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The symbiosis between arbuscular mycorrhizal (AM) fungi, subphylum Glomeromycotina, and 30 

terrestrial plants is one of the most widespread and arguably most successful plant symbioses on 31 

Earth. This ancient relationship, going back 475 MY (Remy et al., 1994; Redecker & Raab, 2006; Field 32 

et al., 2015; Rich et al., 2021) typically benefits both plant and fungal partners. Through colonisation 33 

of plant roots, the fungi provide their host plants with access to soil resources including phosphorus 34 

(P) and nitrogen (N) while the fungi are provided with carbon (Hodge et al., 2001; Smith & Read, 35 

2008; Keymer & Gutjahr, 2018). The contribution of AM fungi to ecosystems goes beyond nutrient 36 

delivery to plants. They are active players that influence key ecosystem functions such as nutrient 37 

cycling, decomposition, soil aggregation, belowground biodiversity, and plant community ecology 38 

(Powell & Rillig, 2018; Tedersoo et al., 2020). There is widespread recognition that the 39 

morphological and functional diversity of AM fungi affects their impact on these functions (Van Der 40 

Heijden & Scheublin, 2007), and on host plant growth promotion and nutrient uptake (Chagnon et 41 

al., 2013).  42 

In addition to these functions, AM fungi can enhance host defence against pathogens and insect 43 

herbivory, to which much research has been dedicated (e.g., Bennett et al.,  2006; Cameron et al., 44 

2013; Tao et al., 2016; Rivero et al., 2021). Despite this, the role of AM fungal diversity (comprising 45 

the various modules of diversity such as species richness and relative abundance) in these 46 

interactions continues to be largely overlooked by researchers. This is problematic considering 47 

plants typically associate with multiple AM fungi in both natural and agriculturally managed 48 

environments (Öpik et al., 2006, 2013; Bainard et al., 2014). Wehner et al. (2010) previously 49 

highlighted this blind-spot with regard to plant protection from pathogens. Here, we contend that 50 

research on AM fungal effects on plant protection from insect herbivory suffers from a similar 51 

weakness. The importance of mycorrhizal fungal diversity is being increasingly recognised and 52 

incorporated into research efforts across various facets of ecology (Anderson & Cairney, 2004; Frąc 53 

et al., 2018; Powell & Rillig, 2018). Meanwhile progress on how AM fungal diversity mediates 54 

mycorrhiza-enhanced protection from herbivory is disparate and piecemeal.  55 

Our purpose here is to (i) briefly outline key mechanisms by which the AM symbiosis enhances plant 56 

defences to insect herbivores, (ii) summarise where research has made progress in understanding 57 

the role of fungal diversity in plant defences against insect herbivory, (iii) emphasise why it is 58 

important to focus efforts on understanding how AM fungal diversity determines plant defence 59 

outcomes while highlighting the key knowledge gaps to be addressed. 60 

 61 

How can AM fungi protect plants from herbivory? 62 



 

 

To enhance their fitness and survival when challenged with herbivore attack, plants rely on different 63 

defence strategies. These strategies can be categorised as tolerance-based, reflecting the ability of a 64 

plant to regrow and reproduce after damage from herbivores (compensatory growth), or resistance-65 

based defences that reduce the performance or host preference of the insect (Strauss & Agrawal, 66 

1999; Agrawal & Weber, 2015). AM fungi can improve access for plants to soil nutrients, and as such, 67 

it then follows that plants engaged in the AM symbiosis will be better equipped to defend 68 

themselves from biotic attackers, particularly in nutrient deficient environments. That said, better 69 

access to nutrients may also drive shifts in plant defence strategies, which can include decreased 70 

allocation to active defences and increased investment to improve regrowth and tolerance to 71 

herbivory (Coley et al., 1985). Improved nutrient access can also directly benefit insect herbivores, 72 

which are able to acquire fungal-delivered nutrients (Wilkinson et al., 2019a). Furthermore, in 73 

