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Summary

� Associational resistance to herbivore and pathogen attack is a well documented ecological

phenomenon and, if applied to agriculture, may reduce impact of pests and diseases on crop

yields without recourse to pesticides.
� The value of associational resistance through intercropping, planting multiple crops

alongside each other, as a sustainable control method remains unclear, due to variable out-

comes reported in the published literature. We performed a meta-analysis to provide a quanti-

tative assessment of benefits of intercropping for target plant resistance to plant-parasitic

nematodes and soil-borne diseases.
� We found that intercropping reduced damage to focal crops from nematodes by 40% and

disease incidence by 55%. Intercropping efficacy varied with biological variables, such as field

fertilisation status and intercrop family, and methodology, including whether study samples

were potted or in fields.
� Nematode control using intercropping was sufficient to offset reductions in focal crop yield

from intercrop presence, making intercropping a viable agricultural tool. We identify key drivers

for underpinning the success of intercropping and indicate areas for future research to improve

efficacy. This study also highlights the potential benefits of harnessing ecological knowledge on

plant–enemy interactions for improving agricultural and landscape sustainability.

Introduction

Plants are at the centre of a complex network of interactions,
including those with competing individuals and species, as well
as natural enemies, both above and below ground (Johnson
et al., 2016). The nature of these interactions between plants
and their herbivores and pathogens is altered by close-
proximity neighbouring plants, particularly for heterospecifics
(Tahvanainen & Root, 1972). Associational resistance is a
recognised, widespread ecological interaction whereby specific
plant associations with unpalatable neighbours decrease the
likelihood of detection by, and vulnerability to, herbivore
attack; in other cases, known as associational susceptibility,
interactions with neighbouring plants lead to an increase in
such attacks (Barbosa et al., 2009).

Ecological intensification, the practice of utilising natural eco-
logical processes to replace intensive anthropogenic inputs in
agricultural systems, has been proposed as a means to increase
the environmental sustainability of agriculture (Bommarco et al.,
2013). Future changes in climate, population and patterns of
consumption are predicted to require an increase over current
crop production of 100% by 2050 (Tilman et al., 2011), which
clearly cannot be delivered sustainably by devoting more land to
agriculture or by increasing already high levels of external inputs.
Crop losses due to weeds, insects, nematodes and pathogens

exacerbate this problem, standing at 26–40%, even with the best
current control methods (Oerke & Dehne, 2004; Oerke, 2006).
Furthermore, these losses are predicted to increase under climate
change (Deutsch et al., 2018). The application of associational
resistance approaches could be a sustainable method to address
some of the current and are likely to be future crop losses to
pests.

Much research on the influence of close neighbours to plant
resistance has focused on aboveground herbivores in natural sys-
tems, but plants come under attack from many other types of
enemies, especially in the monocultures and high input environ-
ments of intensive agriculture. Plant natural enemies in soil, such
as plant-parasitic nematodes and soil-borne diseases, reduce the
yields of many crops worldwide (Shigaki et al., 1998; Oerke &
Dehne, 2004; Marimuthu et al., 2013) and are particularly diffi-
cult to control through pesticide application (Matthiessen &
Kirkegaard, 2006). Some pathogenic organisms, such as potato
cyst nematodes (Globodera spp.), can persist in soil in a resistant
state for decades (Evans & Stone, 1977), quiescent until soil pes-
ticide concentrations are reduced to ineffective levels. Adsorption
and degradation of pesticides in agricultural soils can prevent suf-
ficient exposure for control (Munnecke, 1972), particularly in
the context of restrictions on their use due to the impacts on envi-
ronmental and human health (Popp et al., 2013). There is an
urgent need for alternatives to current practice, alternatives based
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on approaches that apply a knowledge of plant ecology and biol-
ogy to improve food crop production sustainably (Hartley, 2018;
Pretty et al., 2018). Many of these approaches, such as intercrop-
ping, in which more than one plant species is cultivated in the
same plot at the same time, do not require major or technically
difficult advances so could be implemented quickly, and with
more research into underpinning ecological mechanisms they
could be more widely adopted (Royal Society, 2009).

Some planting regimes can diversify agricultural systems,
including temporal diversification through expanded rotations to
include cover crops or spatial diversification via cultivar mixing
and intercropping (Reiss & Drinkwater, 2018). Of these poten-
tial options, intercropping has been identified as a potential sus-
tainable strategy for maximising crop yields while combating pest
damage and disease, including those caused by soil-borne organ-
isms (Malézieux et al., 2009; Boudreau, 2013). Intercropping,
applying the framework of associational resistance, may influence
pest and disease damage through (1) modifying soil nutrient and
water availability, (2) interfering with pest capacity to detect/
recognise focal crop root structures, (3) inducing defences in focal
crops through chemical cues released by the intercrop, and (4)
provision of habitat for known natural enemies of focal crop pests
(Barbosa et al., 2009). Associational susceptibility is driven by
the converse of these functional behaviours.

