
This is a repository copy of Viscount: a direct method call coverage tool for Java.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/216883/

Version: Accepted Version

Proceedings Paper:
Roslan, M.F., Rojas, J.M. and McMinn, P. orcid.org/0000-0001-9137-7433 (2024) Viscount:
a direct method call coverage tool for Java. In: 2024 IEEE International Conference on
Software Maintenance and Evolution (ICSME). 40th International Conference on Software
Maintenance and Evolution (ICSME 2024), 06-11 Oct 2024, Flagstaff, AZ, USA. Institute of
Electrical and Electronics Engineers (IEEE) , pp. 908-912. ISBN 979-8-3503-9568-6

https://doi.org/10.1109/ICSME58944.2024.00101

© 2024 The Author(s). Except as otherwise noted, this author-accepted version of a paper
published in 2024 IEEE International Conference on Software Maintenance and Evolution
(ICSME) is made available via the University of Sheffield Research Publications and
Copyright Policy under the terms of the Creative Commons Attribution 4.0 International
License (CC-BY 4.0), which permits unrestricted use, distribution and reproduction in any
medium, provided the original work is properly cited. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Viscount: A Direct Method Call Coverage Tool

for Java
Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn

University of Sheffield, UK

Abstract—Writing unit tests against implementation detail
in production code, often embodied in non-public methods, is
considered bad practice in formal and gray literature. This is
because it leads to fragile tests that break easily when underlying
implementation details change. For this reason, tests that focus
on behavior are encouraged. One way to achieve this is to
test units exclusively through their public API. However, our
recent developer survey shows that this advice is not always
followed in practice. Moreover, code coverage tools do not provide
a way to determine which methods were called directly from
tests, meaning there is no easy way to identify whether units
make calls to non-public methods, other than through manual
examination. To address this problem, we developed Viscount, a
tool that can determine direct method call coverage for Java tests
written in JUnit. Viscount reports the percentage of methods
invoked directly from tests, according to their visibility — i.e.,
public or non-public (protected, package-private, or private).
This can help developers and researchers identify tests that
potentially need to be refactored or rewritten. In this paper, we
describe Viscount’s overall architecture, its core features, and
how to use it. Viscount is also publicly available on GitHub:
https://github.com/unittesting-nonpublic/viscount. A demo video
of Viscount is available at: https://youtu.be/ZUyRtiUnbsU.

Index Terms—Access Modifiers, Code Coverage, Test Smells,
Unit Testing.

I. INTRODUCTION

Writing high-quality, effective unit tests is a challenging task

for software developers. When deciding which tests to write,

developers must consider a number of factors, including what

parts of the production code to test and how to test them. In

doing this, developers often aim to achieve high code coverage

and to capture implemented behavior through meaningful

assertions. Guidance and advocacy for writing good unit tests

are plentiful in both formal [15] and gray literature [1].

Among the vast amount of advice available, testing behavior

(i.e., through public methods) instead of implementation de-

tails (often embodied in non-public methods) is a common rec-

ommendation. This is because directly testing the implemen-

tation details underpinning a class leads to tests that are fragile

and prone to breaking when that implementation changes.

Writing tests that call non-public methods that are tightly

coupled to the implementation details of production code has

been documented as a bad practice by researchers in the liter-

ature [16], and also reported as a test “smell” [9], [20], [21].

Despite the existing advice against testing non-public meth-

ods directly, in a previous study we found that 28% of 4,801

open-source Maven projects contained at least one test that

directly calls a non-public production method (i.e., one that

For the purpose of open access, the author has applied a Creative Commons Attribution

(CC BY) license to any Author Accepted Manuscript version arising.

@Test

public void testResize() {

Wallet wallet = new Wallet(2);

Method method = wallet.getClass().getDeclaredMethod

("resize"); // method-under-test

method.setAccessible(true);

method.invoke(wallet);

assertEquals(3, wallet.capacity());

}

Fig. 1. A JUnit test for the resize method of the Wallet class (Fig. 3).

@Test

public void testAddCard() {

Wallet wallet = new Wallet(1);

wallet.addCard(new Card("VISA"));

wallet.addCard(new Card("AMEX"));

assertEquals(2, wallet.size());

}

Fig. 2. A JUnit test for the addCard method of the Wallet class (Fig. 3).

has protected, package-private, or private visibility) [19]. In

the same study, we also performed a developer questionnaire

survey, finding that approximately a third of the 73 participants

are not against the practice of testing non-public methods di-

rectly. Figure 1 exemplifies what this anti-pattern can look like

in practice. Here, the JUnit test testResize uses reflection

to gain access to and execute a private method resize in an

object of a Java class called Wallet. As shown by Figure 3, it

is plausible that the implementation of the Wallet class could

change in the future to use a resizable collection instead of

an array (that the Wallet class needs to maintain the size of

itself). In this scenario, the method resize would be removed

and the test would break, requiring refactoring or removal.