addition to improving access to P and N, AM fungi are able to enhance uptake of other elements 74 

important for plant defence. For example, when soil silicon availability is limiting plant uptake, AM 75 

fungi can increase plant tissue silicon concentrations and so augment silicon-based herbivore 76 

resistance (Frew et al., 2017).  77 

Conventional theory predicts that there are investment trade-offs between tolerance and 78 

resistance-based defence mechanisms (van der Meijden et al., 1988; Simms & Triplett, 1994), 79 

although evidence also suggests plants can simultaneously invest resources in both (Leimu & 80 

Koricheva, 2006). Still, for many plants their ability to regrow following herbivory will rely heavily on 81 

their mycorrhizal associations as tolerance is determined, in part, by the availability of resources 82 

(Wise & Abrahamson, 2005). Thus, plant tolerance should be higher in plants associated with AM 83 

fungi. However, research has found the AM symbiosis can increase, decrease, or have no effect on 84 

tolerance-associated mechanisms (Borowicz, 2013). Such variation is not related to plant functional 85 

group, and we have limited data on the influence of herbivore feeding guilds (i.e., chewing or 86 

piercing insect, foliar or root herbivory; Borowicz, 2013). Indeed, the role and effects of AM fungi on 87 

plant tolerance to herbivory are arguably less well-characterised compared to their effects on 88 

resistance. This may be partly due to a lagging understanding of the ecology of tolerance more 89 

broadly (Fornoni, 2011), and that tolerance is infrequently observed or reported in cultivated plants 90 

(Stoner, 1992).  91 

In addition to tolerating attack, plants rely on a suite of resistance-based defence mechanisms that 92 

reduce herbivore performance (e.g., reduced growth, survival, fecundity) or preference (e.g. 93 

reduced consumption, avoidance). There is an abundance of research showing the variety of 94 

resistance mechanisms AM fungi can affect, which have been covered in several reviews (Hartley & 95 

Gange, 2009; Johnson & Rasmann, 2015; Schweiger & Müller, 2015; Bennett et al., 2018). 96 



 

 

Nonetheless, beyond the elucidation of specific resistance-associated traits, the ability of AM fungi 97 

to induce systemic resistance to insect herbivores and pathogens is increasingly recognised as 98 

defence priming, or AM fungal-induced resistance (Pineda et al., 2010; Jung et al., 2012; Cameron et 99 

al., 2013; Martinez-Medina et al., 2016; Bennett et al., 2018; Rivero et al., 2021). Here, there is 100 

regulation of plant defence-associated phytohormones where the development of mycorrhiza-101 

induced resistance occurs over four-phases as the fungi colonise their host plant and an arbuscular 102 

mycorrhiza is formed (see model proposed in Cameron et al., 2013). Once established, evidence 103 

suggests the jasmonic acid (JA) and ethylene defence pathway is upregulated, while the salicylic acid 104 

(SA) pathway is suppressed (Pozo & Azcón-Aguilar, 2007; Nair et al., 2015; Song et al., 2015; 105 

Schoenherr et al., 2019). This defence priming itself does not necessarily lead to the expression of 106 

defences, but when subsequently challenged by a herbivore (or other biotic stressor) JA-associated 107 

defences are typically expressed more rapidly and with greater efficacy (Jung et al., 2012; Rivero et 108 

al., 2021). This understanding corresponds with the general patterns of how different insect 109 

herbivores are affected by the AM symbiosis. Specifically, chewing insects who are sensitive to JA-110 

associated defences tend to be negatively affected, while piercing insects, sensitive to SA-associated 111 

defences, are less negatively affected or even benefit from the AM symbiosis (Hartley & Gange, 112 

