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Multiuser Detection with Compressive Sensing

Iterative Reweighed Approach for Grant-Free

MIMO-NOMA Systems
Xiaoxu Zhang, Member, IEEE, Ziyang Zhou, Li Zhang, Senior Member, IEEE,

Pingzhi Fan, Fellow, IEEE, and Zheng Ma, Member, IEEE

Abstract—In this paper, we focus on the efficient multiuser
detection (MUD) problem for multiple-input multiple-output
(MIMO) enabled grant-free non-orthogonal multiple access
(GF-NOMA) system for massive machine-type communications
(MTC). The inherent sparsity of mMTC motivates us to make
use of compressive sensing (CS) technology to address the MUD
problem. This paper discusses the use of an iterative reweighed
(IR) scheme combined with the majorization-minimization
(MM) algorithm to recover sparse signals under the Grant-
free MIMO-NOMA model. Numerical and simulation results
demonstrate that Grant-Free MIMO-NOMA with the proposed
IR scheme is capable of reconstructing sparse signals with
unknown user activity factors and the proposed algorithm
outperforms conventional multiuser detectors.

Index Terms—Massive machine-type communications,
Grant-Free MIMO-NOMA, multiuser detection, iterative
reweighed.

I. INTRODUCTION

The sixth generation (6G) of communication promises to

revolutionise connectivity and drive unprecedented advance-

ments across numerous industries. A significant feature of

6G is massive machine-type communications (MTC), which

seeks to facilitate an enormous quantity of connected devices

such as Internet of Things (IoT) devices [1], sensors, and s-

mart devices. Furthermore, the forthcoming 6G network will

utilise multiple-input multiple-output (MIMO) technology to

enhance data transmission and augment network capacity.

In decades of research, MIMO technology has mainly

focused on point-to-point MIMO systems with multiple

transmitter and receiver antennas. For the multiuser-MIMO

(MU-MIMO) system, the base station (BS) uses more so-

phisticated equipment with multiple antennas to transmit

signals to the user terminal equipped with a single antenna.

Multi-antenna deployment of MIMO also brings significant

power consumption and implementation complexity to the

radio freqency (RF) of the antennas. In [2], Z. Lin et
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al. investigate three different hybrid beam forming (BF)

architectures, resolved the excessive RF power in mul-

tiple antennas, making multiple antennas more practical.

The grant-free non-orthogonal multiple access (GF-NOMA)

technique has been widely studied recently as it eliminates

the need for interactive handshaking process and improves

the spectral efficiency. The Grant-Free process greatly re-

duce transmission latency and signaling overhead [4]. This

technique can be applied to MU-MIMO system, and form a

Grant-Free MIMO-NOMA system. However, the complexity

of data transmission and processing increases significantly

due to the increase of large number of antennas and it is

necessary to perform accurate multiuser detection (MUD)

for the Grant-Free access. Therefore, there is an urgent need

for efficient and accurate MUD algorithms of Grant-Free

MIMO-NOMA system.

Since there are a large number of users in mMTC and

very few active users, we consider that the user’s trans-

mitted signal is sparse. Compressive sensing (CS) reduces

the transmission and processing burden by exploiting the

sparsity of the signal. Therefore, there have been many

researches on CS to solve the MUD problem [6]-[11].

The author in [6] propose a FOCUSS (FOCal Underde-

termined System Solver) scheme for GSM-MIMO system.

H. Iimori [7] derived new Bayesian message passing rules

based on Gaussian approximation, which enables a nov-

el joint activity, channel and data estimation. In [8], F.

Li proposed adopting sparse Bayesian learning (SBL), a

coupled hierarchical Gaussian framework, to reduce pilot

pollution caused by imperfect channel estimation. However,

it cannot overcome the computational complexity associated

with Bayesian algorithms. X. Zhang [9] proposed SBL and

PCSBL under single-slot and multi-slot, and in [10] [11],

H. Zhu and S. Adnan use traditional MUD and CS greedy

algorithms respectively. However, while the complexity has

been reduced, it is also very important to enhance recovery

performance.