Figure 2 presents an alternative test, testAddCard, that also

involves the wallet resizing beyond its initial capacity when

new cards are added. Here, the method resize is still being

exercised, but this time via the execution of the public method

addCard instead. This test is more realistic because it forms

an explicit contract: if it fails, it implies not only that the code

is broken, but that what end users will receive as an output is

incorrect.

One of the motivations that leads developers to engage in

the practice of testing non-public methods directly is the goal

of trying to achieve higher coverage [19]. As the practice

is more prevalent than expected, it poses serious threats to

the maintainability of a test suite [13]. We argue that one of

the reasons why this is not being addressed is the lack of

tool support to analyze how existing tests achieve coverage.

Once a project has a large number of tests, there is no easy

way to identify non-public methods being directly called.

Code coverage tools such as JaCoCo [2] provide a way to

measure method coverage. However, tools like JaCoCo cannot

public class Wallet {

// ... omitted ...

public Wallet(int initialCapacity) {

cards = new Card[initialCapacity];

size = 0;

}

public void addCard(Card card) {

if (isCardPresent(card)) return;

if (size == cards.length) resize();

cards[size++] = card;

}

private void resize() {

// ... omitted implementation details ...

}

protected int capacity() {

// ... omitted implementation details ...

}

protected boolean isCardPresent(Card card) {

// ... omitted implementation details ...

}

// ... omitted ...

}

Fig. 3. Example of a class named Wallet that can store multiple Card

objects. The public method addCard adds Card objects into the Wallet.
It will not add existing cards (checked via a call to isCardPresent), and
updates the size field, queried to check whether the internal array used to
store cards needs to be resized — implemented in the resize method.

distinguish direct or indirect calls to non-public methods,

because they do not track call hierarchies from tests [3]. In a

smaller-sized project, it is possible to manually analyze each

test case to identify non-public methods being called directly.

However, it is not feasible to analyze projects with thousands

of test cases. To address this problem, we developed Viscount,

a tool that can determine direct method call coverage — i.e.,

the percentage of methods of each level of visibility in Java

that are directly invoked from JUnit tests. Our tool is designed

to help developers identify tests that call non-public methods

directly to facilitate the refactoring of tests and their ongoing

maintenance. Viscount’s core features include:

1) Retrieving every method’s visibility in the production code;

2) Retrieving production methods that are called directly in

test code; and

3) Summarizing direct method call coverage in a clear format.

II. VISCOUNT

Viscount is a tool that allows testers, developers, and

researchers to identify methods directly invoked in their test

suites within a Maven project. It is primarily written in Java

and is invoked through a command-line interface.

Viscount works with Maven projects, parsing the project’s

source code to find every production method’s visibility. It then

installs the Surefire Report plugin to the Maven project (if the

project does not already include it), and sets up an execution

environment with a Java agent that applies instrumentation to

production code and test code. It then runs the project’s test

suite to collect direct method call coverage information about

the tests using this instrumentation. Viscount outputs details

about each production code method’s visibility, the methods

invoked directly by the project’s tests, and a direct method call

coverage report. Viscount is available on GitHub for evaluation

and extension [12].

TABLE I

Production code methods and their visibility for square-javapoet, as outputted
by Viscount in a TSV file.

METHOD VISIBILITY

com.squareup.javapoet.TypeName.isPrimitive() public
com.squareup.javapoet.ClassName.simpleName() public
com.squareup.javapoet.CodeBlockJoiner.join() package-private
com.squareup.javapoet.Builder.isNoArgPlaceholder(char) private

.

.

.

.

.

.

The main entry point of Viscount is a script, viscount.sh.

As part of the tool requirement, the user needs to include the

Maven project’s name, its path, and a directory to output the

results. Suppose the project name is javapoet, the project

is located in the directory /path/to/javapoet, and the

output of the results in the directory /path/to/results.

