
This is a repository copy of Reinforcement Learning for Patient Scheduling with 
Combinatorial Optimisation.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/216847/

Version: Accepted Version

Proceedings Paper:
Liu, X., Zheng, C., Chen, Z. et al. (3 more authors) (2025) Reinforcement Learning for 
Patient Scheduling with Combinatorial Optimisation. In: Lecture Notes in Computer 
Science series. 44th SGAI International Conference on Artificial Intelligence, AI 2024, 17-
19 Dec 2024, Cambridge, UK. Lecture Notes in Computer Science, 15447 . Springer , 
Cham, Switzerland , pp. 238-243. ISBN 978-3-031-77917-6 

https://doi.org/10.1007/978-3-031-77918-3_18

This is an author produced version of a conference paper published in Lecture Notes in 
Computer Science, made available under the terms of the Creative Commons Attribution 
License (CC-BY), which permits unrestricted use, distribution and reproduction in any 
medium, provided the original work is properly cited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Reinforcement Learning for Patient Scheduling

with Combinatorial Optimisation

Xi Liu1 , Changgang Zheng2 , Zhen Chen1 , Yong Liao1 , Ren Chen3

, and Shufan Yang4

1 University of Science and Technology of China, China
2 University of Oxford, UK

3 Anhui Medical University, China
4 University of Leeds, UK

s.f.yang@leeds.ac.uk

Abstract. Patient scheduling is a complex task that plays a crucial role
in the quality of care. Effective scheduling management mitigates dissat-
isfaction among patients and physicians, serving as a crucial indicator.
Traditionally, the approach to patient scheduling has been ad hoc, often
overlooking key factors that may influence scheduling.
In this paper, we propose a reinforcement learning approach that utilises
an early stopping mechanism which balances exploration and exploita-
tion to provide combinatorial optimisation from both theoretical and ex-
perimental perspectives. Our study utilised datasets from NHS Scotland
and The First Affiliated Hospital of Anhui Medical University to evalu-
ate patient scheduling. Our results demonstrate that our Reinforcement
Learning (RL) method with early stopping can successfully conduct pre-
liminary practice on realistic examples of the General Practitioner (GP)
Scheduling Problem and hospital scheduling issues.

Keywords: Scheduling; · Reinforcement Learning; · CO Problem

1 Introduction

Patient scheduling emerges as a pivotal component within the realm of health-
care management, involving allocating healthcare resources (like doctors, nurses,
equipment, and rooms) to patients based on their needs and the availability of
these resources. This intricate scheduling mandates a comprehensive considera-
tion of various factors, including the urgency of medical needs, the availability
of medical staff, the duration of appointments, and the operational hours of
the healthcare facilities. The inherently unpredictable nature of healthcare de-
mands necessitates a combinatorial optimisation (CO) strategy to enable flexible
scheduling.This adaptability is crucial for accommodating emergency situations
or unforeseen events, such as the sudden unavailability of medical practition-
ers. In this paper, we introduce an early stopping method in deep reinforcement
learning approach to address the patient scheduling challenge as a combinato-
rial optimisation problem, aiming to generate optimal scheduling solutions. This



X. Liu et al.

methodology can also be applied to other scheduling problems where objective
functions are not well-defined or difficult to model mathematically.

The CO problems [17] widely exist in many tasks in real life such as Traveling
Salesman problem (TSP), hospital appointment scheduling [16,20] and produc-
tion and transport scheduling [4].

Traditional approaches to solving CO problems mainly conclude three categories:
exact methods [15], approximate methods [21], and heuristic methods [1,22]. Ex-
act methods can find the global optimal solution to the CO problem, but since
they do not operate in polynomial time, they are not feasible for large problem
sizes. Approximate methods are usually greedy algorithms in nature. Although
they operate in polynomial time, they often require skillful algorithm design.
Heuristic methods do not have a universal framework [13] and always suffer
from two issues: 1) reliance on manual selection of heuristic, and 2) difficulty
in determining when to apply heuristic. Metaheuristic methods [10] such as ge-
netic algorithms and evolutionary algorithms can be applied to solve most CO
problems, but they usually require a given initial solution and do not guarantee
polynomial-time convergence.

