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A global‑scale applicable framework of land‑
slide dam formation susceptibility

Abstract  The formation and failure of landslide dams is an impor-
tant and understudied, multi-hazard topic. A framework of land-
slide dam formation susceptibility evaluation was designed for 
large-scale studies to avoid the traditional dependence on land-
slide volume calculations based on empirical relationships, which 
requires comprehensive local inventories of landslides and land-
slide dams. The framework combines logistic regression landslide 
susceptibility models and global fluvial datasets and was tested in 
Italy and Japan based on landslide and landslide dam inventories 
collected globally. The final landslide dam formation susceptibility 
index identifies which river reach is most prone to landslide dam 
formation, based on the river width and the landslide suscepti-
bility in the adjacent delineated slope drainage areas. The logistic 
regression models showed good performances with area under 
the receiver operating characteristics curve values of 0.89 in Italy 
and 0.74 in Japan. The index effectively identifies the probability of 
landslide dam formation for specific river reaches, as demonstrated 
by the higher index values for river reaches with past landslide 
dam records. The framework is designed to be applied globally or 
for other large-scale study regions, especially for less studied data-
scarce regions. It also provides a preliminary evaluation result for 
smaller catchments and has the potential to be applied at a more 
detailed scale with local datasets.

Keywords  Landslides · Landslide dams · Global scale · 
Susceptibility · Fluvial datasets · River hazards

Introduction
Landslide dams (LDams) represent a river blockage hazard caused 
by landslides obstructing river channels; LDams are frequently 
reported in international literature, particularly in mountainous 
regions with narrow river channels and steep hillsides in upstream 
catchment areas (Costa and Schuster 1988; Scarascia Mugnozza 
et al. 2006; Della Seta et al. 2017; Fan et al. 2020; Wu et al. 2022). Most 
LDams can form and collapse within a short period, ranging from 
a few hours to a month, potentially causing significant flooding 
consequences. These floods result from upstream backwater floods 
above the blockage, and/or the breach or failure of the LDams, as 
well as the long-term effects on local geomorphological and hydro-
logical conditions as a result of interactions between the hillslopes 
and fluvial systems (Costa and Schuster 1988; Korup 2002, 2004; 
Scarascia Mugnozza et al. 2006; Fan et al. 2012, 2020; Della Seta et al. 
2017; Wu et al. 2022). To predict and manage the LDam-related risks, 
it is therefore imperative to predict which specific river reaches are 
most likely to experience these events.

Evaluating the statistical probability of LDam formation on a 
local to regional scale has been the focus of many studies, which 
can be summarised into three major approaches: 1) damming 
probability classification based on expert opinion; 2) river blockage 
index establishment based on the empirical relationships of the 
landslide (deposit) volume and other related parameters; 3) the 
combination of probabilities related to LDam formation processes 
(source–pathway–receptor), including slope failure processes, 
landslide mass movement, and mass deposition in the channel.

The first approach, damming probability classification, identi-
fies the final probability of LDam formation as qualitative meas-
urements, and it relies on the expert experience. For example, van 
Westen et al. (2020) established several standards for classifying 
landslide damming potential in Dominica, including the evidence 
of LDam records, potential LDam occurrence probability, and other 
relevant geomorphological criteria of LDam formation.

In the second approach, the river blockage indexes is a measure-
ment of LDam formation probability or stability directly estimated 
from related parameters, such as landslide volume, valley width, land-
slide velocity, catchment area, and dam height (see Table 1). Examples 
of these indexes are summarised in Table 1. Argentin et al. (2021) 
compared six different river obstruction and LDam stability indices 
for analysing the LDam records in the Austrian Alps and found their 
results are not consistent when compared to previous research, which 
is similar to the results in Eastern European Alps (Dufresne et al. 
2018). Fan et al. (2020) compared various dam formation and stabil-
ity indexes and found none of them is satisfactory for their newly 
complied global-scale LDam dataset. Among all the parameters used 
to establish such an index, landslide (or LDam) volume is the most 
frequently applied. From Table 1, fluvial characteristics such as drain-
age area and river width are also identified as important variables.

The third approach is the LDam formation probabilities 
approach, which attempts to generate a final probability by combin-
ing the effects of various related processes. Fan et al. (2014) calcu-
lated the dam formation landslide (DFL) susceptibility from three 
specific LDam formation-related processes: i) whether the slope is 
prone to slope failures; (ii) whether the landslide mass can travel far 
enough to reach the fluvial channel; and (iii) whether the landslide 
volume is sufficient to form a LDam. Another method is proposed 
by Tacconi Stefanelli et al. (2020), who evaluated the LDam forma-
tion probability of landslides by using damming predisposition and 
damming probability and combined the separate LDam formation 
processes into a single susceptibility index.

These efforts exploring the LDam formation probability either 
require comprehensive records with landslide dimension data or 
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rely heavily on empirical formulas based on local conditions and 
expert knowledge. It is challenging to prepare data in the absence 
of prior events, especially for large-scale research, for which 
detailed inventories of landslides/LDams are usually unavailable. 
Moreover, most previous research has focused predominantly on 
the surrounding hillslopes to predict the damming probability of 
potential landslides or current landslide reactivation, rather than 
identifying the LDam formation probability for the prone river 
reaches. Most current LDam and landslide records are only recorded 
as point locations, which makes it difficult to calculate the landslide 
dimension data for large-scale research that is needed to identify 
which river reach is most prone to having LDams form. Besides, 
the river blockage index derived from regional-scale studies may 
not apply to other datasets and its application accuracy may not 
be reliable. Dufresne et al. (2018) found that the previous LDam 
stability thresholds were applicable to some large rockslide dams 
in the European Alps. Cencetti et al. (2020) showed that such an 
index is hard to generalise as it was generated from specific local 
geomorphological and hydrological conditions. Struble et al. (2021) 
also found that the dam stability index from another study did not 
fit with their LDam records in Western Oregon and so as the scaling 
relationship between the upstream catchment area and landslide 
dam size.