The previous study of Grant-Free MIMO-NOMA lacked

MUD algorithms designed from the perspective of user

sparsity. Therefore, the dimensionality of the processed

signals is large. Since there are a large number of users, but

only a very small number of them are active, the transmitted

MIMO signal has a sparse feature. Taking advantage of this

property, this paper adopts the CS method to perform MUD
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of the Grant-Free MIMO-NOMA uplink system. Previously,

X. Zhang has verified the effectiveness of the iterative

reweighting algorithm for single-measurement vector models

and multi-measurement vector models in [12] and [13] re-

spectively, which do not consider the use of MIMO systems

to improve the transmission efficiency. In this paper, we

extend the iterative algorithm to multi-antenna scenarios and

verify the effective performance of the IR scheme under the

Grant-Free MIMO-NOMA system.

The main contributions of this paper are summarized as

follows:

• We convert the problem of signal recovery in multi-

antenna scenarios into a CS problem in Grant-Free

MIMO-NOMA systems and enhance the traditional

CS model. More precisely, we replace the l1-norm

with the Log-Sum and the exponential functions.

• We combine majorization-minimization (MM)

algorithm with IR algorithm, and propose an efficient

MUD algorithm. The proposed MIMO-IR scheme

does not require a prior information about the user

activity factor, which is more realistic than the general

MUD approaches.

• Simulation proves that the MIMO-IR algorithm has

better recovery performance and lower computational

complexity compared with other MUD algorithms in

the MIMO system.

This paper is organized as follows: In Section II, we

describe the Grant-Free MIMO-NOMA system. In Section

III, we derive two different MIMO-IR schemes respectively.

In Section IV, we present the simulation results and analysis

to demonstrate the reliability and feasibility of the algorithm.

In Section V, we conclude the paper.

II. SYSTEM MODEL

The multiplexing gain of point-to-point MIMO is de-

pendent on a favorable propagation environment and high

signal-to-noise ratio. In other words, point-to-point MI-

MO performance degrades significantly under line-of-sight

(LOS) propagation or when the terminal is located at the

edge of the cell [3]. MU-MIMO can effectively overcome

these problems by sharing antenna resources and space

resources among multiple users. In addition, MU-MIMO can

significantly reduce the interference among users at the edge

of the cell through inter-user co-operation and interference

cancellation techniques, thus improving the communication

performance of these users. According to recent research [5],

it has been found that in large-scale M2M systems, with a

sufficiently large number of antennas, the channel vectors

will eventually become asymptotically orthogonal to each

other, i.e.

(1/M)hH
i hj = 0, i ̸= j. (1)

where hi and hj represent the channel vector of user i
and j. However, traditional MIMO systems’ capacity is

limited by the number of users and antennas. GF-NOMA

allows multiple users to share the same time, frequency, and

spatial resources. This overcomes the capacity limitations of

conventional MIMO systems and enables users with poorer

channel conditions to achieve good communication perfor-

mance through non-orthogonal resource allocation. Com-

pared to other multiple access schemes, NOMA provides

better spectral efficiency and user fairness.

We consider a uplink single cell Grant-Free MIMO-

NOMA system with K single-antenna users and a BS with

M antennas. In this MU-MIMO system, a BS can simulta-

neously serve K independent terminals. For a transmission

of K users, the received signal can be formulated as follows:

Y = HX+W, (2)

where Y =(y1,y2, ...,yp) ∈ C
M×P is the received sig-

nal of the M antennas. It is equivalent to a narrow

band system when the number of subcarriers N = 1,

and X =(x1,x2, ...,xp) ∈ C
K×P is the transmitted sig-

nal with length P of the K users at the transmit an-

tennas. xp ∈ C
NK×1 is the pth symbol sequence of

K users. When the number of subcarriers N > 1,

X =(x1,x2, ...,xp) ∈ C
NK×P , the row elements of each

element xp are expanded into N × 1 vectors and stacked up

sequentially. If the kth device is active, the device transmits

a Binary Phase Shift Keying (BPSK) modulated signal

of length P , x ∈ A = {−1,+1}, and the inactive devices

remain 0. W =(w1,w2, ...,wp) ∈ C
M×P is a zero-mean

circularly symmetric complex Gaussian matrix with a unit

covariance matrix of M receive antenna of each symbols.