Most challenging problems in the real world are large-scale and often subject to
execution time constraints. Therefore, traditional algorithms encounter difficul-
ties when applied to real-world challenging tasks. Recently, Deep reinforcement
learning (DRL) has shown significant potential in overcoming the limitations of
traditional approaches [2, 14]. Many CO Problems can be transformed into se-
quence decision-making problems. For example, the TSP problem is to decide in
what order to visit each city, and the shop scheduling problem is to decide in what
order to process components on the machine. DRL is a very suitable solution
for sequence decision-making. The main difficulty is the definition of the Markov
Decision Process (MDP) in the CO problems. A diversity of reinforcement learn-
ing (RL) based heuristic method has demonstrated a promising solution as it
does not require pre-solved examples of these hard problems [5,11]. However, so
far there is a lack of guidance on how to utilise reinforcement learning (RL) to
automatically learn good heuristics for various combinatorial problems since RL
relies on estimating Q-value to form policy.

This paper proposes a framework leveraging a Deep-Q Network (DQN) [8] based
reinforcement learning methodology to conceptualise healthcare management is-
sues as combinatorial optimisation challenges. By employing real-world datasets,
we demonstrate the feasibility of our approach in dynamically allocating hospital
resources, outperforming traditional methods that struggle with the complexity
and variability inherent in real-world scenarios. Significantly, our method ex-
hibits superior adaptability to temporal changes, a critical attribute for effec-
tively managing scheduling tasks in healthcare settings, where conditions can
rapidly change. Furthermore, the utilisation of a synthetic dataset underscores
our method’s capability to manage problems encompassing a large number of
variables and constraints, maintaining computational efficiency even as the scale
of the optimisation challenge expands.



2 Problem Formulation

Many CO problems cannot find efficient solutions in polynomial time. As a
result, there have been some researchers using machine learning algorithms to
solve CO problems in recent years [3, 6, 12]. A particular branch of machine
learning, reinforcement learning (RL) is widely used to solve CO problems by
modelling the problem as a decision-making process. During this process, an
agent interacts with the environment by performing a series of actions to find a
solution.
We consider a Markov Decision Process (MDP) to model the CO problem. At
each time step, the process is in some state s, and the agent may choose any
action a to interact with the environment to get the next state s′. Repeat this
process until the maximum cumulative reward is gained. Formally, A Markov
decision process is a 4-tuple (S,A, Pa, Ra), where: State space S is a set of
states. Action space A is a set of actions. Reward R is the immediate reward (or
expected immediate reward) received after transitioning from state s to state
s′, due to action a. Transition probability P: is the probability that action a in
state s at time t will lead to state s′ at time t+ 1.
The goal of an agent acting in Markov Decision Process (MDP) is to find a
policy function π mapping from states to actions. Solving MDP means finding
the optimal policy that maximises the discounted cumulative sum of random
rewards formulated as:

π∗ = argmax
π

E[

∞
∑

i=t

γtR(st, at)] (1)

3 Motivation

When apply reinforcement learning for combinatorial optimisation, the agent
must extensively interact with the environment until the algorithm converges
and a better policy is obtained. However, those frequent interactions can incur
high costs. Batch mode with experience replay provides stability without incur-
ring these high costs. Nevertheless, Batch RL faces a significant issue. As shown
in Fig. 1, the proportion of positive data and negative data in the buffer stor-
ing the training data directly affects the proportion of the two in the samples,
thus affecting the convergence of the model. In extreme cases, this imbalance
may prevent the model from converging. In other words, the agent only learns
experience with bad behaviors and has little or no experience with good be-
haviors. This has a great impact on the learning process of the agent. This is
ultimately a matter of balance between exploration and exploitation. To achieve
this balance, we propose a new algorithm based on the Deep Q-Network [8],
which incorporates early stopping and evolutionary methods.
In the past, early stopping was often used to solve the problem of neural network
overfitting on training set. With the increase in epochs, the error on the training
set and the validation set increases. Early stopping is an effective tool to address



X. Liu et al.

(a) Without early stopping. (b) With early stopping.