This research addresses LDams as a global-scale multi-hazard 
by developing a framework of LDam formation susceptibility 
evaluation, based on slope drainage units that can be applied 
globally by combining a landslide susceptibility evaluation with 
global fluvial datasets to address the research gaps identified above. 
The framework output is the LDam formation susceptibility for 
the river reaches themselves, not just the slopes above. To test the 
framework effectiveness, the comprehensive data available from 
Italy (1,027,802 records, 58.7% of total available global landslide 
records) and Japan (359,384 records, 20.5% of total available global 
landslide records) are used to develop the framework given the 
limited numbers of robust datasets from elsewhere (for more 
details of landslide records distribution across all the countries 
and regions, a visualisation is provided in Section  1.2 in the 
Supplementary document). These two countries are chosen, as 

the landslides are widespread in the countries and well studied. 
Another reason is that their national-scale landslide records 
are available as open access to the public. The similarity of land 
areas, climate, geomorphology, geology, and tectonic conditions 
partially contributes to the control of certain large-scale 
constraints (Table 2). The susceptibility evaluation results using 
collected landslide and LDam records have been also validated. 
Therefore, such a developed framework uses global-scale climate, 
geomorphological and fluvial datasets, and can be applied in the 
traditionally data-scarce areas to understand which river reaches 
globally are most prone to LDam formation.

Data sources

Landslide and LDam datasets
A total of more than 1 million landslide records and 779 LDam 
records, most of which are geolocated, were collected globally 
from both landslide and LDam datasets, covering different spatial 
scales. The details of the datasets used are provided in Table 3. For 
LDam records, they also included the information of the DFL and 
thus can be used as a subset for further landslide data training. For 
most landslide records collected globally, there is currently no more 
detailed information of landslide types, scale etc. These records 
were utilised to identify the appropriate input variables for a land-
slide susceptibility evaluation model applied in different regions, 
creating training datasets for establishing the model and validating 
the susceptibility results.

Global fluvial datasets

Global fluvial datasets have been developing rapidly in the past dec-
ade (Lehner and Grill 2013; Yamazaki et al. 2014; Allen and Pavelsky 
2018; Linke et al. 2019; Yamazaki et al. 2019; Frasson et al. 2019; Feng 
et al. 2022). According to the previous global-scale LDam dataset 
research by Wu et al. (2022), global fluvial datasets provide a more 
reliable and consistent data source for determining river width 

Table 1   River blockage indexes for estimating the probability of LDam formation or stability

River blockage index Geomorphological parameters used other than 
landslide or LDam volume

Reference

Annual constriction ratio Landslide velocity, valley width Swanson et al. (1986)

Dimensionless blockage index Catchment area, dam height Ermini and Casagli (2003)

Blockage index Catchment area Canuti et al. (1998), Casagli and Ermini (1999)

Morphological obstruction 
index

Valley width Tacconi Stefanelli et al. (2016, 2018)

Backstow index Landslide height (maximum crest height of the 
LDam)

Korup (2004)

Catchment ruggedness-based 
indices (CRBI)

Catchment area, mean slope of the catchment, 
Melton ruggedness number, the mean height of 
the dam, the width of the dammed valley, run-out 
distance

Shafieiganjeh et al. (2022)
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compared to estimating it through a simple empirical relationship 
between drainage area and river width. This was demonstrated by 
Frasson et al. (2019), who showed significant variations in results 
between catchments across different regions when compared to 
directly applying a single relationship.

Multiple global fluvial datasets were included in several stages 
in this research: MERIT Hydro, a global fluvial dataset contain-
ing the data of river width at a resolution of 90 m (Yamazaki et al. 
2019), was used for the river width data for the LDam formation 
susceptibility evaluation model establishment; HydroBASINS, the 
catchment boundaries and sub-basin delineations derived from 
HydroSHEDS data with 12 scales/levels (Lehner and Grill 2013), was 
utilised to further delineated the slope drainage area; HydroAT-
LAS, a global compendium of hydro-environmental characteristics 
for all sub-basins of HydroBASINS (Linke et al. 2019), was used 
to explore related basin characteristic variables for the landslide 
susceptibility evaluation model establishment.

Methods
The LDam formation susceptibility framework consists of four 
main stages, as shown in Fig. 1 and outlined here, but followed 
below by a more detailed description of each stage (with further 
detail in the Supplementary material Section 1.1). Firstly, all nec-
essary data was collected, and the study areas were prefiltered to 
identify locations susceptible for LDam formation, specifically 
where local conditions are prone to LDam formation, and a previ-
ous landslide record exists within the catchment. Secondly, there are 
two processing steps that proceed in parallel: 1) further delineating 
slope drainage units as the main calculation unit by using Pfaf-
stetter, based on the current HydroBASIN sub-catchments and the 
forest and buildings removed Copernicus digital elevation model 
(FABDEM, Hawker et al. 2022); 2) performing a landslide suscepti-
bility evaluation based on the collected landslide records, including 
variable exploration and selection, logistic regression modelling, 
validation, and optimal threshold extraction. Thirdly, the delineated 

slope drainage units are then categorised into river units and adja-
cent slope units based on their locations and the median landslide 
susceptibility index extracted from each slope drainage unit to 
represent the landslide occurrence probability of each delineated 
slope drainage unit. Fourthly and finally, the landslide susceptibil-
ity index (LSI) around a specific river reach was derived by first 
accumulating the landslide occurrence probability on all adjacent 
slope drainage units around the reach, which was further combined 
with area of each unit and the river width data from global fluvial 
datasets to calculate the spatial probability of LDam formation on 
each river reach.

