nk−1 ≤ q < Nk for k ∈ N. Then,

cNq
−(1+τ) ≤ cNN

−(k−1)(1+τ) = t−1N−(k−1+u)(1+τ) = δ(k) . (5)

By the Simplex Lemma there exists hyperplane L = L
(
p
q

)
∈ Lk containing p

q . If L
(
p
q

)
∈ L∗

k then by

construction we have that

L
(
p
q

)δ(n)

∩ Cτ (N) = ∅ ,

and so by (5)

B

(
p

q
, cNq

−(1+τ)

)
∩ Cτ (N) ⊆ B

(
p

q
, δ(k)

)
∩ Cτ (N) = ∅.

Thus, we must have L
(
p
q

)
	∈ L∗

k. We know that L
(
p
q

)
contains a rational with denominator satisfying i)

(the condition appearing in L∗
k), thus since L

(
p
q

)
	∈ L∗

k it must hold that ii) fails. That is,

B

(
p

q
, δ(k)

)
∩

⋃

I∈Sℓ(k−1)

I = ∅ .
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10830 | H. Koivusalo et al.

Since Cτ (N) is a nested Cantor set we have that

⋃

I∈Sℓ(k−1)

I ⊇ Cτ (N) ,

and so, again, we are forced to conclude that

B

(
p

q
, δ(k)

)
∩ Cτ (N) = ∅.

Appealing to (5) we obtain that B
(
p
q , cNq

−(1+τ)
)
has empty intersection with Cτ (N). This exhausts all

possibilities for p
q and so contradicts our initial assumption, thus Cτ (N) does indeed avoid all dangerous

neighbourhoods of rational points. �

3.1 Lebesgue measure of Cτ (N)

The following measure theoretic properties on Cτ (N) will be required later. The first of these statements

tells us that for large enough N ∈ N a significant proportion of [0, 1]d is contained in Cτ (N).

Lemma 3. Suppose τ > 1
d . Then for any ε > 0 there exists N ∈ N such that

λd(C
τ (N)) ≥ 1 − ε.

Precisely,

λd(C
τ (N)) ≥ 1 − 3t−d

∞∑

n=1

N
(d+1)

d (n−ℓ(n)).

Proof. Observe that

λd(C
τ (N)) ≥ 1 − λd

⎛
⎝⋃

n∈N

⎧
⎨
⎩I ∈ Cℓ(n) : I ∩

⋃

L∈Ln

Lδ(n) 	= ∅

⎫
⎬
⎭

⎞
⎠ .

While we may be removing significantly less cubes (recall in later layers we only neighbourhoods of

hyperplanes in the reduced set L∗
n) the calculation below is sufficient.

Note that L is a hyperplane and the fact that the hyperplane is contained in a cube I ∈ Cn of side

length t−1N−n d+1
d . Hence, the thickened hyperplane Lδ(n) (recall (4)) intersects at most

3N(ℓ(n)−n)
(d+1)(d−1)

d

cubes I ∈ Cℓ(n). The constant 3 is added here to ensure that cubes neighbouring the set of cubes

containing the hyperplane L can also be removed if they intersect the thickened hyperplane Lδ(n). Hence,

λd

⎛
⎝⋃

n∈N

⎧
⎨
⎩I ∈ Cℓ(n) : I ∩

⋃

L∈Ln

Lδ(n) 	= ∅

⎫
⎬
⎭

⎞
⎠ ≤

∞∑

n=1

∑

L∈Ln

λd
({
I ∈ Cℓ(n) : I ∩ Lδ(n) 	= ∅

})
,

≤
∞∑

n=1

Nn(d+1)3N(ℓ(n)−n)
(d+1)(d−1)

d λd(I),

≤ 3t−d
∞∑

n=1

Nn(d+1)+(ℓ(n)−n)
(d+1)(d−1)

d −ℓ(n)(d+1),

≤ 3t−d
∞∑

n=1

N
(d+1)

d (n−ℓ(n)) = εN. (6)
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The Dimension of the Set of ψ-Badly Approximable Points | 10831

Thus, providing τ > 1
d (and so ℓ(n) − n > ρn for some ρ > 0), the above summation is convergent, and

for a suitably large choice of N we have that

λd(C
τ (N)) ≥ 1 − εN,

with εN → 0 as N → ∞. �

The following lemma gives us an even stronger statement than Lemma 3,namely that every surviving

cube in the construction Cτ (N) retains much of its mass when later layers are removed.