Studies of the value of intercropping for sustainable pest con-
trol have found mixed and sometimes conflicting results, reflect-
ing the complex and variable nature of associational resistance
and susceptibility. For example, intercropping cucumber with
hot pepper, castor or crown daisy reduced root knot nematode
(Meloidogyne incognita) attack, whereas damage increased with
hairy vetch, common zinnia, and Baikal skullcap intercrops
(Dong et al., 2012). Intercropping can also lead to variable out-
comes for focal crop diseases. For example, anise and garlic inter-
crops reduced damping-off and root rot in lentil regardless of
whether the causal pathogen was Rhizoctonia solani or Fusarium
solani, whereas intercropping with onion only protected lentil
from R. solani (Abdel-Monaim & Abo-Elyousr, 2012).

This variability in published results is perhaps unsurprising
given that intercrops can affect nematode damage or disease inci-
dence through a range of mechanisms that, combined with the
complex nature of plant–soil interactions in agroecosystems, is
likely to cause significant variability in outcomes. These mecha-
nisms can be broadly divided into three categories (following
Trenbath, 1993): (1) direct impacts on the survival, activity, or
reproduction of the pest/pathogen; (2) indirect impacts on the
pest/pathogen via changes in the focal plant species; and (3) indi-
rect impacts on the pest-pathogen via changes in the soil commu-
nity (including natural enemies) or in the soil environment.
Given the conflicting but burgeoning literature, a robust quanti-
tative statistical review of the effects of intercropping on plant-
parasitic nematode damage and on soil-borne disease incidence is
needed and timely but has not been attempted to date. This sort
of contingency is a barrier to uptake of sustainable approaches in
agriculture systems (Doheny-Adams et al., 2018; Hart-
ley, 2018), so a better understanding of the factors driving vari-
ability in outcomes is vital.

Our study was designed to test whether intercropping is an
effective agricultural tool to reduce nematode and pathogen
impacts on focal crop yields. We addressed this knowledge gap
using meta-analysis, an approach that has been used successfully
to synthesise results from studies in field environments (e.g.
Denno et al., 2008; Letourneau et al., 2011; Johnson et al.,
2012). Specifically, we used meta-analysis, combined with meta-
regression, to investigate mechanisms underpinning the relation-
ship between intercropping and damage to focal crops from
parasitic nematodes or soil-borne diseases. The role of any given
mechanism will be context-dependent, and we explored the
influence of these contextual factors through meta-regression, a
technique that quantifies the heterogeneity between experimental
outcomes by fitting a range of moderator variables (Berkey et al.,
1995).

Considering the mechanisms of action for associational resis-
tance, we hypothesised that resource availability, plant density/di-
versity as well as both intercrop and pathogen species identity/
guild are primary drivers of interactions between intercrop plants,
focal crop plants and herbivores/diseases in agricultural systems.
For instance, we might expect greater intercrop planting density
to create a more challenging ‘maze’, making it more difficult for
pests to detect and move to focal crop plant roots. Similarly,
intercrop plants known to produce bioactive compounds may be
more likely to be effective in conferring associational resistance.
At this time, exact ecological mechanisms of control remain con-
tested in ecosystems displaying associational resistance (Agrawal
et al., 2006), so these parameters were targeted to provide insight
into underlying mechanisms and to determine the effectiveness
of intercropping. We therefore tested the influence of a range of
both biological and agronomic factors on damage or disease inci-
dence in intercropped vs nonintercropped systems, including
intercrop plant family, fertiliser inputs, pathogen inoculum
source (i.e. laboratory cultured or field soil population), nema-
tode species, pathogen type, timing of inoculation and intercrop
addition, experiment duration and plant density. Furthermore,
we tested whether the beneficial effects of intercropping on focal
crop yield through reductions in the losses due to nematode dam-
age or disease incidence were sufficient to offset yield losses due
to the presence of the intercrop, so determining whether inter-
cropping can be an environmentally and economically sustain-
able alternative to chemical control of soil-borne pests and
diseases.