Initial area prefiltering for LDam formation study

Prefiltering the study area for the LDam formation susceptibility 
evaluation beforehand is essential to minimise unnecessary com-
putational workload in large-scale modelling. Dikshit et al. (2019) 
proposed a rainfall threshold of 350 mm over 30 days for landslide 
susceptibility in the Bhutan Himalayas. Variations in geomorpho-
logical data due to the location of landslides or LDam records were 
documented (Jibson and Harp 2012; Tacconi Stefanelli et al. 2018), 
and areas with existing landslide and LDam records were prefil-
tered to mitigate data bias from regional difference. Moreover, Wu 
et al. (2022) identified unique dimensions and geomorphological 
features of LDams, such as the landslide height/length ratio, and 
suggested a threshold for LDam formation based on the relation-
ship between river width and landslide volume, indicating limited 
damming potential in wider river reaches.

LDam formation zones must meet prerequisites of (i) potential land-
slide occurrence and (ii) the presence of a river with blockable width in 
the surrounding area. Prefiltering criteria include landslide and LDam 
records within a 19-km radius (Wu et al. 2022), climate conditions 
conducive to active rivers or landslides, and exclusion of continental 
coastlines to correct for potential underrepresentation in global river 
datasets (Yamazaki et al. 2019). The schematic figure of the prefiltering 
method and the results are shown in Fig. 2 with more details of the 

Table 2   Environmental parameters of Italy and Japan

Italy Japan

Land area (km2) 302,073 377,973

Mean annual rainfall (mma−1) More than 3000 (European Alps, Palladino et al. 
2018), to lower than 800 (Sicily, Melillo et al. 
2016)

1000–4500 (Saito et al. 2014)

Mean annual temperature 
(°C)

13.5 12.36

Geology and landforms Mountain areas dominated by metamorphic and 
sedimentary rocks in the Alps, marly-limestones 
and flysch in the Apennines. Volcanic and meta-
morphic rocks mainly outcrop in Sardinia and 
Calabrian mountains.

Mountain areas dominated by recent volcan-
ics with Neogene sedimentary rocks forming 
lower ground

Tectonics Compressional tectonics are represented in some 
parts of the alpine regions while extensional 
tectonics dominate the central to southern 
Apennines.

Compressional tectonics
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prefiltering procedures illustrated in Supplementary document Sec-
tion 1.4. The methods were performed based on the level-12 HydroBA-
SINS sub-catchments products, which have an average area of 130.5 km2 
because the level-12 sub-catchments are the highest resolution.

Slope drainage unit delineation

Selecting a proper mapping unit is crucial to map the spatial prob-
ability of hazard susceptibility modelling (Guzzetti et al. 2005). 

Reichenbach et al (2018) categorised previous research into seven 
types of mapping units, finding that grid units (86.4%), slope units 
(5.1%), and unique condition units (4.6%) were most commonly 
used. However, comparisons between grid units, slope units, and 
subbasin units are still being evaluated. Grid units are predomi-
nantly used in statistical hazard susceptibility models, but slope 
units, effective for regional mapping, are still being refined for 
consistent performance (Jacobs et al. 2020). Erener and Duzgun 
(2011) found that a model mapped with slope units had a better 

Table 3   Datasets of landslide and LDam records

Name Time coverage Scale (area) Number of landslide 
records/events

Contributors

FraneItalia From January 2010 to 
2017

National (Italy) 5438 (single) + 1787 (areal) Calvello and Pecoraro 
(2018)

Dufresne (unpublished 
inventory)

- Global 179 Dufresne et al. (2021)

CAmpi Flegrei 
LAndslide Geodatabase 
(CAFLAG)

1828–2017 Local (Campi Flegrei 
caldera, Italy)

2302 Italian National Research 
Council (CNR) (Esposito 
and Matano 2021)

Landslide Inventories 
across the USA

1900–2019 National (USA) 64,433 Jones et al. (2019)

Global Landslide 
Catalog (GLC)

2007–2019 Global 14,532 Kirschbaum et al. (2015)

High Mountain Asia 
Landslide Catalog 
V001(HMS_LS)

1956–2018 Regional (Asia) 12,755 Kirschbaum (2019)

Italian Catalogue of 
Earthquake-Induced 
Ground Failures (CEDIT)

1169–2019 National (Italy) 2077 Martino et al. (2022)

Digital Archive for 
Landslide Distribution 
Maps

1981–2014 National (Japan) 359,387 mass movement 
polygons

National Research Institute 
for Earth Science and 
Disaster Prevention of 
Japan (2014, accessed in 
2022)

Landslide Inventories 
from An Open Repository 
of Earthquake-Triggered 
Ground-Failure 
Inventories

Since 1900 Global (event based) 356,497 geolocated data Schmitt et al. (2017)

Rockslides and Rock 
Avalanches of Central 
Asia

- Regional (Middle Asia) 1016 Strom and Abdrakhmatov 
(2018)

IFFI project (Italian 
Landslide Inventory)

1116–2017 National (Italy) 620,808 Trigila et al. (2010)

Landslides in Dominica - National (Dominica) 10,551 van Westen and Zhang 
(2018)

River Augmented 
Global Landslide Dams 
(RAGLAD)

Since eighth century Global 779 Wu et al. (2022)
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performance compared to those based on grid cells. Martinello 
et al. (2022) found that all three slope unit delineation methods 
they tested maintained excellent predictive performance com-
pared to pixel-based models. Palau et al. (2020) observed that 
the effectiveness of gridded landslide susceptibility mapping 
decreases with resolution, while subbasin methods performed bet-
ter at 100-m resolution. The transferability of some automatic unit 
delineation methods for mapping susceptibility requires further 
validation, as van Westen et al. (2020) found that the landslides in 
Dominica did not fit the automatic slope unit delineation method 
from Alvioli et al. (2020) because of inconsistencies. All mapping 
units have their pros and cons, so the selection of mapping units 
relies on multiple factors, such as the study’s purpose, computation 
cost, and model performance.

