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Abstract
This paper builds on prior work by the author on cost share-induced technological
change. The theoretical model views selection of candidate innovations as a capital
budgeting exercise. In this paper it treats the case in which firms target an incremental
rate of profit, which introduces a nonzero threshold into a “selection frontier”. This
presents analytical challenges, which are resolved in this paper by assuming that
the probability distribution of potential increases in productivity among the set of fit
innovations is normal. That permits an explicit derivation of a micro-level model of
cost share-induced technological change that can be taken as a candidate functional
form for an aggregate model. The model is calibrated against historical data for India,
China, and the United States, three large continental economies at different levels of
per capita GDP. The model is able to fit the data with reasonable fidelity, and the fitted
model parameters can be given a reasonable interpretation. The paper further shows
that combining cost share-induced technological change with price-setting behavior
produces theoretically interesting results.

Keywords Technological change · Evolutionary · Classical · Neo-Marxian

JEL Classification E11 · E14 · O31

1 Introduction

Technological change has been recognized as a source of economic growth since at
least Adam Smith. Yet, it has proven difficult to incorporate convincingly into neo-
classical macroeconomic models. Famously, for Solow (1956; 1957), technological
change was a residual term that nevertheless generated most of empirically observed
growth, leading Abramovitz (1956, p. 11) to call the residual a “measure of our igno-
rance.” Endogenous growth models seek to explain technological change by relying

B Eric Kemp-Benedict
e.j.kemp-benedict@leeds.ac.uk
https://environment.leeds.ac.uk/see/staff/12648/dr-eric-j-kemp-benedict

1 Sustainability Research Institute, University of Leeds School of Earth and Environment, Leeds LS2
9JT, UK

123

Published online: 3 September 2024

Journal of Evolutionary Economics (2024) 34:515–567

http://crossmark.crossref.org/dialog/?doi=10.1007/s00191-024-00869-3&domain=pdf
http://orcid.org/0000-0001-5794-7172


on non-decreasing returns to capital (broadly conceived) to drive growth (Romer,
1987; Lucas, 1988; Romer, 1990). However, they have been criticized as requiring
“knife-edge” conditions to avoid either stagnation or explosive growth (Roberts and
Setterfield, 2007, p. 18). A further critique is that R&D based theories of endogenous
growth conflict with a pattern observed in some OECD countries of rapidly expand-
ing R&D effort together with stagnating total factor productivity (TFP) growth. The
second critique has been addressed through “semi-endogenous” (Jones, 1995) and
“Schumpeterian” (Ha and Howitt, 2007) neoclassical endogenous growth models, but
they do not truly resolve the first critique; semi-endogenous models lead to stagnation,
while Schumpeterian models impose constant returns to scale.1 A deeper critique is
that many of the models rely on “knowledge” or “information” as a factor of produc-
tion, but there is no coherent theory supporting this proposition (Mirowski, 2009).

In a separate strand ofwork, the theory of induced technological change, fromHicks
(1932) to Kennedy (1964) and Samuelson (1965) sought to explain within neoclassi-
cal theory why labor productivity tended to grow, while capital productivity did not.
However, that program had slowed considerably by the time Nordhaus (1973) effec-
tively ended it by pointing out internal inconsistencies, in particular that the shape of
the innovation possibility frontier is independent of the path taken to reach it (p. 213).
Acemoglu (2002) resuscitated the program by incorporating endogenous growth the-
ory. Yet, in addition to being a representative agent model, and therefore not truly
built from a micro-theory, Acemoglu’s model yields labor-augmenting technological
change only under quite restrictive conditions. Hewrites, “...there exists a unique equi-
librium path tending to a [balanced growth path] with only labor-augmenting technical
change. This result can be interpreted as either a positive or negative one: on the pos-
itive side...it is possible to construct a model where equilibrium long-run technical
change is labor augmenting, even though capital-augmenting technical change is also
allowed... On the negative side, it shows that this result obtains only when there is an
extreme amount of state dependence inR&D” (Acemoglu, 2002, pp. 804). By contrast,
in the theory presented in this paper the direction of technological change is essentially
determined by price- and wage-setting norms. As shown by (Kemp-Benedict, 2022)
and further argued in this paper, labor-augmenting change is one of many possibilities,
but it emerges quite naturally.

Arguably, many of the problems lie within neoclassical economics itself, in particu-
lar the unwarranted assumption of an aggregate production function and the associated
requirement for well-defined “factors of production” (Felipe, 2001). As an alterna-
tive, there is a long history of non-neoclassical endogenous growth theory (Kurz
and Salvadori, 2003; Setterfield, 2013; Tavani and Zamparelli, 2017) that overlaps
with the neoclassical tradition only through mutual reference to Kaldor (1961). Non-
neoclassical contributions include thewell-established link between accumulation and
labor productivity growth reflected in theKaldor-Verdoorn law (Lavoie, 2022, sec. 6.9)
and the classical theory of cost share-induced technological change (Dutt, 2013). The
two mechanisms are combined in the theoretical neo-Kaleckian model of Cassetti

1 In an attempt to directly deal with the problem of having to impose constant returns to scale, Weitzman
(1996, 1998) constructed a model in which constant returns to scale emerge endogenously through a
combinatorial explosion of potential directions for R&D. By contrast, the model in this paper does not
require constant returns to scale.
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(2003) and the empirically grounded model of Hein and Tarassow (2010). Models of
this type impose Harrod-neutral technological change, in which capital productivity is
constant while labor productivity depends on the investment rate and distribution. In
contrast, the theory applied in this paper need not impose any particular direction for
technological change. Work within non-neoclassical traditions is ongoing (e.g., see
Tavani and Zamparelli, 2021).

Technological change is also central to evolutionary economics, which is often
critical of neoclassical theory (Nelson and Winter, 1982; Dosi and Nelson, 2018).
Shiozawa (2020) provides a formal evolutionary framework for technological change,
together with a critical evaluation of prevailing approaches that, like this paper, sits
at the intersection of evolutionary, classical, and post-Keynesian theory. Shiozawa’s
contribution will be discussed further in this paper. Moreover, as Duménil and Lévy
(1995) showed, classical theory can, when combined with evolutionary theory, readily
explainwhy technological change is biased towards labor rather than capital. This point
was emphasized by Foley (2003, p. 42) andwas demonstrated in an agent-basedmodel
byFanti (2021).Biased change emerges from the requirement that innovations increase
the profit rate – the “viability” criterion of Okishio (1961) – which was interpreted by
Kemp-Benedict (2022) as analogous to a firm’s capital budgeting procedure.