2009; Koricheva et al., 2009; Yang et al., 2014; Johnson & Rasmann, 2015). This defence induction 113 

can even be elicited via the common mycelial network that connects the roots of different individual 114 

plants. Here, the attack on one plant provokes defence priming (e.g., activating JA pathway, 115 

modulating herbivore-induced plant volatiles) in neighbouring herbivore-free conspecifics, which 116 

leads to an increase in resistance against any future herbivore attack (Babikova et al., 2013; Song et 117 

al., 2014).  118 

 119 

Influence of fungal species identity and diversity on defence 120 

The outcomes of the AM symbiosis for plant growth and nutrient uptake can be highly context-121 

specific, dependent on factors such as soil nutrient availability, plant and AM fungal identities, and 122 

diversity (Fig. 1a; Bever, 2002; Hoeksema et al., 2010; Veresoglou et al., 2012). Generally, plant 123 

performance responses tend to be stronger and more positive when inoculated with multiple AM 124 

fungal taxa compared with single-species inoculation (Hoeksema et al., 2010; Zhang et al., 2019). 125 

Yet, it is worth noting the vast majority of experimental studies of plant responses to AM fungi, 126 

including plant responses under stress, use single-species inocula, a point that has been raised 127 

across multiple meta-analyses and reviews over the years (Hoeksema et al., 2010; Chandrasekaran 128 

et al., 2014; Jayne & Quigley, 2014; Augé et al., 2015; Pellegrino et al., 2015).  129 



 

 

Tolerance 130 

Given the functional diversity of AM fungi with regard to plant growth and nutrient uptake, it follows 131 

that plant tolerance to herbivory can also depend on fungal partner identity. In one of the few 132 

studies to experimentally manipulate AM fungal diversity and directly examine tolerance, Bennett 133 

and Bever (2007) demonstrated AM fungal taxon-specific tolerance outcomes, and found that the 134 

combined effects of a fungal community were driven by a single ‘dominant’ fungal species within the 135 

community. Other studies have also shown species-specific associations with AM fungi can drive 136 

plant tolerance to herbivory (Kula et al., 2005), and that AM fungal abundance can increase 137 

tolerance capacity (Tao et al., 2016).  138 

When considering only single AM fungal species studies, the meta-analysis by Borowicz (2013) found 139 

plant growth responses to herbivory strongly depended on fungal identity, highlighting that the 140 

model AM fungus Rhizophagus irregularis typically reduces tolerance, while Funnelformis mosseae 141 

improves it. The authors also highlighted that single-species inoculants tended to enhance tolerance 142 

while, perhaps unexpectedly, multi-species inoculants actually augmented the effects of herbivory 143 

on plant growth.  144 

Resistance 145 

Taxon-specific effects of AM fungi also extend to plant resistance-based defences (Fig. 1a). In one 146 

study, Goverde et al. (2000) found three AM fungal species differentially affected insect herbivore 147 

performance, although neither the AM fungi nor resistance-conferring mechanisms were identified. 148 

Building on this, and earlier pioneering work (Gange, 1996), research has continued to establish 149 

more broadly how different fungal species, or combinations of species, can deliver different 150 

resistance outcomes for plants (Gange, 2001; Wooley & Paine, 2007; Bennett et al., 2009; Currie et 151 

al., 2011; Roger et al., 2013; Vannette et al., 2013; Barber et al., 2013; He et al., 2017; Malik et al., 152 

2018). Furthermore, research has shown that different isolates of the same AM fungal species can 153 

have distinct impacts on plant-herbivore interactions, highlighting a potential role for within-species 154 

genetic variation of AM fungi (See Box 1).    155 

As we garner greater appreciation for the differential effects of AM fungal taxa on herbivore 156 

performance, we are acquiring clarity as to how specific resistance-based defence mechanisms 157 

might underpin these effects. Bennett et al. (2009) investigated how resistance-associated chemistry 158 

in response to herbivory varies with different AM fungal species and community composition. The 159 

authors found that constitutive and induced defences were increased by specific AM fungal species 160 

(Scutellospora calospora and A. trappei, respectively), but their effects were lost if the fungi were 161 

applied as a mixed community, rather than single-species inoculation. Furthermore, several other 162 