The command to run the tool would be:

./viscount.sh javapoet /path/to/javapoet /path/to/results

III. DEPENDENCIES

Viscount is primarily built on top of two Java libraries. The

first of these is Spoon [18], a meta-programming library to

analyze and transform Java source code. Spoon parses the

source code to build an abstract syntax tree (AST) meta-model

for performing AST analyses and transformations. It also

provides its own Launcher (application runner), specifically

for Maven-built projects, called MavenLauncher. It loads a

Maven project by reading the pom.xml file and setting up

the project dependencies. Viscount uses Spoon to extract

the visibility of production code methods and to distinguish

between production code and test code. Secondly, we used

Javassist [6], a Java-bytecode analysis library to transform

bytecode at compile or load time. Javassist parses class files

into objects representing the classes, methods, and fields, and

can be used to modify the objects. Modifications can be

done by inserting, deleting, or replacing bytecode instructions,

similar to other Java bytecode frameworks such as ASM [10].

Viscount uses Javassist to instrument production methods and

constructors, and test methods and helpers (inserting probes at

entry and exit points) during test execution.

IV. VISCOUNT’S ARCHITECTURE

Figure 4 depicts the overall architecture of Viscount. We

discuss the tool’s main features, and how it works, in the

following sections. Viscount’s main steps are to:

A. Extract production code method visibility;

B. Include the Surefire Report plugin in the Maven project;

C. Perform runtime instrumentation of the project during test

execution; and

D. Analyze the test reports.

To illustrate the operation of Viscount, we will use the

following two projects as running examples:

1) square-javapoet [5], a Java API to generate .java source

files; and

2) viscount-example, an example project that we created to

demonstrate the tool based around the Wallet class and its

tests, partially shown in Figures 1–3, and which is located

in Viscount repository.

Insert probes:
at the start and end of each

production method/constructor,
and test method/helper

Output ReportsA. Production Code Extractor
Gather every method's visibility in

the production code

B. Modify POM:
Include Maven Surefire

Report Plugin
D. Test Result AnalysisJUnit Surefire Reports

Maven-based Project

C. Execute Tests
('mvn test')
with javaagent

Project info

1. Class Names
2. Test Class Names

Parse JUnit Report

Keep direct calls
from tests

Validate in Test Code

Production Code Method Visibility TSV

Assets

method name visibility

1 method1 public

2 method2 protected

Assets

method invoked test name access modifier

method1 test1 public

method2 test2 protected

Invoked Methods in Test Code TSV

Fig. 4. Overall architecture of Viscount

A. Extracting Production Code Method Visibility

The first step investigates the visibility of each method in

the production code. Viscount starts the analysis by using

Spoon’s MavenLauncher to build the AST of the production

code. This collects every method name and its visibility in all

classes (including nested classes) in the production code (using

Spoon’s CtMethod). It also includes the parameters of each

method to ensure method overloading is correctly handled.

Table I shows an example of the TSV file output of this

step. Since Spoon’s MavenLauncher distinguishes between

production classes and test classes, Viscount stores the names

of each class and its type (production/test) in a temporary file.

This is important information for later execution of the tests

(see Section IV-C).

B. Including Surefire Report Plugin

Before executing the tests, Viscount automatically includes

the Surefire Report plugin [8] as part of the project. This plugin

generates reports for the executed unit tests. Viscount does this

by adding the report plugin to the project’s parent POM.xml file

(a build configuration file used in Maven projects). The plugin

generates test reports, in .xml format, which Viscount uses to

analyze test suites.

C. Runtime Instrumentation and Test Execution

Next, Viscount runs the command “mvn test” to execute

the project’s tests. It attaches a Java agent [11] that dy-

namically inserts instrumentation (probes) into the production

methods and test code using Javassist [6] before the Java Vir-

tual Machine loads the class. Since Viscount is only interested

in direct method call coverage of the production code, it will

only insert probes into methods and constructors for the classes

that are part of the project, and not imported libraries or Java’s

own APIs. The agent uses the information collected in the

previous step to distinguish between the production classes and

test classes, inserting a probe at the beginning and end of each

constructor and method. Viscount does this by using Javaas-

sist’s CtMethod class (representing a method in Java) and

CtConstructor (representing a constructor), and their corre-

sponding insertBefore / insertAfter methods. For each

108 public String newName(String suggestion, Object tag) {

logStartMethod("newName(String,Object)");

109 checkNotNull(suggestion, "suggestion");

110 checkNotNull(tag, "tag");

111 // ... omitted ...

123 return suggestion;

// This is conceptually after the return, but

actually runs before the return in bytecode

logEndMethod("newName(String,Object)");

124 }

Fig. 5. Example of added probes at entry/exit points in a production method.