An interesting implication ofDuménil andLévy’s theory is that, if labor productivity
depends on cost shares, then so does capital productivity. This is at odds with the
assumptions in the papers cited above (Cassetti, 2003; Hein and Tarassow, 2010;
Dutt, 2013) and seems to be contradicted by the common observation of at least
approximately Harrod-neutral technological change. However, as demonstrated by
Julius (2005, p. 109), Harrod-neutral technological change is a possible equilibrium
solution of Duménil and Lévy’s model, and Kemp-Benedict (2019) demonstrated that
it is always an equilibrium when firms’ markups are set using a target-return rule, a
common if not universal pricing procedure (see Lavoie, 2022, sec. 3.6). This paper
will further show it to hold in a conflict wagemodel. As a consequence, Harrod-neutral
technological change can be derived, rather than imposed.

Prior work by the author on classical-evolutionary models (Kemp-Benedict, 2017a,
2022) substantially expanded Duménil and Lévy’s original model (Duménil and Lévy,
1995, 2010). Kemp-Benedict (2022) proposed an aggregate model of technological
change based on an evolutionary microeconomic model of the “NK” type. In such
models, N is the number of different elements that can be changed in a product,
process, or management system, while K is the number of interactions between those
elements. The aggregate model, which applies to a sector composed of micro-level
production units, was shown to be expressible in terms of a “generating function” that
depends on cost shares. Average productivity growth rates are determined by taking
partial derivatives of the generating functionwith respect to corresponding cost shares.

The classical-evolutionary theory in this paper differs from most other approaches
to technological change in at least two important respects. First, and crucially, in
evolutionary theory firms do notmaximize profits. Evolutionarymodels are essentially
process-based, and in such models agents do not maximize (Nelson, 2018, p. 15).
The evolutionary process of innovation generates a cumulative advance (Dosi and
Nelson, 2018), but individual firms are exploring, not optimizing, and either retaining
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or rejecting what they discover through diverse selection processes. Second, because
of the enormous variety of possible modifications of products and processes, it is
misleading to assume a set of techniques out in the world waiting to be implemented
by any given firm; technologies are not “blueprints” executed in the same way by
every firm (Dosi and Nelson, 2013, p. 28ff). A third distinction is shared by many non-
neoclassical theories and emphasized in particular by Shiozawa (2020): if distribution
is not determined by the optimal use of a given set of techniques, as is believed to be the
case in marginalist theory, then price- and wage-setting becomes independent from
technological change. Together, productivity growth and distribution interact along
a dynamic path that depends, on one hand, on the cost share–productivity growth
relationship, and price- and wage-setting behavior on the other. Cost share-induced
technological change can thus be one component within a full macroeconomic model.
Examples of macroeconomic closures with cost share-induced technological change
are provided in the paper.

One limitation of Duménil and Lévy’s classical-evolutionary theory of technolog-
ical change is that it did not appear to constrain the form a cost share-dependent
function for productivity growth rates might take (Julius, 2005). Another is that the
model makes a highly restrictive assumption about the underlying probability distri-
bution of productivity growth rates. A key result of Kemp-Benedict (2022) is that not
only can the vector of productivity growth rates be expressed as the partial derivatives
of a scalar generating function, but the form of the generating function is constrained,
regardless of the underlying details. This allows candidate functions to be proposed
that satisfy the constraints. Specifically, they must be first-order in the cost shares
and have a positive semi-definite matrix of second derivatives. These are both local
requirements that hold true in the vicinity of any value of the cost shares. A further
global requirement is that certain elements of the matrix of second derivatives must
go to zero when cost shares go to unity. These results were shown to apply to a direct
extension of Duménil and Lévy’s “selection frontier” in which profitability requires
that the sum of products of cost shares and productivity growth rates exceed zero. The
possibility of a non-zero threshold in the selection frontier was demonstrated but not
explored.

This paper builds on the work in Kemp-Benedict (2022) in several ways. First, it
constructs a selection frontier consistent with the argument by Shaikh (2016) that the
incremental rate of profit is the relevant quantity, rather than the average. The resulting
selection frontier has a non-zero threshold that depends on the target incremental rate
of profit. While Kemp-Benedict (2022) suggested a candidate functional form for the
generating function, it is challenging to extend to the case of a non-zero threshold. In
this paper, an approach to developing candidate functional forms is introduced and
applied. The resulting functional form is tested against empirical data and found to
perform reasonably well.

As noted above, a further contribution in this paper is to show explicitly how the
theory of cost share-induced technological change can be embedded in other theo-
ries. First, a single cost share-induced technological change model is combined with
three different closures for a post-Keynesian model. The results demonstrate how the
dynamics depend on price- and wage-setting behavior. Second, a model of target-
return pricing is proposed in which R&D costs factor into the calculation of the target
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rate of return. Third, the model for cost share-induced technological change, which
formally applies to sectors, is embedded in a multi-sector model.

Section 2 explains how capital is treated in this paper and how that differs from
approaches rooted in value theory. Section 3 summarizes the theory of cost share-
induced technological change as presented in the author’s prior work. Section 4
presents the derivation of the selection frontier in the case of a target incremental
rate of profit. Section 7 summarizes some of the insights from the paper and discusses
possible extensions. Section 8 concludes. Section 5 proposes a candidate generating
function assume normally-distributed potential productivity growth rates. Section 6
tests the model against empirical data.

2 Treatment of capital in this paper

Debates on the nature of capital since the 19th Century have acknowledged that it is
essential to production but is also highly heterogeneous, partly but not fully malleable,
priced differently in different markets, and susceptible to changing valuation. In the
face of this uncomfortable reality, the rise of marginalist analysis and the extension
of the theory of land rent to capital and labor created a need to find an aggregate
metric for capital that was independent of price. The search for that metric spawned
the famous Capital Cambridge Controversies over whether it could succeed even in
theory. Those who said “no”, in Cambridge, England, won the argument (Samuelson,
1966) but those who said “yes”, mostly in Cambridge, Massachusetts, won in the
textbooks (Harcourt et al., 2022).

One unfortunate side-effect of the long debate was that capital in macroeconomic
modelingwaspresented as an applicationof value theory. In this paper, capital is always
in monetary (value) terms. However, that value does not correspond to any notion of
value theory. The theoretical focus in this paper is on behavior rather than idealized
notions of what something should be worth. Behavior related to capital depends on
how firms assign it a value, and how the value of their capital assets compares to the
value of their output. Accordingly, in this paper the price of capital is the cost-based
market price of capital goods, rather than the marginal rental rate of capital. The value
of capital depends on prices and therefore cannot (and does not) serve as a “factor
of production” in a neoclassical sense. Nevertheless, it does impose a cost, and firms
and investors care about return on investment. The behavioral assumption behind the
model is that firms and investors target a profit rate based on firms’ accounts.