For this study, the classic hydro-morphological unit is applied, 
named as a slope drainage unit, based on an automatic subbasin 
coding method, Pfafstetter (Verdin and Verdin 1999). This unit 
combines hillslope processes and river processes, essential for 
LDam formation studies, where sediment and flow accumulate 
within each unit at a common outlet. Although HydroBASINS prod-
uct offers subcatchments delineated with a 90-m resolution digital 
elevation model (DEM) (Lehner and Grill 2013), higher-resolution  
delineations were performed using the FABDEM at 30 m (Hawker 
et al. 2022) via the pyflwdir package (Eilander et al. 2021). The reliability 
of these delineations was confirmed by comparing the FABDEM-
derived units with high-resolution LiDAR-derived catchments in 
Dominica, showing an 81.3% overlap (Trigg et al. 2023) (see Fig. 3). 

The main discrepancies occurred along the coast, which is less criti-
cal for LDam formation modelling.

Following the validation, slope drainage units were further 
separated into river units and adjacent slope drainage units for 
LDam formation susceptibility calculations. The river units are 
those slope drainage units that intersect with river reaches from 
the global fluvial datasets and the adjacent slope units are those 
units that sit immediately adjacent to the boundaries of the river 
units (see Fig. 4). The approach provides a geomorphology-based 
buffer zone instead of a simple distance-based buffer zone for 
defining areas susceptible to LDam formation.

Landslide susceptibility evaluation model

Landslide susceptibility describes the spatial probability of land-
slide occurrence in a given location based on a set of specific 
geomorphological and environmental conditions (Guzzetti et al. 
2005). Because input data and calibration for these physically based 
models are not practical for large-scale regional studies, especially 
global scale, statistical-based methods are more widely applied 
in the large-scale landslide susceptibility evaluation (Nadim et al. 
2006; Stanley and Kirschbaum 2017; Lin et al. 2017).

The logistic regression model is commonly applied in previous 
landslide susceptibility evaluation studies and was demonstrated 
to be efficient at various spatial scales from local to global scale 
(Ayalew and Yamagishi 2005; Rossi et al. 2010; Dou et al. 2015; 
Budimir et al. 2015; Lin et al. 2017; Raja et al. 2016). For large-scale 

Fig. 1   Schematic figure of research methods for establishing the LDam formation susceptibility framework by combining the landslide sus-
ceptibility model and global fluvial datasets (a visualisation of this framework with more details is shown in Section 1.1 of the Supplementary 
document)
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landslide susceptibility modelling, the further delineation of land-
slide types and triggers is normally not considered during the 
modelling methods (Nadim et al. 2006; Lin et al. 2017). The logistic 
regression model predicts the probability of a landslide occurrence 

at specific locations based on the relationship between landslide 
occurrences and related variables. The general formulas of the 
logistic regression model for landslide susceptibility evaluation, 
based on grid cell units, are described in Eqs. (1) and (2):

Fig. 2   Schematic figure of the prefiltering of the LDam formation study area: the areas near landslides and rivers with blockable width, 
excluding coastal areas and areas in unsuitable climate zones. The 19-km search radius is a likely maximum envelope for DFL travel (Wu et al. 
2022)

Fig. 3   Validation of FABDEM delineated slope drainage units against catchments derived from Dominica: a river catchment delineation result 
based on LiDAR data (Trigg et al. 2023); b slope drainage unit delineation result by Pfafstetter method based on FABDEM data; c boundary 
difference areas of the two datasets are highlighted in pink
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The output value P (landslide occurrence) in Eq. (1) of a logistic 
model ranges from 0 to 1, typically described as the landslide sus-
ceptibility index (LSI), which shows the spatial probability of future 
landslide occurrence at a given location. If the LSI value approaches 
1, it means that the given location is more likely to have a landslide 
occurrence; if the LSI is close to 0, it means that the given location 
has much less probability of landslide occurrence. z is a depend-
ent variable that reflects landslide occurrence based on all input 
variable x

n
 . �

n
 is the coefficient of a specific variable measuring the 

importance of the final evaluation result based on the past landslide 
records (the coefficient is the constant when n = 0).

According to Martinello et al. (2020), grid-cell units appear to be 
the more suitable measurement unit for modelling, while dimen-
sionally appropriate slope units seem to be the most effective way 
to generate accurate landslide susceptibility maps. Therefore, a few 
studies have combined these two types of units together to achieve 
the final landslide susceptibility evaluation result (Domènech et al. 
2019; Martinello et al. 2020). In our study, the final LSI evaluation 
result is modelled and assessed based on the grid cell first. The 
result of the grid cell approach was then aggregated to identify the 
LSI based on the delineated slope drainage unit by assigning the 
median LSI value within each slope drainage area to present the 
spatial probability for the whole unit.

Variable exploration for landslide susceptibility evaluation

Previous research can provide a foundation for selecting appro-
priate variables to evaluate landslide susceptibility by identifying 
potentially useful characteristics. Variables that were applied in 
previous landslide susceptibility studies mainly came from the 
research fields related to the conditions required for landslide 
occurrence, such as geology, hydrology, land cover, and geomor-
phology (Reichenbach et al. 2018). The variables were explored by 
accessing the correlation between multiple variables to landslide 

(1)P(landslide occurrence) =
1

1 + e−z

(2)z = �0 + �1 × x1 + �2 × x2 … … �
n
× x

n

occurrence using global-scale HydroALTAS dataset (Linke et al. 
2019), details of which can be found in Supplementary material 
Section 1.3.

The final 11 selected variables for landslide susceptibility evalu-
ation are river area, elevation, slope, curvature, air temperature, 
precipitation, landcover classes, potential natural vegetation classes, 
clay fraction in soil, lithological classes, and soil erosion rate. The 
vegetation type and land cover can be considered two different 
variables for landslide susceptibility evaluation according to the lit-
erature reviews (Guzzetti et al. 1999; Reichenbach et al. 2018). All the 
numerical variables were transformed with a quantile transformer 
to make them dimensionless and to improve the performance of 
the predictive models, as this data transformation is a robust pre-
processing scheme and makes the variables measured at different 
scales more directly comparable (Pedregosa et al. 2011).