Lemma 4. Suppose τ > 1
d . Let n,N ∈ N. Then for all I ∈ Sℓ(n),

λd(I ∩ Cτ (N)) ≥

⎛
⎝1 − 3

⎛
⎝

ℓ(n)∑

k=n+1

N(ℓ(n)−ℓ(k)) d+1
d +

∞∑

k=ℓ(n)+1

N(k−ℓ(k)) d+1
d

⎞
⎠
⎞
⎠ λd(I).

Remark 5. Note the constant bound given here is larger than the constant proven in Lemma 3 for

all n ∈ N. So we could take εN (given by (6)) to be the universal constant for all surviving cube

I ∈
⋃

n∈N Sℓ(n).

Proof. The proof is similar to that of Lemma 3. Firstly, since I ∈ Sℓ(n) we clearly have that

I 	∈
n⋃

k=1

⎧
⎨
⎩I

′ ∈ Cℓ(k) : I
′ ∩

⋃

L∈Lk

Lδ(k) 	= ∅

⎫
⎬
⎭ .

and so

λd

⎛
⎝I ∩

n⋃

k=1

⋃

I′∈Sℓ(k)

I′

⎞
⎠ = λd(I).

Hence,

λd(I ∩ Cτ (N)) ≥ λd(I) − λd

⎛
⎝

∞⋃

k=n+1

⎧
⎨
⎩I

′ ∈ Cℓ(k)(I) : I
′ ∩

⋃

L∈Lk

Lδ(k) 	= ∅

⎫
⎬
⎭

⎞
⎠ .

To count the number of hyperplanes from
⋃

k>n

⋃
L∈Lk

L contained in I observe that

#
{
L ∈ Lk : I ∩ Lδ(k) 	= ∅

}
≤ 1 n + 1 ≤ k ≤ ℓ(n), (7)

since I intersects one unique cube I′ ∈ Ck for n+ 1 ≤ k ≤ ℓ(n) (in this case I is actually contained in such

cube). And that

#
{
L ∈ Lk : I ∩ Lδ(k) 	= ∅

}
≤ N(k−ℓ(n))(d+1) k ≥ ℓ(n) + 1, (8)

since we are now looking at the number of cubes I′ ∈ Ck(I) that generate hyperplanes.

Nowwe consider the number of subcubes I′ ∈ Cℓ(k)(I) that could intersect with a thickened hyperplane

L ∈ Lk. We have that

#{I′ ∈ Cℓ(k)(I) : I
′ ∩ Lδ(k) 	= ∅} ≤ 3N(ℓ(k)−ℓ(n))

(d+1)(d−1)

d if L ∈ Lk for n + 1 ≤ k ≤ ℓ(n), (9)
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10832 | H. Koivusalo et al.

since there are at most N(ℓ(k)−ℓ(n))(d+1) ℓ(k)-level cubes in I. Also,

#{I′ ∈ Cℓ(k)(I) : I
′ ∩ Lδ(k) 	= ∅} ≤ 3N(ℓ(k)−k) (d+1)(d−1)

d if L ∈ Lk for k ≥ ℓ(n) + 1, (10)

since each hyperplane of interest is now contained in some cube in Ck.

Bring these together we have that

λd

⎛
⎝ ⋃

k∈N>n

⎧
⎨
⎩I

′ ∈ Cℓ(k)(I) : I
′ ∩

⋃

L∈Lk

Lδ(k) 	= ∅

⎫
⎬
⎭

⎞
⎠

≤
∞∑

k=n+1

∑

L∈Lk :L∩I	=∅
λd

({
I′ ∈ Cℓ(k)(I) : I

′ ∩ Lδ(k) 	= ∅
})

,

(7)−(10)

≤
ℓ(n)∑

k=n+1

3t−dN(ℓ(k)−ℓ(n))
(d+1)(d−1)

d N−ℓ(k)(d+1) +

∞∑

k=ℓ(n)+1

3t−dN(k−ℓ(n))(d+1)N(ℓ(k)−k) (d+1)(d−1)

d N−ℓ(k)(d+1)

= t−dN−ℓ(n)(d+1)3

⎛
⎝

ℓ(n)∑

k=n+1

N(ℓ(n)−ℓ(k)) d+1
d +

∞∑

k=ℓ(n)+1

N(k−ℓ(k)) d+1
d

⎞
⎠ .