 

 

studies have reported mixed communities of AM fungi can confer inferior plant resistance compared 163 

to single-species inoculation (Fig. 1b; Currie et al., 2011; Gange, 2001).  164 

A number of additional experiments have now shown how different species, or levels of species 165 

richness, affect different herbivore-associated defence compounds (Nishida et al., 2010; Ceccarelli et 166 

al., 2010; Jung et al., 2012; Zubek et al., 2015; Malik et al., 2018; Frew & Wilson, 2021). We also have 167 

a better understanding of the AM fungal species-specific impacts on phytohormonal signalling that 168 

underpins mycorrhiza-induced resistance (Jung et al., 2012; Cameron et al., 2013). Specifically, 169 

studies have found F. mosseae induces greater expression of JA marker genes and JA-associated 170 

defence compounds when compared to R. irregularis (López-Ráez et al., 2010; Fernández et al., 171 

2014). This reflects the aforementioned superior ability of F. mosseae to also confer greater 172 

tolerance to herbivory, compared to R. irregularis (Borowicz, 2013), suggesting F. mosseae can 173 

promote both tolerance and resistance-based defence. Indeed, as plant secondary metabolism is a 174 

strong driver of host plant choice for insect herbivores (Hopkins et al., 2017), any species-specific 175 

impacts of AM fungi on different components of plant secondary chemistry will not only alter 176 

defence outcomes but have significant ecologically cascading effects (Babikova et al., 2014). Yet 177 

there seems to be surprisingly few empirical studies that directly demonstrate how any AM fungal 178 

species-specific changes in defence chemistry affect herbivore performance. Many demonstrate 179 

changes in plant secondary chemistry without measuring effects on herbivores, or show effects on 180 

herbivores without identifying the mediating defence mechanisms. As such, the vast majority of 181 

studies on how AM fungal taxa alter plant defence traits actually infer resistance to herbivory, rather 182 

than demonstrate it.  183 

In addition to using ‘mock’ communities, either from commercial inocula or from maintained 184 

cultures, studies have employed naturally occurring (or native) AM fungal communities in plant-185 

herbivore experiments (Bennett et al., 2009, 2016; Karley et al., 2017; Real-Santillán et al., 2019; 186 

Damin et al., 2020; Frew & Wilson, 2021). Still, very few directly assess how the composition and 187 

diversity of native AM fungal communities can differentially impact resistance mechanisms to 188 

herbivory. This is particularly surprising considering the widespread recognition of the importance of 189 

AM fungal functional diversity for host plant outcomes, and broader ecosystem functions. In one 190 

study, Barber et al. (2013) compared two native field-sourced communities with a commercial AM 191 

fungal inoculum (R. irregularis) and found the native communities induced greater concentrations of 192 

root secondary metabolites (cucurbitacin C) compared to the single-species inoculum. Although the 193 

authors did not identify the fungal taxa within the native communities, or measure herbivore 194 

responses, the study highlights that drawing conclusions on AM fungal effects on plant defence from 195 

research on a small selection of AM fungal species (or communities) can misrepresent plant defence 196 



 

 

outcomes conferred by fungal communities in the field. The paucity of field studies, compared to 197 

laboratory, growth-chamber, or glasshouse studies, remains a strong barrier to incorporating fungal 198 

diversity into our understanding of AM fungal effects on plant defence. 199 

Box. 1 Importance of within-species genetic variation in AM fungi 200 

In addition to between species genetic variation, within species genetic variation may also play a 201 

role in the outcome of AM fungal-plant-herbivore interactions.  There are a number of examples 202 

demonstrating that both plant and herbivore diversity can alter the outcome of this multi-species 203 

interaction (e.g., Bennett et al., 2016; Rasmussen et al., 2017), but within AM fungal species 204 

variation has been assessed significantly less often. We know of only three studies which have 205 