According to the power allocation strategy for power-domain

NOMA, in order to achieve fairness and maximize system

capacity, signals with higher power are allocated to users

with poorer channel conditions, and signals with lower pow-

er are allocated to users with better channel conditions. We

denote the channel power allocated by NOMA by diagonal

matrix ξ ∈ C
K×K . H ∈ C

M×K is a complex channel

matrix, which is the product of complex small-scale fading,

large-scale fading coefficients [3] and the power allocation

weights:

H = GS1/2
γ ξ, (3)

where M ×K matrix G accounts for small scale fading co-

efficients, the diagonal elements of K ×K diagonal matrix

S
1/2
γ is the terminal’s large-scale fading coefficient and ξ is

the power allocation weights.

III. PROPOSED MIMO-IR SCHEME

In this section, we present the iterative reweighted based

CS algorithm for MIMO-NOMA systems. The task is to

obtain the estimated signal in (1). In order to recover the

sparse signal in xp, we describe the signal to be detected yp

by using the minimum atoms in CS. Therefore, the problem

can be formulated as follows:

min
x

∥xp∥0
s.t. yp = Hxp,

(4)
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where ∥xp∥0 represents the sparsity of xp. However, the

traditional CS l0-norm problem is an NP-Hard problem,

which is generally transformed into l1-norm [14] or l2-norm

[15] in previous research.

In this paper, we consider sparse signal recovery using

two different forms of the objective function, which has

been shown to outperform l1-norm or l2-norm in terms of

performance as a signal recovery function [12].

A. Exponential form

To facilitate the solution of the CS problem and to ensure

convergence, it is advisable to formulate a convex objective

function. This choice guarantees the existence and unique-

ness of a globally optimal solution and often allows the use

of efficient algorithms. Therefore, we aim to reformulate the

exponential function ex into a convex form. Substituting the

above formula l0-norm with exponential form, we can get:

min
x

F (x) =
K∑

k=1

(1− exp (||xk||2/ϵ))

s.t. ||yp −Hxp||2 ≤ η,

(5)

in which ϵ is a regularisation constant and ϵ > 0. η is a

tolerance parameter for noise, which usually takes on a very

small value. xk is the kth element of the vector xp. The

essence of MIMO multi-antenna extends the problem to the

matrix side, so the above constraints can be transformed into:

min
X

F (X) =
K∑

k=1

(1− exp (||Xk||2/ϵ))

s.t. ||Y −HX||F ≤ η,

(6)

where Xk is the kth column of the matrix X. In order to

improve computational efficiency and find optimal solutions,

an unconstrained optimisation problem can be formulated by

adding a penalty term to the objective function. The resulting

Lagrange equation is expressed as follows:

min
X

L(X) ,
K∑

k=1

(1− exp (||Xk||2/ϵ)) + λ ∥Y −HX∥2F ,

(7)

where λ > 0 balances data fit and sparsity. In MM algo-

rithms, the surrogate function simplifies optimization by

constructing an auxiliary function, aiding convergence in

each iterative step. It’s crucial for the surrogate function to be

differentiable and convex to ensure progressive convergence

towards stability:

Q(X|X̃(t))
∆
=

K∑

k=1

(
1− e|

√
Px̃

(t)
kp

|2/ϵ+

e|
√
Px̃

(t)
kp

|2/ϵ(|
√
Px̃

(t)
kp |2/ϵ− |

√
Pxkp|2/ϵ)

)
,

(8)

where x̃
(t)
kp is the kth users in pth transmit symbols at tth

iteration.