Fig. 1: Data schematic diagram in buffer with/without early stopping. Red dots
represent the positive data in the buffer, and blue dots represent the negative
data.

Data distribution after
Early Stopping

Original Data
distribution

Fig. 2: Data distribution in buffer with/without early stopping. The black curve
is the original buffer in DQN, and the red curve represents the data distribution
in the buffer with Early Stopping.

the generalisation problem [19]. However, the advantage of early stopping ex-
tends beyond this. We can utilise it to adjust the data distribution in the buffer,
and seek a balance between exploration and exploitation.

A robust stopping criterion is crucial. All stopping criteria follow a rule: stop
when the criteria are satisfied at some time t. In other words, when a value
exceeds a certain threshold, the stopping operation is performed. Our criterion
involves the number of negative samples: stop if negative samples appear several
times when updating buffer data. We set a fixed value k and a counter to count
the number of negative samples. When the counter reaches the fixed value k, we
stop updating the data in the buffer.



Algorithm 1 DQN with Early Stopping(EDQN)

Require: C ← a counter, k← the early stopping threshold, Qπ ← the policy network,
Qπ

∗

← the target network
1: Initialize experience replay buffer B = ∅
2: In each episode:
3: Initialize state s0
4: for t = 1→ T do

5: select action based on ϵ-greedy
6: Observe st, rt, s

′

t

7: Store the transition (st, at, rt, s
′

t) in the buffer B
8: if rt is not a good reward then

9: the value of counter C add one
10: end if

11: Sample experiences {(st, at, rt, st
′)} from B randomly

12: Set yi = r + γmax
a
′Qπ

∗

(s
′

, a
′

)
13: Update weights of the neural network
14: if the counter C reaches threshold then

15: break
16: end if

17: end for

We combine DQN [8] and Early Stopping to reduce the times that the agent
performs repeated useless actions in a specific state, thereby achieving the pur-
pose of adjusting the data distribution in the buffer as shown in Fig.2. The
pseudo-code of DQN with Early Stopping(EDQN) is shown in Algorithm1.

4 Experiment

In this section, we present experimental results from two real-world scheduling
tasks.

4.1 System Setup

For each experiment, we first clean and organise the data from real-world tasks,
and build simulation environments based on different experimental datasets. We
have two real-world tasks: the GP scheduling problem and the hospital patient
appointments. From the perspective of the task, the environment we built is a
grid world environment, but its basic parameters are different depending on the
data. Our datasets are provided by the National Health Service and the First
Affiliated Hospital of Anhui Medical University.

4.2 GP Scheduling

In the UK, the National Health Service (NHS) normally assigns patients to a
particular General Practitioner (GP), where the dataset is taken from NHS web-



X. Liu et al.

Position Layer

1 1 0 1 1 0 0 0 0 1

1 1 1 1 0 0 1 0 1 0

0 0 0 0 0 1 0 1 0 0

0 1 1 0 1 0 0 1 0 1

0 0 0 1 1 1 0 0 1 0

Booking Layer

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 c

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

} Booking length

Check point

Agent position

State:                   Position Layer (sliced example) Booking Layer (sliced example) Score

Fig. 3: State structure of Scheduling Problem.

site5). Given a certain number of GPs and working hours, the question we need
to address is how to arrange GPs for a group of patients rationally and effi-
ciently. More specifically, we want the patient’s appointment slots which may be
of variable length to be scheduled at a time that avoids wasting GPs’ resources,
just like in Tetris games, where each block is optimally placed.
Task Description. The General Practitioner (GP) Scheduling Problem involves
resource allocation in which GPs may already have pre-booked appointments,
leaving limited availability for new patients’ appointments. Patients have vary-
ing demands for appointments of different durations, and the challenge lies in
maximising the utilisation of the available time slots to accommodate as many
patients as possible while allowing GPs to allocate blocked time slots for other
activities like training. To define the specific environment, we can refer to four
scenarios of face-to-face consultations, home visits, telephone consultations and
video consultations. The relevant data of these four scenarios are shown in Ta-
ble 1.