Data sources of landslide susceptibility evaluation variables

The data sources for the selected variables mainly kept with the 
same data sources as HydroALTAS or the updated version of origi-
nal datasets after the HydroALTAS released (Linke et al. 2019). The 
data sources of DEM and land cover variables were replaced with 
higher-resolution data sources, including the 30-m resolution FAB-
DEM (Hawker et al. 2022), 30-m resolution FROM-GLC (Finer Reso-
lution Observation and Monitoring of Global Land Cover, Gong 
et al. 2013), and 1-km resolution Global Maps of Potential Natu-
ral Vegetation (Hengl et al. 2018). All these data sources are open 
access, and their information is provided in Table 4.

Spatial resolution for landslide susceptibility evaluation model-
ling process is determined by considering the detailed degree of the 
mapping details of landslide and LDam records and the collected 
data. A 30-m resolution was selected for grid-cell based landslide 
susceptibility evaluation modelling as this was the highest underly-
ing resolution of most of the utilised global data sources. This reso-
lution represents the potential probability of landslide occurrence 
well, as more than 50% landslides that blocked the river have an 
area less than 175,000 m2 (Wu et al. 2022), which is approximately 
20 cells at a 30-m resolution.

Fig. 4   Example figure showing the identification of the river unit and adjacent slope drainage units from the delineated slope drainage units: 
a river reach and intersected river units; b adjacent slope units to a single river unit
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Training dataset preparation

The first assumption of statistical-based methods for susceptibility 
evaluation is that the past is the key to the future (Guzzetti et al. 
2005), so a training dataset based on landslide records needs to 
be prepared for modelling. We took all the landslide records from 
collected datasets as the landslide samples for two detailed study 
regions, Italy and Japan. There were more than 1 million landslide 
records in Italy, with 300 thousand landslide records in Japan.

Only a few researchers focused on exploring the sampling 
method of landslide susceptibility evaluation (Kornejady et al. 
2017; Shao et al. 2020). The ratios of non-landslide/landslide sam-
ple greatly affect the occurrence probability of landslides. Shao 
et al. (2020) found that the landslide susceptibility model predic-
tion is almost consistent with the actual ratio of landslide area 
based on the seismic landslides that occurred in the 2013 Lushan 
earthquake when the ratio is 1, which means the number of non-
landslides is equal to the number of landslides. Therefore, we kept 

the non-landslide sample with the same number as the landslide 
samples. The non-landslide sample was selected by the spatially 
balanced sampling method on the area within the initial filtered 
area but excluded the landslide areas.

Validation and optimal threshold extraction

The ROC (receiver operating characteristics) curve was applied to 
validate the model performance of logistic regression model for the 
modelling result in Italy and Japan, respectively. The ROC curve is a 
quantitative measure to evaluate the performance of the evaluation 
model by calculating the value of the area under the curve (AUC) 
and has been shown as a reliable tool for the landslide susceptibil-
ity evaluation model (Vakhshoori and Zare 2018). The ROC curve 
provides an analysis based on true positive rate (TPR) and false 
positive rate (FPR) at any classification threshold of the deline-
ated result. The ROC curve has been widely applied in the valida-
tion of landslide susceptibility models and measurement of model 

Table 4   Data source information of input variables for landslide susceptibility

Index Category Variable Special resolution Data source (reference) Updated from 
HydroALTAS data 
sources

1 Hydrology River area 500 m HydroALTAS (Linke et al. 
2019)

N

2 Geomorphology Elevation 30 m FABDEM (Hawker et al. 
2022)

Y

3 Slope 30 m FABDEM (Hawker et al. 
2022)

Y

4 Curvature 30 m FABDEM (Hawker et al. 
2022)

Y

5 Climate Air temperature 30 arc-second (1 km) WorldClim 2.1 (Fick and 
Hijmans 2017)

Y-version updated of the 
same data source

6 Precipitation 30 arc-second WorldClim 2.1 (Fick and 
Hijmans 2017)

Y-version updated of the 
same data source

7 Landcover Land cover classes (all 
landcover type)

30 m FROM-GLC (updated ver-
sion in 2017) (Gong et al. 
2013)

Y

8 Potential natural vegetation 
classes (vegetation type)

1 km Global Maps of Potential 
Natural Vegetation at 
1-km resolution (Hengl 
et al. 2018)

Y

9 Soil and geology Clay fraction in soil 1 km Soilgrid1km (Hengl et al. 
2014)

N

10 Lithological classes 30 arc-second GLiM—Global Lithologi-
cal Map (Hartmann and 
Moosdorf 2012)

N

11 Soil erosion 100 m High resolution crop-
land global soil erosion 
(GloSEM 1.3) (Borrelli 
et al. 2022)

Y-version updated of the 
same data source
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applicability (Lin et al. 2017; Raja et al. 2016). If the area under the 
ROC curve (AUC) value is above the value of 0.5, which is the value  
of the random classifier, it shows that the model has better per-
formance than the random classifier. A higher AUC value indicates  
that the evaluation model is more reliable. The most ideal AUC 
value of ROC curve would be 1, which means in any given thresh-
old, all the TPR is 1 while the FPR is 0.

Not all the LSI values indicated landslide occurrence. However, 
it is difficult to identify a unified threshold to define which value 
means a landslide potential occurrence simply based on the LSI 
value for the landslide susceptibility result, because the landslide 
inventories that are applied as training datasets cannot include all 
the landslide events that actually occurred. Therefore, selecting a 
proper threshold based on ROC analysis depends on the study’s pur-
poses (Cantarino et al. 2018). An optimal threshold for LSI activation 
value, calculated by finding the balanced point between TPR and 
true negative rate (TNR), was applied as the threshold to extract the 
activated mask, those areas with an activated LSI value that means 
landslide occurrence. In other words, the minimum value of the dif-
ference between TPR and TNR (TNR is equal to the value of 1-FPR, 
false positive rate) was calculated as the optimal threshold.