examined the impact of within AM fungal species variation on plant herbivore interactions. The 206 

first two studies tested the impact of two isolates of Claroideoglomus etunicatum on the piercing 207 

herbivores mirids (Wooley & Paine, 2007) and silver leaf whitefly (Wooley & Paine, 2011) feeding 208 

on tobacco. Isolates promoted different mirid nymph population sizes (depending on nymphal 209 

stage), but no difference in silver leaf whitefly abundance. However, in the latter study, whitefly 210 

experienced different parasitism rates by Eretmocerus eremicus depending on the isolate. The 211 

third study tested the impact of four isolates of R. irregularis alone and in combination on 212 

herbivory by the chewing herbivore Spodoptera littoralis feeding on strawberry (Roger et al., 213 

2013). Most isolates tended to suppress insect mass and survival, but this was not consistent 214 

across all isolates or combinations of isolates. Thus, the direction of responses (positive for 215 

piercing herbivores, negative for chewing herbivores) appears to be relatively consistent across 216 

isolates, but the degree of impact (from neutral to significantly positive or negative) varies by 217 

isolate. 218 

Our ability to identify and manipulate AM fungal genetic variation has significantly advanced 219 

since the first two tests, and the most recent study built on these advancements.  The two 220 

isolates used in the two studies above were chosen based on geographical distance (Arizona and 221 

Georgia) in an effort to maximize genetic variation between them.  However, we now know that 222 

there can be great genetic variation within individual AM fungal isolates (e.g., Mateus et al., 223 

2019; Masclaux et al., 2019; Reinhardt et al., 2021), and there are approaches for creating 224 

isolates that vary genotypically and phenotypically.  For example, the isolates used in the third 225 

study were developed from a cross of two clonal lines that have been shown to vary widely in 226 

host growth promotion (Angelard et al., 2010) and drought stress tolerance (Peña et al., 2020) 227 

capacity.  While the use of some genetic tools (e.g., CRSPR/CAS9) in AM fungi are still a long way 228 

off, the advance of sequencing and other approaches may allow us to select for AM fungi with 229 

specific traits in the not so distant future.  Thus, using these tools we could more explicitly test 230 



 

 

for the impact of within species genetic variation, and even test the importance of particular AM 231 

fungal traits on plant-herbivore interactions. 232 

 233 

Why consider diversity? 234 

AM fungal diversity has a strong influence on plant communities and plant productivity (Bever et al., 235 

2013; Manoharan et al., 2017; Powell & Rillig, 2018; Tedersoo et al., 2020). We argue that the role of 236 

AM fungal diversity in plant defence against insect herbivory continues to be overlooked, something 237 

we cannot afford if we are to be effective in managing AM fungi across a variety of contexts (i.e., 238 

agriculture, invasive species management, ecosystem restoration).  239 

When it comes to demonstrating the functional diversity of AM fungi in the context of their effects 240 

on plant tolerance and resistance to herbivory, there has been progress, which we have briefly 241 

touched on. Yet experimental research has continued to focus only on a very limited number of 242 

commonly used AM fungal taxa. Indeed, a survey of studies on AM fungal-induced plant defence 243 

published between 2014-2017 found that 75% of studies used a single AM fungal taxon, while 72% 244 

used R. irregularis and F. mosseae (Malik, 2018). With around 288 described species of AM fungi, or 245 

c. 1,700 putative species (Öpik & Davison, 2016) it is clear that we are likely to have barely scratched 246 

the surface of defence functional diversity of AM fungi (Heinen et al., 2018). To properly understand 247 

the mechanistic basis of mycorrhiza-induced resistance, it is imperative to consider the role of fungal 248 

diversity in these interactions. In both natural and agricultural field environments plants interact 249 

with many different AM fungal taxa in a manner that can vary temporally and spatially (Öpik et al., 250 