Table 1: Appointments in the England by NHS statistics for one month.
scenarios face-to-face home visits telephone video

Number of appointments 15404951 171669 9184791 115725
Proportion of appointments 0.6192 0.0069 0.3692 0.0047

slots requirements 1 3 2 1

Environment settings. In our experiment setting, there are 100 GPs, each
working for 8 hours, divided into 32 slots of 15 minutes each. We divide the
consultation time according to different scenarios, as detailed in Table 1. ’3’
indicated that the appointment will need 3 consecutive timeslots. The problem
can be abstracted as finding a series of suitable positions in a 32 × 100 grid world,
minimising gaps and meeting the requirements as efficiently as possible. Here
reducing the number of gaps implies finding suitable locations to accommodate
longer time slots when needed.
In the GP environment, the agent needs to have a certain understanding of
the current overall appointments and the agent’s position. Therefore, the state
of the size 2 × 32 × 100 has two layers, one layer named the booking layer

5 https://digital.nhs.uk/data-and-information/publications/statistical/appointments-
in-general-practice/march-2022



represents the occupied situation, and the other named position layer indicates
the agent position. As shown in Fig. 3, in the booking layers, ’1’ represents
that the position has been occupied, and ’0’ represents that it is empty. In the
position layer, the position of the agent is constant C, and all other positions
are 0. The booking length is the number of slots required by a patient. Action
determines the direction the agent moves in the grid world. The action space is
a finite and discrete set, containing four actions: up, down, left, and right. The
rewards are designed based on the current agent’s position and the status of the
upcoming reservation location. As shown in equation (2), if the current agent’s
position and the upcoming reservation location are empty, in other words, the
values of these positions are ’0’, the agent will obtain the reward of +0.5. if these
positions are not empty, the reward of -0.1 will be given. Then we also consider
extreme situations. When the agent reaches the boundary and the next action
does not cause it to leave the current position, this situation is very undesirable.
In addition, the agent is not encouraged to repeatedly jump between two adjacent
locations. In both cases, the agent receives a reward of -0.5.

reward =



















+0.5, if the position is empty

−0.1, if the position is not empty

−0.5, if the agent reaches the

boundary or goes back

(2)

4.3 Hospital Patient Appointments Scheduling

Unlike in the UK, patients get web-based appointments with specialists in UK.
The hospital encompasses various specialised departments, including internal
medicine, surgery, among others. Patients can seek treatment in different de-
partments based on their medical conditions. These systems aim to reduce wait
times and improve efficiency by allowing patients to book appointments online.
However, due to high demand, getting a specialised appointment is limited, re-
sulting in patients potentially missing valuable treatment time. An optimised
booking system to utilise the booking will reduce the chance of missing treat-
ment. Table 2 illustrates the appointment data that collected from the First
Affiliated Hospital of Anhui Medical University. This table indicates that the
departments of Internal Medicine and Surgery have the highest patient visit
numbers. Therefore, our experiment is based on Internal Medicine and Surgery
departments scheduling needs.
Task Description. Hospital patient appointment scheduling is similar to the
General Practitioner (GP) Scheduling Problem, which seeks to optimise the allo-
cation of hospital resources. Considering the specific nature of specialist services
in Chinese hospitals and the particular conditions at The First Affiliated Hos-
pital of Anhui Medical University, we constructed two analogous environments
using data from the Internal Medicine and Surgery departments, respectively.
In each environment, every doctor works for 8-hours, divided into 96 five-minute
slots. Since the diagnosis and treatment time varies for each patient, we cat-



X. Liu et al.

Table 2: Summary of data from the First Affiliated Hospital of An Medical
University. The table summarised the data collected from various departments
as the First Affiliated Hospital of an Medical University. DTCM refers to the
Department of Traditional Chinese Medicine; OG denotes the Department of
Obstetrics and Gynaecology; and AD stands for the Anaesthesia Department.