Description

Literature search and study selection

We performed literature searches in the Web of Science (Core
Collection; www.webofknowledge.com), the British Library (the-
ses; www.explore.bl.uk), the Indian Citation Index (ICI; www.
indiancitationindex.com), and the National Library of Australia
Trove (theses and conference proceedings; www.trove.nla.gov.au)
databases using the following topic keywords: intercrop* OR “in-
ter-crop*” OR cocrop* OR “co-crop*” OR (mixed crop*) OR
interplant* OR “inter-plant*” OR bicrop* OR “bi-crop” OR
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polycultur* OR “poly-cultur*” OR dicultur* OR “di-cultur*”
OR (cover crop*) or companion* AND disease* OR patho* OR
nemat*. Full search query strings are provided in supplementary
information, under Supporting Information Notes S1). The final
search of the Web of Science database was performed on 30 June
2020. The final searches in the British Library and Trove were
performed by 11 June 2020, and the ICI was last searched on 4
August 2013. We did not place time limits on any of the
searches, therefore studies from the full timespan in each database
were searched: 1900–2020 for Web of Science; 1800–2020 for
the British Library; 2004–2013 for ICI; unspecified to 2020 for
Trove. We also used backwards and forwards citation following.

To be included, experiments were required to compare (1)
damage caused by plant-parasitic nematodes or disease incidence
on a primary (focal) crop species grown alone as a monocrop
(control) with (2) damage or incidence on the same focal crop
when grown intercropped with one other plant species (treat-
ment). Experiments had to be replicated (n ≥ 2) with randomly
assigned treatments.

We contacted the author if a relevant paper did not report the
data needed. When the necessary data was reported only in a fig-
ure, GRAPHGRABBER v.1.5.5 (Dedross & Boardley, 2009) soft-
ware was used to extract the values.

We found 52 studies containing data that met the relevance crite-
ria for nematode damage, and calculated effect sizes for 326 experi-
ments (Table S1). For soil-borne disease, we found 28 studies that
met the relevance criteria, yielding 117 effect sizes (Table S1).

Effect size and variance

Metric choice A common metric was needed to compare results
from studies that used different variables, constructs or descrip-
tors to measure nematode damage or disease incidence. We used
response ratio (R), defined as the mean value for the damage/dis-
ease found within the treatment (intercrop) group divided by the
mean value for the control (focal monocrop) group, as the effect
size. L, defined as the natural logarithm of R, was used in the
meta-analysis calculations along with a nonparametric variance
estimate that allowed more experiments to be included, giving
greater statistical power (Mayerhofer et al., 2012). L was used
because, unlike R, it responds to changes in the numerator or
denominator equally and in a linear fashion. The sampling distri-
bution of L is also more normal than that of R in small samples
(Hedges et al., 1999). The equation for L is:

L ¼ loge R ¼ loge xT=xCð Þ Eqn 1

where xT is the mean value for the treatment (intercrop) group
and xC is the mean value for the control (focal monocrop) group
(Hedges et al., 1999).

The equation for the nonparametric variance of L is:

vL ¼ nT þ nCð Þ= nTnCð Þ Eqn 2

where nT is the sample size for the treatment group, and nC is the
sample size for the control group (Mayerhofer et al., 2012).

Crop yield effect size Using the yield of the focal crop in the
monocrop control and intercrop treatment respectively, we calcu-
lated a yield effect size for each study that reported relevant yield
data. Further analyses using meta-regression (please refer to
‘Meta-regressions’ in the Description section) explored whether
intercropping-related changes in damage are associated with
yield. A summary analysis of the focal crop yield effect size was
not performed, as the experiments collected were only a nonrep-
resentative subset of the available experiments on yield and inter-
cropping in the presence of nematodes.

Response ratios with zeroes The response ratio (R) could not
be calculated for experiments in which the monocropping treat-
ment had a damage or disease value of zero. To avoid introduc-
ing bias against experiments in which the focal monocrop
control had no observed damage or disease but the intercrop
treatment did, we used the highest value of L in the final dataset
in place of the infinitely large effect size that would have been
calculated otherwise in these cases. Similarly, for experiments in
which the intercropping treatment had a disease or damage
value of zero (meaning L could not be calculated), we used the
lowest value of L to avoid bias against experiments in which
intercrop treatment reduced damage or disease below detectable
levels.

Experiment moderators

We collected details on experiment moderators for each experi-
ment, including focal crop and intercrop species/density, water
status, inoculum type and timing, as well as nematode species/
lifestyle and/or pathogen genus (Table S1). We also described
each experiment as either contained (in pots) or uncontained (in
the ground, field-based) and characterised the measurement con-
struct utilised, whether these were direct measures or generalised
indices (e.g. direct measures might include root damage/infection
and/or plant mortality, whereas nematode/disease indices gener-
alised individual plant results over a field area using a defined
scale).