Following Lee (1999), the appropriate value for the capital stock is what firms
calculate it to be. Firms calculate the value of their capital stock to construct their
balance sheets and report depreciation to the tax authorities. Even within a single
production unit, capital goods are highly heterogeneous, including plant, machinery,
vehicles, and anything else for which depreciation can be reported. Capital in the
classical-evolutionary theory of technological change is therefore not a single good
and its value does depend on price. When the theory is embedded as a component
in a larger macroeconomic model, the quantity-price relationship must be addressed.
Single-good models assume capital and consumption goods take the same form and
have the same price index. For any other type of model the price of capital goods must
be tracked, and there may be many types of capital goods. To use the theory presented
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in this paper, capital productivity should be calculated as the ratio of themonetary value
of sector output to the monetary value of the capital stock. In a model with multiple
capital goods and multiple products, they must be weighted by their relative prices.

While this paper departs in some ways from both sides of the Cambridge Con-
troversies, in one sense it is firmly on the Cambridge, England, side of the debate.
Harcourt argues that neoclassical theories of production must define a unit of capital
that is independent of distribution and prices, while classical theories must motivate
a general rate of profit. He writes, “[I]n mainstream [neoclassical] theory, there is no
conceptual difference between rates of profit and the rate of interest. By contrast, the
conceptual difference is emphasized in the alternative [classical] approach. Profit is
the return, expected and actual, on investment in capital goods. Interest is the hire
price of finance” (Harcourt, 2015, p. 248). This paper takes the classical approach.

3 Classical-evolutionary cost share-induced technological change

This section presents the core theoretical elements of classical-evolutionary cost share-
induced technological change. The theory builds on what this author believes to be the
essence of the “classical-Marxian evolutionary” theory of cost share-induced techno-
logical change proposed by Duménil and Lévy (2010). For present purposes, their two
most important findings are: 1) biased technological change emerges naturally within
an evolutionary setting; 2) if the productivity growth rate of one input depends on cost
shares, then so does at least one other input. The first of these two findings resolves a
long-standing problem thatmakes their theory highly compelling as a starting point for
further work. The second produces some interesting dynamics when combined with
other assumptions into a complete and closed model, as shown later in this section.

Foley (2003, p. 42) provides a succinct summary of these points. He notes that in
Duménil and Lévy’s theory the dependence of technical change on distribution arises
“in a model in which capitalist firms simply select candidate technical innovations that
are thrown up by a random process...” Further, in common with Duménil and Lévy,
in Foley’s model both labor and capital productivity depend on cost shares. Yet, both
(Foley, 2003) and (Foley et al., 2019, chap. 7) assume profit-maximizing firms face
an exogenous innovation frontier. The essential evolutionary nature of Duménil and
Lévy’s theory was lost, together with the insights it generates.

Elaborating on Duménil and Lévy’s theory, the author has shown that: (1) their
model for labor and capital can be expanded to any number of inputs; (2) the functional
form relating cost shares to productivity growth rates is meaningfully constrained; (3)
those results hold in the aggregate across an indefinite number of “production units”
(Kemp-Benedict, 2019, 2022). These points are introduced in this section.

3.1 The core theory

This section, while drawing on Duménil and Lévy (2010) for inspiration, uses the
author’s own notation and framing. The microeconomic conceptual model posits a
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“production unit” searching in the vicinity of its current practices for innovations. The
production unit might be, for example, a firm, a division, or a product line. Innovations
are sought that meet any of a number of fitness criteria. For example, for product inno-
vations, firmsmay respond tomarket analysis or competitor’s innovations, or theymay
perceive completely new opportunities. For process innovations, they may respond to
data collected from practice (e.g., a lean or six sigma approach)2 or the introduction
of new machinery. Innovations can also be introduced less formally, and often are.
Any innovation that passes this step is considered to be “fit.” However, that is not the
end of the story. For an innovation to be viable, it must not degrade the profitability
of the production unit or its parent firm.3 Thus, while candidate innovations pass a
fitness test, to be implemented (and thus become actual innovations) they must pass a
profitability test as well.

The requirement that an innovation not lower profitability is consistent with the
practice of capital budgeting. In a review of capital budgeting surveys, Mukherjee
and Henderson (1987) found that project proposals are initiated at lower levels in
the organization and then screened and approved at higher levels, consistent with the
assumption in this paper. In a longitudinal study of large firms in the UK, Pike (1996)
found that an increasing fraction of firms carried out a formal financial evaluation in
all the years of the study, reaching 100% by the final wave (1992). Firms used multiple
techniques, with only 4% using a single method. Nearly all firms used payback period
(94% in 1992), while the bulk also used internal rate of return and net present value
(81% and 74% in 1992 respectively). The study found a strong increase in the use
of risk appraisal techniques, such as changing the payback period or required rate of
return. In a more recent and substantial study of North American firms, Graham and
Harvey (2001, 2002) found internal rate of return and net present value to predominate
(around 75% of firms). Payback period was still popular, but with lower uptake than
in Pike’s study (57% of firms).

Capital budgeting is applied to proposed investments, and therefore to the incre-
mental impact on profits. This is consistent with the observation by Shaikh (2016)
that while average profits rates differ systematically and persistently between sectors,
incremental profit rates do not. In an analysis of Shaikh’s dataset, Kemp-Benedict
(2023) showed that while incremental rates of profits vary widely over time, their
distribution is statistically similar for most sectors.4 This paper extends the analysis in
Kemp-Benedict (2019, 2022), which followed Duménil and Lévy (2010) in using the

2 See https://asq.org/quality-resources/lean and https://asq.org/quality-resources/six-sigma at the Ameri-
can Society for Quality website.
3 This is not entirely true. Sometimes production units are cross-subsidized in order to build up experience
with new techniques and products. Furthermore, Mukherjee and Henderson (1987, p. 81) report that some
projects can be exempt from financial justification, e.g., for public or employee safety.
4 Time series of incremental rates of profit were treated as empirical distributions. Applying a pair-wise
comparison using a two-sample Kolmogorov–Smirnov test, distributions were found to be similar for 26
of the 31 sectors in Shaikh’s dataset. The five exceptions were: Real estate, Mining excluding oil, Waste,
Food service, and Broadcasting.
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average profit rate, to the case of incremental rates of profit. As will be shown later,
the result is a selection frontier of the form

n∑

i=0

σi ν̂i > c. (1)

In this expression, n is the number of inputs in addition to capital (e.g., n = 1 if the
only inputs are labor and capital), the σi are cost shares, the νi are productivities, and
c is a (possibly non-zero) threshold.

It is important to note that despite the superficial similarity, Duménil and Lévy’s
selection frontier is very different from the external innovation possibility frontiers
posited by Kennedy (1964), Foley (2003), and others. As argued above, Duménil and
Lévy’s frontier can be interpreted as the consequence of a firm’s capital budgeting
procedures, which are typically carried out by the chief financial officer (CFO) or
their staff. Capital budgeting is applied to proposals as they arrive; it is a filtering
computation, not an optimizing one.

As firms explore in the vicinity of their own techniques and make incremental
improvements, they pursue potentially divergent technological pathways. What is
more, the resulting heterogeneity is crucial for evolutionary theory (Cantner, 2017).
While technological pathways are constrained by the prevailing technological regime
and often by commonly held dominant designs, within those constraints there is mean-
ingful variety from one firm to the next (Dosi and Nelson, 2018, pp. 57–58).