And so we have that for I ∈ Sℓ(n)

λd(I ∩ Cτ (N)) ≥

⎛
⎝1 − 3

⎛
⎝

ℓ(n)∑

k=n+1

N(ℓ(n)−ℓ(k)) d+1
d +

∞∑

k=ℓ(n)+1

N(k−ℓ(k)) d+1
d

⎞
⎠
⎞
⎠ λd(I).

�

4 Step 2: A Suitable Subset of Wd(ψτ )

Recall we want to construct a subset of Wd(ψτ ) such that any ball in the corresponding limsup set

retains enough mass when intersected with Cτ (N). To this end we construct the following subset of Qd.

Define

Q(N, τ) :=

⎧
⎨
⎩
p

q
∈ Qd : ∃ L ∈ L∗

n with
p

q
∈ L and

⎧
⎨
⎩
i)Nn−1 ≤ q ≤ Nn ,

ii)B
(
p
q , δ(n)

)
∩
⋃

I∈Sℓ(n−1)
I 	= ∅ .

⎫
⎬
⎭ .

We say p
q is a leading rational of a hyperplane L ∈ Ln if L is the hyperplane on which p

q lies while satisfying

the above conditions.

Essentially, for each hyperplane removed in the construction of Cτ (N) we associate a set of rational

points p
q and significant intersection with surviving cubes of the previous layer.

Note a few important properties of leading rationals:

1) Every hyperplane L ∈
⋃

n∈N L∗
n contains at least one leading rational. This is clear from how we

define the sets L∗
n and Q(N, τ). Namely, if L does not contain a leading rational, then it would not

have been removed.

2) If p
q is a leading rational of a hyperplane L ∈ L∗

n that was constructed in cube I ∈ Cn then

B
(
p
q , 2q

−1− 1
d

)
⊇ I and B

(
p
q , 2q

−1− 1
d

)
⊇ L̂δ(n) .

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/1

4
/1

0
8
2
2
/7

6
7
8
8
2
3
 b

y
 U

n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 0

5
 S

e
p
te

m
b
e
r 2

0
2
4



The Dimension of the Set of ψ-Badly Approximable Points | 10833

To see this observe that trivially p
q ∈ I, that the sidelength of I is t−1N−n

d+1
d , and that Nn−1 ≤ q ≤ Nn.

The same is true for L̂δ(n) with the possibly slightly longer (max norm) sidelength of t−1N−n
d+1
d +

2δ(n).

3) If p
q is not a leading rational then there exists a hyperplane L ∈

⋃
n∈N L∗

k, say L ∈ L∗
n, for which

p
q ∈ L̂δ(k) and any leading rational of L, say r

s , has s < q. This may not be so obvious. To see this,

suppose Nn−1 < q ≤ Nn. Then p
q must, by the simplex lemma, lie on a hyperplane of Ln. If

p
q is not

a leading rational of said hyperplane, then it must lie in some previous level removed strip. Any

leading rational, say r
s , of a hyperplane from a previously removed layer must, by definition, have

denominator s ≤ Nn−1 < q.

Let

Wd(Q(N, τ),ψ) :=
{
x ∈ [0, 1]d : max

1≤i≤d

∣∣∣∣xi −
pi
q

∣∣∣∣ <
ψ(q)

q
for i.m.

p

q
∈ Q(N, τ)

}
.

The following two lemmas are crucial properties of the set Q(N, τ).

Lemma 5. Let ψ(q) = 3q− 1
d and suppose that τ > 1

d . Then,

Wd(Q(N, τ),ψ) ⊇ Cτ (N) .

Proof. Take any x ∈ Cτ (N). By Dirichlet’s Theorem x ∈ Wd(ψ). Let A(x) be the set of all those rational

points for which

x ∈ B

(
p

q
, q−1− 1

d

)
.

