
This is a repository copy of Private—Keep out? Understanding how developers account
for code visibility in unit testing.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/216884/

Version: Accepted Version

Proceedings Paper:
Roslan, M.F., Rojas, J.M. and McMinn, P. orcid.org/0000-0001-9137-7433 (2024) Private—
Keep out? Understanding how developers account for code visibility in unit testing. In:
2024 IEEE International Conference on Software Maintenance and Evolution (ICSME).
40th International Conference on Software Maintenance and Evolution (ICSME 2024), 06-
11 Oct 2024, Flagstaff, AZ, USA. Institute of Electrical and Electronics Engineers (IEEE) ,
pp. 312-324. ISBN 979-8-3503-9568-6

https://doi.org/10.1109/ICSME58944.2024.00037

© 2024 The Author(s). Except as otherwise noted, this author-accepted version of a paper
published in 2024 IEEE International Conference on Software Maintenance and Evolution
(ICSME) is made available via the University of Sheffield Research Publications and
Copyright Policy under the terms of the Creative Commons Attribution 4.0 International
License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any
medium, provided the original work is properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Private—Keep Out? Understanding How Developers

Account for Code Visibility in Unit Testing
Muhammad Firhard Roslan, José Miguel Rojas and Phil McMinn

University of Sheffield, UK

Abstract—Regression test maintenance costs can be reduced by
striving to write tests that will require as few changes as possible
in the future. Writing unit tests against behavior, as opposed
to implementation, is one way to try to achieve this, because
as long as the public API remains constant, units can be safely
refactored without the need to also change the tests. However,
in a study on 4,801 open-source Java projects reported in this
paper, we found that 28% of projects contradict this advice, with
tests that side-step the public API by directly calling non-public
methods. We investigated why developers do not solely test public
APIs—potentially increasing future test maintenance costs—by
surveying 73 developers and conducting a systematic review
of 60 StackOverflow posts dating from 2008–2023. Through
numerical and thematic analyses, we uncover several findings,
including (1) developers are disunited on whether to test only
through public APIs or not; (2) those in favor of only testing
through the public API tend to be more experienced and believe
the need or desire to break with this is borne out of poor
software design; while (3) those that test non-public methods
directly are concerned about untested code complexity and overly
intricate tests. Our findings provide multiple implications for
future work, including automated developer support in the form
of automated non-public method sequence replacement, and
automated refactoring of production code using problematic
public API-avoiding tests.

Index Terms—Test Maintenance, Test Smells, Unit Testing,
Access Modifiers, Developer Survey, Unit Testing Practices.

I. INTRODUCTION

Regression test suites need to be maintained as the software

applications they test evolve [57], [68]. While new tests need

to be written to test new functionality, and old ones pruned for

behaviors that no longer exist, existing tests can be brittle and

may break due to small changes in the application code [55].

Ensuring these tests are updated and pass again can be a time-

consuming process for developers [58]. Firstly, they have to

understand each existing test and why it broke, so that they can

then, secondly, update it so that it compiles and passes again

with the new implementation. Often the effort involved is so

great that developers simply decide to discard broken tests,

potentially weakening the test suite in the long-term [55].

Since test maintenance is such a costly process that adds

no immediate visible benefit to a software product, good

software engineering practice suggests that developers should

set out to write tests that, inasmuch as possible, are unlikely

to need to change again in the future [57]. That is, they should

focus on writing tests that are concentrated on the software’s

behaviors as opposed to its implementation details [41], [46],

[57]. In practice, this means confining calls from unit tests

For the purpose of open access, the author has applied a Creative Commons Attribution

(CC BY) license to any Author Accepted Manuscript version arising.

to the externally visible API of the class under test; i.e., its

public methods [63]. This means that developers can safely

refactor application code without having to be concerned about

breaking its tests and then having to fix them [57].

However, in this paper, we found that developers do not

always follow this principle in practice. We collected data

about public and non-public API calls made in 226,915 JUnit

tests of 4,801 open-source Java projects collected from the

Maven Central Repository [12]. While the tests of the majority

of projects are restricted to the public API of the units

they test, a not insignificant proportion of 28% involved at

least one direct call to a non-public method. In these cases,

developers write assertions against smaller parts of the internal

implementation of a class, rather than its overall behavior. This

raises the question as to what the original developer’s intent

and motivations for doing this were, given the potential future

costs of maintaining those tests.

To address this, we present the first qualitative study of

why developers choose to test through a unit’s public API, or

decide to write tests that directly test its non-public methods,

at the risk of making the test suite harder to maintain in the

future. We conducted a developer survey, with 73 participants

and a systematic analysis of 60 threads dating from 2008 [25]

to 2023 [30] related to the topic on StackOverflow. Through

numerical and thematic analysis of questionnaire responses

and StackOverflow posts, we identify a number of findings.

Approximately two-thirds of developers in our survey

strictly test public APIs only. These developers, plus those

posting on StackOverflow, believe the need or desire to test

non-publics is borne out of poor code design in the first

instance and suggest refactoring of production code is needed

instead. Those willing to test non-public methods directly, in

contrast, cite the need to ensure complex implementation de-

tails are well-tested, and the undesirable complexity involved

in having to write tests solely using the unit’s public API.

They employ a variety of means to avoid this, including

raising the visibility of methods so they become accessible

to test frameworks for testing. Our study of open-source

Java projects particularly supports this last finding, with a

large number of non-publics being called directly from tests,

including a disproportionate number designated as “package-

private” — i.e., with just enough visibility that they can be

invoked by JUnit tests, but not so much visibility that they

actually become part of the unit’s public API. Our findings

provide several implications for future work, including how to

provide automated support to developers to help them avoid

the temptation of bypassing public APIs.

The contributions of this paper, therefore, are as follows:

1) An empirical analysis of the visibility of methods called

directly from the tests of 4,801 Java projects taken from

the Maven Central Repository (§V-A)

2) A numerical and thematic analysis of 73 responses to

a developer survey and 60 StackOverflow threads to

identify developer attitudes and approaches to testing

public APIs versus testing non-public methods directly

(§V-B–V-D);

3) A discussion of our findings, summarizing the current

state of practice (§VI), and implications of our results

that inform future research (§VII).

II. BACKGROUND AND RELATED WORK

A. Encapsulation, Visibility and Access Modifiers

Object-oriented programming languages support the idea of

encapsulation, which enables developers to provide interfaces

so that their code can be used without the need for others to see

or understand its underlying implementation [42]. The method

or variables of some class A that some other class B can

directly access are said to be visible to the class B. Developers

specify these visibility rules by applying access modifiers

defined by their programming language, which take the form

of explicit keywords or other programming constructs.

The top level of visibility — i.e., all methods/variables

are accessible to all other classes, including those in other

applications or APIs — is referred to as the “public” level

of access. While all programming languages facilitate public

visibility so that developers can create interfaces for their units

of code, each language tends to have its own rules pertaining

to “non-public” levels of access. Many languages (e.g., C++,

C#, Java, PHP and Ruby) have a “private” keyword to declare

methods and variables that cannot be accessed from anywhere

except the same class, together with a “protected” keyword

for declaring methods and variables that can only be accessed

by code residing in the same class or its subclasses. Moreover,

some languages provide a level of access that is private to code

in the same class and the logical grouping of classes or files

that the class is organized into. For example, Java organizes

groups of classes into “packages”, with methods and variables

having “package-private” visibility when they are declared

without one of the public, protected or private access mod-

ifiers [4], [50]. Kotlin shares a similar concept in the form of

the “internal” keyword, which developers use to declare code

that is private to files organized in the same module [23]. In

contrast to other languages, Go has no notion of a completely

“private” level of access. Public member names are capitalized,

while those that are uncapitalized are at the package-private

level of access [6]. While JavaScript is to gain a private

construct in its official standard [16], Python [17] does not

have a built-in notion of non-public. Where mechanisms do

not exist, developers may adopt conventions such as prefixing

method and variable names with underscores to communicate

intended privacy, though these are not enforced.

Despite the restrictions on non-public code by the languages

that allow developers to set them, there is usually a means for

the protection to be overridden, e.g., by using reflection APIs

in languages such as Ruby [47], Java [59], and C# [34]; while

in C++, special access can be granted to methods and variables

of certain classes using the “friend” keyword [43].

B. Empirical Studies of Test Maintenance

Labuschagne et al. [58] studied 61 software projects and

found that tests require maintenance for a variety of rea-

sons, including invalid assumptions, dependencies on other

tests, and changes in production code functionality, noting

that test maintenance costs associated with these aspects

could be avoided with better software development processes.

Pinto et al. [68] studied the evolution of test suites for six

programs, finding that of all changes to tests, 29% corre-

sponded to modifications and 22% of these were repairs

to broken tests. Of these repairs, 50% involved changes to

method call sequences, i.e., additions or deletions of method

calls and updates to parameters. However, neither of these

works specifically investigated whether test suites required

maintenance due to tests making direct calls to non-public

API production code methods that were then refactored.