To ensure correct grouping, we used the current accepted
binomial name for all species, using ‘The Plant List’, database
(www.theplantlist.org) to check plant species, and multiple
sources to check nematode and pathogen species (Table S2).
Table S2 also contains the references for the host status and sus-
ceptibility (of the intercrop in each experiment to the relevant
nematode/pathogen) variables.

Models

Summary random-effects meta-analyses To allow generalisa-
tion of the results from this meta-analysis we performed random-
effects meta-analyses on the nematode and disease datasets when
calculating the overall mean effect sizes (Hedges & Vevea, 1998).
In addition, as intercropping is not expected to be identical in all
agroecosystems, the random-effects model is more appropriate
because it does not assume that the true effect is identical in every
experiment.
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The estimated mean true effect sizes and estimated heterogene-
ity values were calculated using the rma.mv function in R in the
METAFOR package (Viechtbauer, 2010). Each observed effect size
was weighted by the inverse of its variance, with Experiment ID
within Study ID included as nested random effects to include
nonindependence of effect sizes from the same study and when
multiple effect sizes were calculated using a shared experimental
control or treatment.

Meta-regressions We used a mixed-effects model for the
meta-regressions, retaining Experiment ID within Study ID
as random effects but also with moderators as fixed effects,
specified as a formula in the mods argument in the rma.mv
function (Viechtbauer, 2010). For the heterogeneity estima-
tor, we used maximum likelihood so that the model fit statis-
tics could be compared during step-wise model reduction.
Base models, or meta-regressions, were initially performed
including moderators for which all available experiments pro-
vided data. These included nematode experiments from
uncontained experiments (NU1; inclusive of ‘Measurement
construct + Co-crop family + Conditions + Water status +

Fertilisation status’), nematode experiments in contained/pot-
ted experiments (NC1) and their disease counterparts (DU1,
DC1) (Tables S3, S4). Meta-regressions that initially included
a moderator for which not every experiment in the full
nematode or disease dataset had a reported value were run
on subsets of the data so that those moderators could be
investigated (e.g. NU3, for which nematode lifestyle was
included along with all NU1 moderators) (Table S4). We
also carried out summary meta-analyses on each subset, to
ascertain if the overall mean effect size was affected by the
number of experiments included.

After running the initial model for a given subset, we removed
the moderator with the highest nonsignificant P-value and ran
the reduced model. Results of the two models were compared
using the anova function. We reduced the model step-wise until
all the moderators were significant or until reducing the model
further explained a significantly lower amount of the heterogene-
ity in the data, according to the likelihood ratio test (Viecht-
bauer, 2010). If the moderator unique to that data subset
dropped out, we abandoned the meta-regression as the other
moderators would already have been tested on a larger data subset
(e.g. NU1, NC1, DU1 or DC1). All analyses were performed in
R using the METAFOR package.

Assessing bias

A ‘file drawer analysis’ was performed for the data(sub)set of each
meta-regression that yielded interesting results (and were there-
fore reported and discussed), to give the number of experiments
(‘fail-safe number’) with an average effect size of zero that would
have to be added to the dataset to render the estimated mean true
effect nonsignificant (Rosenthal, 1979). Funnel plots were also
produced and examined for evidence of bias (Figs S1–S3). The
file drawer analyses and funnel plots were performed in R using
the METAFOR package.

Results

The data set used across all meta-analyses included 138 uncon-
tained (in field) plus 188 contained (potted) nematode experiments
and 89 uncontained plus 28 contained soil-borne disease experi-
ments. These published findings included 45 focal crops (limited
due to the priority focus on soil pests and pathogens), 21 intercrop-
ping families, seven nematode genera inclusive of 16 nematode
species, and 10 pathogen genera, including bacterial, fungal and
oomycete varieties (Table S1). Beyond crop and pathogen type,
other data from field and glasshouse trials were included as modera-
tors (e.g. fertilisation and water status of the experiment, inoculum
type (artificial or natural), and timing of intercrop planting relative
to the focal crop) (Table S1). The combination of these moderators
allowed us to determine which associational resistance mechanisms
were most consistently effective within the agroecosystem context:
(1) fertiliser and water status of the experiments allowed us to test
the impact arising from modification of soil nutrient and water
availability, (2) planting density and duration allowed us to exam-
ine the potential of physical barriers to interfere with pest capacity
to detect/recognise the focal crop root structures, (3) intercrop fam-
ily investigated the induction of defences in focal crops through
chemical cues released by the intercrop, and (4) analysis of
pest/pathogen genera tested the provision/reduction of habitat for
focal crop pests/diseases and known natural enemies.