If the cardinality of A(x) ∩Q(N, τ) is infinite, then clearly x ∈ Wd(Q(N, τ),ψ), so assume A(x) ∩Q(N, τ) is

finite. Let p
q ∈ A(x)\Q(N, τ). Let Nm−1 < q ≤ Nm. Since p

q is not a leading rational, by 3. there exists some

hyperplane L, say L ∈ L∗
n with n < m, such that p

q ∈ L̂δ(n). Let r
s be a leading rational of L. Then by property

3. of leading rational s < q, and by the triangle inequality

∣∣∣x −
r

s

∣∣∣ ≤
∣∣∣∣x −

p

q

∣∣∣∣+
∣∣∣∣
p

q
−

r

s

∣∣∣∣ < 3s−1− 1
d , (11)

where the last inequality is due to the fact that both rational points p
q and r

s are contained in L̂δ(n). Since
r
s is the leading rational of L, by 2,

B

(
r
s , 2s

−1− 1
d

)
⊇ L̂δ(n).

If the sequence of rational points inA(x) can be associated to infinitelymany different leading rationals,

then we are done by the above argument. We now prove that there must be hyperplanes L ∈ L∗
n from

arbitrarily high levels n associated to the points in the sequence A(x). That is, they are leading rationals

on these hyperplanes themselves, or we find a nearby leading rational by the above argument.

Assume to the contrary that the sequence A(x) is associated to finitely many hyperplanes. Suppose

m is the largest level in which this finite sequence of hyperplanes appear. By definition of x ∈ Cτ (N) we

have that

x ∈ [0, 1]d\

⎛
⎝⋃

j≤m

⋃

L∈L∗
j

L̂δ(j)

⎞
⎠ ,
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10834 | H. Koivusalo et al.

which is an open set, and so there exists some ε > 0 such that

d

⎛
⎝x,

⋃

j≤m

⋃

L∈L∗
j

L̂δ(j)

⎞
⎠ > ε .

However, for any u
v ∈ A(x) with v > ε−1 we have that

∣∣∣x −
u

v

∣∣∣ < v−1− 1
d < ε ,

and so

u

v
	∈
⋃

j≤m

⋃

L∈L∗
j

L̂δ(j) ,

contradicting the finiteness of the sequence of associated hyperplanes. Thus, we have an infinite

sequence of associated hyperplanes to A(x), which by (11) we can associate to an infinite sequence

of rational points which sufficiently approximate x so that x ∈ Wd(Q(N, τ),ψ) as required. �

Lastly, the following lemma on the measure of balls in the construction of Wd(Q(N, τ),ψτ ) will be

required later. It essentially tells us that each ball B
(
p
q , q

−1−τ
)
with p

q ∈ Q(N, τ) contains a surviving

cube that covers a constant proportion of B
(
p
q , q

−1−τ
)
independent of p

q .

Lemma 6. Let B(τ ) = B
(
p
q , q

−1−τ
)
for some p

q ∈ Q(N, τ). Then there exists I ∈
⋃

n∈N Sℓ(n) with I ⊂ B(τ )

and

λd(B(τ )) ≤ Cλd(I),

with C > 0 independent of p
q .

Proof. Suppose that Nn−1 ≤ q < Nn. Since p
q ∈ Q(N, τ) we have that

B

(
p

q
, δ(n)

)
∩

⋃

I∈Sℓ(n−1)

I 	= ∅ .

Let I∗ ∈ Sℓ(n−1) be some cube with positive intersection with B
(
p
q , δ(n)

)
. Then, by considering the

sidelength of I∗ we have that

B

(
p

q
, 3max

{
t−1N

−ℓ(n−1)

(
1+ 1

d

)

, δ(n)

})
⊇ I∗ .

Now observe that

3t−1N−ℓ(n−1)(1+ 1
d ) ≤ 3t−1N

−
⌊
(n−2+u)

(1+τ)d
(d+1)

⌋
d+1
d

≤ 3t−1N−(n−1+u)
(1+τ)d
(d+1)

d+1
d (= 3δ(n))

= 3t−1N−(u−1)(1+τ)N−n(1+τ)

< q−(1+τ) .
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Hence,

B

(
p

q
, q−(1+τ)

)
⊇ B

(
p

q
, 3max

{
t−1N−ℓ(n−1)(1+ 1

d ), δ(n)

})
⊇ I∗ .