Department Internal Medicine Surgical Paediatrics Dermatology

Number of appointments 3220 3097 1694 1986
Proportion of appointments 0.2439 0.2346 0.1283 0.1504
Number of departments 16 13 7 3

Department Ophthalmology Otolaryngology Stomatology DTCM

Number of appointments 715 843 1019 228
Proportion of appointments 0.0542 0.0638 0.0772 0.0173
Number of departments 2 2 4 4

Department OG AD Haematology

Number of appointments 228 79 92
Proportion of appointments 0.0173 0.0060 0.0070
Number of departments 8 1 1

egorise patient needs into three types based on duration: 1 slot, 2 slots, and
3 slots. The objective for each appointment is to find a continuous sequence
of slots that fulfils these requirements. Therefore, the problem transforms into
identifying a series of positions in a grid, which corresponds to the number of
clinics multiplied by 96.

Environment settings. In the Internal Medicine environment, the state size
is 2 × 96 × 16, corresponding to 16 clinics in the Internal Medicine department.
Two layers represent the state, and its structure is similar to the state structure
in Fig. 3. The first layer represents occupancy, while the second represents the
agent’s position. The checkpoint plays an crucial role in reward design because
it can be utilised to calculate the resource utilisation rate. The action space
contains four actions, up, down, left, and right. The reward design is based on
the current position of the agent and its nearby positions. If the agent cannot
start a reservation from its current position, the reward of -0.1 will be given.
Conversely, if the position is suitable, it is essential to verify that the upper
and lower positions, labelled as’ Check Point’ as in Fig.3 satisfy the necessary
criteria.

For every step, if the values of both positions are 1, set the reward = 0.5. If one of
the values is 1, set the reward = 0.25. If both values are 0, set the reward = 0.1.
Here, our default border position value is 1. A reward of -0.5 is given in the
following two situations: The first is that the agent reaches the boundary and
the next action does not cause it to leave the current position, and the second is
that the agent repeatedly jumps between two adjacent locations. In the Surgical
environment, the difference from the Internal Medicine environment is the size
of the state. The size of the state is 2 × 96 × 13 in the Surgical environment
because the number of Surgical clinics is 13.



4.4 Results and Evaluation

We compared the performance of Deep Q-Network (DQN) and DQN with Early
Stopping (EDQN) on GP scheduling and hospital patient appointment data.
In our experiments, the neural network structure of the policy comprises three
convolutional layers and two linear layers which use the Kaiming initialisation
method [7] to initialise parameters. The hyperparameter settings include a learn-
ing rate lr = 1e− 4, ϵ = 0.3, ϵdecay = 0.995 and dynamic γ. At the beginning of
exploration, the agent does not fully understand the environment. As the agent
further explores the environment, it is more in line with the learning process to
take the long-term future benefits into account in the value generated by the
current behaviour. Therefore, it is more appropriate to use a dynamic γ. The
dynamic γ is formulated as

γ = 1− 0.9× (1− γ) (3)

Here, we set the initial γ = 0.1, and the maximum value of γ does not exceed
0.99.
Before the experiments, we need to establish the basic parameters of the envi-
ronment. These include the number of pre-booking slots, the constant C rep-
resenting the agent’s position in the position layer, and the patient demands.
For the GP scheduling problem, we set the number of pre-booking slots to 750,
and C = 100. The early stopping rule is that the agent obtains 10 negative re-
wards of -0.5 in total. For hospital patient appointments, we set the number of
pre-booking slot to 100, and C = 100. The early stopping rule specifies that the
agent receives 10 consecutive negative rewards of -0.5.