Intercropping impacts on pest/disease damage reduction
and implications for focal crop yield

Both disease incidence and pest damage were significantly reduced
through intercropping. Soil-borne disease damage to the focal crop
within in-field studies was reduced by 55% due to intercropping
(with a 95% confidence interval (CI) of 67 to 38%) and 44% (95%
CI of 57 to 28%) in contained experiments (Table S3). Nematode
damage to the focal crop was reduced by 40% (95% CI of 55 to
20%) in uncontained, field-based studies and 42% (95% CI of 54
to 28%) in contained, pot-bound experiments (Table S3).

Nineteen studies that reported nematode damage data also con-
tained yield information, for 76 experiments in total (and 11 studies,
66 experiments for disease; Table S1). The data published in these
studies can be used to estimate how much damage reduction in
intercropped fields is required to deliver equivalent focal crop yields
to monocrops. Based on damage effect to focal crop yield regressions
we estimate that anything more effective than a +15% enhancement
in nematode damage (Fig. 1) results in improved focal crop yields
from intercropped fields, compared with those obtained from
monocrop planting. Whereas disease reduction is apparent in pub-
lished studies, disease effect size was not significantly correlated to
yield size and therefore estimates of reduced focal crop yield, neces-
sary to obtain improved focal crop yield, were not possible.

Identifying field and method variables that affect intercrop
impact

The use of meta-regressions allowed us to identify those experi-
mental and field variables that were most influential. Within
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field-based experiments the variables that were most influential in
intercrop control of nematodes included intercrop family and
field fertilisation status. Within the intercrop families most com-
monly reported, Asteraceae, Pedaliaceae and Solanaceae were
found to be the most significantly effective in their capacity to
moderate nematode damage (Fig. 2). Unfertilised fields showed
significantly better outcomes (less nematode damage) compared
with fertilised fields (Fig. 2).

Within contained studies, nematode species was an important
variable in determining intercropping impact, with P. neglectus
and C. xenoplax reported as the most impacted (reduced focal
crop damage) and M. incognita and M. javanica as the least
affected species of those commonly studied (Fig. 3). The method
by which damage, or impact, was assessed is also a significant
variable in contained studies. Those studies that assessed roots,
either via directly measuring root damage or assessing damage
against a root damage index (RDI) showed substantially greater
impacts from intercropping, while those that explored nonroot
specific outcomes (e.g. nematode soil population or plant mortal-
ity) reported less impact. (Fig. 3).

Disease control variables that directly and significantly influ-
enced intercrop outcomes within in-field, or uncontained, stud-
ies included intercrop family and focal crop density in the
intercrop treatment relative to that in the monocrop control.
Pathogen type was not a significant variable within the meta-
analysis, suggesting that pathogen type was much less important
to intercropping yield outcomes compared with intercrop and
focal crop density. Of the most studied intercrop families,
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Fig. 1 Plot of yield against nematode damage (both log-response ratios
where �1.0 equals a deviation of 100%). The solid line is the regression
line that corresponds to (loge(Yield response ratio) = − 0.320 × loge
(Damage response ratio) + 0.044. Slope confidence intervals (95%) are
−0.476 to −0.164; while 95% CI for the intercept are −0.150 to 0.238.
The dashed line (100% yield) marks where focal crop yield was the same
in both monocrop and intercrop treatments. The solid regression line
passes through 100% yield at a damage response ratio of 1.15. Assuming
that the regression line is accurate, this suggests improving or maintaining
focal crop yields in intercrops is possible even with an increase of up to
15% in focal crop damage under intercropping.
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Fig. 2 Predicted effects of intercropping on
nematode damage with combinations of the
moderators retained in the final model for
the NU1 dataset, showing selected families
(F, fertilised; U, unfertilised). Values below 1
show reduced nematode damage in
intercrop studies. Error bars represent 95%
confidence intervals.

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation.

New Phytologist (2022) 235: 2393–2405
www.newphytologist.com

New
Phytologist Research 2397



Amaryllidaceae was more effective than either Poaceae or
Fabaceae (Fig. 4). Methodologically, only the measurement con-
struct was found to be significant in influencing perceived focal
crop outcomes, with disease incidence indicative of greater
impact relative to studies that utilised a disease index (Fig. 4).
Contrary to that observed with nematode intercrop effects, nei-
ther disease type nor field fertilisation significantly influenced
intercrop reduction of disease damage to focal crop.

The overall summary response ratio estimates for the full
uncontained (NU1) and contained (NC1) nematode datasets
were quite close, 0.60 and 0.55, respectively (Table S3), suggest-
ing that experiments in pots may slightly overestimate the effec-
tiveness of intercropping against nematodes. For the full
uncontained (DU1) and contained (DC1) disease datasets, how-
ever, the overall summary true effect response ratio estimates were
0.45 and 0.56, respectively (Table S3), indicating that experi-
ments in pots substantively underestimated the effectiveness of
intercropping against soil-borne diseases.