It remains to see that

λd(I
∗) = t−dN−ℓ(n)(d+1)

≥ t−dN−(n−2+u)(1+τ)d

≥ t−dN−(u−1)(1+τ)dq−(1+τ)d

= 2−dt−dN−(u−1)(1+τ)dλd

(
B

(
p

q
, q−(1+τ)

))
,

and so taking C = 2dtdN(u−1)(1+τ)d in the lemma completes the proof. �

5 Step 3: Construction of a Cantor Subset of Badd(ψτ )

The following lemma is crucial in the construction of our Cantor subset of Badd(ψτ ).

Lemma 7 (TG,I Lemma). Let {Bi}i∈N be a sequence of balls in Rd with r(Bi) → 0 as i → ∞. Suppose

that there exists some constant C > 0 such that

λd

(
I ∩ limsup

i→∞
Bi

)
≥ Cλd(I) (12)

for any I ∈
⋃

n∈N Sℓ(n). Then for any I ∈
⋃

n∈N Sℓ(n) and any G > 1 there is a finite subcollection

TG,I ⊂ {Bi : i ≥ G}

such that the balls are disjoint, lie inside I, and

λd

⎛
⎝ ⋃

B̃∈TG,I

B̃

⎞
⎠ ≥ κ1λd(I),

with κ1 = C5−d4−1.

Remark 6. Note that Lemma 7 is applicable to our setting with

{Bi}i∈N =
{
B

(
p

q
, 3q−1− 1

d

)}

p
q ∈Q(N,τ)

,

that is, limsupi→∞ Bi = Wd

(
Q(N, τ), 3ψ1/d

)
, since

λd
(
I ∩ Wd

(
Q(N, τ), 3ψ1/d

)) Lemma 5
≥ λd

(
I ∩ Cτ (N) ∩ Wd(ψ1/d)

)

= λd (I ∩ Cτ (N))

Lemma 4
≥ (1 − εN)λd(I).

Note that we can order the collection of balls in a decreasing order.
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10836 | H. Koivusalo et al.

Proof. Suppose that I ∈ Sℓ(n) and let S∗
ℓ(n+1)(I) denote the set of cubes I′ ∈ Sℓ(n+1) contained in the interior

of I (remove the edge cubes). Observe that

λd

⎛
⎝ ⋃

I′∈S∗
ℓ(n+1)(I)

I′

⎞
⎠ ≥

1

2
λd(I) (13)

since we are removing at most 2d + 1 hyperplanes worth of cubes that (for sufficiently large N ∈ N) are

small relative to the size of I.

Let

G :=

⎧
⎨
⎩Bi : Bi ∩

⋃

I′∈S∗
ℓ(n+1)(I)

I′ 	= ∅ , i ≥ G

⎫
⎬
⎭ .

We may assume r(Bi) is monotonically decreasing (since we can order Bi however we want) and so for

sufficiently large i (i ≥ i0 such that r(Bi0 ) < 1
2N

−ℓ(n+1) d+1
d ) any ball Bi ∈ G is contained in I. By the 5r-

covering lemma (see for example [22, Theorem 1.2] ) there exists a disjoint subcollection G ′ ⊆ G such

that

⋃

Bi∈G
Bi ⊂

⋃

Bi∈G′

5Bi

and the balls in G ′ are disjoint. It follows that

λd

⎛
⎝⋃

Bi∈G′

5Bi

⎞
⎠ ≥ λd

⎛
⎝ ⋃

I′∈S∗
ℓ(n+1)(I)

I′ ∩ limsup
i→∞

Bi

⎞
⎠

=
∑

I′∈S∗
ℓ(n+1)(I)

λd

(
I′ ∩ limsup

i→∞
Bi

)

(12)

≥ C
∑

I′∈S∗
ℓ(n+1)(I)

λd(I
′)

(13)

≥
C

2
λd(I).

Furthermore, since G ′ is a disjoint collection of balls we have that

λd

⎛
⎝⋃

Bi∈G′

5Bi

⎞
⎠ ≤

∑

Bi∈G′

5dλd(Bi)

= 5dλd

⎛
⎝⋃

Bi∈G′

Bi

⎞
⎠ .

Hence,

λd

⎛
⎝⋃

Bi∈G′

Bi

⎞
⎠ ≥

C

5d2
λd(I).

Since the balls of G ′ are disjoint and r(Bi) → 0 as i → ∞ we have that

λd

⎛
⎝ ⋃

Bi∈G′ :i≥j

Bi

⎞
⎠ → 0 as j → ∞.
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Hence, there exists j0 ≥ G such that

λd

⎛
⎝ ⋃

Bi∈G′ :i≤j0

Bi

⎞
⎠ ≥

C

5d4
λd(I).