In order to prove that the above surrogate function is

the upper bound on the original objective function, i.e.,

J(X) = Q(X|X̃(t))− F (X) ≥ 0, the proof is as follows.

Proof: Notice that the values of the column squares of the

same row element in X are the same:

K∑

k=1

(1− e(||Xk||2/ϵ)) =
K∑

k=1

(1− e((x
2
k1+x2

k2+...+x2
kp)/ϵ))

=

K∑

k=1

1− e|
√
Px̃

(t)
kp

|2/ϵ.

(9)

The upper bound we need to prove is as follows:

K∑

k=1

(1− e(||Xk||2/ϵ))

≤
K∑

k=1

(
1− e|

√
Px̃

(t)
kp

|2/ϵ+

e|
√
Px̃

(t)
kp

|2/ϵ(|
√
Px̃

(t)
kp |2/ϵ− |

√
Pxkp|2/ϵ)

)
.

(10)

Then the difference between the surrogate function and

the original objective function J(X) is as follows:

J(X) =

K∑

k=1

(
1− e|

√
Px̃

(t)
kp

|2/ϵ − (1− e|
√
Pxkp|2/ϵ)

+e|
√
Px̃

(t)
kp

|2/ϵ(|
√
Px̃

(t)
kp |2/ϵ− |

√
Pxkp|2/ϵ)

)
.

(11)

To facilitate the calculation, we define the following

parameters:

α = |
√
Px̃

(t)
kp |2/ϵ

β = |
√
Pxkp|2/ϵ.

(12)

Substituting the parameters in (12) into J(X) results in:

J(X) =

K∑

k=1

(
1− ea − (1− eb)

+ea(a− b))

=
K∑

k=1

(
eb − ea + ea(a− b)

)

=

K∑

k=1

ea
(
(eb−a − 1)− (b− a)

)

=
K∑

k=1

eaf(x).

(13)

Notice that:

ea = e|
√
Px̃

(t)
kp

|2/ϵ ≥ 0, (14)

we set b− a = x, then the part of (13):

f(x) = ex − 1− x, (15)

and

f ′(x) = ex − 1, (16)

when x = 0, we have f(0) = 0. And when x ≥ 0,

f ′(x) ≥ 0; when x ≤ 0, f ′(x) ≤ 0. We conclude that f(0)
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is the minimum value, and f(x) ≥ 0, then J(X) ≥ 0.

End of proof.

In summary, the upper bound is reached at α = β, i.e.,

x̃
(t)
kp = xkp, and the final optimal formulation expressed as:

min
Xp

Q(X|X̃(t)) + λ ∥Y −HX∥2F

=min
Xp

K∑

k=1

(
1− e|

√
Px̃

(t)
kp

|2/ϵ+

e|
√
Px̃

(t)
kp

|2/ϵ(|
√
Px̃

(t)
kp |2/ϵ− |

√
Pxkp|2/ϵ)

)

+ λ
√
P ∥yp −Hxp∥22 .

(17)

Calculate the first order partial derivative of the above

equation and we get:

xIR
p = ((λ

√
P )−1D1

(t) +HHH)−1HHYp, (18)

where xIR
p is the detection signal at the pth symbols of

K users as calculated by the IR algorithm. Yp is the pth

elements of matrix Y . D1 is a diagonal matrix:

D1
(t) ∼

=



e|

√
Px̃

(t)
1p |2/ϵ,

...

e|
√
Px̃

(t)
kp

|2/ϵ


 . (19)

B. Log-Sum form

The Log-Sum functions are widely used in the context of

dealing with log-likelihood functions and convex optimisa-

tion problems. we introduce the Log-Sum objective function

using the same approach:

min
X

F (X) =
K∑

k=1

log(||Xk||2 + ϵ)

s.t. ||Y −HX||F ≤ η,

(20)

and the resulting Lagrange equation is expressed as follows:

min
X

L(X) ,

K∑

k=1

log
(
∥Xk∥22 + ε

)
+ λ ∥Y −HX∥2F . (21)