C. Test Smells

Test smells are poor testing practices that are observable in

the source code of test suites and which hinder their main-

tenance [40], [75]. Various test smells have been identified

relating to tests that prefer to test non-public implementation

over the behavior of units. Firstly, Yang et al. identified the

“Private Method Test” smell [76], which characterizes tests

that access private methods in Java. Since private methods

in Java are not visible outside of their class, they are not

visible to JUnit tests either. This means that testers must resort

to using Java Reflection to override the access restriction so

that these methods can be invoked from test suites. The “Anal

Probe” smell, referenced in a study by Martins et al. [60], more

generally characterizes a test that “has to use insane, illegal

or otherwise unhealthy ways to perform its task” [2] including

accessing private methods and fields (using mechanisms such

as Java Reflection to do, since they would not normally be

visible), or that has to resort to “extending a class to access

protected fields/methods or having to put the test in a certain

package to access package global fields/methods” [2]. The

“X-Ray Specs” smell [24], discussed by Garousi et al. [49],

refers to tests that access or modify the internal states of

units that they should not be able to access. Finally, Van

Deursen et al. [75] identified the “For Testers Only” smell,

where developers write production code methods specifically

to support testing, and in doing so, allow testers to test a unit’s

implementation rather than behavior via its public API.

D. Studies into Public API vs Non-Public Method Testing

There is much literature advising that tests should strive

to test behavior rather than implementation, citing the costs

of test maintenance that may be incurred should production

code be refactored (e.g., Bowes et al. [41], Google [57],

and Microsoft [63]). However, there has been no work, hith-

erto, that investigates the issue of public API testing versus

non-public method testing from a quantitative or qualitative

perspective. Spadini et al. [74] interviewed 12 developers,

in which participants mentioned not writing tests that are

purely focussed on testing implementation details. However,

this point arose as part of a larger study and discussion of test

code quality during code review, rather than being focussed

exclusively on the issue. Yang et al. [76] studied Java tests that

specifically call private methods (e.g., using Java Reflection),

having implemented a study of StackOverflow posts to identify

the issue in the first instance. However, they do not address the

issue of non-public methods in general, and do not perform

qualitative studies with developers. Martins et al. [60] mined

StackExchange posts to discover the challenges faced and the

corrective actions taken by developers when they encounter

test smells, but do not focus on public API vs non-public

method testing. Several works perform developer surveys

and/or mine StackOverflow, as we do, but focus on other

topics; e.g., flaky tests [52], [65], continuous integration [54],

regular expressions [62], and engineering test cases [37].

III. RESEARCH QUESTIONS

A unit will typically have a number of publicly accessible

methods, constituting its “public API”, that may be called

from other units. Developers also write non-public methods

into units, for implementation that is not to be freely invoked

externally. Instead, these methods tend to contain useful rou-

tines that can be used in multiple places inside the bodies of

other methods (public or otherwise). Unless the unit contains

unreachable code, all non-public methods should be invoked at

some point by a public method, meaning that all the methods

of a unit should be testable through its public API.

In this paper, we focus on understanding how developers

account for code with different visibility levels in unit testing.

Given the associated long-term benefits of a maintainable test

suite, do developers rigidly test units through their public API

only? Or, do they side-step public APIs and directly test non-

public methods, and if so, why?

We set out to answer the following four research questions:

RQ1: Open-Source Testing. How frequently are public and

non-public methods directly invoked from tests in open-source

code? Do open-source developers test against public APIs

only, or do they also make direct calls to non-public methods

in their tests?

RQ2: Stance. What proportion of developers believe that tests

should be written against a unit’s public API only, compared

to those willing to test non-public methods directly?

RQ3: Rationale. What are the reasons why developers take

a particular stance on the issue of testing public APIs only

versus testing non-public methods directly?

RQ4: Practice. How do developers go about unit testing code

that contains both public and non-public methods? Do they

test non-public methods directly, for example, or do they test

indirectly via public methods as part of a behavior-driven

testing approach? How do developers test when their language

does not have access modifiers? What, if any, changes to

testing frameworks developers would like to see in the future

in respect of these topics?

IV. METHODOLOGY

A. Open-Source Study (RQ1)

In this RQ, we wrote a tool, named Viscount, to measure

the number of times methods of different visibility levels are

called from tests in open-source software.

We chose open-source Java projects as subjects to evaluate

this, since the Java language has several different levels of

access modifiers (i.e., public, protected, package-private and

private; see §II-A) and is a mature language for which a large

number of publicly available open-source projects exist.

Our dataset of open-source projects is derived from that of

Gruber et al. [53], who collated the URLs of 38,841 Github-

hosted Java projects listed in the index of the Maven Central

Repository (as of 2023-04-13). The Maven Central Repository

is one of the main official software repositories for Java [12],

containing a diverse range of projects, from small to large.

Using scripted automation, we found we could build 7,998

of these projects without error using Java 8 (the most-used

version of the language in 2023 [31]) and Maven 3.9.6.

Viscount starts by statically extracting the access modi-

fiers of each project’s production methods using the Spoon

framework [67]. It uses a dynamic approach to trace methods

called directly from tests so that it can accurately account for

calls made, for example, via Java Reflection or via a mocking

library employing similar techniques. To this end, Viscount

instruments each project’s bytecode, using Javassist [7] to

insert log statements at the points of constructor/method entry

and exit (i.e., return statements and throw exceptions). It then

executes the project’s test suites to collect logging information

and derive all direct calls made from any test. We set a budget

of three hours for the execution of Viscount per each project

and discarded projects for which it did not terminate within

this budget. We also discarded projects that failed to produce

any logs, which was usually due to a lack of test suites.

Viscount further discards any tests that exercise multi-threaded

code, due to the difficulty in capturing accurate traces, evident

through interleaving entry and exit points of the same method

in the collected logs (a frequent issue affecting other tools,

e.g., [51]). Viscount then statically analyzes each project’s

source code to ensure that the production methods logged were

indeed being called directly from tests, rather than via third-

party libraries or the Java API itself (possible, for example,

through Java’s Serialization libraries). The first author manu-

ally inspected any cases of ambiguity that Viscount could not

resolve automatically. For the interested reader, more detailed

information about Viscount is available in reference [69].

Our final sample for RQ1 consisted of 226,915 tests from

4,801 Java projects. Statistics for the projects are shown in

Figure 1, indicating a range of projects that are large to small

in size. The mean lines of code for the sample was 5841.02,

the mean number of tests was 47, and the mean number of

10
2

10
3

10
4

10
5

10
6

(a) Lines of Code

0

100

200

300

N
um

be
r o

f p
ro

je
ct

s

10
0

10
1

10
2

10
3

(b) Number of tests

0

100

200

300

400

N
um

be
r o

f p
ro

je
ct

s

10
0

10
1

10
2

10
3

10
4

(c) Number of stars

0

200

400

600

N
um

be
r o

f p
ro

je
ct

s

0 50 100 150
(d) Months since last commit

0

200

400

600

800

N
um

be
r o

f p
ro

je
ct

s

Fig. 1. Statistics of the Maven open-source projects studied in RQ1.

GitHub stars was 54.9. The mean time elapsed since the last

commit at the point of collection was 43 months.

B. Developer Survey (RQs 2–4).

We created a questionnaire featuring a mixture of multiple-

choice and open-ended questions. We trialed our survey with

professionals and academic colleagues, and undertook several

trials with a small number of PhD students, refining its design

following each iteration.

Our final survey included questions from four different

angles. Demographic questions included the number of years

of experience in development/testing the developer had and

their main programming language. Questions related to stance

explored the opinions the developer held on testing through

public APIs only vs testing non-public methods directly,

which we used to answer RQ2. Questions related to rationale

focussed on the reasons behind why developers held the

opinions they did, which we used to answer RQ3. Finally, we

included a series of practical questions, aimed at finding out

about the approaches developers took in everyday development

practice. We used the responses to these questions to answer

RQ4. While space does not permit us to reproduce the entire

questionnaire as part of this paper, we have made it available

in full as part of our replication package [32]. We provided

participants with a background information sheet containing

a language-agnostic definition for the notion of “non-public”

methods, including details of access modifiers and common

conventions to denote visibility in several languages, from

C++, C#, Java, Go, Kotlin, and Rust, to dynamically typed

languages such as JavaScript, Python, and Ruby, and those

extended with enforced type annotations, e.g., TypeScript.

We kept the questionnaire open for three weeks using

Google Forms, and distributed it via LinkedIn, X (formerly

known as Twitter), regional technology forums, and personal

industrial contacts — asking them to share it with their

colleagues. To mitigate the risk of bot infiltration, we required

each participant to sign in to their Google account, which

also effectively prevented multiple submissions from the same

person. We did not collect their account information or track

their identity.