Letting

TG,I = {Bi ∈ G ′ : i ≤ j0}

completes the proof. �

5.1 Constructing D(B)

Armed with Lemma 7 we now proceed with the construction of a Cantor subset D(B) of

Cτ (N) ∩ Wd(Q(N, τ),ψτ ) ∩ B

for any ball B ⊂ [0, 1]d. A sketch of the construction is as follows:

i) Firstly given a ball Bwe choose a suitableN ∈ N such that B has non-empty intersection with Cτ (N).

(We will choose N larger later when necessary.)

ii) To a surviving cube I ⊂ B we then apply Lemma 7 to obtain a disjoint collection of balls from{
B
(
p
q , 3q

−1− 1
d

)}
p
q ∈Q(N,τ)

contained in I that cover a positive proportion of I.

iii) We then shrink each of these balls, that is,

B

(
p

q
, 3q−1− 1

d

)
�→ B

(
p

q
, q−1−τ

)
.

The collection of these shrunken balls completes the first layer.

iv) We repeat the same process as above. That is, for each shrunken ball from the first layer we apply

Lemma 6 to find a surviving cube I′ of Cτ (N). We then choose suitable G′ > 0 and apply Lemma 7

to each surviving cube I′, and then shrink each of the balls in the set TG′ ,I′ . This collection of balls

then becomes the second layer. We continue inductively.

Let us now present the full details of the construction. Fix B ⊂ [0, 1]d. We construct D(B) as follows:

1) Fix N ∈ N such that

N ≥ r(B)
d

d+1 & 3t−d
∞∑

n=1

N
(d+1)

d (n−ℓ(n)) = εN <
1

4
λd(B) . (14)

This ensures that

λd(B ∩ Cτ (N)) ≥
3

4
λd(B),

Furthermore, assume N is large enough such that there exists I0 ∈ Sℓ(1) with I0 ⊂ B. Set E0 = I0.

2) Apply Lemma 7 to I0 with G0 ≥ 1 chosen sufficiently large such that

r(Bi) < t−1N−ℓ(1) d+1
d

4r(Bi(τ )) < r(Bi)

}
∀ i ≥ G0. (15)

Let TG0 ,I0 denote the set of balls Bi from Lemma 7.

3) Shrinking: For each Bi ∈ TG0 ,I0 shrink the balls

Bi = B

(
p

q
, 3q− d+1

d

)
�→ B

(
p

q
, q−(1+τ)

)
= Bi(τ ),

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/1

4
/1

0
8
2
2
/7

6
7
8
8
2
3
 b

y
 U

n
iv

e
rs

ity
 o

f Y
o
rk

 u
s
e
r o

n
 0

5
 S

e
p
te

m
b
e
r 2

0
2
4
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and let the first layer

E1 = Tτ
G0 ,I0 =

{
Bi(τ ) : Bi ∈ TG0 ,I0

}
.

4) Induction: Suppose En−1 has been constructed. For each Bi(τ ) ∈ En−1 we proceed as follows.

a) nesting: By Lemma 6 there exists some I ∈
⋃

n Sℓ(n), say I(i), with I(i) ⊆ Bi(τ ) and

λd(Bi(τ )) ≤ C(N, d,u, τ)λd(I(i)).

For I(i) related to Bi(τ ) in this way say I(i) ∼ Bi(τ ).

b) covering: Choose Gn > Gn−1 such that

4r(Bj) < min{r(I(k)) : I(k) ∼ Bk(τ ) ∈ En−1} ∀ j ≥ Gn.

(Note that r(Bj) → 0 with j.) Again, note this is only a lower bound,Gn can be chosen as large as

we want, and indeed, we will increase it if necessary in the proof of Lemma 8. Apply Lemma 7

to I(i) with Gn chosen as above. Let TGn ,I(i) be the set of balls from Lemma 7.

c) shrinking: For each Bi ∈ TGn ,I(i) shrink the ball and let

Tτ
Gn ,I(i)

=
{
Bj(τ ) : Bj ∈ TGn ,I(i)

}
.

Define the nth layer to be

En =

⎧
⎨
⎩Bj(τ ) : Bj(τ ) ∈

⋃

I(k)∼Bk(τ )∈En−1

Tτ
Gn ,I(k)

⎫
⎬
⎭ .