Impacts of publication bias on model outcomes

Publication bias towards positive outcomes does not appear to
have had a significant effect on our results: the fail-safe numbers
for the NU1, NC2, and DU1 datasets were 2250, 9773, and
3513, respectively, and no bias in the datasets was detected in the
funnel plots (Figs S1–S3).

Discussion

We found strong quantitative evidence in support of intercrop-
ping as an effective method of control for both plant-parasitic
nematodes and soil-borne diseases.

Nematode impacts were reduced by 40% in-field experiments,
and 45% in pot studies (Table S3). The meta-regression
analysing the effects of intercropping on focal crop yield showed
that anything below a 15% increase in nematode impacts was
associated with an equal or greater yield in the intercropped fields
(Fig. 1). This counterintuitive result suggests that, in intercrop-
ping systems, moderate increases in nematode damage are discon-
nected from yield outcomes. This indicates that other
mechanisms arising from associational resistance may benefit
yield, not solely pest reduction. However, the calculated regres-
sion line has substantial confidence intervals for both slope and
intercept (Fig. 1) creating possible outcomes that range from (1)
effectively no impact on yield outcomes in intercrop systems, (2)
slightly reduced focal crop outcomes where intercrops are used,
or (3) an even greater disconnect between nematode damage and
focal crop yield in intercrop systems. Disease outcomes were
reduced significantly through intercropping, by 55% across
uncontained field studies but only 44% when experiments in pots
were analysed (Table S3).

Drivers of variability in outcomes

Variability in the effectiveness of intercropping as a control strat-
egy is driven by substantially different factors for nematodes

compared with disease. Both nematode and pathogenic microbial
survival are determined by soil texture, moisture, temperature and
pH (Menzies, 1963; Wallace, 1966). On species-specific bases
both are also affected by plant released volatiles (van Agtmaal
et al., 2018; de Boer et al., 2019; Sikder & Vestergård, 2020). It
seems likely that the differences in field outcomes between the two
originate from the capacity of nematodes to orient and move
towards host species based on volatile cues (Turnbull et al., 2001;
Turlings et al., 2012; Yang & van Elsas, 2018). Meta-regression
of published outcomes reveals that effective nematode control is
determined primarily by nematode species in contained studies, or
by intercrop family and soil nutrient status (whether the experi-
ment incorporated fertilisation) in uncontained experiments. By
contrast, the only variables that significantly influenced disease
outcomes (and only within uncontained studies) included inter-
crop family and density of focal crop planting in the intercrop rel-
ative to that in the focal monocrop.

Intercrop family Intercrop family explained a significant frac-
tion of the efficacy of intercropping against nematodes in uncon-
tained field studies. For example, interplanting with Asteraceae,
Pedaliaceae or Solanaceae species was associated with better
nematode control, whereas Poaceae, Brassicaceae and Fabaceae
intercrops were associated with less effective control. Intercrop
root exudates can lead to associational resistance to nematodes
through several mechanisms: (1) acting as biocidal compounds,
so killing pests, or reducing their fitness; (2) acting as an attrac-
tant, so trapping pests away from the focal crop; (3) acting as a
repellent, reducing pest population near the focal crop; or (4)
modifying hatching rates, creating phenological mismatch
between crops and early-stage feeding (Sikder & Vestergård,
2020). Biocidal effects can include the housing of organisms such
as nematode-deterring endoroot bacteria, or, as for the Brassi-
caceae, the production of biofumigant compounds such as glu-
cosinolates, which are metabolic precursors to bioactive
isothiocyanates (Brennan et al., 2020). It is interesting to note
the limited efficacy of the Brassicaceae in this meta-analysis,
despite their production of glucosinolates and their frequent use
as biofumigants. Nematodes have been shown to be attracted to
plant root volatiles (Rasmann et al., 2005; Turlings et al., 2012),
and trap crops, including Asteraceae, have been shown to be
effective in this context through a combination of lack of suscep-
tibility and reduction of nematode hatch (Tsay et al., 2004).

Examples in which exudates can operate by combinations of
these mechanisms are common, making these intercrops particu-
larly effective. For example, lauric acid, exuded from Chrysanthe-
mum coronarium roots, has been shown to be both attractive and
lethal to M. incognita second-stage juveniles, reducing galling on
intercropped tomato plants (Dong et al., 2014). Some root exu-
dates may accumulate, or persist at residual concentrations, after
intercropping. Microbial parasites or allelochemicals may still be
effective in reducing nematode numbers or effect, even at lower
concentrations and could provide protection after intercrop
removal (Mohan et al., 2020; Sikder & Vestergård, 2020).