We received 73 responses in total. In terms of development

experience, 10-15 years was the median response (mode 15+

years); for unit testing experience, the median and mode

were 5–10 years. We asked developers what their main

programming language was. The responses were Java (25),

Python (15), TypeScript (9), C# (7), PHP (6), Kotlin (4),

C++ (2), JavaScript (2), Ruby (2), and Scala (1). We analyzed

the frequency of choices for questions with fixed responses,

using Kendall’s tau-b correlation coefficient to assess the

strength of the relationship between different answers [9]. We

applied inductive thematic analysis [44] to answers to our

open-ended questions, assigning codes to each response that

summarized its key concepts. Given that free-text responses to

open-ended questions frequently contain multiple components,

we divided the responses into distinct elements if they are

using conjunctions such as “and”, “or”, and “but”. We

conducted this analysis collaboratively to keep our coding as

consistent as possible and to minimize any individual biases.

We then grouped similar codes into a set of overarching

themes. As part of our results (§V) we discuss the major

themes to which we attributed more than two comments.

C. StackOverflow Analysis (RQs 2–4)

To further capture a range of different perspectives and

develop a robust understanding of developers’ perspectives

towards testing non-publics, we employed triangulation [66]

to complement the outcomes of our developer questionnaire

with an analysis of online discussions on the question and

answer website for software developers, StackOverflow [20].

We formulated the following four StackOverflow search

queries: “test non-public method”, “test private method”,

“test protected method”, and “test package-private method”.

The intuition behind these queries was to retrieve threads

discussing the testing of non-public methods in the general

sense, as well as threads discussing the testing of specific types

of non-public methods, hence the inclusion of the “private”,

“protected”, and “package-private” keywords as search terms.

To narrow down the scope of the search results, we appended

the “[unit-testing]” tag to each query term. We purposefully re-

frained from tightening our search queries any further so as not

to miss relevant threads in our search results. In the same spirit,

we did not explicitly mention any programming language

in our queries. The keywords “private” and “protected” are

included because they signify different levels of visibility in

different programming languages, e.g., C#, C++, Java, Kotlin,

and PHP. While “package-private” is Java-specific, including

it allows us to triangulate these results with those from our

empirical study of Java projects for RQ1 (§IV-A).

We executed our search queries on November 16, 2023,

and collected the top 25 threads for each query, sorted by

relevance. We removed duplicates across queries and also

removed insubstantial threads; i.e., threads where a genuine

discussion did not materialize, resulting in fewer than two

responses. This left us with 60 threads in total, including

original posts from between 2008–2023.

All authors manually analyzed these 60 threads in collabo-

rative in-person sessions. Firstly, we categorized each thread

as either “Debate” or “Practical” depending on the style of

the question. “Practical” threads, used to answer RQ4, mainly

pertained to posters asking specific questions relating to testing

non-public methods in the context of a specific programming

language or testing framework. “Debate” threads, used to

answer RQs 2–3 were more general and/or conceptual in

nature, where the poster’s intent was mainly to ask the

community’s opinions on testing non-publics, occasionally in

the context of the particular scenario presented in the question.

The categorizations we made were mostly obvious from the

text of the thread, with some posters keen for their technical

question not to devolve into a discussion about the pros and

cons of directly testing non-publics (e.g., [27], “I would not

like to discuss whether I should test privates or not but [. . .]

focus on how to test it.”). In the case of “Practical” threads,

we only focus on the top answer — i.e., the one with the

highest number of up-votes, whereas for “Debate” threads,

we extended this to the top three answers to take into account

a variety of opinions and a more complete understanding of

the discussion. We did not extend our analysis to further posts

to both control the quality and the number of posts we had

to manually examine. In the case of “debate” threads, some

posts did not contain as many as three answers, in which case

we analyzed just the one or two responses that it did have. We

then applied inductive thematic analysis to the questions and

answers in these threads, as we did for free-text responses in

the developer questionnaire.

D. Threats to Validity

We discuss threats to validity and our mitigating strategies.

1) Questionnaire Participants: The sampling of partici-

pants may influence the external validity of our study, as with

most questionnaires. Since we have no means to quantify the

entire population of software developers, we used the non-

probability purposive sampling method to recruit participants

most likely to provide useful responses for our study [39];

we distributed our questionnaire widely via social media and

professional networks to reach a large number of participants.

2) Questionnaire Evaluation: The internal validity of our

study relies on the design of our questionnaire. Following em-

pirical software engineering guidance [56], prior to releasing

our questionnaire, we conducted a pilot study with a total of

four iterations and ten respondents from different backgrounds

(CS PhD students and professional developers). This pilot

study was useful to mitigate potential researcher biases and

to refine the questionnaire’s format, length, and clarity.

3) Thematic Analyses: For both the free-text responses in

the questionnaire (§IV-B) and StackOverflow threads (§IV-C),

we opted for a collaborative thematic analysis between three

authors to ensure our interpretations are valid (construct va-

lidity) and mitigate any individual researcher bias.

4) Programming Language: In our open-source study, we

only considered Java projects hosted on GitHub which use

Maven as the build automation tool — a potential threat to

external validity. While Java remains one of the most popular

programming languages [29] and Maven is the main build

automation tool for Java [31], further replications are needed to

establish how our results would generalize to other languages.

Furthermore, we only used projects that were we able to build

with Java 8, the most popular version of the language in

2023 [29]. While we believe this to be a good representation

of Java projects, further work is needed to establish whether

our results generalize to more recent versions of the language.

5) Test Instrumentation: Gathering data from open-source

projects requires implementing a test instrumentation mecha-

nism to capture the execution trace of existing tests. As with

any study of this nature, there is the risk of implementation er-

rors affecting the results which may have an impact on internal

validity. We mitigate this by careful reviewing, debugging and

testing of the implementation and thorough discussions of the

results. We also acknowledge certain limitations in our current

instrumentation: it cannot handle multi-threading tests (similar

to java-callgraph [51]) or some obscure method invocation

mechanisms used in a small number of projects. These features

are orthogonal to the use of access modifiers, therefore we do

not expect them to affect our analysis. We mitigate this further

by using a sufficiently large number of projects and tests.

6) Triangulation: The nature of the problem under in-

vestigation in this paper led us to use three complementary

methods: a questionnaire, an analysis of online discussions,

and a quantitative experiment on open-source code. This

triangulation allows us to mitigate threats to validity across

research methods, e.g., self-reporting biases, to develop a

comprehensive understanding of the problem and provide

more confident answers to our research questions [66].

7) Reproducibility and Replicability: We make our research

materials available online to foster reproducibility and replica-

bility [32], including our questionnaire, its responses, analysis

spreadsheets, and experiment scripts for open-source projects.

V. RESULTS

A. RQ1: Open-Source Testing

Figure 2 breaks down the proportion of open-source Java

projects in terms of how often unit tests directly call produc-

tion code methods with different access modifiers.

Out of 4,801 projects, 3,455 (72%) have tests which

call public methods exclusively, meaning the remaining

1,346 projects (28%) have tests which make at least one call

to a non-public method. Among these, projects with tests

directly calling package-private methods were most frequent

(828 projects), followed by those with direct calls to protected

(698 projects) and private (42 projects) methods. The tests

in 64 projects (1.3%) call non-public methods exclusively, of

which 37, 23, and 1 projects’ tests make exclusive calls to

package-private, protected, and private methods respectively

TABLE I

Numbers of production code methods, by access modifier, directly invoked
from test suites (“Invoked”) out of the total number of methods (“Total”) in
all 4,801 Java projects studied in RQ1.

Access Modifier Invoked Total Percentage

public 179,640 1,468,185 12.2%

protected 2,601 70,579 3.7%

package-private 4,243 27,459 15.5%

private 116 132,701 0.1%

and 3 projects have calls to both package-private and pro-

tected methods. The one project calling only private methods

contains only one test [14], which exclusively tests a private

method directly, using Java Reflection [13] to achieve this. In

terms of tests directly calling private methods, as shown by the

data in Table II, 68 used Java Reflection to override visibility

restrictions to make the method accessible for invocation. The

remaining 48 used third-party utilities to achieve the same

effect, including mechanisms in mocking frameworks such as

PowerMock Whitebox [15] and EasyMock ReflectionUtils [5].

While the Venn diagram gives a useful overview of method

testing on a per-project basis, varying project sizes could give

a false impression of overall frequencies. We therefore tracked

the number of production methods being called by access

modifier type across all projects, as shown in Table I. We

counted a production method as executed if directly called at

least once, by at least one test. The vast majority of direct

calls tests make are to public methods. The number of calls to

package-private is greater than that of protected and private,

and overall the proportion of package-private directly-called

methods is greater than that for public.