2013; Helgason et al., 2014; Bainard et al., 2014). Yet currently there is no information on the 251 

relative importance of different aspects of diversity and community structure to defence (e.g., 252 

species richness, species evenness; Fig. 2), or the consequences of temporal changes (e.g., 253 

seasonality) in fungal diversity. Indeed, from a long term perspective, evidence suggests that plant 254 

nutrient acquisition strategies shift with ecosystem development (and P availability), where species 255 

richness of AM fungi is higher in older soils but the relative cover of AM plants is reduced in favour 256 

of other strategies i.e., cluster roots (Zemunik et al., 2015). Such shifts are also likely to have 257 

implications for plant defence strategies (Tombeur et al., 2021) including the relative influence of 258 

shifts in AM fungal diversity on defence, which requires further examination. 259 

In addressing how AM fungal community composition determines plant defence outcomes, a trait-260 

based approach could be employed (Zanne et al., 2020). This has been successful in other contexts 261 

in plant ecology, where traits have been valuable across a range of ecological inquiries such as 262 

identifying how plants invest resources to certain functions and components of fitness (Westoby et 263 



 

 

al., 2002; Wright et al., 2004), or in linking plant functional diversity to certain ecosystem processes 264 

(e.g., productivity) (Petchey & Gaston, 2006). As the identification of fungal traits develops and 265 

becomes more clearly defined (Chagnon et al., 2013; Rillig et al., 2015; Aguilar-Trigueros et al., 2015; 266 

Soudzilovskaia et al., 2020), AM fungal traits may underpin their function in the context of plant 267 

defence against herbivory, as well as any potential trade-offs in these functions (Fig. 2). For example, 268 

do traits which enhance the ability of AM fungi to provide resistance to herbivory impact on other 269 

functions such as soil aggregation or nutrient uptake? Resistance-associated traits may also 270 

inherently affect the competitiveness of a fungal species, or its role in ecosystem functions.  271 

 272 

AM fungal inoculants and diversity 273 

Interest in the application of AM fungi as inoculants to serve certain ecological outcomes (e.g., 274 

accelerate ecosystem restoration, promote plant growth) has been around for some time. However, 275 

with mounting global efforts to improve food security and sustainability, there has been particular 276 

attention given towards their use to sustainably enhance crop productivity and a concomitant 277 

interest in commercially available ‘biofertilisers’ (Hart et al., 2018). Although some work has shown 278 

the application of cosmopolitan AM fungal species (such as R. irregularis) in the field can increase 279 

crop yields (Pellegrino et al., 2012; Ceballos et al., 2013; Zhang et al., 2019), strong and consistent 280 

evidence is still lacking (Thirkell et al., 2017; Hart et al., 2018). This is likely to be partly due to the 281 

fact that the AM fungal communities that colonise plant roots in response to inoculation are strongly 282 

influenced by the identities of the resident root-colonising fungi prior to inoculation, coupled with 283 

strong environmental drivers such as soil pH (Mummey et al., 2009; Dumbrell et al., 2010; Davison et 284 

al., 2021). Variation in suitability and competitiveness of certain fungal taxa for certain environments 285 

can mean that AM fungi with desired functions, such as crop growth promotion or herbivore 286 

resistance, may establish, but equally, they may be filtered out while other fungal species that are 287 

less ‘effective’ may dominate (Fig. 1c). Additionally, fungal species richness can have positive and 288 

negative effects on plant defence (Bennett et al., 2009; Currie et al., 2011; Roger et al., 2013; 289 

Vannette & Hunter, 2013), meaning it is difficult to predict if plants will receive any defence benefit 290 

from inoculation without knowing the composition of the resident soil fungal community, and how 291 

the application of foreign AM fungi might interact with the resident community. Thus, in agricultural 292 

systems, identifying land management approaches that favour particular AM fungal communities 293 

with a desired set of plant defence-associated traits is likely to be a more effective and pragmatic 294 

option over fungal inoculation. Regarding crop productivity, Rodriguez and Sanders (2015) pointed 295 

out the lack of field studies that assess if or how inoculation affects the soil or root-colonising AM 296 

fungal communities over time, a point later echoed by others (Hart et al., 2018). The same can be 297 