Many intercrops produce nematocidal root exudates but, even
when these compounds are not actively exuded from roots,
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nematodes may still be exposed to these allelochemicals when
feeding upon, or penetrating, intercrop roots or encountering
allelochemicals in the soil after root degradation. Examples
include root tissues and exudates from Asteraceae family species
that have been shown to contain compounds with nematocidal
properties (Sánchez De Viala et al., 1998; Mohney et al., 2009;
Weidenhamer et al., 2009), at levels sufficient to reduce nema-
tode damage and reproduction (Salem & Osman, 1988) and are
lethal and inhibit egg hatching (Siddiqui & Alam, 1987; Tsay
et al., 2004).

Many plants produce root exudates that are not toxic but act
as sensory stimulants, attracting or repulsing nematodes. For
example, Solanaceae treatments were more effective than nearly
all other intercrop families in nematode control (Fig. 2).
Solanaceae may be particularly effective against nematodes
because they emit methyl salicylate (MSA) (Murungi et al.,
2018). MSA has been shown to be an effective attractant for M.
incognita (Wuyts et al., 2006) and also acts a phytohormone,
released during herbivory (Lin et al., 2017). Furthermore, expo-
sure to MSA can confer resistance to agricultural pests (Bar-Nun
& Mayer, 2008) and its metabolism regulates plant defence sig-
nalling and systemic acquired resistance in exposed plants (Chen
et al., 2019). Solanaceae therefore appears to confer multiple
beneficial outcomes that build upon MSA attraction to nema-
todes, signalling other plants to prime defences and nematocidal
action. Another example of a multi-impact signalling effect can
be found in intercropping with brassicaceous species, currently
used as trap crops in rotations with sugar beet. Brassica spp. are
beneficial intercrops, as their roots are attractive to, and can be

invaded by, sugar beet cyst nematodes, but the sex ratio of the
subsequent generation is heavily skewed towards males, leading
to population decline (Caubel & Chaubet, 1985; Lelivelt &
Hoogendoorn, 1993; Ratnadass et al., 2012).

Impacts of changing focal crop planting density Whereas
intercrop family was an important factor in determining disease
reduction in uncontained studies, effects from interplanting on
soil-borne disease were greater when the density of focal crop
plants in the intercrop treatment were kept closer to densities in
focal monocrop control. This may be evidence of the ‘dilution
effect’, whereby disease reduction is achieved by decreasing the
frequency of hosts rather than absolute density (Civitello et al.,
2015). Interplanting maize at a spacing of 5 cm decreased red
crown rot in soybean more than a spacing of 20 cm (Gao et al.,
2014). They suggested that greater density of maize roots
reduced root-to-root transmission of the pathogen, in this case
due to higher planting density rather than enhanced root
growth.

Dispersal of pathogens across the crop system is a key determi-
nant of disease incidence and spread (Tack et al., 2014). There-
fore, interception of propagules travelling between roots could be
an effective intercropping mechanism, leading to a lower inci-
dence of disease and a process shown to be effective against aerial
pathogens (Bouws & Finckh, 2008; Fernández-Aparicio et al.,
2011). Size and location of intercrop root systems are important
in reducing disease incidence. For example, bacterial wilt was
only reduced when cowpea was planted between tomato within
rows, not when it was planted between the rows of tomato, or
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when Welsh onion (which had smaller root systems) was inter-
planted with tomato (Michel et al., 1997).

Greater plant density also causes shading (reducing soil tem-
peratures) and greater evapotranspiration (reducing soil mois-
ture), producing less favourable conditions for infection and
disease development (Robinson et al., 1987; Olasantan, 1988;
Yadav & Lalramliana, 2012). Retention of focal crop density
could make intercropping more attractive to growers, as yield per
unit area could be maintained while also reducing disease
incidence.

Susceptibility of nematode species Intercropping treatment
impact in contained experiments was significantly influenced by
the species of nematode involved. Contained studies are likely to
restrain nematode mobility, enforcing the interaction with non-
volatile root exudates that may not travel far from the root or dif-
fuse volatiles concentrated within contained soils (Erb et al., 2013).
Studies on nematode susceptibility to root metabolites show sub-
stantial variation in their responses, only partially attributable to
nematode lifestyle. Such species-dependent resistance to repelling
and/or toxic compounds explains the key role of nematode species
identity in outcomes (Sikder & Vestergård, 2020).