Let

D(B) =
⋂

n∈N

⋃

B(τ )∈En

B(τ )

This completes the construction ofD(B).Note thatD(B) ⊂ Dd(ψτ , cNψτ ) ⊂ Badd(ψτ ) since for any x ∈ D(B)

we have an associated sequence

I0 ⊃ Bi1 (τ ) ⊃ I(i1) ⊃ Bi2 (τ ) ⊃ I(i2) . . .

such that x is contained in the limit set. So x ∈ Cτ (N) ∩ W(Q(N, τ),ψτ ) ⊂ Dd(ψτ , cNψτ ) ⊂ Badd(ψτ ).

Remark 7. The methodology of the proof given here follows closely to the usual proof of the MTP.

The key additional step in the construction is the nesting step, which we require to ensure

D(B) ⊂ Cτ (N), and replacing the KG,B-lemma [9, Lemma 5] by TG,I Lemma 7 above.

5.2 Constructing a measure on D(B)

To obtain a lower bound to the Hausdorff dimension of D(B) and hence to Badd(ψτ ), we aim to use the

mass distribution principle [18, Proposition 4.2]. Namely, we need to construct a measure μ supported

on D(B) such that measures of balls are in good control.

To that end, construct a mass distribution μ on D(B) as follows: Set μ(I0) = 1, then for each Bi(τ ) ∈ E1
define

μ(Bi(τ )) =
λd(Bi)∑

Bj∈TG0,I0
λd(Bj)

× μ(I0).
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Note

∑

Bi(τ )∈E1

μ(Bi(τ )) = μ(I0).

Now inductively suppose the mass has been distributed over balls in En−1. For each Bi(τ ) ∈ En there

exists, by construction, a unique Bk(τ ) ∈ En−1 such that Bi(τ ) ⊂ Bk(τ ). Let I(k) ∼ Bk(τ ) and define

μ(Bi(τ )) =
λd(Bi)∑

Bj∈TGn ,I(k)
λd(Bj)

× μ(Bk(τ )).

Again the mass is preserved. By Proposition 1.7 of [18] this extends to a measure μ with support

contained in D(B) and for general subset F ⊂ [0, 1]d

μ(F) = inf

{∑

i

μ(Bi(τ )) : F ∩ D(B) ⊂
⋃

i

Bi(τ ) with Bi(τ ) ∈
⋃

n

En

}
.

Recall that s = (1 + d)/(1 + τ).

Lemma 8. Let ǫ > 0. There is a suitable choice of (Gn) in steps 4 of the construction of D(B) such

that for any ball F contained in B

μ(F) ≤ r(F)s−ǫ .

Proof. We begin by setting our choice of sequence (Gn). For any ε > 0 and for each n ∈ N set Gn large

enough such that for any ball Bi(τ ) ∈ En, and ball Bk(τ ) ∈ En−1 we have

r(Bi(τ ))−ǫ >
μ(Bk(τ ))

λd(Bk(τ ))
. (16)

Note that this can be done in a uniform manner since for any Bi(τ ) ∈ En we have i > Gn and the set En−1

is finite. Note this choice of sequence (Gn) is independent of F.

Case 1: Bi(τ ) ∈ En.

Assume first that F = Bi(τ ) ∈ E1, a ball of centre p
q ∈ Qd and radius q−(1+τ). Then,

μ(Bi(τ )) =
λd(Bi)∑

Bj∈TG0,I0
λd(Bj)

× 1

Lemma 7
≤ λd(Bi)

1

κ1λd(I0)

≤
1

κ1λd(I0)
2d3dq−(d+1)

=
2d3d

κ1λd(I0)
q−(1+τ) d+1

1+τ

=
2d3d

κ1λd(I0)
r(Bi(τ ))s.
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For balls Bi(τ ) ∈ En centred at some p
q ∈ Qd with n > 1 there exists Bk(τ ) ∈ En−1 with Bi(τ ) ⊂ Bk(τ ). So

μ(Bi(τ )) =
λd(Bi)∑

Bj∈TGn ,I(k)
λd(Bj)

× μ(Bk(τ ))

Lemma 7
≤ λd(Bi)

μ(Bk(τ ))

κ1λd(I(k))

≤
μ(Bk(τ ))

κ1λd(I(k))
2d3dq−(d+1)

=
2d3d

κ1
r(Bi(τ ))s

μ(Bk(τ ))

λd(I(k))

Lemma 6
≤

2d3d

κ1C(N, d,u, τ)
r(Bi(τ ))s

μ(Bk(τ ))

λd(Bk(τ ))

By our choice of sequence (Gn) we have that

μ(Bi(τ )) ≤ C′(N, d,u, τ)r(Bi(τ ))s−ǫ . (17)

Observe that the constant is independent of the layer that Bi(τ ) is from.