Equation (1) can be expressed equivalently in vector form. Defining column vectors
σ and ν with elements σi and νi , the selection frontier can be written

σ ′ν̂ > c. (2)

Acentral element of theDuménil andLévy (2010)model is a probability distribution
of productivity growth rates, which is denoted in this paper as f (ν̂). Possible forms for
this distribution are a central focus of the present paper. While Kemp-Benedict (2022)
explicitly derived a “generating function” for productivity growth rates starting from
an NK model, here it will be asserted to equal

�(σ ; c) =
∫

d ν̂ f (ν̂) (σ ′ν̂ − c) h(σ ′ν̂ − c). (3)

In this expression, h(x) is the Heaviside function, equal to one when its argument
is positive and equal to zero when its argument is negative.

This is a generating function in that partial derivatives with respect to cost shares
give the expected value of the corresponding productivity growth rates for fit and
profitable innovations. The partial derivative with respect to σi is

∂�(σ ; c)
∂σi

=
∫

d ν̂ f (ν̂) ν̂i h(σ ′ν̂ − c) +
∫

d ν̂ f (ν̂) ν̂i (σ
′ν̂ − c) δ(σ ′ν̂ − c), (4)
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where δ(x) is the Dirac delta function. The delta function is the derivative of the
Heaviside function, h′(x) = δ(x), equal to zero everywhere except at x = 0, where
it diverges. It has the property that

∫ ∞
−∞ dx F(x)δ(x) = F(0) for any function F(x).

The integrand in the second integral of this equation contains a factor of the form
xδ(x), so it is equal to zero. The result then becomes

∂�(σ ; c)
∂σi

=
∫

d ν̂ f (ν̂) ν̂i h(σ ′ν̂ − c) = Eσ ′ν̂>c[ν̂i ]. (5)

This is the expected value of ν̂i over the distribution of innovations that are both fit
– as expressed by the probability distribution f (ν̂) – and profitable – as enforced by
the Heaviside function h(σ ′ν̂ − c). The function �(σ ; c) defined in Eq. (3) thus acts
as a generating function for average productivity growth rates, as intended.

An essential result, noted above, is that even if the probability distribution f (ν̂) is
symmetric, and therefore unbiased towards any particular input, the expected value of
productivity growth rates is biased, due to the selection frontier criterion σ ′ν̂ > c. This
is an elegant result that follows directly from the Duménil and Lévy (2010) model:
biased technological change emerges naturally in the theory, and does not need to be
imposed.

The second essential result that was noted earlier – that if the productivity of one
input depends on cost shares, then so must at least one other – can be demonstrated
by taking the second partial derivative,

∂2�(σ ; c)
∂σi∂σ j

=
∫

d ν̂ f (ν̂) ν̂i ν̂ j δ(σ
′ν̂ − c) = ∂

∂σ j
Eσ ′ν̂>c[ν̂i ]. (6)

Because the matrix of second partial derivatives (the Jacobian) is symmetric, if the
average productivity growth rate for input i depends on cost share j then, from this
equation, the productivity growth rate for input j must depend on the cost share for
input i .

Pre- and post-multiplying the Jacobian by an arbitrary vector x gives

∑

i

∑

j

xi x j
∂2�(σ ; c)
∂σi∂σ j

=
∫

d ν̂ f (ν̂)
(
x′ν̂

)2
δ(σ ′ν̂ − c), (7)

which is either positive or zero. Thus, a further finding is that the Jacobian matrix
is either positive-definite or positive semi-definite. This means in particular that the
diagonal of the Jacobian is positive or zero, so the change in a productivity growth
rate with respect to an increase in its own cost share must be either positive or zero.

3.2 Aggregation

The presentation to this point applies to a production unit. However, as shown inKemp-
Benedict (2022), the restrictions on the generating function still hold after aggregating
over production units. The argument is briefly restated here.
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The presentation assumes that a sector is composed of N production units with a
comparable product. Products are not identical: sectors such as textiles are highly het-
erogeneous, while firms in more homogeneous sectors often target different markets
(for example, the motor vehicle transport sector includes both the everyday Buick and
the high-end Bentley). We assume that all products in a sector are sufficiently compa-
rable that they have a common “anchor price.” Individual products may have prices
far from the anchor, but all prices tend to move together. In this case, price differentials
are roughly stable across production units and can be absorbed into productivities.

Following a standard growth rate decomposition (see Kemp-Benedict, 2022, for
details), it is possible to show that the sector-level productivity growth rate for input
i is

ν̂i =
N∑

r=1

(
ar − br ,i

)
Ŷr +

N∑

r=1

br ,i ν̂r ,i , (8)

where ar is the r th unit’s share of production and br ,i is the r th unit’s share in use
of input i . The first term is due to a change in composition while the second term is
due to a change in productivity alone at the level of each production unit. The theory
presented in this paper addresses the second term.

Following the development in (Kemp-Benedict, 2022, sec. 3.3), we propose an
aggregate generating function of the form

�(σ ; {cr }) =
N∑

r=1

ar�r (σ r ; cr ). (9)

Noting that the cost shares for individual production units are related to the average
cost shares for the sector through

σr ,i = br ,i
ar

σi , (10)

it follows that the partial derivative of the aggregate generating functionwith respect
to the sector average cost share is

∂

∂σi
�(σ ; {cr }) =

N∑

r=1

ar
br ,i
ar

∂

∂σr ,i
�r (σ r ; cr )

=
N∑

r=1

br ,i Eσ ′
r ν̂>cr [ν̂i ]. (11)

This is directly analogous to the expression for the sector aggregate productivity
growth rate that appears in the second term of Eq. (8), but applied to the expected
productivity growth rates for each production unit. Furthermore, because the Jacobian
of each production unit’s generating function is positive semi-definite, so is their
weighted sum. This means that the aggregate generating function for the sector has
the same properties as those for the individual production units.
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3.3 Embedding the theory in a larger model

The Introduction emphasized that cost share-induced technological change is a mech-
anism that can be embedded into a variety of macroeconomic models. The purpose of
this section is to demonstrate, through a series of examples, how that can be done in
practice.

As earlier noted, the aggregate model applies to single sectors. Accordingly, one
of the examples, in Section 3.3.3, shows how the theory can inform a multi-sector
model in which each sector has intermediate inputs as well as inputs of labor and
capital. However, the other examples follow common post-Keynesian practice and
apply the theory to one-good models with labor and capital as the only inputs. While
not strictly justified, this has two benefits: first, the presentation can be comparatively
brief; second, the models can be compared to other post-Keynesian models available
in the literature.