 

 

said for plant herbivore defence where no studies, to our knowledge, have attempted to monitor 298 

AM fungal communities post-inoculation over time, and assess impacts on plant defences. 299 

 300 

Conclusions  301 

The vast majority of plants in nature have mycorrhizas (Brundrett & Tedersoo, 2018), so any 302 

understanding of how plants defend themselves from insect herbivores is incomplete without 303 

considering their AM fungi. Our brief discussion here has touched on how AM fungi can affect plant 304 

defences, and that these effects differ between AM fugal taxa. As most research continues to focus 305 

on a handful of fungal species, the conclusions are far from representative of the range of 306 

interactions between AM fungi, plants and insect herbivores. Furthermore, even fewer studies have 307 

attempted to tackle the formidable challenge of determining how AM fungal diversity in the field 308 

can shape plant defence. Metabolomic and metagenomic-based approaches (e.g., DNA 309 

metabarcoding; Öpik et al., 2010) are valuable tools in addressing these knowledge gaps, where the 310 

inclusion of AM fungal community interactions into plant-herbivore research is likely to pave the 311 

way towards effectively managing AM fungi to enhance plant protection (Hill et al., 2018; Wilkinson 312 

et al., 2019b). Over a decade ago Wehner et al. (2010) highlighted how the functional diversity of 313 

AM fungi necessitates that fungal diversity take a prominent role in research into plant pathogen 314 

protection. We echo this message and urge researchers to acknowledge the importance of AM 315 

fungal diversity, and to incorporate the community ecology of AM fungi in efforts to understand how 316 

the AM symbiosis governs plant defence against herbivory. 317 

 318 
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Figures 626 

 627 

Figure 1. Hypothetical effects of arbuscular mycorrhizal (AM) fungi on plant defences against insect 628 

herbivores. (a) Potential differential effects of AM fungi on plant defences where different taxa 629 

confer distinct effects on plant defences, potentially upregulating defence or having no impact. (b) 630 

Different outcomes of multi-species fungal associations on plant defence. Dual-species colonisation 631 

may confer greater defence benefits than single species colonisation, alternatively the defence 632 

phenotype of one fungal species may dominate, thus greater fungal diversity may not confer greater 633 

defence benefits. (c) Potential effects of inoculation with an AM fungus on native AM fungal 634 

communities and outcomes for plant defence. Inoculation could result in a change in fungal 635 

community structure to promote plant defence, or the introduced AM fungus may not persist in the 636 

environment and thus have no impacts on plant defence. Figure created with BioRender.com 637 
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Figure 2. Priority areas to be incorporated into research investigating arbuscular mycorrhizal (AM) fungal effects on plant defence and insect herbivores. 640 

Research should assess how ‘native’ AM fungal communities across environmental contexts (i.e. different vegetation types and biomes) and management 641 

histories (e.g., organic agricultural management, unmanaged natural ecosystems) affect plant herbivore defences. Exploring how different components of 642 

fungal diversity (e.g., evenness, species richness), within-species genetic variation, and fungal traits relate to defence outcomes is a particularly important 643 

knowledge gap. A DNA metabarcoding approach referencing appropriate databases (e.g. MaarjAM) will be a valuable tool in addressing such gaps. 644 

Researchers should look at how defence outcomes vary across a range of host plant species (e.g. different plant functional groups), measuring resistance 645 

and tolerance defence mechanisms, including other trophic level interactions (i.e. natural enemy attraction via changes in herbivore-induced plant volatiles 646 

[HIPVs]). Measurement of herbivore responses (e.g., growth, survival, preference) is important to demonstrate defence outcomes, these should be 647 

assessed across herbivores of various feeding guilds and diet breadths. Figure created with BioRender.com 648 