0 2000 4000 6000 8000 10000
Episode

400

300

200

100

0

Ep
iso

de
 R

ew
ar

d

DQN
EDQN

(a) NHS

0 2000 4000 6000 8000 10000
episode

300

250

200

150

100

ep
iso

de
 re

wa
rd

DQN
EDQN

(b) Internal Medicine

Fig. 4: Hospital patient appointment

The experimental results are presented in Fig.4. Due to Early Stopping, the re-
wards obtained by EDQN were higher than those obtained by DQN from the
beginning. Because the reward we set were relatively small, the curve of EDQN



X. Liu et al.

does not show an obvious upward trend (Fig.4(a)). Since there is no signif-
icant difference in appointment data between Internal Medicine and Surgical
department in hospitals, the experimental results are similar. The performance
in Internal Medicine is shown in Fig.4(b), and the performance in Surgical de-
partment shows the same trend. It is obvious that EDQN is better than DQN
in the performance of GP appointment and hospital appointment data. This is
because we eliminate redundant data and increase the agent’s learning of sparse
experience. Additionally, We utilised the Genetic Algorithm [18] with crossover
rate of 0.5 and mutation rate of 0.01 to solve the scheduling problems on GP
appointment and Hospital appointment scheduling data. Although the evolution
method is effective, it is slower than DQN at larger scales.

5 Related Work

The first attempt to utilise the neural networks to solve the classic combina-
torial optimisation problem, Traveling Salesman Problem (TSP), was proposed
by Hopfield & Tank [9]. However, their approach only covered 30 cities and was
trained to to solve one instance, which has few advantages over traditional solv-
ing methods. In recent years, there has been much research on the application
of deep reinforcement learning to combinatorial optimization problems.

Bello et al. [2] combined reinforcement learning and recurrent neural network
(RNN) to build a framework, Neural Combinatorial Optimization, for solving
combinatorial optimization problems. The framework conducted practical ex-
ploration from two aspects: RL pre-training and active search. However, the ex-
perimental environment was limited to TSP problems. Kool et al. [14] designed a
new attention model and used REINFORCE with a simple greedy rollout base-
line to train the model. This approach can be extended to other problems such
as VRP.

In addition to the above combination of reinforcement learning and neural net-
works, combining reinforcement learning with heuristic algorithms to solve CO
problems has been a research hotspot in recent years. Nathan et al. [5] proposed
Poppy to improve the exploration of solution space of combinatorial optimization
(CO) problems. It combined reinforcement learning with evolutionary algorithms
and used the encoder-decoder architecture to efficiently train populations. The
construction method Poppy has sample-efficient reinforcement learning strategy
updates while exploring the evolutionary population level. kallestad et al. [11]
proposed a selection hyperheuristic framework that replaced the adaptive layer
of Adaptive Large Neighborhood Search with an RL agent for solving the CO
problem. Although it is quite versatile in solving CO problems, there are still
some challenges in correctly handling large pool heuristics.



6 Conclusion and Future Work

Patient scheduling is a critical component of healthcare management, involv-
ing the allocation of resources such as doctors, nurses, equipment, and rooms
in accordance with patient needs and the availability of these resources. This
paper presents an innovative approach, treating healthcare resource allocation
as a combinatorial optimisation problem. We propose a reinforcement learning
method, enhanced with an early stopping mechanism, to aim for optimal re-
source utilisation and increased adaptability across various real-world environ-
ments. Our work demonstrates the application of the Deep Q-network (DQN)
reinforcement learning algorithm to tackle real-world scheduling challenges, no-
tably the General Practitioner (GP) problem and hospital patient appointments.
A significant innovation of our approach is the use of early stopping to fine-tune
data distribution in the replay buffer, resulting in improved efficiency and accu-
racy in practical scheduling tasks. While the presented solution may not achieve
theoretical optimality, it provides a highly efficient method for large-scale appli-
cations. This study focuses on discrete action spaces due to their relevance in
the majority of practical scheduling scenarios addressed. Future research could
extend our methodology to tasks involving continuous action spaces, such as dy-
namic resource allocation and real-time scheduling, significantly enhancing its
applicability and potential impact in the field.