Since package-private methods may be accessed by JUnit

tests without breaking the encapsulation of the method outside

of its package1, this might suggest that developers deliberately

make methods package-private to test them, as opposed to

leaving them private. However, we do not know the original

intentions of the developers of these projects, so we return to

this issue as part of our developer survey and StackOverflow

analysis in the next research questions.

Conclusion (RQ1: Open-Source Testing). Open-source

developers call both public and non-public methods directly

in tests. 72% of the projects studied have tests that call public

methods only, meaning the remaining 28% contain at least

one call to a non-public method. The raw number of non-

public methods invoked from tests is small compared to the

number of public methods, but this is due to the number of

public methods being an order of magnitude higher in the

first place. Proportionally, package-private methods are the

most frequently called type of method by access modifier.

1Although Maven organizes production code and tests into separate direc-
tories, the same logical package names can be used, meaning that tests can
be in the same package as the classes that they test despite being in different
directories on the file system [11], [21].

public

protected package-private

private

3455
(71.96%)

23
(0.48%)

37
(0.77%)

1
(0.02%)

464
(9.66%)

587
(12.23%)

18
(0.37%)

3
(0.06%)

0
(0%)

0
(0%)

190
(3.96%)

12
(0.25%)

5
(0.1%)

0
(0%)

6
(0.12%)

Number of Projects: 4801

Fig. 2. Venn diagram of open-source Java projects, grouped by visibility of
production code methods called directly from their tests.

TABLE II

Mechanisms used to directly invoke private methods in tests, by numbers of
tests (“# Tests”) and projects (“# Projects”), in our dataset of Java projects.

Framework # Tests # Projects

Java Reflection [13] 68 31

JMockit Deencapsulation [8] 14 1

PowerMock Whitebox [15] 13 5

Apache Commons Lang3 MethodUtils [3] 12 4

Manifold Jailbreak [10] 6 1

EasyMock ReflectionUtils [5] 1 1

Spring Framework ReflectionTestUtils [19] 1 1

tvd12 test-util MethodInvoker [22] 1 1

B. RQ2: Stance

We asked developers if they agreed with the statement “In

general, developers should write unit tests that only invoke

public methods, avoiding direct calls to non-public methods”.

Figure 3 summarizes their responses. Almost two-thirds (64%)

of participants either agreed or strongly agreed; 30% disagreed

or strongly disagreed, while the remaining 6% were unsure.

We also asked developers “How often do you write tests that

directly invoke non-public methods?” “Never” and “Rarely”

were selected most by participants, as shown in Figure 4. This

figure also shows that the frequencies of answers (“Always”,

“Often”, “Sometimes”, “Rarely”, “Never”) are consistent with

the different levels of agreement observed earlier in Figure 3,

with Kendall’s tau-b indicating a significant strong association

between these sets of answers (τb = 0.463, p < 0.01).

We also analyzed the 18 StackOverflow threads we classed

as being “Debate”-based (§IV-C). We categorized each of the

top three responses in each thread as being either in favor of

testing public APIs only (19; ∼40%), in favor of testing non-

public methods directly (17; 35%), or neutral in stance (12;

∼25%). Similar to the developer survey, we observe more

advocacy for testing public APIs only, albeit by a smaller

margin. These posts were also more likely to receive more

upvotes by users of the site, and consequently be ranked first

in the list of answers to the original poster’s question.

29181664

Not sure Strongly disagree Disagree Agree Strongly agree

Fig. 3. Developer responses to the question “To what extent do you agree with

the following statement? ‘In general, developers should write unit tests that

only invoke public methods, avoiding direct calls to non-public methods.’”

31211182

Always Often Sometimes Rarely Never

Fig. 4. Developer responses to the question: “How often do you write tests

that directly invoke non-public methods?”

Conclusion (RQ2: Stance). Among our developer survey

participants, almost two-thirds prefer to test public APIs

only, while the remaining third will test non-public methods

directly. We observed a similar pattern in the answers in

StackOverflow “Debate” threads, where responses arguing

to test only via public APIs were more often the top answer

than those in favor of testing non-publics directly.

C. RQ3: Rationale

To understand developer stances more deeply, let us cluster

participants into two groups, namely “agree” and “disagree”,

based on their answers to the statement “In general, devel-

opers should write unit tests that only invoke public methods,

avoiding direct calls to non-public methods” (Figure 3). The

“agree” group comprises participants agreeing or strongly

agreeing with the statement — i.e., those who prefer to test

through public methods only — while the “disagree” group

includes those who disagreed or strongly disagreed.

We asked developers how much they valued eight different

qualities of test suites, listed in Table IV. The table shows

some interesting differences between the two groups. Partici-

pants in the “agree” group most frequently marked all the pos-

sibilities as “Very Important”, except code coverage which was

just “Important”. This was in contrast to the “disagree” group,

who marked code coverage as “Very Important”. This seems

to suggest that testers in the “disagree” group place more

emphasis on exercising implementation — to obtain higher

coverage, one might need to directly invoke a non-public from

a test to execute a statement that is hard to cover otherwise;

whereas members of the public-only (“agree”) group are more

concerned with testing behavior. Some participants made this

point explicitly in free-text responses in our survey. Participant

P49 commented, for example, “It’s important that unit tests test

the behaviour and not the implementation”, while P72 said “I

think that testing public rather than non-public methods leans

more towards testing behaviour rather than implementation

which is usually preferable”.

We also asked developers the extent to which they agreed

with the statement “Testing non-public methods leads to more

tests failing spuriously when modifications are made to those

methods.” We found those in the “agree” group also tended

to agree or strongly agree with this statement. Kendall’s tau-b

test indicated a strong and significant association (τb = 0.53,

TABLE III

Classification of posters’ answers to StackOverflow “Debate” threads as either
arguing to test public APIs only or test non-public methods directly, or were
neutral in stance. “Rank” refers to whether the answer was first, second, or
third in the list of responses to the original post, depending on its “upvotes”.
(NB: Some posts received fewer than three responses.)

Classification # Answers Mean Rank Mode Rank

Test public APIs only 19 1.89 1

Test non-public methods directly 17 1.94 2

Neutral 12 1.83 2

TABLE IV

Developer responses to the question “To what extent do you value the follow-

ing aspects when writing unit tests?”, where participants could choose from
the options “No opinion” , “Not Important” , “Somewhat Important” ,
“Important” , and “Very Important” .

Aspect “Agree” group “Disagree” group

Code coverage 161910 1057

Capturing behavior via assertions 369 173

Ease of debugging 23165 6105

Robustness after refactoring 3211 1183

Sensitivity to change 2814 1073

Realism 28710 1154

Confidence in code 386 1533

Conciseness 1713106 398

p < 0.01). There was no such correlation for the “disagree”

group. Public-only testers are concerned therefore about tests

breaking during an internal refactoring if they are highly

coupled to non-public methods via direct invocations, further

evidencing that this group prefer to test behavior rather than

implementation. This was backed up by a handful of comments

made by these participants in free-text responses in our survey.

P65 said, for example, “Writing tests that are coupled to the

private implementation of a class hurts the ability to refactor

in the future”. The “agree” group also pointed to likely process

or design problems with the code, e.g., P21 said “If you have

to do it, that means you probably have a code smell. . . ”; P43

agreed with this, stating “. . . that may be a sign that there

is a design/decomposition problem”, while P58 commented it

could be “a sign of a leaky abstraction”. P25 said that not

testing through public methods could lead to unrealistic tests:

“even if a private method CAN handle a variety of inputs, it’s

pointless to test for every possible combination, because you

know the code that is calling the private method will never

present those possibilities”.

In contrast, developers who disagree with the public-only

approach cited the complexity of logic in non-public methods,

and the need to thoroughly test them, e.g., P55: “If the logic

within the non-public is complex and critical, then do what you

need to do to test them”. P31 also highlighted that testing non-

publics directly is often less verbose and potentially clearer:

“. . . if its [sic] clearer/easier to test an internal part of a flow

rather than setting up for testing the public method then that’s

a better idea”.

Finally, we performed a thematic analysis on the original

poster questions that started the 18 “debate” threads we

retrieved from StackOverflow. These gave further insights into

the motivations of developers considering testing non-public

methods, revealing the following themes:

– Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake:Avoiding breaking encapsulation for testability’s sake: This

theme included question posts whereby the original posters

who — in contrast to developer survey respondents who said

that the need to directly test non-publics was a code design

problem — felt they would have to compromise code design to

avoid direct testing of non-public methods. One poster wrote

“If I wrote my class this way, I could have unit tests [. . .]

but I feel like this pattern is not correct. Is there a better

way?” [28].

– Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity:Curiosity: This theme portrayed posters that are curious as

to whether testing non-public methods is good practice or not.

– Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic:Complex logic: Echoing participants in our developer sur-

vey, this theme characterized posters who wanted to test non-

publics directly due to their inherent complexity.

– Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface:Complexity of testing through the public interface: Posters

described a further reason that the developer survey did

not surface as an explicit theme: they felt testing through

public methods was too laborious and repetitive, leading to

duplicated code across tests — “the method contains logic

shared between other methods in the class and it’s tidier to

test the logic on its own” [26]; or just too complex in its own

right: “I want to test logic used in synchronous threads without

having to worry about threading problems” [26].

Conclusion (RQ3: Rationale). Public API testers believe

testing behavior is important, while developers who test non-

public methods directly are more concerned with the correct-

ness of implementation. Public API testers believe the urge

to directly test non-publics is down to code design problems

that will lead to maintainability and refactoring difficulties

in the future. Implementation-driven testers are concerned

about complex parts of non-public code going untested and

about the complexity of test code, since testing non-public

methods through the public API is a more complex task that

may require a lot of shared setup between tests.

D. RQ4: Practice

1) Access Modifiers in Programming Languages: We asked

developers “If your main language does not have access

modifiers, do you follow any conventions to denote visibility of

methods and instance variables?” 54 participants responded

that their programming language has access modifiers, 19

said theirs did not, and 16 of those 19 said they followed

conventions to denote visibility instead. We asked, as a free-

text follow-up question to those who said they followed

conventions, which ones they used. Our thematic analysis of

responses revealed the following major themes:

– Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes:Underscore prefixes: Almost all respondents said they use

underscores to indicate non-public methods.

– Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific:Project-specific: Participants use different conventions de-

pending on the project.

– Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding:Visibility is irrelevant for understanding: Some participants

questioned the need for such mechanisms at all, e.g., P50: “Vis-

ibility is usually irrelevant for understanding the code”.

TABLE V

Responses to the question: “How do you go about testing non-public

methods?”, where the participant could choose from the options “Not sure” ,
“Not a feature in my language” , “Never” , “Rarely” , “Sometimes” ,
“Often” , and “Mostly” .

Means “Agree” group “Disagree” group

Via public methods only 36 610

By directly invoking 1225 45533

Using reflection / mocks 61620 3936

Adding test code in production 733 413

Temporary switch to public 40 18

Permanent change to public 61426 514

– Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance:Conventions increase maintenance: Participants observed

that encoding visibility in the name of methods (e.g., by

using underscores) increases maintenance/refactoring effort —

P50: “encoding it in the name increases the work required to

change visibility.”

2) Approaches to Testing Non-Public Methods: We asked

developers “How do you go about testing non-public meth-

ods?”, and analyzed the responses in the two groups defined

in the last RQ. Unsurprisingly, those in the “agree” group

(i.e., those with the stance of testing through public APIs

only) respond most frequently to “mostly” for “via public

methods only”, and “never” to the other possibilities (Table V).

The “disagree” group most frequently only ranked “via public

methods only” as “often” and “sometimes” for testing by direct

invocation and using reflection or mocks.

We asked developers about any other means they use to test

non-public methods. In our thematic analysis of their free-text

responses, the major themes, in order of prevalence, were:

– Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor: Developers think that directly testing non-publics

is a code smell related to its design and that it needs refactoring

(P21: “If you HAVE TO test non-public methods, maybe they

are in the wrong place (i.e. maybe they should be extracted

elsewhere)”).

– Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier: Developers elevate the visibility of

a method so that it is accessible and therefore callable directly

from a unit test. P39 said “Mostly what I do (in Java) is

have the method be ‘package private’ (the default visibility)”),

optionally using test framework annotations to mark the reason

for the visibility (P39: “. . . and use an annotation (@Visible-

ForTesting) to mark the reason for the visibility”).

– Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods:Via public methods: Developers underlined that non-publics

should be tested indirectly by calling public methods.

We also asked developers “Are there any guidelines, best

practices, or specific rules you follow when testing non-public

methods?”, from which we identified two new themes not

present in responses to the previous question:

– Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process:Apply good software engineering process: In this theme,

developers additionally pointed out that if a good process or

design had been followed, one shouldn’t need to directly test

non-publics. These sentiments are similar to the previously

identified “refactor” theme.

– Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary:Test non-public methods directly if necessary: This theme

captured developers who believe non-publics need to be tested

directly when they are complex.

We asked participants if they took a different approach for

different levels of visibility for non-public methods, with the

majority (59) answering “No”, and the remaining 14 replying

“Yes”. In a follow-up free-text question we gave participants

the opportunity to explain further. From these responses, we

identified the following themes:

– Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to:Test what the tests have access to: Respondents tested non-

publics that were visible to tests. For example, with JUnit,

tests can access protected and package-private methods but

not private ones (P56: “In Java at least, protected methods

can be called from classes in the same package (production

and test sources can have the equivalent packages)”; P47: “I

would look at it as non-private and private. Any method with

accessibility outside of it’s [sic] own class can be accessed by

a unit test, and thus *could* be unit tested”).

– Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only: Respondents further under-

lined developers should test through public methods only.

– Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible:Make it visible: Similar to the previously identified “elevate

access modifier” theme, if the method cannot be accessed

by the tests, increase its visibility level (e.g., P36: “I elevate

private to package private, and leave the others as is”), or

make it visible for testing through a wrapper class (e.g.,

P56: “Private methods cannot [be directly accessed], so the

class must be extended to put a public wrapper around the

private method.”)

Finally, we analyzed StackOverflow answers in “Practical”

threads (§IV-C) where posters specifically ask how to test a

non-public method in a given scenario. Our thematic analysis

revealed similar types of responses, but in a different order of

prevalence, largely because the original poster was asking how

to test non-publics, and the responses tended to be a mix of

direct answers along with opinion-based ones that accounted

for the bigger picture:

– Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism:Use language-specific mechanism: Posters discussed a va-

riety of mechanisms to gain access to non-publics normally

inaccessible for testing, including using reflection (e.g., in

Java) to override access controls, and C++’s “friend” construct.

We also identified themes that we had previously seen in re-

sponses to our developer survey, thereby helping to corroborate

its results:

– Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only:Test via public methods only: Posters advised testing solely

via the public API; i.e., not to test non-public methods directly.

– Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor:Refactor: Posters advised to refactor production code to

avoid the need to test non-publics directly.

– Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier:Elevate access modifier: Posters in favor of side-stepping the

public API advising raising the access level of the non-public

so that it is visible for testing.

3) Tooling: Finally, we asked developers if they would like

to see features or improvements to unit testing frameworks to

facilitate testing non-public methods, from which we identified

the following themes:

– None:None:None:None:None:None:None:None:None:None:None:None:None:None:None:None:None: Respondents did not believe any new features were

necessary. This was the most prevalent response.

– Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools:Less support in current tools: Respondents believed current

test frameworks made it too convenient to test non-publics

directly (using the mechanisms featured in Table II, for exam-

ple), and should instead do more to discourage or even prevent

the practice.

– Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods:Support for inaccessible methods: Respondents wanted

more test framework support for testing inaccessible methods

(e.g., private methods in Java) without resorting to tricks like

reflection to override access controls.

Conclusion (RQ4: Practice). The majority of developers

whose languages do not have visibility modifiers adopt

conventions, such as underscores in method names, to denote

they are intended to be non-public. Testers preferring to test

through a unit’s public API only see the desire to test non-

public methods as indicative of a code smell indicating poor

process or the need to refactor production code. Developers

who do test non-public methods use different “back-door”

means, one of the most popular being to elevate the method’s

visibility to make it accessible to the tests.

VI. DISCUSSION

1) Further Analyses: We investigate possible correlations

between developer experience and our survey results, and

between the size of a project and the number of direct calls

to non-publics in tests studied in RQ1.

As part of our demographic survey questions, we asked

developers how many years of experience of development

and testing they had. Figure 5 shows a stacked bar chart

of testing experience, where the bars are split according

to whether they are in the group that “agree” with testing

through public APIs only or the “disagree” group from RQ3,

or were not sure — based on their answers shown to the

question in Figure 3. The chart shows an increase in the

proportion of those in the “agree” group as the number of

years of testing experience increases. Kendall’s tau-b showed

a moderate positive association between these two traits, which

is significant at α = 0.05 (τb = 0.240, p = 0.014). Overall

this implies that the more experience a tester has, the more

likely they are to be opposed to directly testing non-publics,

and suggests that more organizational guidance is needed

for more junior members if development teams are to avoid

side-stepping the public API and directly testing non-public

methods. We found less evidence that development experience

has a similar relationship; Kendall’s tau-b test shows only a

weak association that is not significant (τb = 0.135, p = 0.17).