52 @Test

public void characterMappingSubstitute() throws

Exception {

logStartTest("characterMappingSubstitute()");

53 NameAllocator nameAllocator = new NameAllocator();

54 assertThat(nameAllocator.newName("a-b", 1)).isEqualTo

("a_b");

logEndTest("characterMappingSubstitute()");

55 }

Fig. 6. Example of added probes at entry/exit points in a test method.

production constructor and method, the probe logs its name,

the types of its parameters, and its visibility modifier, on its en-

try and exit points (Figure 5). Since a constructor/method may

exit abnormally upon an exception, Viscount further logs an

exit when an exception is thrown (via the addCatch method

in Javassist’s CtMethod and CtConstructor classes). In the

test code, the agent inserts a probe at the beginning and end of

each test method and helper (Figure 6). During the execution

of the tests, these logs will be included in the test reports

generated by Surefire Report, which will be used in the final

step (discussed in Section IV-D).

The overall process of instrumentation is similar to that

employed by java-callgraph [4] when generating a call graph

dynamically. The current limitation of Viscount, similar to

that of java-callgraph, is that it does not work reliably for

multi-threaded and concurrent programs. This is because the

logs made by probes to denote the start and end of each

method can interleave between threads, causing inaccuracies in

later processing. Therefore, Viscount skips any tests involving

concurrent execution in the analysis, as discussed next.

D. Analyzing Test Reports

The final step for Viscount is to analyze the JUnit XML

test reports generated by the Surefire Report plugin. Since

TABLE II

Production methods directly called by tests for square-javapoet, as outputted by Viscount in a TSV file.

PROJECT TEST CASE (TC) METHOD NAME VISIBILITY ...

javapoet com.squareup.javapoet.TypeNameTest.isPrimitive() com.squareup.javapoet.TypeName.isPrimitive() public ...
javapoet com.squareup.javapoet.UtilTest.characterLiteral() com.squareup.javapoet.Util.characterLiteralWithoutSingleQuotes(char) package-private ...
javapoet com.squareup.javapoet.ClassNameTest.peerClass() com.squareup.javapoet.ClassName.get(java.lang.Class) public ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

<testcase name="isPrimitive" classname="TypeNameTest" ...>

<system-out>

START TEST: com.squareup.javapoet.TypeNameTest.isPrimitive()

Start method call: 1 com.squareup.javapoet.TypeName.isPrimitive()

End method call: 1 com.squareup.javapoet.TypeName.isPrimitive()

Start method call: 137 com.squareup.javapoet.ClassName.get(...)

Start constructor call: 2 com.squareup.javapoet.ClassName(...)

// ... omitted ...

End constructor call: 2 com.squareup.javapoet.ClassName(...)

End method call: 137 com.squareup.javapoet.ClassName.get(...)

// ... omitted ...

Start method call: 137 com.squareup.javapoet.ClassName.get(...)

Start constructor call: 2 com.squareup.javapoet.ClassName(...)

// ... omitted ..

End constructor call: 2 com.squareup.javapoet.ClassName(...)

End method call: 137 com.squareup.javapoet.ClassName.get(...)

// ... omitted ...

END TEST: com.squareup.javapoet.TypeNameTest.isPrimitive()

</system-out>

</testcase>

Fig. 7. Output of TypeNameTest.isPrimitive() test from
square-javapoet in Surefire Report

Viscount inserts the probes to log methods called in both

production and test code, as described previously, it can now

extract the methods that are directly called in the test code

from the logs produced. Figure 7 shows an example of the

output from one test case in the JUnit XML report. To analyze

the report, Viscount parses the XML file and extracts method

names immediately following tests. It discards any methods or

constructors called from other production methods, as these are

not directly invoked. The highlighted methods from Figure 7

are examples of those directly invoked from tests. Finally,

to verify that each method is directly invoked from a test,

Viscount performs a textual search of the tests’s source code

to find a match for the method name. This cross-checks both

regular method calls as well as those made using reflection,

while also revealing any potential unsoundness caused by

concurrent thread execution [4]. The reason Viscount cannot

just employ this simple text check on its own (i.e., without

performing dynamic analysis) is because we cannot reliably

statically determine method calls made using reflection —

performed either directly or via third-party libraries [17].

Finally, Viscount does not include any test cases that failed

or were skipped. It also discards any test for which it could

not find matching entry and exit points or where the points

are interleaved between methods (due to concurrent threads).