Model for LDam formation susceptibility

Assessing the LDam formation susceptibility evaluation is to pre-
dict the LDam occurrence probability on specific river reaches. For 
LDam formation, landslide volume is a significant variable that con-
tributes to the damming probability, while its accuracy is hard to 
measure (Tacconi Stefanelli et al. 2020). Previous research on LDam 
formation susceptibility applied the empirical relationship between 
landslide area and landslide volume based on the local landslide 
inventories to achieve the landslide volume (Fan et al. 2014; Tac-
coni Stefanelli et al. 2020). Such a power law correlation between 
landslide area and landslide volume has been widely acknowledged 
although the coefficients of the empirical relationship depended on 
regions, landslide types, or slope materials (Simonett 1967; Hovius 
et al. 1997; Guzzetti et al. 2009; Larsen et al. 2010).

Many LDam formation indices have used landslide volume and 
river/valley width as important components (Swanson et al. 1986; 
Tacconi Stefanelli et al. 2016, 2018). A relationship between land-
slide volume and river width also showed a potential threshold for 
LDam formation according to a global-scale LDam dataset (Wu 

et al. 2022). Therefore, we estimate the LDam formation suscepti-
bility at specific river reaches by combining the LSI, landslide area, 
and river width, as shown in Eq. (3). We achieved the LSI result of 
the areas near specific river reach by combining all the LSI value 
from the slope drainage unit nearby.

The LSIn is the median landslide susceptibility index of the adja-
cent delineated slope drainage unit n, SA

n
 is the surface area of the 

slope drainage unit n, and RW  is the river width at specific river 
reach, which can be directly accessed on MERIT Hydro (Yamazaki 
et al. 2019). The method did not rely on any specific empirical rela-
tionships, such as the relationship between landslide volume and 
landslide area. By combining all the delineated slope drainage units 
that are near the specific river reach, it is likely that these areas 
encompass all the regions where an adjacent potential landslide 
occurrence could potentially block the river. This is because over 
94% of landslides that have dammed rivers from a global-scale 
LDam dataset have had a length of less than 3 km (Wu et al. 2022), 
while the delineated slope drainage unit in this study has a mean 
length of 3 km and a mean width 1.5 km.

Results

Landslide susceptibility evaluation results and validations
The input variables for landslide susceptibility showed different 
relative contributions for the two study areas. The top three con-
tributing variables in Italy are topographical slope degree (coef-
ficient equal to 3.3264), soil erosion (2.7336), and clay fraction of 
soil (2.0425), while those for Japan were the specific type of lithol-
ogy (acid plutonic rocks, − 1.7111), landcover (shrubland, 2.1241), 
and potential natural vegetation classes (cool-temperate rainfor-
est, − 2.0414). Some variables, such as temperature, precipitation, 
clay fraction in soil, and lithology, have contrary contributions 
to the final landslide susceptibility evaluation result in Japan and 
Italy. The varying results in variable contribution imply that local 
landslide inventories are crucial for accurately assessing landslide 
susceptibility and capturing localised contributions of variables, 
even when the same input variables and data are used. More details 

(3)P(LDam formation) =
log

∑n

i=1
LSI

n
× SA

n

logRW

Fig. 5   The ROC curve of logistic regression model for landslide susceptibility evaluation in Italy (a) and Japan (b)
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show the importance of variables contributing to landslide sus-
ceptibility results in Italy and Japan can be found at the table in 
Supplementary material Section 1.6.

Landslide susceptibility evaluation results for Italy and Japan 
were also validated by AUC value under the ROC curve. The fact 
that the logistic regression model of Italy landslide susceptibility 
evaluation presents an AUC value of 0.89 indicates the model has 
a great performance (Fig. 5(a)). The AUC value of logistic model 
performance in Japan is 0.74, which is lower, but still an acceptable 
value for a model performance (Fig. 5(b)).

After the ROC curve validation, the landslide susceptibility result 
can be used to identify where a landslide is more likely to occur 
given the LSI value. The mountainous regions along the European 

Alps and Apennine in Italy exhibit the highest susceptibility to 
landslides, as indicated in Fig. 6(a). This observation aligns with the 
most landslide-susceptible classification area in Italy from the con-
tinental-scale landslide susceptibility evaluation result reported by 
Günther et al. (2014). Similarly, In Japan, the mountainous areas in 
the Hida Mountains, northern Shikoku, Kyoshu, Ōu Mountains, and 
Hokkaido are the areas prone to landslide occurrences (Fig. 6(b)), 
which correspond to area with the highest landslide density from 
a national-scale study in Japan by Paudel et al. (2016).

The optimal LSI threshold in Italy is 0.53 (Fig. 7(a)), while the 
threshold in Japan is 0.34 (Fig. 7(b)). The area with LSI values 
above these optimal thresholds was identified as the activated 
areas that have potential landslide occurrence.

Fig. 6   Landslide susceptibility evaluation result in Italy (a) and Japan (b)

Fig. 7   The optimal threshold for LSI result modelled in Italy (a) and Japan (b)
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Landslide dam formation susceptibility evaluation results  
with validations

The LDam formation index result of Italy is shown in Fig. 8(a). 
Approximately 39% of river reaches in Italy were identified with 
a null value of the LDam formation index due to a river width too 
large for LDam formation or due to the absence of the probability 
of landslide occurrence in the adjacent areas; these river reaches are 
mainly located in the plains. Likewise, Fig. 8(b) displays the LDam 
formation index results for Japan, indicating that around 31% of the 
river reaches have a null value. To provide more detail on the LDam 
formation index at smaller scales, the delineated LDam formation 
index along two river longitudinal profiles, whose river width and 
river channel presentation were delineated from MERIT hydro, can 

be found at Supplementary material Section 1.7. This confirms that 
the river reaches with LDam records have relatively high values of 
the LDam formation index, as would be expected.