Case 2: F general ball.

Now fix F, a ball contained in B. We prove the general statement that for every ǫ > 0

μ(F) ≪N,d,u,τ r(F)s−ǫ . (18)

Firstly note that if F ∩ D(B) = ∅ then μ(F) = 0 so the statement is trivially satisfied. Hence, without loss

of generality F ∩ D(B) 	= ∅. Since F has non-empty intersection with D(B) at least one ball in each layer

En must intersect F. If there is exactly one ball Bin (τ ) per layer En (that intersects F) then note that

μ(Bin (τ )) → 0 as n → ∞

and so (18) holds, since there exists some n ∈ N such that

μ(Bin (τ )) ≪ r(F)s−ǫ .

Hence, assume there exists nF ∈ N such that at least two balls, say Bi(τ ),Bj(τ ) ∈ EnF have non-empty

intersection with F. Furthermore, nF is the first layer in which this happens.

Note Bi(τ ),Bj(τ ) belong to the same ball Bk(τ ) ∈ EnF−1 (otherwise, the nF − 1 layer has non-empty

intersection with at least two balls, contradicting the choice of nF). If

r(F) ≥ r(Bk(τ )),

then

μ(F) ≤
∑

Bi(τ )∈EnF−1 :

Bi(τ )∩F 	=∅

μ(Bi(τ )) = μ(Bk(τ )).

We can then use Case 1 of the proof to estimate μ(Bk(τ )) from above and obtain

μ(F) ≤ C′(N, d,u, τ)r(Bk(τ ))s−ǫ ≤ C′(N, d,u, τ)r(F)s−ǫ

as required.
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So assume

r(F) < r(Bk(τ )). (19)

We have that

λd(5F) ≥
∑

Bi :Bi(τ )∈F
λd(Bi), (20)

where

F =
{
Bi(τ ) ∈ Tτ

GnF ,I(k)
: Bi(τ ) ∩ F 	= ∅

}
.

See [9, Lemma 7], setting A = F and M = Bi(τ ), cM = Bi for justification of the above statement. Hence,

μ(F) ≤
∑

Bi(τ )∈F
μ(Bi(τ ))

≤
∑

Bi :Bi(τ )∈F

λd(Bi)∑
Bj∈TGnF ,I(k)

λd(Bj)
× μ(Bk(τ ))

Lemma 7
≤

1

κ1

∑

Bi :Bi(τ )∈F
λd(Bi) ×

μ(Bk(τ ))

λd(I(k))

Lemma 6
≤

1

κ1C(N, d,u, τ)

∑

Bi :Bi(τ )∈F
λd(Bi) ×

μ(Bk(τ ))

λd(Bk(τ ))

(20)

≤
5d

κ1C(N, d,u, τ)
λd(F)

μ(Bk(τ ))

λd(Bk(τ ))
. (21)

Finally, by the d-Ahlfors regularity of λd, note that

λd(F)
μ(Bk(τ ))

λd(Bk(τ ))

(17)

≤ C′(N, d,u, τ)r(F)sr(F)d−sr(Bk(τ ))s−d−ε

= C′(N, d,u, τ)r(F)s
(

r(F)

r(Bk(τ ))

)d−s

r(Bk(τ ))−ε

(d>s)+(19)

≤ C′(N, d,u, τ)r(F)sr(Bk(τ ))−ε

(19)

≤ C′(N, d,u, τ)r(F)s−ε (22)

Thus, combining (21) and (22) gives us (18) as required. �

We can now finish the proof of Theorem 2. By the mass distribution principle, see for example

[18, Proposition 4.2], we have that

dimH D(B) ≥ s − ε.

Since ε > 0 is arbitrary the lower bound dimension result of Theorem 2, and thus Theorem 1, follows.
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