3.3.1 A one-sector model with three alternative closures

The impact of cost share-induced technological change upon macroeconomic dynam-
ics depends on other model assumptions, particularly price- and wage-setting. In the
one-good, two-input model presented in this section, prices and wages are linked
through the markup. While keeping the relationship between cost shares and produc-
tivity growth rates the same, we offer three alternatives closures: constant markups,
target-return pricing, and conflict wage-setting.

For this two-input model, labor has productivity λ and capital productivity κ . Using
a “hat” to indicate a growth rate, the corresponding productivity growth rates are λ̂

and κ̂ . As shown in the previous section, if the productivity growth rate for one input
depends on cost shares, then so must at least one other. For two inputs, this means that
we can write,

λ̂ = l(π), l ′ < 0, (12a)

κ̂ = k(π), k′ > 0. (12b)

As will be seen below, the requirement that more than one productivity growth rate
depend on cost shares yields interesting results. By contrast, many applications of cost
share-induced technological change to macroeconomic theory assume that only one
productivity growth rate is dependent. That is true, for example, in the survey by Dutt
(2013) of endogenous technological change in classical-Marxian models and of the
Kaleckian models of Cassetti (2003) and Hein and Tarassow (2010).

In addition to price- andwage-setting, each example assumes an investment function
of the form

g = γ (r), γ ′ > 0, (13)

where g is the investment rate and r = πκ is the profit rate. For simplicity, capital is
assumed to be fully utilized, so the capacity utilization factor does not enter into the
investment function.
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Fixed markup

With a fixed markup m, the profit share is given by

π = π∗ = m

1 + m
. (14)

In this case, π is fully determined by pricing behavior, and productivity growth
rates are fully determined as well: λ̂ = l(π∗) and κ̂ = k(π∗). Unless the markup
happens to satisfy k(π∗) = 0, the profit rate r = π∗κ and thus the investment rate
g = γ (r)will show a trend. If that trend is downward, then the result is a falling rate of
profit. However, it depends on both the markup and the dependence of the productivity
growth rates on distribution.

Target-return pricing

Under target-return pricing, markups are set such that

πκ = r∗, (15)

where r∗ is the target profit rate. For simplicity, it is assumed that markups are adjusted
instantaneously to maintain the target profit rate (in reality, there will be a lag). If the
target profit rate r∗ is not changing under time, then

π̂κ = π̂ + κ̂ = 0, (16)

which gives an equation of motion for the profit share,

π̂ = −κ̂ = −k(π). (17)

This is a stabilizing dynamic, because when π increases (decreases), k(π) also
increases (decreases), so π̂ decreases (increases), leading to a negative feedback.
The equilibrium position satisfies k(π∗) = 0. At that point, κ̂ = 0, so the capital
productivity is steady in equilibrium. The equilibrium level of the capital productivity
is given by κ∗ = r∗/π∗. Labor productivity grows steadily in equilibrium at the rate
l(π∗).

Over time, the profit share, capital productivity, and labor productivity can all
fluctuate around their equilibrium values. However, by the assumption that the target
profit rate is achieved instantaneously, the investment rate is constant, g = γ (r∗).

Note that the equilibrium in this case producesHarrod-neutral technological change,
with constant capital productivity and steady labor productivity growth. It also pro-
duces a constant profit share and constant profit rate, consistent with Kaldor’s stylized
facts (Kaldor, 1961).
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Conflict wage determination

In the final example with this one-sector post-Keynesian model, it is more convenient
to use the wage share rather than the profit share. We define functions lw and kw that
depend on the wage share as

λ̂ = lw(ω) ≡ l(1 − ω), l ′w = −l ′ > 0, (18a)

κ̂ = kw(ω) ≡ k(1 − ω), k′
w = −k′ < 0. (18b)

Thewage share is given by the ratio between the real wagew and labor productivity,

ω = w

λ
⇒ ω̂ = ŵ − λ̂. (19)

The wage is assumed to grow at the same rate as labor productivity unless the
growth in labor demand differs from the growth rate of the labor force. Specifically,
denoting the growth rate of labor demand by L̂ and the growth rate of the labor force
by n,

ŵ = λ̂ + f (L̂ − n), f (0) = 0, f ′ > 0. (20)

Growth in labor demand is given by the difference between the growth of output,
Ŷ , and labor productivity,

L̂ = Ŷ − λ̂. (21)

The growth rate of output is given by the sum of the investment rate and capital
productivity,

Ŷ = g + κ̂ . (22)

Finally, the investment rate is

g = γ (r) = γ ((1 − ω)κ) . (23)

We can now combine the above to write

ω̂ = f (γ ((1 − ω)κ) + kw(ω) − lw(ω) − n) . (24)

When ω increases, −lw(ω), kw(ω) and γ ((1 − ω)κ) all decline (and, conversely,
whenω decreases, each of those terms increases).As a consequence, this is a stabilizing
dynamic. The equilibrium is reached when f = 0, which occurs when its argument
is zero. Therefore, the equilibrium value of the wage share, ω∗, satisfies

γ
(
(1 − ω∗)κ

) + kw(ω∗) − lw(ω∗) = n. (25)

The equilibrium value will change over time unless κ is constant. Taking the time
derivative of this equation, using κ̂ = kw(ω), and solving for ω̇∗ (where a “dot”
indicates the time derivative), gives

ω̇∗ = κγ ′

κγ ′ + l ′w − k′
w

(1 − ω∗)kw(ω∗). (26)
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Because γ ′ and l ′w are positive, while k′
w is negative, the ratio of κγ ′ to(

κγ ′ + l ′w − k′
w

)
is also positive. The equilibrium of this equation, ω∗∗, satisfies

kw(ω∗∗) = 0. (27)

The equilibrium is locally stable because k′
w < 0. However, it may not be globally

stable. The model becomes unstable when kw is sufficiently negative, specifically
when kw < (1 − ω∗)k′

w. This condition may or may not be possible, depending on
the form for kw.

With this model closure, the equilibrium solution produces a constant cost share
ω∗∗ at which κ̂ = 0 and g = λ̂ + n. As with a target rate of return, the equilibrium is
characterized by Harrod-neutral technological change and Kaldor’s stylized facts of
constant cost shares and a constant profit rate. What is more, it brings the investment
rate in line with Harrod’s natural rate.

3.3.2 Target-return pricing with R&D costs

The Introduction contrasted the dominant neoclassical theories of technological
change to the non-neoclassical alternatives. The author criticized Acemoglu (2002) in
particular for developing a theory that required extreme parameter assumptions to get
results close to those observed in practice. However, one benefit of Acemoglu’s model
is that it takes explicit account of R&D expenditure. That is also true of some non-
neoclassicalmodels, notably Zamparelli (2024), who introduced both fixed-coefficient
(Leontief) and neoclassical versions of a model of cost share-induced technological
change in which R&D expenditure pushes the innovation possibility set outward. Sim-
ilarly, Dosi et al. (2010) and Caiani et al. (2019) built agent-based models in which
R&D expenditure affects the probability of discovering an innovation.