The surrogate function is deduced in the same way:

Q(X|X̃(t))

∆
=

K∑

k=1




∣∣∣
√
Pxkp

∣∣∣
2

+ ε
∣∣∣
√
Px̃

(t)
kp

∣∣∣
2

+ ε
+ log

(∣∣∣
√
Px̃

(t)
kp

∣∣∣
2

+ ε

)
− 1


 ,

(22)

the optimization problem can be formulated as follows:

min
X

L(X)

∆
=

K∑

k=1




∣∣∣
√
Pxkp

∣∣∣
2

+ ε
∣∣∣
√
Px̃

(t)
kp

∣∣∣
2

+ ε
+ log

(∣∣∣
√
Px̃

(t)
kp

∣∣∣
2

+ ε

)
− 1




+ λ ∥Y −HX∥2F .
(23)

Iterative reduction of the above equations using the IR

method easily yields smooth iterative results:

xIR
p = ((λ

√
P )−1D2

(t) +HHH)−1HHYp, (24)

where:

D2
(t) ∼

=




1∣∣∣∣
∣∣∣
√
Px̃

(t)
1p

∣∣∣
2
+ε

∣∣∣∣
,

...
1∣∣∣∣

∣∣∣
√
Px̃

(t)
kp

∣∣∣
2
+ε

∣∣∣∣


 . (25)

Algorithm 1 The IR-MIMO Algorithm

Input: x(t): the value of the tth iteration; yp: the observed

value; H: the matrix contains channel information; Iter:

number of iterations; Itermax: the max number of

iterations;

Output: optimal x(Iter);

1: Initialize x(0) as an all one column vector; initialize x(1)

as an all zero column vector: η = 0.1; ε = 0.1; Iter =
0;

2: while Itermax > Iter do

3: Iter = Iter + 1;

4: for i = 1 : P do

5: Compute D1 = diag(e|
√
Px̃

(t)
kp

|2/ϵ), or D2 =
diag( 1∣∣∣∣

∣∣∣
√
Px̃

(t)
kp

∣∣∣
2
+ε

∣∣∣∣
);

6: yp = Yp;

7: xIR−exp
p = ((λ

√
P )−1D1

(t)+HHH)−1HHYp

or

8: xIR−log
p = ((λ

√
P )−1D2

(t)+HHH)−1HHYp;

9: end for

10: if
∥∥x(Iter+1) − x(Iter)

∥∥2 < 10−6 then

11: break;

12: end if

13: end while

The algorithm is organized as Algorithm 1. In summary,

we solve the non-convex optimisation problem by using two

surrogate functions that satisfy the conditions of the MM

algorithm by iteratively searching for their lower bounds, and

we can ultimately obtain our optimal solution by using (18),

(19), (24), (25). It should be noted that the proposed method

is well suited for sparse scenarios and does not require a

priori information about the user activity factor.

IV. SIMULATION RESULTS

In this section, we verify the effectiveness of the proposed

iterative reweighed schemes under the uplink Grant-Free

MIMO-NOMA system. Depending on the needs of the

network and specific application scenarios, this work can be

applied to both single and multi-cells. To simplify, we only

consider a single-cell MU-MIMO system, which consists of

K single-antenna users and a BS with M antennas. In order

to capture the sporadic nature of massive user access, we

define a variable p to manifest the sparsity of user access.
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Consider a Gaussian complex channel and use the symbol

error rate (SER) calculated from the recovered signals of

multiple transmissions as a criterion for the performance of

the algorithm:

SER =

∑RPT
i=1

∑P
j=1

∑K
z=1 Xijz ̸= X̃ijz

K × RPT
. (26)

where RPT denotes the repeat numbers of each Monte Carlo

simulation. Xijz represents the jth column and zth row

element of the transmit signal at ith RPT result, while

X̃ijz represents the jth column and zth row element of the

recovery signal at ith RPT result.