Perhaps surprisingly, neither host status nor susceptibility of
intercrop species to nematode attack was retained as significant in
any of the meta-regressions in which they were included, suggest-
ing that disrupting nematode movement by adding a nonhost as
intercrop to reduce nematode damage is ineffective. However,
information on host status/susceptibility was unavailable for
nearly half the experiments included in the full nematode dataset,

limiting the scope of this result. The unimportance of intercrop
species’ host status or susceptibility level is positive from an agro-
nomic point of view, as finding suitable nonhost species for inter-
cropping might be challenging, especially for pests with wide
host ranges such as the root knot nematode, Meloidogyne incog-
nita. Host status/susceptibility may be important in intercrop
impacts on soil-borne disease transmission, but we were unable
to assess this.

Field fertilisation Soil and plant nutrient status are key
drivers of ecological interactions between plants and their nat-
ural enemies (Holopainen et al., 1995). Associational suscep-
tibility is often perceived to be driven by competition for
nutrients between plants and reduced resource in focal crop
plants. Here we found, perhaps surprisingly, that increasing
resource availability through fertilisation reduced nematode
control efficacy of intercropping in field experiments. There
are several potential explanations for this surprising outcome.
Plants can respond to nutrient (particularly N/P) stress by
increasing root length/branching and releasing root exudates
to access/forage for new soil nutrient pools (Khan et al.,
2016). This increased root volume occupies a greater soil vol-
ume, leading to increased interception of pests by intercrop
roots and/or enhanced exposure to allelopathic root exudates
or root-altered soil conditions. As with other types of plant
defence (De Long et al., 2016), nutrient levels affect composi-
tion and quantity of root exudates. Nutrient-rich plants have
been shown to release fewer defensive volatiles (Fernandez-
Martinez et al., 2018). When maize was grown under

−2 −1.5 −1 −0.5 0 0.5

Loge response ratio

1 Index Poa

1 Index Fab

1 Index Ama

0.5 Index Poa

0.5 Index Fab

0.5 Index Ama

1 Incidence Poa

1 Incidence Fab

1 Incidence Ama

0.5 Incidence Poa

0.5 Incidence Fab

0.5 Incidence Ama

Relative density/Construct/Co-crop family

Average true effect

Fig. 4 Predicted effects of intercropping on
disease damage with combinations of the
moderators retained in the final model for
the DU1 dataset, showing relative density set
to 0.5 or 1 and the co-crop families most
represented in the data (Ama,
Amaryllidaceae; Fab, Fabaceae; Poa,
Poaceae). Error bars represent 95%
confidence intervals.

New Phytologist (2022) 235: 2393–2405
www.newphytologist.com

� 2022 The Authors

New Phytologist� 2022 New Phytologist Foundation.

Research

New
Phytologist2400



phosphorus-limiting conditions, their roots produced more
cinnamic acid (with strong activity against the soybean red
crown rot pathogen Cylindrocladium parasiticum) and more
salicylic acid (inducing resistance against pathogens) (Gutjahr
& Paszkowski, 2009; Gao et al., 2014). Plant nutrient status
also creates indirect effects on pests: enhanced competition
under reduced nutrients with a second plant species can cause
morphological or physiological changes in a focal crop, such
that it becomes a less suitable host (Trenbath, 1993).

Conclusion

Intercropping can be an effective tool for reducing nematode
damage and disease in agricultural fields, with averaged reduc-
tions in impacts on the performance of the focal crop of 40%
and 55% respectively. Our study also showed that treatments in
fields with nematode pests will improve when using reduced field
fertilisation approaches, whereas diseased field outcomes will be
improved with greater planting densities. Generally, across all
intercropping systems the intercrop has a significant impact on
outcomes, and further characterisation of specific modes of asso-
ciational resistance derived for each intercrop/pest pairing is
needed to provide confidence in focal crop yield outcomes.

Future research should avoid experiments with potted plants.
Our analysis demonstrates that outcomes from contained experi-
ments are not indicative of in situ outcomes or mechanisms of
action. Similarly, although our results point to effective pest and
disease control, it remains unclear whether even greater nematode
control can be achieved through reduced, intermediate nutrient
content in agricultural fields. Further in-field research into inter-
mediate fertilisation status is needed to clarify this question. Sim-
ilarly, quantifying maximally effective planting densities will
require substantially more research to understand whether these
can be generalised across a range of agroecosystems, or whether
they are crop/pathogen specific.

Overall, our study demonstrates the potential of associational
resistance, via intercropping and other mechanisms, to reduce the
impact of soil pests and disease on crops. It provides support to
farming practices based on ecological approaches to deliver more
sustainable productive agricultural systems.
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