We also looked into whether the size of the project was

somehow correlated with specific practices regarding testing of

Y
e
a
rs

o
f
te

s
ti
n
g

e
x
p
e
ri

e
n
c
e 13 (20%)11 (73.3%)>15

12 (18.2%)8 (72.7%)10–15

7 (31.8%)15 (68.2%)5–10

16 (35.3%)10 (58.8%)2–5

14 (50%)3 (37.5%)

of participants (%)

0–2

Agree / Strongly Agree Disagree / Strongly Disagree Not Sure

Fig. 5. Participants’ years of testing experience, grouped by stance on testing
through public methods only (distribution shown in Figure 3).

non-publics. It would be conceivable that directly testing non-

publics is less prevalent in larger projects due to having larger

development teams with potentially more development/testing

experience and more rigorously defined software engineering

processes. However, Kendall’s tau-b showed only a weak

association between the number of tests and the proportion of

non-publics directly called from them (τb = 0.179, p < 0.01).

While the tests of both projects considered big and small

relative to our dataset tended to focus on exercising public

methods (in accordance with the data presented in Table I),

they also tended to include direct calls to non-public methods.

2) Summary of Findings: Our results show that the majority

of developers agree with testing solely through public APIs,

but not overwhelmingly so, with a third disagreeing and in

favor of testing through non-public methods — albeit de-

pending on the circumstances (RQ2). In summary, developers

in the “agree” group, oppose directly testing non-publics,

commenting that it will make code harder to refactor and

maintain in the future, and that the temptation to test non-

publics stems from poor code design, suggesting refactoring

as the solution instead (RQ3, RQ4). However, this needs to be

done with care, since it could lead to repetition in tests that

need to keep calling the same public methods — another topic

of debate in the literature suggested to be a code smell in its

own right [40]. Some literature suggests such tests themselves

would need refactoring [75] in keeping with the DRY principle

(“Don’t Repeat Yourself”), with others preferring to keep tests

“DAMP” (“Descriptive And Meaningful Phrases”); e.g., [57].

Another issue in refactoring might be the temptation to make

parts of the implementation visible solely for the purposes of

testing, also considered a test smell (referred to as “For Testers

Only” [35], [40], [75], discussed in §II-C).

Some of the drawbacks of the alternatives to testing non-

publics directly are exactly those expressed by participants

in our survey and those on StackOverflow who are in favor

of testing non-publics, often depending on the circumstances.

Others further cited the complexity of the code in the non-

public method itself — perhaps with code coverage of tests

in mind — and the difficulty of exercising it indirectly, citing

the resultant complexity of the tests and/or the problem of

isolating the aspects of the code they want to exercise (RQ3).

Participants in our survey and posters on StackOverflow

proposed a variety of remedies, some of the most prevalent

being using language-specific mechanisms to bypass access

modifiers or elevating access modifiers — a change equivalent

to making internals more visible for testing. Our results to RQ1

suggest that developers do make methods package-private in

Java for the purposes of testing, thereby not rigidly testing

exclusively through the public API only.

Finally, the majority of developers responding to our ques-

tionnaire did not believe further tooling support is needed

to address the problem (RQ4), but perhaps were unaware of

potential future research techniques that could help convert

direct calls to non-publics into those that solely exercise the

public API, or be used to manage other perceived negatives

of testing non-publics over the public API, such as repetition

in tests. We discuss this implication as part of our ideas for

future work in the next section.

VII. IMPLICATIONS AND FUTURE WORK

A. Software Testing Education

Our survey results indicated that different attitudes were

prevalent based on level of experience. Instead of learning

the “hard way”, we propose that educators are made aware of

some of these opinions and seek to ensure that they emphasize

the best software engineering practices in their teaching.

1) Behavioral-Driven Testing: Our survey results show that

less experienced developers and testers tend to be in favor of

testing non-publics directly, suggesting that better education

and materials are needed around behavioral-driven approaches

to development and testing. This would give developers clearer

incentives to avoid the practice by studying the longer-term

downsides, such as less maintainable test suites.

2) Attitudes to Coverage: While there is healthy skepticism

amongst developers regarding coverage in general (e.g., [18]),

coverage was correlated with favoring testing non-publics

directly in our study. Increasing coverage may therefore be a

motive behind testing implementation as opposed to behavior

(as also observed by Bowes et al. [41]). Ideally, coverage

should be used by developers to identify untested behaviors

instead of individual lines that tests execute in their production

code. As such, testers should be less concerned with coverage

as a quality metric of their test suites, as tests that are tightly

coupled to implementation are not of high quality since they

will be more costly to maintain in the future.

3) Identifying and Discouraging Testing Anti-Patterns: Our

findings indicate ways in which developers sometimes take

shortcuts to test non-public implementation or to make it

accessible, including elevating access levels of methods, using

language-specific mechanisms like the “friend” keyword in

C++, or other means to access code normally inaccessible to

tests like using Reflection in Java or using functionality in

mocking libraries to achieve the same effect. These practices

should be identified in education materials as anti-patterns to

be avoided in software tests.

B. Automated Techniques

The results of this paper reveal that there is extensive scope

for automated techniques to assist with the problem of testing

non-public methods.

1) Automated Support To Replace Direct Non-Public Calls:

In our survey, some developers described the complexity or la-

borious nature of testing exclusively through public interfaces.

Future research therefore could concentrate on techniques that

refactor existing developer tests to remove direct calls to non-

public methods and replace them with call sequences that

rely on public methods only. This could be done with the

help of existing test generation tools, such as EvoSuite [48].

For example, once a non-public call is found, a search-based

technique [61] could be used to find the equivalent set of

public calls that lead to the non-public method being invoked

in the same way. However, the resulting generated tests might

suffer from readability issues [33], [45], [70]. For this reason,

applying a large language model to assist may therefore also

prove fruitful, in a similar style to recent work by Alshahwan

et al. [36] and Yaraghi et al. [77].

2) Refactoring Production Code Based on Problematic

Tests: In our survey, several developers noted that the desire to

side-step the public API and test a non-public method directly

is because the production code is poorly designed in the

first place. This means that tests that call non-public methods

could indicate production code that needs refactoring. These

refactorings would of course be more intricate than simply

making non-public methods visible to tests, as that would

defeat the purpose. While there has been work on refactoring

tests to remove test smells (e.g., [73]), to our knowledge,

poorly written tests have not been used as the basis of work in

automated refactoring production code before. Calls to non-

public methods in tests could be one direction in which to

drive automated refactoring tools towards better code design

so that tests only need to invoke the public API to better effect.

3) Improved Automated Test Smell Detection Tools: Ex-

isting test smell detection tools focus on private methods

only [76], however direct calls to all non-public methods

couple tests to implementation that will make them hard to

maintain in the future. We therefore argue that these tools need

to be extended to detect calls to other non-public methods,

e.g., package-private. Furthermore, detecting when non-public

methods are called by tests is a surprisingly non-trivial task.

Static methods miss cases when mocking libraries are used

to bypass visibility restrictions to call private methods. In our

study, we resorted to dynamic methods, and even then still, we

found cases that were hard to analyze due to the tests calling

threaded code or starting threads themselves (both indicative

of further test smells). Furthermore, callbacks are possible

through external APIs. We checked these cases by hand or

excluded them entirely from our study. Future work needs to

focus in these areas.

4) Automatic Test Generation and Non-Public Methods:

The developers in our survey or those using StackOverflow

did not comment on automatically generated test suites (such

as those produced by EvoSuite [48], Randoop [64], or Agi-

tarOne [1]). These tools retain the option to call non-publics

with the goal of increasing coverage [38], [72], meaning tests

generated by these tools will be hard to maintain. Further

work needs to establish what the longevity is of automatically

generated test suites, since this might not be a problem if the

tests are to be thrown away and regenerated anyway [71].

C. Developer Support

The answers to our survey imply different ways in which

existing tools may be improved to assist developers in ensuring

their tests avoid making calls to non-publics directly.

1) Stricter Test Frameworks / Build Tools: As already

mentioned, developers often employ shortcuts in their tests

to exercise non-public methods, but these practices could

be stopped entirely by stricter test frameworks. JUnit, for

example, encouraged by build tools like Maven and Gradle,

organizes unit tests so that they exist in the same package

as the classes they test, making certain non-public methods,

like those declared package-private visible to tests. We found

these types of calls particularly to be prevalent in our study

of open-source Java projects. Placing test suites outside of

the package of classes they are designed to test, however,

would render these direct calls impossible by virtue of the

visibility rules of the Java language. This suggestion comes

directly from developer responses to our survey in RQ4

(§V-D3). Similarly, mocking tools should deprecate or remove

functionality allowing developers to access private methods

through Java Reflection.

2) IDE support: Integrated Development Environments

(IDEs) could build in support for some of the suggestions

for future work on automated techniques outlined above.

Whenever a developer is tempted to call a non-public method

directly, the IDE could auto-suggest a sequence of calls that

call the public interface of the class instead. Similarly, these

tools could implement bad smell detectors to give developers

more useful indicators of test suite quality rather than just

code-based metrics like coverage.