We set parameter p = 0.2 to reflect the low activity

feature of users, and compare the proposed IR algorithm in

exponential form (IR-EXP) and IR algorithm in Log-Sum

form (IR-LOG) with Linear minimax mean-square error

(MMSE), the Lasso detector (LD), the Ridge detector (RD)

, the orthogonal matching pursuit (OMP) detector and the

SBL detector under the antennas number M = 8, M = 16
and the device number K = 5, K = 64. As Fig.1 shows, the

proposed IR algorithm surpasses other MUD algorithms due

to the MM algorithm’s robust global convergence promotion.

By leveraging convex optimization properties and employing

surrogate functions, it facilitates the exploration of sub-

optimal or nearly optimal solutions. This iterative approach

enables weight adjustments based on prior estimates in

each iteration, allowing highly-weighted observations to

contribute significantly to the estimation process while mit-

igating the influence of outliers. Consequently, it facilitates

convergence to more accurate results.

According to the calculation, the complexity of the al-

gorithms is O(K3), with the exception of LD, which has

a complexity of polynomial time. To analyze the com-

putational complexity of the algorithm, we recorded the

running time for the proposed algorithms and compared

with other other algorithms in Table I, it is evident that

the IR scheme exhibits comparatively lower complexity,

ensuring effectiveness when compared to other traditional

MUD algorithms.

In addition, we have analysed the convergence rate of

the proposed algorithm in Fig.2 (a) and compared it with

its counterpart SBL which is also an iterative algorithm. It

can be observed that as the number of iterations increases,

both forms of our proposed IR algorithms converge much

faster than the SBL algorithm, and the IR-LOG algorithm

converges the fastest. As the regularisation constant increas-

es, the ability to constrain the parameters becomes stronger,

making the change in values less drastic and thus achieving

rapid convergence. As Fig.2 (b) shows, a comparison was

conducted to assess the recovery performance of the algo-

rithms in the three cases of regularisation constants. The

results demonstrated that the EXP form of IR performed

optimally with large regularisation constants, whereas the

LOG form exhibited the opposite trend. All algorithms

exhibited convergence in one or two iterations, indicating

that the algorithm’s ability to effectively reach the hard

judgement threshold in the first iteration.

TABLE I: Running time of MUD algorithms under M = 16
and K = 64 (second).

Algorithm runtime(pa = 0.1) runtime(pa = 0.2)

MMSE 0.001422 0.001068

RD 0.001048 0.000933

LD 1.001371 1.045752

OMP 0.710469 0.849271

SBL 21.527146 21.562025

IR-LOG 0.013215 0.016604

IR-EXP 0.010205 0.011349

0 5 10 15

Average SNR(dB)

10-5

10-4

10-3

10-2

10-1

S
E

R

MMSE
RD[8]
LD[8]
IR-EXP
SBL[7]
OMP[9]
IR-LOG

(a)

0 2 4 6 8 10

Average SNR(dB)

10-6

10-5

10-4

10-3

10-2

S
E

R

MMSE
RD[8]
LD[8]
IR-EXP
SBL[7]
OMP[9]
IR-LOG

(b)

Fig. 1: SER performance of different algorithms at (a) M =
8 and K = 5; (b) M = 16 and K = 64.

V. CONCLUSIONS

In this paper, we consider the use of an IR scheme

combined with the MM algorithm to recovery sparse signals

under the Grant-Free MIMO-NOMA model without the

need for a priori information, and two forms of the IR

scheme are considered. Simulation results demonstrate the

superior performance of the proposed IR scheme. Our multi-

user detection algorithm has a wide range of potential

applications, and in the future research, it can be applied

to Cell-free [16], [17] networks to further improve system

performance and user experience.
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Fig. 2: (a) The convergence rate of the proposed algorithm;

(b) Algorithm performance with number of iterations at

SNR = 0, M = 8, N = 5.
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