Expenditure on R&D is an example of an “enterprise cost”, in contrast to direct
material and labor costs, and to shop costs. Target-return pricing typically takes enter-
prise costs into account (Lee, 1999, p. 205). This suggests that the target-return pricing
model above can be modified to include R&D expenditure. We assume R&D costs
are specified as a fraction d of the value of the capital stock. In keeping with Dosi
et al. (2010) and Caiani et al. (2019), the probability θ(d) of finding a fit innovation
increaseswithR&Dexpenditure.As shownbyKemp-Benedict (2022, pp. 1322-3), this
effect can be incorporated into a classical-evolutionary model of cost share-induced
technological change by multiplying the cost share by the probability.

In the reformulated model, productivity growth rates are given by

λ̂ = θ(d)l (θ(d)π) , l ′ < 0, (28a)

κ̂ = θ(d)k (θ(d)π) , k′ > 0. (28b)

The target-return formula is modified to include R&D expenditure. All variables are
normalized by the value of the capital stock, so

πκ = r∗ + d. (29)
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As before, the equilibrium for a given value of d features constant cost shares,
a constant capital productivity, and steady labor productivity growth. However, the
equilibrium profit share now satisfies

k
(
θ(d)π∗) = 0. (30)

A rise in R&D expenditure per unit of the capital stock translates into a rise in θ(d).
Because k is increasing in its argument, to bring it back to zero, the equilibrium profit
share π∗ must decline. The product θ(d)π∗ remains unchanged, so from Eq. (28a),
labor productivity simply increases in line with the factor θ(d).

The equilibrium level of the capital productivity satisfies

κ∗ = r∗ + d

π∗ . (31)

Denoting the equilibrium profit share when d = 0 by π∗
0 , at equilibrium the profit

share is π∗ = π∗
0 /θ(d), so

κ∗ = r∗ + d

π∗
0

θ(d). (32)

This is increasing in d , so as R&D expenditure rises, so does the equilibrium level
of the capital productivity.

3.3.3 Amulti-sector model

This section places the sectoral model of cost share-induced technological change
within a multi-sector setting. Unlike with the previous examples, this is not a complete
model. In particular, it does not track investment and therefore does not demonstrate
how the value of the capital stock depends on the relative price of different capital
goods. Nevertheless, even though it is incomplete, the model leads to some interesting
conclusions.

Following Sraffian theory, sectoral prices are set by markup, but prices are not
adjusted instantaneously. Instead, firms in sector i are assumed to set a target price
p∗
i , where

p∗
i = μi

⎛

⎝ci +
n∑

j=1

p ja ji

⎞

⎠ . (33)

In this expression, n is the number of sectors, μi = 1 + mi is the profit margin,
ci are factor costs, such as labor and raw materials (but excluding profits), the p j are
prevailing prices, and the a ji are technical coefficients. To simplify the analysis, all
sectors are assumed to be “basic”, in that a chain can be constructed linking any given
sector to any other given sector through a series of intermediate transactions.
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Following Kemp-Benedict (2017b), firms adjust their prices towards their target
price over time, expressed through an equation of motion

ṗi = βi
(
p∗
i − pi

) ⇒ p̂i = βi

(
p∗
i

pi
− 1

)
. (34)

From Eq. (33), the ratio between the target and current price can be written in terms
of cost shares,

p∗
i

pi
= μi

⎛

⎝ ci
pi

+
n∑

j=1

p j

pi
a ji

⎞

⎠

= μi

⎛

⎝χi +
n∑

j=1

αi j

⎞

⎠ . (35)

Here, χi = ci/pi is the factor cost share and αi j = (p j/pi )a ji is the cost share
for intermediate input j . Because the sum of the cost shares is one less than the profit
share πi , the ratio p∗

i /pi is also the ratio of the desired profit margin,μi , to the realized
profit margin, 1/(1 − πi ).

If sector i makes no use of sector j’s output, then a ji = 0 and αi j = 0. Other-
wise, intermediate cost shares satisfy the following equation of motion, which follows
directly from their definition,

α̂i j = â j i + p̂ j − p̂i . (36)

The technical coefficients a ji are inverse productivities – they are a ratio of input
to output rather than the other way around. Therefore, assuming cost share-induced
technological change, the change in the growth rate of the technical coefficient with
respect to its own cost share must be negative;

â j i = f j i (χi , α1i , α2i , . . . , αni ), where
∂ f j i
αi j

< 0. (37)

Furthermore, from the pricing dynamics assumed above,

p̂i = βi

[
μi

(
χi +

n∑

k=1

αik

)
− 1

]
. (38)

This expression is increasing in cost shares, while the cost share αi j does not enter
the price p j , so

∂α̂i j

∂αi j
= ∂ â j i

∂αi j
− ∂ p̂i

∂αi j
< 0. (39)
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That is, the direct effect of a change in intermediate cost share is stabilizing. Because
there are great number of cost shares, it is possible to have at least local instability
through secondary interactions, but the underlying dynamic leads to an equilibrium in
which the cost shares are not changing.

An equilibrium of constant cost shares has two implications. First, from Eq. (38),
inflation rates are constant unless factor costsχi , target profitmarginsμi , or adjustment
rates βi change. Second, setting Eq. (36) to zero gives a condition

â j i = p̂i − p̂ j . (40)

As noted above, this expression was derived on the assumption that a ji is not
equal to zero. However, because all sectors are assumed to be basic, it is possible to
find a chain of intermediate links between any two sectors, for example j → k1 →
k2 → · · · → kN → i . After repeated intermediate exchanges, the effective coefficient
linking the two sectors is

A ji = a jk1ak1k2 · · · akN j , (41)

and its growth rate is, at equilibrium,

Â ji = â jk1 + âk1k2 · · · + âkN j = p̂i − p̂ j . (42)

The final equation holds because each intermediate p̂kn enters twice, first with a
positive sign and second with a negative sign, and therefore cancels out.

If inflation rates differ between sectors, then there must be at least one sector J
with the lowest inflation rate. From Eq. (42), for any other sector i , ÂJ i ≥ 0. This
means that demand overall for sector J ’s output is growing faster than any other sector.
That may be possible for a while, but at some point the assumption of fixed markups
and price adjustment rates will break down. Costs for sector J are such that firms
in that sector can lower their prices while maintaining their desired profit margins,
but the situation invites a rise in profit margins. Aside from the lost opportunity to
accumulate profit, the sector’s market is expanding, and a rise in the profit margin will
attract the investment needed for the expansion. Crucially for the cost share-induced
technological change mechanism, it will also raise the sector’s price and therefore
narrow the inflation gap between sector J and other sectors.

The implication is that through a combination of markup-based Sraffian pricing,
demand-pull inflation, and cost share-induced technological change, the economy fea-
tures an equilibrium in which cost shares are constant and prices in all sectors advance
at the general rate of inflation. At the same time, the model allows for deviations from
equilibrium that may persist for meaningfully long times.