Table II shows an example Viscount’s output. Using this

information, Viscount can now calculate the direct method

call coverage. The direct method call coverage is calculated

by dividing the number of unique methods being directly

invoked in the test code by the total number of methods in

the production code, grouped by each type of access modifier,

as shown in Figure 8 for square-javapoet and Figure 9

for viscount-example. In the ideal case, direct method call

coverage for non-public methods will be zero.

public protected package-private private
Visibility

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

250
(75.5%)

2
(0.6%)

54
(16.3%) 25

(7.6%)

199
(60.1%)

0
7

(2.1%) 0

production method
method directly covered in test

Fig. 8. Direct method call coverage of square-javapoet

TABLE III

The visibility of each production method in viscount-example.

METHOD VISIBILITY

wallet.Wallet.capacity() protected
wallet.Wallet.addCard(wallet.Card) public
wallet.Wallet.isCardPresent(wallet.Card) protected
wallet.Wallet.size() public
wallet.Wallet.resize() private
wallet.Example.main(java.lang.String[]) public
wallet.Card.toString() public
wallet.Wallet.toString() public
wallet.Wallet.latestCard() package-private

V. APPLYING THE TOOL

To demonstrate the capability of the tool, we replicate the

analysis on viscount-example. In this example project, there

are two test cases, testResize (Figure 1) and testAddCard

(Figure 2). The production methods and their visibility are

shown in Table III and the methods directly invoked from the

tests are shown in Table IV. As shown by Figure 9, there are

two non-public methods being called directly in the test suite,

indicating to developers that they have tests that are coupled

to implementation details.

We have also applied Viscount on a larger scale (4,801

projects) to evaluate the tool [19]. These projects are Maven-

built projects from the Maven Central Repository [7] that

contain at least one passing test with source code available

on GitHub. We extracted the visibility of each method in the

production code and identified the methods directly called in

the test code. We were able to analyze 226,915 tests from

4,801 projects. We found that 28% of the projects have at

least one direct call to a non-public method in the test code.

Overall, 3.73% of methods directly called in the tests across

all projects are non-public methods.

VI. CURRENT LIMITATIONS

As discussed in Section IV-C, Viscount cannot compute

direct method call coverage for test cases that execute multi-

threaded code. This is because it cannot guarantee the entry

TABLE IV

Production methods directly called by tests for viscount-example, as out-
putted by Viscount in a TSV file.

... TEST CASE (TC) METHOD NAME VISIBILITY ...

... ...testAddCard() ...addCard(wallet.Card) public ...

... ...testAddCard() ...size() public ...

... ...testResize() ...resize() private ...

... ...testResize() ...capacity() protected ...

public protected package-private private
Visibility

0

20

40

60

80

100

Pe
rc

en
ta

ge
 (%

)

5
(55.6%)

2
(22.2%)

1
(11.1%)

1
(11.1%)

2
(22.2%)

1
(11.1%)

0

1
(11.1%)

production method
method directly covered in test

Fig. 9. Direct method call coverage of viscount-example

and exit points of each method do not interfere with other

methods. Additionally, since Viscount executes a project’s tests

with instrumentation (inserting probes at entry and exit points)

to both production code and test code, the execution time of

the tests can take a long time for projects that include recursive

calls. One potential solution to each of these limitations is to

statically analyze the call graph of each test method/helper to

determine the direct method calls [14]. However, as already

noted, most techniques based on static call graphs cannot

identify methods invoked through reflection [17]. Finally, as

we used Spoon’s MavenLauncher to analyze the source code,

the tool does not support other build systems, such as Gradle

or Ant. We leave these as items for future work.

VII. RELATED TOOLS

JaCoCo [2], a popular code coverage tool for Java pro-

vides a way to measure method coverage. Since it works

independently and does not rely on any build tools (e.g.

Maven, Gradle), it cannot distinguish direct or indirect calls

to production methods as it does not track call hierarchies [3],

and therefore cannot be used to find direct calls to non-public

methods in tests or be used to compute direct method call

coverage. Yang et. al. [21] developed a test smell detector that

can statically detect direct invocation of a private method in

test code. Unlike Viscount, their test smell detector could only

detect private methods that are being directly called in the test

code, whereas Viscount can detect all levels of visibility in the

Java language.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presents Viscount, a tool to help developers

analyze which methods are being directly called from tests. It

can aid in identifying tests that exercise non-public methods

directly (i.e., protected, package-private, and private methods

in Java), which is considered a bad practice in unit testing.

The general aim is to help developers identify tests that

focus on implementation details as opposed to behavior when

maintaining tests. In summary, Viscount:

1) Retrieves every production method and its visibility;

2) Identifies directly called methods in the test code; and

3) Calculates direct method call coverage of the production

code by the tests for each visibility modifier.