References

1. Barrett, T., Clements, W., Foerster, J., Lvovsky, A.: Exploratory combinatorial
optimization with reinforcement learning. In: Proceedings of the AAAI conference
on artificial intelligence. vol. 34, pp. 3243–3250 (2020)

2. Bello, I., Pham, H., Le, Q.V., Norouzi, M., Bengio, S.: Neural combinatorial opti-
mization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016)

3. Bengio, Y., Lodi, A., Prouvost, A.: Machine learning for combinatorial optimiza-
tion: a methodological tour d’horizon. European Journal of Operational Research
290(2), 405–421 (2021)

4. Ehm, J., Freitag, M.: The benefit of integrating production and transport schedul-
ing. Procedia CIRP 41, 585–590 (2016)

5. Grinsztajn, N., Furelos-Blanco, D., Barrett, T.D.: Population-based reinforcement
learning for combinatorial optimization. arXiv preprint arXiv:2210.03475 (2022)

6. Guo, T., Han, C., Tang, S., Ding, M.: Solving combinatorial problems with machine
learning methods. Nonlinear Combinatorial Optimization pp. 207–229 (2019)

7. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE interna-
tional conference on computer vision. pp. 1026–1034 (2015)

8. Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D.,
Quan, J., Sendonaris, A., Osband, I., et al.: Deep q-learning from demonstrations.
In: Proceedings of the AAAI conference on artificial intelligence. vol. 32 (2018)

9. Hopfield, J.J., Tank, D.W.: “neural” computation of decisions in optimization prob-
lems. Biological cybernetics 52(3), 141–152 (1985)

10. Hussain, K., Mohd Salleh, M.N., Cheng, S., Shi, Y.: Metaheuristic research: a
comprehensive survey. Artificial intelligence review 52, 2191–2233 (2019)



X. Liu et al.

11. Kallestad, J., Hasibi, R., Hemmati, A., Sörensen, K.: A general deep reinforcement
learning hyperheuristic framework for solving combinatorial optimization prob-
lems. European Journal of Operational Research 309(1), 446–468 (2023)

12. Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A.M.,
Talbi, E.G.: Machine learning at the service of meta-heuristics for solving combina-
torial optimization problems: A state-of-the-art. European Journal of Operational
Research 296(2), 393–422 (2022)

13. Kool, W., van Hoof, H., Gromicho, J., Welling, M.: Deep policy dynamic program-
ming for vehicle routing problems. In: International conference on integration of
constraint programming, artificial intelligence, and operations research. pp. 190–
213. Springer (2022)

14. Kool, W., Van Hoof, H., Welling, M.: Attention, learn to solve routing problems!
arXiv preprint arXiv:1803.08475 (2018)

15. Laporte, G.: The traveling salesman problem: An overview of exact and approxi-
mate algorithms. European Journal of Operational Research 59(2), 231–247 (1992)

16. Li, N., Li, X., Forero, P.: Physician scheduling for outpatient department with
nonhomogeneous patient arrival and priority queue. Flexible Services and Manu-
facturing Journal pp. 1–37 (2021)

17. Ma, L., Li, J., Lin, Q., Gong, M., Coello, C.A.C., Ming, Z.: Cost-aware robust
control of signed networks by using a memetic algorithm. IEEE transactions on
cybernetics 50(10), 4430–4443 (2019)

18. Mirjalili, S., Mirjalili, S.: Genetic algorithm. Evolutionary Algorithms and Neural
Networks: Theory and Applications pp. 43–55 (2019)

19. Prechelt, L.: Early stopping-but when? In: Neural Networks (1996)
20. Shehadeh, K.S., Cohn, A.E., Jiang, R.: A distributionally robust optimization ap-

proach for outpatient colonoscopy scheduling. European Journal of Operational
Research 283(2), 549–561 (2020)

21. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. Advances in neural infor-
mation processing systems 28 (2015)

22. Wu, Y., Song, W., Cao, Z., Zhang, J., Lim, A.: Learning improvement heuristics
for solving routing problems. IEEE transactions on neural networks and learning
systems 33(9), 5057–5069 (2021)


	 Reinforcement Learning for Patient Scheduling with Combinatorial Optimisation  