3.4 Comments

The examples in this section made very few assumptions about the form of the func-
tional relationship between cost shares and productivity growth rates. Nevertheless,

123

531Cost share-induced technological change...



they illustrated some general points and generated interesting results. The main gen-
eral point is that the cost-share induced technological change mechanism can, when
combined with price- and wage-setting behavior, produce dynamic models in which
technological change and distribution influence one another. While the dynamic sys-
tems may never reach their equilibria in practice, in classical terms the equilibria
provide “centers of gravitation” or long-period positions that depends on both the
technological change mechanism and price- and wage-setting behavior.

The equilibria are theoretically interesting. The simplest of the examples, a fixed
markup model, can (but need not) lead to a falling rate of profit. However, that result
can be seen as an argument against assuming a fixed markup. If firms see their profit
rate fall, they can target a desired rate of return. The resulting equilibrium was found
to feature Kaldor’s stylized facts of constant capital productivity and constant profit
rate, as well as Harrod-neutral technological change. The same result was found when
target-return pricing takes R&D expenditure into account. In that case the labor pro-
ductivity growth rate and the level of capital productivity are increasing functions of
R&D expenditure.

Political economy considerations would suggest a move from fixed markups to
target-return policies if profit rates begin to fall. But a third model showed that a quite
different mechanism – conflict wage-setting – can also produce an equilibrium that
exhibits Kaldor’s stylized facts and Harrod-neutral technological change. The model
includes a feedback onwage claimsmediated through the investment rate, which leads
the investment rate to Harrod’s natural rate at equilibrium.5

The final, multi-sector, model was incomplete as a macroeconomic model. Nev-
ertheless, it showed how a combination of cost share-induced technological change,
Sraffian pricing, andmarkups that change in response to demand lead to an equilibrium
with stable technical coefficients and relative prices.

These results, which are of theoretical interest, emerge from dynamics and require
both labor and capital productivity growth to depend on distribution. In contrast, post-
Keynesian models in which only labor productivity growth is cost share-dependent
tend to apply comparative statics. Examples include Cassetti (2003), who synthesized
a model of conflict inflation with a theory of growth and distribution, and Hein and
Tarassow (2010) who sought to understand the implications of distribution on growth,
allowing for multiple channels. It is possible that allowing both labor and capital
productivity to depend on cost shares would change the comparative statics results.
For example, it would add a further dimension to the analysis of regimes by Hein and
Tarassow (2010). For Cassetti (2003), if the equilibrium is characterized by constant
capital productivity, then the comparative statics results may not change. However,
based on the models presented above, constant capital productivity is a contingent
result that depends on the way that prices and wages are set. By introducing cost
share dependence for capital productivity growth, the goods-market equilibrium of
Casetti’s Kaleckian model could be paired with a dynamic equilibrium resulting from
the interaction between distribution and productivity.

5 Kemp-Benedict (2020) showed in a competing claims model with the possibility of either target-return
or wage conflict price-setting behavior that the incompatibility between the two mechanisms gave rise to
long waves.
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The multi-sector model introduced in this paper can be contrasted with that of
Shiozawa (2020). Shiozawa’s theory was developed over many years (see Shiozawa
et al., 2019) and is quite sophisticated. The aim is to provide a firm theoretical foun-
dation that explains how technological change induces economic growth. Many of the
behavioral assumptions are compatible with those in the present paper, in particular
the selection criterion in his Eq. (4-1) (p. 1011) and the co-evolution of techniques
and prices (p. 1013). However, there remain important differences. In Shiozawa’s
model firms choose from among a given set of techniques. As explained earlier in
this paper, this is a problematic assumption, particularly in an evolutionary theory.
A second, more subtle difference is that while Shiozawa’s minimal price theorem
(pp. 997–999) assumes constant markups, the theory in this paper generates a sta-
ble equilibrium given the possibility of changing markup rates. However, taken as a
whole there are many more similarities than differences between Shiozawa’s theory
and that in the present paper. From the point of view of this paper, the most prob-
lematic of Shiozawa’s assumptions is that firms continually seek amongst an existing
set of techniques and choose that with the lowest price. Instead, as Shiozawa himself
notes (p. 991), “Technological evolution comprises a series of half-blind selections
of ‘better’ production techniques.” His framework would be strengthened by drawing
more systematically on the evolutionary economics literature to represent that half-
blind search. The theory presented in this paper provides a possible way forward, but
doubtless not the only one.

4 Selection frontier for a target incremental profit rate

The starting point for determining the selection frontier in this paper is the obser-
vation by Shaikh (2016), supported by the analysis by Kemp-Benedict (2023), that
incremental profit rates are similar between sectors, while average profit rates are not.
This suggests a central role for incremental rates of profit. As argued above, this con-
clusion is further reinforced by the widespread practice of capital budgeting, which
seeks to anticipate the potential profitability of new investment.

As emphasizedbyShell (1967), technological change arises dueboth to the potential
embodied in new machinery and, importantly, through disembodied learning pro-
cesses. In this paper, disembodied technological change is defined as a change in
output with no change in the capital stock (although the capital stock may be reval-
ued), while embodied change is due to the addition of new capital goods (and perhaps
the retirement of old capital goods).

4.1 Capital productivity

Following the treatment of capital introduced earlier in this paper, it is always rep-
resented in value form, where its value is that defined by the firm that owns it. The
actual capital goods behind that single measure of value are in reality a heterogeneous
mix, even within firms. Capital productivity κ is then defined as the ratio of the value
of a firm’s output, V , to the value of its capital stock, K . The values of V and K
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are influenced by factors that are difficult to capture in an aggregate model; the strat-
egy adopted in this paper is to find expressions that rely on details to the least extent
possible.

To shed some light on the complexities of modeling value: A firm will typically
produce multiple products, each aimed at a different market. For this reason, the value
V of output, even at constant prices, can change through a combination of expanding
output and changing composition.6 Furthermore, assessing the value of the capital
stock is a bookkeeping exercise, and different bookkeeping procedures can result in
different valuations (Lee, 1999). One of themost salient distinctions is between capital
valued at historical cost – what was actually paid in the past – and replacement cost –
what it would cost to buy equivalent equipment in the present. As older equipment is
less valuable thannew, replacement cost is normally higher than resale value in nominal
terms, although if manufacturing costs have declined it might be less than the inflation-
adjusted original cost. What is more, a decline in resale value will typically differ from
depreciation, which is defined by the tax code. Finally, neither depreciation nor the
loss in resale value corresponds to the loss of productive capacity due to retirement of
capital.