Future work could improve Viscount’s report generation and

enhance its handling of different types of members (which

include fields, constructors, and classes) that are directly called

from the test code. It could also extend the tool by incor-

porating static analysis (Spoon [18]) and bytecode analysis

(SootUp [14]) to identify methods directly invoked by the tests,

complementing or replacing aspects of dynamic test execution.

This could improve the tool’s efficiency and reduce the time

taken to analyze test code.

ACKNOWLEDGEMENTS

Muhammad Firhard Roslan receives PhD funding from the

Majlis Amanah Rakyat (MARA). Phil McMinn is supported,

in part, by the EPSRC grant “Test FLARE” (EP/X024539/1).

REFERENCES

[1] Google Testing Blog — The advantages of unit testing early. https:
//testing.googleblog.com/2009/07/by-shyam-seshadri-nowadays-when-i
-talk.html. Accessed: 8/2024.

[2] JaCoCo code coverage tool. https://www.jacoco.org/jacoco/. Accessed:
8/2024.

[3] JaCoCo Coverage of methods being invoked directly from a test case.
https://groups.google.com/g/jacoco/c/x4OGEGPyi3E. Accessed: 8/2024.

[4] Java-callgraph: Programs for producing static and dynamic (runtime) call
graphs for Java programs. https://github.com/gousiosg/java-callgraph.
Accessed: 8/2024.

[5] JavaPoet. https://github.com/square/javapoet. Accessed: 8/2024.
[6] Javassist. https://www.javassist.org. Accessed: 8/2024.
[7] Maven Central Repository. https://repo.maven.apache.org/maven2/.

Accessed: 8/2024.
[8] Maven Surefire Plugin. https://maven.apache.org/surefire/maven-surefir

e-plugin/. Accessed: 8/2024.
[9] The Open Catalog of Test Smells. https://test-smell-catalog.readthedo

cs.io. Accessed: 8/2024.
[10] OW2. 2024. ASM. https://asm.ow2.io/. Accessed: 8/2024.
[11] Package java.lang.instrument. https://docs.oracle.com/javase/8/docs/api/

java/lang/instrument/package-summary.html. Accessed: 8/2024.
[12] Viscount. https://github.com/unittesting-nonpublic/viscount. Accessed:

8/2024.
[13] Javaria Imtiaz, Salman Sherin, Muhammad Uzair Khan, and Muham-

mad Zohaib Iqbal. A systematic literature review of test breakage
prevention and repair techniques. In IST, 113:1–19, 2019.

[14] Kadiray Karakaya, Stefan Schott, Jonas Klauke, Eric Bodden, Markus
Schmidt, Linghui Luo, and Dongjie He. Sootup: A redesign of the soot
static analysis framework. In TACAS, pages 229–247, 2024.

[15] Lasse Koskela. Effective Unit Testing: A guide for Java developers.
Manning, 2013.

[16] Erik Kuefler. Unit Testing. In Titus Winters, Tom Manshreck,
and Hyrum Wright, editors, Software Engineering at Google: Lessons

Learned from Programming Over Time, chapter 12. O’Reilly, 2020.
[17] Davy Landman, Alexander Serebrenik, and Jurgen J Vinju. Challenges

for static analysis of Java reflection — literature review and empirical
study. In Proc. of ICSE, pages 507–518, 2017.

[18] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera,
and Lionel Seinturier. Spoon: A library for implementing analyses
and transformations of Java source code. In Software: Practice and

Experience, 46(9):1155–1179, 2016.
[19] Muhammad Firhard Roslan, José Miguel Rojas, and Phil McMinn.

Private — keep out? Understanding how developers account for code
visibility in unit testing. In Proc. of ICSME, 2024.

[20] Arie Van Deursen, Leon Moonen, Alex Van Den Bergh, and Gerard
Kok. Refactoring test code. In XP, pages 92–95, 2001.

[21] Yanming Yang, Xing Hu, Xin Xia, and Xiaohu Yang. The lost world:
Characterizing and detecting undiscovered test smells. In TOSEM, 2023.

	Introduction
	Viscount
	Dependencies
	Viscount's Architecture
	Extracting Production Code Method Visibility
	Including Surefire Report Plugin
	Runtime Instrumentation and Test Execution
	Analyzing Test Reports

	Applying the Tool
	Current Limitations
	Related Tools
	Conclusions and Future Work
	References