VIII. CONCLUSIONS

Test suites that directly test internal implementation re-

quire maintenance when that implementation changes — a

cost that could be avoided if testers stuck to testing public

APIs only. In this paper, through a developer survey and an

analysis of relevant StackOverflow threads, we presented the

first qualitative study of developer opinions, rationale, and

practice when faced with the decision of how to test units

with methods of different visibility levels. We support our

qualitative study with a quantitative analysis of 4,801 open-

source Java projects, which we obtained from the Maven

Central Repository. Among several findings, our work revealed

that while the majority of testers prefer to test the public API

of a unit only, a significant proportion are willing to side-

step it and directly test a non-public method, particularly if

it is complex, including raising its visibility level if needed.

While many developers suggested that such code needs to be

refactored so that it can be tested via its public methods, others

employ various means to access non-public methods directly

if needed, including making these methods visible to tests.

This behavior was supported by the results of our open-source

Java code study, where a seemingly disproportionate number

of methods directly tested were declared “package-private” —

i.e., not fully private but with just “enough” visibility to make

them accessible to unit tests. We proposed several lines of

research and ways to support developers in reducing the need

to test non-publics directly, with the aim of improving test

maintainability in the future.

ACKNOWLEDGEMENTS

Muhammad Firhard Roslan receives PhD funding from the

Majlis Amanah Rakyat (MARA). Phil McMinn is supported,

in part, by the EPSRC grant “Test FLARE” (EP/X024539/1).

REFERENCES

[1] Agitar One. http://www.agitar.com/solutions/products/automated junit
generation.html. Accessed: 4/2024.

[2] Anal probe — test smells catalog. https://test-smell-catalog.readthedo
cs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20relate
d/Anal%20Probe.html. Accessed: 4/2024.

[3] Apache commons lang3 — Class MethodUtils. https://commons.apac
he.org/proper/commons-lang/apidocs/org/apache/commons/lang3/reflect
/MethodUtils.html. Accessed: 7/2024.

[4] Controlling access to members of a class, the Java tutorials. https:
//docs.oracle.com/javase/tutorial/java/javaOO/accesscontrol.html.
Accessed: 4/2023.

[5] EasyMock — Class ReflectionUtils. https://easymock.org/api/org/eas
ymock/internal/ReflectionUtils.html. Accessed: 7/2024.

[6] Exported identifiers — Go: The Go programming language. https:
//go.dev/ref/spec#Exported identifiers. Accessed: 4/2024.

[7] Javassist. https://www.javassist.org. Accessed: 4/2024.
[8] JMockit — Class Deencapsulation. https://javadoc.io/doc/com.googl

ecode.jmockit/jmockit/latest/mockit/Deencapsulation.html. Accessed:
7/2024.

[9] Kendall’s Tau — Simple Introduction. https://www.spss-tutorials.com
/kendalls-tau/. Accessed: 7/2024.

[10] Manifold Systems — Annotation Type Jailbreak. https://javadoc.io/sta
tic/systems.manifold/manifold-ext-rt/2020.1.41/manifold/ext/rt/api/Jail
break.html. Accessed: 7/2024.

[11] Maven — Introduction to the standard directory layout. https://maven.
apache.org/guides/introduction/introduction-to-the-standard-directory-l
ayout. Accessed: 7/2024.

[12] Maven Central Repository. https://repo.maven.apache.org/maven2/.
Accessed: 4/2024.

[13] Package java.lang.reflect. https://docs.oracle.com/javase/8/docs/api/java
/lang/reflect/package-summary.html. Accessed: 7/2024.

[14] password-generator GitHub project. https://github.com/javadev/passwor
d-generator. Accessed: 4/2024.

[15] Powermock — Class Whitebox. https://www.javadoc.io/doc/org.power
mock/powermock-reflect/1.6.4/org/powermock/reflect/Whitebox.html.
Accessed: 7/2024.

[16] Private properties — the modern JavaScript tutorial. https://javascript.i
nfo/private-protected-properties-methods. Accessed: 4/2024.

[17] The Python Language Reference — Private name mangling. https:
//docs.python.org/3/reference/expressions.html#private-name-mangling.
Accessed: 4/2024.

[18] Reddit: Stop using Code Coverage as a Quality metric. https://www.re
ddit.com/r/programming/comments/194htrz/stop using code coverage
as a quality metric. Accessed: 4/2024.

[19] Spring Framework — Class ReflectionTestUtils. https://docs.spring.io/s
pring-framework/docs/current/javadoc-api/org/springframework/test/util
/ReflectionTestUtils.html. Accessed: 7/2024.

[20] Stack Overflow. https://stackoverflow.com. Accessed: 4/2024.
[21] Testing with Maven — Organizing unit and integration tests. https:

//dev.to/rodnan-sol/testing-with-maven-organizing-unit-and-integration
-tests-35oh. Accessed: 7/2024.

[22] tvd12 test-util repository. https://github.com/tvd12/test-util. Accessed:
7/2024.

[23] Visibility modifiers — Kotlin programming language. https://kotlinlang
.org/docs/visibility-modifiers.html. Accessed: 4/2024.

[24] X-Ray Specs — Test Smells Catalog. https://test-smell-catalog.readthe
docs.io/en/latest/Test%20semantic-logic/Other%20test%20logic%20rela
ted/X-Ray%20Specs.html. Accessed: 4/2024.

[25] Stack Overflow: How do I test a class that has private methods, fields
or inner classes? https://stackoverflow.com/questions/34571/, 2008.
Accessed: 4/2024.

[26] Stack Overflow: Making a private method public to unit test it...good
idea? https://stackoverflow.com/questions/7075938/, 2011. Accessed:
4/2024.

[27] Stack Overflow: Unit testing private method — Objective-C. https:
//stackoverflow.com/questions/18354788/, 2013. Accessed: 4/2024.

[28] Stack Overflow: Should a concrete class that implements an interface
have extra public methods for testing? https://stackoverflow.com/questi
ons/57632038/, 2019. Accessed: 4/2024.

[29] Stack Overflow: Developer survey results. https://survey.stackoverflow.
co/2023, 2023. Accessed: 4/2024.

[30] Stack Overflow: Unit testing a overridden protected method from a class
that does not have default constructors. https://stackoverflow.com/ques
tions/76868236/, 2023. Accessed: 4/2024.

[31] The state of developer ecosystem 2023. https://www.jetbrains.com/lp/d
evecosystem-2023/java/, 2023. Accessed: 4/2024.

[32] Replication package. https://github.com/unittesting-nonpublic/private-k
eep-out replication-package, 2024.

[33] Sheeva Afshan, Phil McMinn, and Mark Stevenson. Evolving readable
string test inputs using a natural language model to reduce human oracle
cost. In International Conference on Software Testing, Verification and

Validation (ICST), pages 352–361, 2013.
[34] Joseph Albahari. Reflection and Metadata. In C# 12 in a Nutshell,

chapter 18. O’Reilly Media, 2023.
[35] Wajdi Aljedaani, Anthony Peruma, Ahmed Aljohani, Mazen Alotaibi,

Mohamed Wiem Mkaouer, Ali Ouni, Christian D. Newman, Abdullatif
Ghallab, and Stephanie Ludi. Test smell detection tools: A systematic
mapping study. In International Conference on Evaluation and Assess-

ment in Software Engineering (EASE), pages 170–180, 2021.
[36] Nadia Alshahwan, Jubin Chheda, Anastasia Finegenova, Beliz Gokkaya,

Mark Harman, Inna Harper, Alexandru Marginean, Shubho Sengupta,
and Eddy Wang. Automated unit test improvement using large language
models at Meta. In International Symposium on the Foundations of

Software Engineering (FSE), 2024.
[37] Maurı́cio Aniche, Christoph Treude, and Andy Zaidman. How develop-

ers engineer test cases: An observational study. IEEE Transactions on

Software Engineering, 48:4925–4946, 2022.
[38] Andrea Arcuri, Gordon Fraser, and René Just. Private API access and

functional mocking in automated unit test generation. In International

Conference on Software Testing, Verification and Validation (ICST),
2017.

[39] Sebastian Baltes and Paul Ralph. Sampling in software engineering re-
search: a critical review and guidelines. Empirical Software Engineering,
27, 2022.

[40] Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia,
and David Binkley. An empirical analysis of the distribution of unit
test smells and their impact on software maintenance. In International

Conference on Software Maintenance (ICSM), pages 56–65, 2012.
[41] David Bowes, Tracy Hall, Jean Petric, Thomas Shippey, and Burak

Turhan. How good are my tests? In Workshop on Emerging Trends

in Software Metrics (WETSoM), pages 9–14, 2017.
[42] Timothy Budd. Introduction to object-oriented programming. Addison-

Wesley, 2008.
[43] Steve Counsell and Peter Newson. Use of friends in C++ software:

An empirical investigation. Journal of Systems and Software, 53:15–21,
2000.