To validate the effectiveness of the LDam formation index, we 
conducted LDam formation index comparisons at all river reaches 
from global fluvial datasets and validated these indexes at the loca-
tion of LDam records. Those LDam records which are located in 
lakes/reservoirs were excluded from the comparison as the LDam 
index would be low due to the lake presence, such as at inunda-
tion lakes or reservoirs behind old LDams. The LDam formation 
indexes for the reaches with LDam records in Italy ranged from 
2.385 to 20.460, with a median value of 4.404 (Fig. 9(a)). Similarly, 
the LDam index for the reaches with LDam records in Japan ranged 
from 1.745 to 6.431, with a median value of 3.732 (Fig. 9(b)). A similar 

Fig. 8   Landslide dam formation index result in Italy (a) and Japan (b) (each dot with LDam formation index represented the centre of a river 
reach presented as 90-m resolution grid in MERIT Hydro; Figs. S1–8 in supplementary presents two instances of visualising the LDam forma-
tion index on a smaller scale)

Fig. 9   Validation of LDam index value at LDam records and all river reaches present in MERIT Hydro for the results in Italy (a) and Japan (b) 
(scaling to the LDam index from 0 to 10; full size figure can be found at Supplementary material Section 1.7; numbers are the sample size)
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method had been applied on rockfall susceptibility evaluation vali-
dation (Fernandez-Hernández et al. 2012). The LDam records have 
a relatively higher value of the LDam formation index compared 
to those of all the river reaches with valid indexes. The sample size 
of LDam records with valid LDam formation index depends on 
the existence of river reaches represented in global fluvial data-
sets, especially those on the upstream catchment areas (Italy: 13%; 
Japan: 32% before excluding those LDam records currently located 
in the lakes).

Discussions

Applicability of framework
The proposed LDam formation framework can be directly applied 
to other areas. Most of the LDam and landslide datasets that applied 
in this study, as well as global fluvial datasets, are open access, 
which enables the application of this methodology to other study 
areas using the same data sources. Another advantage of apply-
ing this framework is that it relied very little on information from 
empirical relationships, such as landslide volume estimation. With 
less dependence on site-specific empirical relationships, the pre-
assessment of LDam formation on a large scale could be immedi-
ately conducted without the involvement of comprehensive land-
slide databases.

The framework can also provide a preliminary result for the 
research on a more local scale. The performance of this framework 
in two large-scale study regions, Italy and Japan, showed its appli-
cability to other large-scale studies for exploring LDam formation, 
as most of the LDam formation index values at the LDam records 
are relatively high compared with all the valid indexes on the river 
reaches. By comparing our LDam formation susceptibility evalu-
ation result with other research on more local scale on the Arno 
River basin (Fig. 10), we found the river reaches with relatively high 

value of our LDam formation index shown in the main Arno River 
between Florence to Arezzo, which is consistent to the areas with 
high damming susceptibility of landslides. However, it should be 
noted that some tributaries (especially those around Mandrioli) 
were not represented in the global fluvial datasets in our analysis 
and thus some areas with high dam formation landslide occurrence 
probability does not show any valid LDam formation index. Further 
smaller-scale analysis could also use this framework with similar 
input data, if data resources on a local scale with more details and 
finer resolution are available.

Uncertainties

Three main uncertainties could affect the LDam formation evalua-
tion framework according to the methods and results: (1) the poten-
tial diversity of landslide susceptibility result, (2) the focus of river 
channel representation and LDam record, and (3) their inconsistency.

Landslide susceptibility results were impacted by the data 
sources and modelling procedures. Limitations in large-scale 
landslide datasets, such as the data quality and comprehensive-
ness, always become a large uncertainty source for data-driven 
models, especially for the large-scale ones. Landslide types were 
undistinguished in this study as the detailed information was not 
available for most large-scale and open-access landslide datasets, 
but they crucially affected the landslide run-out distance, area, and 
volume (Corominas 1996; Larsen et al. 2010; Fan et al. 2014). In 
a literature review Reichenbach et al. (2018) noted similar uncer-
tainties in landslide susceptibility evaluation, with only a few of 
565 peer-reviewed articles from 1983 to 2016 addressing specific 
landslide types, and even then, used varying classification systems. 
Furthermore, Lin et al. (2017) reported that specific landslide types 
are rarely applied in large-scale landslide susceptibility evaluations. 
Even when using identical input variables and employing similar 
data processing procedures for landslide susceptibility evaluation, 

Fig. 10   Comparison of LDam formation results in Arno River basin, Tuscany, Italy (~ 8200  km2): a LDam formation index on river reaches 
derived from global fluvial datasets conducted by this study (each dot represented a 90-m river reach on MERIT hydro; grey dotted line rep-
resented those river channel without representation on global scale fluvial dataset); b Damming formation probability of landslides based on 
local-scale datasets (Tacconi Stefanelli et al. 2020)
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it is inevitable to encounter varying contributions of variables to 
the evaluation result. Moreover, uncertainties could rise due to the 
diversity of the types within specific categorised variables, such 
as the vegetation and lithology types. However, such uncertainty 
could have relatively little effect on the following LDam forma-
tion analysis because the landslide susceptibility result, derived 
from different methods, data, and scope, in a specific area could 
still show largely similar results (Stanley and Kirschbaum 2017). 
Within the realm of such uncertainty, it is essential to acknowledge 
the ongoing deformations that affect the slopes involved in mass 
rock creep processes (Chigira and Kiho 1994), which can further 
evolve in rock avalanches. It is important to note that the occur-
rence of such rock avalanches is not primarily determined by force-
driven failure mechanisms but rather by viscosity-driven processes 
(Marmoni et al. 2023). The case of the Scanno rock avalanche in 
Italy which caused the damming of the homonymous lake along 
the Tasso River is a nice example to show this impact (Esposito 
et al. 2013). The event was dated with a back analysis by Della Seta 
et al. (2017), while the role of creep processes in providing ultimate 
scenarios of LDam formation was also demonstrated. Such a pro-
cess is particularly efficient in high-mountain areas as in the case 
of the Zagros Mountain (Iran), where giant rock avalanches caused 

forming a LDam with enormous volume result in a lake-system 
evolution over thousands of years before the present (Delchiaro 
et al. 2019). However, such ongoing deformation could be under-
represented by the landslide susceptibility result given the relatively 
coarse resolution of the data source (Fig. 11).