[44] Daniela S. Cruzes and Tore Dyba. Recommended steps for thematic
synthesis in software engineering. In International Symposium on

Empirical Software Engineering and Measurement (ESEM), pages 275–
284, 2011.

[45] Ermira Daka, José Miguel Rojas, and Gordon Fraser. Generating unit
tests with descriptive names or: would you name your children thing1
and thing2? In International Symposium on Software Testing and

Analysis (ISSTA), pages 57–67, 2017.
[46] Michael Feathers. Working effectively with legacy code. Prentice Hall

Professional, 2004.
[47] David Flanagan and Yukihiro Matsumoto. Reflection and Metaprogram-

ming. In The Ruby Programming Language: Everything You Need to

Know, chapter 8. O’Reilly Media, 2008.
[48] Gordon Fraser and Andrea Arcuri. EvoSuite: Automatic Test Suite

Generation for Object-Oriented Software. In 19th ACM SIGSOFT

Symposium and the 13th European Conference on Foundations of

Software Engineering (ESEC/FSE), 2011.
[49] Vahid Garousi and Barış Küçük. Smells in software test code: A

survey of knowledge in industry and academia. Journal of Systems

and Software, 138:52–81, 2018.
[50] James Gosling. The Java language specification. Addison Wesley, 2000.
[51] Georgios Gousios. Java-callgraph: Programs for producing static and

dynamic (runtime) call graphs for Java programs. https://github.com/g
ousiosg/java-callgraph. Accessed: 4/2024.

[52] Martin Gruber and Gordon Fraser. A survey on how test flakiness affects
developers and what support they need to address it. In International

Conference on Software Testing, Verification and Validation (ICST),
pages 82–92, 2022.

[53] Martin Gruber, Muhammad Firhard Roslan, Owain Parry, Fabian
Scharnböck, Phil McMinn, and Gordon Fraser. Do automatic test
generation tools generate flaky tests? In International Conference on

Software Engineering (ICSE), 2024.
[54] Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and

Danny Dig. Usage, costs, and benefits of continuous integration in open-
source projects. In International Conference on Automated Software

Engineering (ASE), 2016.
[55] Javaria Imtiaz, Salman Sherin, Muhammad Uzair Khan, and Muham-

mad Zohaib Iqbal. A systematic literature review of test breakage
prevention and repair techniques. Information and Software Technology,
113:1–19, 2019.

[56] Barbara A. Kitchenham and Shari Lawrence Pfleeger. Personal opinion
surveys. In Forrest Shull, Janice Singer, and Dag I. K. Sjøberg,
editors, Guide to Advanced Empirical Software Engineering, pages 63–
92. Springer, 2008.

[57] Erik Kuefler. Unit Testing. In Titus Winters, Tom Manshreck,
and Hyrum Wright, editors, Software Engineering at Google: Lessons

Learned from Programming Over Time, chapter 12. O’Reilly Media,
2020.

[58] Adriaan Labuschagne, Laura Inozemtseva, and Reid Holmes. Measuring
the cost of regression testing in practice: A study of Java projects using
continuous integration. In 11th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE), pages 821–830, 2017.
[59] Yue Li, Tian Tan, and Jingling Xue. Understanding and analyzing Java

reflection. ACM Transactions on Software Engineering and Methodol-

ogy, 28(2):1–50, 2019.
[60] L. Martins, D. Campos, R. Santana, J. Junior, H. Costa, and I. Machado.

Hearing the voice of experts: Unveiling stack exchange communities’
knowledge of test smells. In International Conference on Cooperative

and Human Aspects of Software Engineering (CHASE), pages 80–91,
2023.

[61] Phil McMinn. Search-based software test data generation: A survey.
Software Testing, Verification and Reliability, 14(2):105–156, 2004.

[62] Louis G. Michael, James Donohue, James C. Davis, Dongyoon Lee, and
Francisco Servant. Regexes are hard: Decision-making, difficulties, and
risks in programming regular expressions. In International Conference

on Automated Software Engineering (ASE), pages 415–426, 2019.
[63] Roy Osherove. Unit Testing Tips — Write Maintainable Unit Tests That

Will Save You Time And Tears. MSDN Magazine, pages 107–118, 2006.
Available online: https://learn.microsoft.com/en-us/archive/msdn-magaz
ine/2006/january/unit-testing-writing-maintainable-unit-tests-save-tim
e-and-tears.

[64] Carlos Pacheco and Michael D. Ernst. Randoop: Feedback-directed
random testing for Java. In OOPSLA Companion: Object-Oriented

Programming Systems, Languages, and Applications, 2007.
[65] Owain Parry, Michael Hilton, Gregory M. Kapfhammer, and Phil

McMinn. Surveying the developer experience of flaky tests. In Interna-

tional Conference on Software Engineering — Software Engineering In

Practice track (ICSE-SEIP), 2022.
[66] Michael Quinn Patton. Enhancing the quality and credibility of quali-

tative analysis. Health services research, 34, 1999.
[67] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,

and Lionel Seinturier. Spoon: A library for implementing analyses and
transformations of Java source code. Software: Practice and Experience,
46(9):1155–1179, 2016.

[68] Leandro Sales Pinto, Saurabh Sinha, and Alessandro Orso. Under-
standing myths and realities of test-suite evolution. In International

Symposium on the Foundations of Software Engineering (FSE), pages
1–11, 2012.

[69] Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn.
Viscount: A direct method call coverage tool for Java. In International

Conference on Software Maintenance and Evolution (ICSME): Tool

Demo Track, 2024.
[70] Devjeet Roy, Ziyi Zhang, Maggie Ma, Venera Arnaoudova, Annibale

Panichella, Sebastiano Panichella, Danielle Gonzalez, and Mehdi Mi-
rakhorli. Deeptc-enhancer: Improving the readability of automatically
generated tests. In International Conference on Automated Software

Engineering (ASE), pages 287–298, 2020.
[71] Sina Shamshiri, José Campos, Gordon Fraser, and Phil McMinn. Dispos-

able testing: Avoiding maintenance of generated unit tests by throwing
them away. In International Conference on Software Engineering

(ICSE), pages 207–209, 2017.
[72] Sina Shamshiri, Rene Just, José Miguel Rojas, Gordon Fraser, Phil

McMinn, and Andrea Arcuri. Do automatically generated unit tests
find real faults? an empirical study of effectiveness and challenges. In
International Conference on Automated Software Engineering (ASE),
pages 201–211, 2015.

[73] Elvys Soares, Márcio Ribeiro, Rohit Gheyi, Guilherme Amaral, and
André Santos. Refactoring test smells with JUnit 5: Why should de-
velopers keep up-to-date? IEEE Transactions on Software Engineering,
49(3):1152–1170, 2023.

[74] Davide Spadini, Maurı́cio Aniche, Margaret-Anne Storey, Magiel
Bruntink, and Alberto Bacchelli. When testing meets code review:
Why and how developers review tests. In International Conference on

Software Engineering, pages 677–687, 2018.
[75] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard

Kok. Refactoring test code. In International Conference on eXtreme

Programming and Flexible Processes in Software Engineering (XP),
pages 92–95, 2001.

[76] Yanming Yang, Xing Hu, Xin Xia, and Xiaohu Yang. The lost
world: Characterizing and detecting undiscovered test smells. ACM

Transactions on Software Engineering and Methodology, 2023.
[77] Ahmadreza Saboor Yaraghi, Darren Holden, Nafiseh Kahani, and Lionel

Briand. Automated test case repair using language models. arXiv

preprint arXiv:2401.06765, 2024.

	Introduction
	Background and Related Work
	Encapsulation, Visibility and Access Modifiers
	Empirical Studies of Test Maintenance
	Test Smells
	Studies into Public API vs Non-Public Method Testing

	Research Questions
	Methodology
	Open-Source Study (RQ1)
	Developer Survey (RQs 2–4).
	StackOverflow Analysis (RQs 2–4)
	Threats to Validity
	Questionnaire Participants
	Questionnaire Evaluation
	Thematic Analyses
	Programming Language
	Test Instrumentation
	Triangulation
	Reproducibility and Replicability

	Results
	RQ1: Open-Source Testing
	RQ2: Stance
	RQ3: Rationale
	RQ4: Practice
	Access Modifiers in Programming Languages
	Approaches to Testing Non-Public Methods
	Tooling

	Discussion
	Further Analyses
	Summary of Findings

	Implications and Future Work
	Software Testing Education
	Behavioral-Driven Testing
	Attitudes to Coverage
	Identifying and Discouraging Testing Anti-Patterns

	Automated Techniques
	Automated Support To Replace Direct Non-Public Calls
	Refactoring Production Code Based on Problematic Tests
	Improved Automated Test Smell Detection Tools
	Automatic Test Generation and Non-Public Methods

	Developer Support
	Stricter Test Frameworks / Build Tools
	IDE support

	Conclusions
	References