The inconsistency in representing river channels and the 
focus on LDam records can result in the omission of numerous 
streams or upstream rivers that could have a large potential to be 
dammed in the result of LDam formation susceptibility assess-
ment. More than 80% of LDam records are typically located on 
the upstream catchment with drainage areas less than 500 km2 
(Wu et al. 2022), where these have steeper hillslopes for drainage 
area delineation and thus can lead to a limited representation 
for upstream rivers. The catchments at this scale were classified 
as streams or small rivers according to Bernhofen et al. (2021)’s 
classification. For global fluvial datasets, the representation of 
river channels relies on the quality and resolution of input data, 
such as DEM and climate data (Dottori et al. 2016), and the com-
putational efficiency of global flood models (Bernhofen et al. 
2021). The different sizes of the threshold for river channel rep-
resentation can lead to the flood exposure difference (Bernhofen 
et al. 2021) and can directly influence the output of the LDam 

Fig. 11   Landslide susceptibility evaluation result in Tasso River, Abruzzo, Italy, and an ongoing deformation area, because of a mass rock 
creep process, surveyed on the field



2412

2412

Landslides  21  •  (2024)

Original Paper

formation index through the river width data. Currently, global 
fluvial datasets may have more complete and accurate data for 
larger rivers compared with the upstream rivers where LDams 
are prone to occur as a good representation of smaller rivers 
remains to be resolved (Yamazaki et al. 2019). Figure 12 shows 
the representation of the LDam formation index at river reaches 
from MERIT Hydro in the Tasso River basin, Italy. The river reach 
crossing the Scanno Lake (Lago di Scanno) was represented well, 
while the other narrow river reaches did not contain valid river 
width data or were not represented in the global fluvial dataset. 
We used a colour matrix presenting landslide susceptibility from 
the adjacent slope drainage units and LDam formation index 
on each river reach to show the contribution of landslide sus-
ceptibility result to the final LDam formation index. The com-
parison shows that the area around Scanno Lake is presently in 
a relatively stable condition since either landslide susceptibility 
or LDam formation index is low. Such a result is consistent with 
the slope failures, already occurred in past (Della Seta et al. 2017), 
which reduced the potential of new landslide detachment from 
the slopes which surround the Scanno Lake.

Conclusions
Previous research has attempted to assess the probability of LDam 
formation; however, they relied heavily on the local-scale datasets 
or the empirical relationships based on local data and focused 
more on one side of the physical LDam formation processes and 
the occurrence of landslides of sufficient magnitude to obstruct 
river (damming formation probability of landslides). The LDam 
formation susceptibility evaluation framework was developed by 
combining landslide susceptibility evaluation and global fluvial 
datasets to estimate the LDam formation susceptibility on river 
reaches. Most of the input data, including the landslide datasets 
that were collected globally, global fluvial datasets, and input data 
for landslide susceptibility, are openly accessible.

The framework was built based on the unit of the delineated 
slope drainage and tested in Italy and Japan with all the results 
being validated against the data of LDam records. The logistic 
regression model employed for landslide susceptibility evaluation 
in Italy demonstrated excellent performance, achieving an AUC 
value of 0.89. In Japan, the logistic model achieved an AUC value 
of 0.74, which is considered an acceptable model performance. The 

Fig. 12   LDam formation susceptibility evaluation result in Tasso River, Abruzzo, Italy, and the field picture of Scanno rock avalanche 
impounded lake (Lago di Scanno/Scanno Lake) (SDU, delineated slope drainage unit; LSI, landslide susceptibility index; the square repre-
sented the centre of a river reach shown as 90-m resolution grid in MERIT Hydro)
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results obtained by quantifying the LDam formation index demon-
strated the effectiveness of such an index to present the probability 
of LDam formation at specific river reaches because the data distri-
bution of the LDam formation index for reaches with LDam records 
shows higher values compared to other river reaches. Moreover, 
the locations of relatively high LDam index are consistent with the 
LDam record positions along the river longitudinal profiles and the 
areas with relatively high damming formation probability of land-
slides. These results indicate the framework’s capability to assess 
LDam formation susceptibility at river reaches in different large-
scale regions around the world as the data source and relationship 
that applied to establish this framework are all global scale.

Overall, the developed framework offers a valuable tool for 
assessing LDam formation susceptibility at river reaches globally. 
Its reliance on open access data, including landslide datasets and 
global fluvial datasets, enhances its accessibility and applicability 
across various regions, even though such large-scale datasets intro-
duce certain uncertainties for final results. The framework’s perfor-
mance in Italy and Japan, along with the demonstrated effectiveness 
of the LDam formation index, further supports its potential for 
widespread implementation and use.

The results obtained by quantifying the LDam formation sus-
ceptibility in this study can be utilised by international or national 
institutions as a preliminary exploration and hazard prevention 
of LDam formation prior to actual landslides occurring. This will 
allow mitigation measures, such as improving land use planning, 
applying early warning systems on adjacent slopes or rivers, and 
undertaking targeted infrastructure projects to reduce the risk of 
slope failure, be implemented to mitigate the risk of a LDam event. 
Continued research and collaboration, especially the smaller-scale 
research, can further refine the framework, expand its applicability, 
and strengthen its contributions to global efforts in managing and 
mitigating LDam-related risks.

The research shifted focus in LDam formation probability map-
ping from primarily landslide-centric DFL occurrences to explor-
ing river reaches susceptible to LDam formation. This transition 
involved modifying procedures from calculating landslide volume 
and run-out based on empirical relationships to quantifying LDam 
formation probability, considering both fluvial characteristics and 
the likelihood of landslides in vulnerable areas. Instead of using 
a fixed uniform distance threshold from hillslopes to rivers, the 
new LDam susceptibility framework employs a geomorphologi-
cal-based buffer zone derived from slope drainage delineation and 
spatial proximity. The framework utilised landslide susceptibility 
evaluation in a new way, a well-studied aspect that can be efficiently 
updated when new landslide susceptibility or GFDs are available.
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