Given the manifold influences on V and K , the goal is to identify a general expres-
sion, specifying a minimum of details. When embedded in a larger model, details that
are avoided here can be more or less fully specified. For example, in a multi-sector
model with multiple investment goods (such as plant and machinery) and investment
services (such as construction), the prices of each type of good and service must be
tracked, and the mix of inputs specified, in order to calculate the value of investment
and the capital stock. By contrast, in a single-good model, the price level of capital
goods will be identical to the general price level. The goal of this paper is to iden-
tify a handful of details required to specify the selection frontier, independent of the
specificities of any given model.

4.2 Change in value

Regardless of how V and K are determined, capital productivity is κ ≡ V /K .Working
to first order, the change in value is

�V 	 K�κ + κ�K . (43)

The change in the value of output can be ascribed to either disembodied or embodied
change.While all innovation is ultimately constrained by incremental profitability, that
associated with the purchase of new capital with a value I is the subject of capital
budgeting exercises. Those are made on the basis of cash flow (Graham and Harvey,
2002), which requires an anticipated incremental value of output Vm associated with
investment expenditure. The ratio κm = Vm/I is the incremental capital productivity
associated with investment expenditure.

6 For example, a bakery, with no change in equipment, could increase the proportion of fine pastries in its
output. Holding the level of sales steady in physical terms (as measured, say, by the mass of wheat embodied
in the bakery’s products), value would rise without any change in prices. Note that cost of materials would
likely rise as well, so the margin may or may not change.
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As a practical example of using κm , if anticipated operating costs as a share of
revenue are denoted a, then the payback period is I/Vm(1 − a) = 1/κm(1 − a). The
ratio appears also in expressions for net present value and internal rate of return. This
demonstrates that if a CFO is to carry out a capital budgeting exercise, then he or she
needs to have an idea of the ratio κm ; it is a tangible quantity of relevance to firm
decision-making.

The change in the value of output associated with capital retirement and loss of
productive capacity of existing equipment is less easily defined than for new invest-
ment, and is written �Vexist. Accordingly, the change in value due to changes in the
existing capital stock, which we define to be embodied technological change, can be
written

�Vemb = κm I − �Vexist. (44)

Similarly, the change in the value of the capital stock can be written �K = I −
�Kexist, where the first term is the value of new additions to the capital stock while
the second term is the loss in the value of existing capital stock due to retirement, wear
and tear, and loss of resale value, net of any change due to revaluation.

4.3 Productivity growth

Disembodied technological change alters the value of output without adding to the
capital stock. Denoting the change in value due to disembodied technological change
by�Vdis, the total change in value is�V = �Vemb+�Vdis. Combining this equation
with Eqs. (43) and (44) gives an expression for the growth rate of capital productivity,
κ̂ = �κ/κ ,

κ̂ = �Vdis
κK

+
(κm

κ
− 1

) I

K
+

(
�Kexist

K
− �Vexist

κK

)
. (45)

In the classical-evolutionary cost share-induced technological model, the first two
terms can be treated as random variables that contribute to productivity growth rates.
The first arises from disembodied technological change, while the second arises from
embodied technological change. The question is how to address the final, parenthetical,
term, which is a difference of two ambiguous expressions.

One approach to evaluating the final parenthetical term in Eq. (45) is to make
some common and pragmatic, but not entirely realistic, assumptions. First, assume
that capital stock of any vintage depreciates at a common proportional rate, δ. Further
assume that the depreciation rate captures all sources of change in the value of capital
and the change in productive capacity. In that case, the value of output declines at the
same proportional rate δ. With these assumptions, �Kexist = δK , while �Vexist =
δV = δκK , and the final term in parentheses in Eq. (45) vanishes.

Another approach is to absorb the final term into disembodied technological change.
The first approach showed that the final term can be zero. However, it might in practice
be either positive or negative. One plausible assumption is that capital would tend to
be retired when it is comparatively less productive, so that the final term would tend
to be positive. As that would result in an increase in capital productivity without the
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introduction of new capital, it fits the definition of disembodied technological change,
and can be absorbed into a redefined term,

�Vdis + (κ�Kexist − �Vexist) → �Vdis. (46)

Following either the first or second approach, it is possible to write

κ̂ = κ̂dis + κ̂emb, (47)

where

κ̂dis = �Vdis
κK

, (48a)

κ̂emb =
(κm

κ
− 1

) I

K
. (48b)

As a practical matter, this result allows the further derivation to proceed using gross
quantities, �K = I and �Vemb = κm I , because the resulting expression for κ̂emb is
identical to Eq. (48b).

The ratio I/K that appears in Eq. (48b) is the investment rate g. The expression
in parentheses that multiplies it is the relative difference between the incremental and
average capital productivity. To distinguish that quantity from a growth rate, the value
will be denoted by a “check” (an inverted “hat”), κ̌m ≡ κm/κ − 1. With this notation,

κ̂emb = gκ̌m . (49)

The total growth rate in capital productivity is then

κ̂ = κ̂dis + gκ̌m (50)

For other inputs, the calculation proceeds similarly. However, the embodied con-
tribution depends on the incremental input-to-capital ratio qi,m = κm/νi,m rather than
the productivity itself. The result is that q̂i,emb = gq̌i,m . As with κm , νi must be known
for a capital budgeting exercise to take place, so the ratio qi corresponds to actual fig-
ures used by firms. The change in productivity can be evaluated using the identity
ν̂i,emb = κ̂emb − q̂i,emb. Adding the contribution from disembodied change gives

ν̂i = ν̂i,dis + g
(
κ̌m − q̌i,m

)
. (51)

4.4 Targeting an incremental rate of profit

This section derives a profitability criterion when firms are targeting a general incre-
mental rate of profit. Following Shaikh (2016), the relevant expression is the change in
gross profit divided by previous-period investment. In this section, gross profit includes
only direct costs, but that is not the only choice. Firms could allocate estimated shop
costs or a portion of enterprise costs as well. Those costs could include prior R&D
expenditure, but could also include legal or lobbying costs, CEO pay premia, and so on.
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Gross profit can be calculated as the value of output, V , net of the cost of inputs
but gross of depreciation. Cost of capital is captured in the target incremental rate of
profit, so at this stage capital is excluded from the list of inputs. The cost of inputs is
therefore given by the sum over quantities qi multiplied by prices pi , where the sum
is over i ∈ 1 . . . n. (Capital will be introduced into the list of inputs with index i = 0
at a later stage.) Gross profits � are then

� = V −
n∑

i=1

piqi . (52)

After an innovation, which may include a combination of embodied and disembod-
ied technological change, profits evaluated at fixed prices and wages becomes

�+1 = V+1 −
n∑

i=1

piqi,+1. (53)

As noted earlier, the value at fixed prices can change because of an overall increase
in the quantity of outputs as well as a changing composition of the output. The change
in profits, ��, is

�� = �V −
n∑

i=1

pi�qi . (54)

Following the arguments in Section 4, it is possible to calculate �V using gross
investment, so that, to first order

�V 	 K�κ + κ�K = K�κ + κ I . (55)

To calculate the change in input costs at constant prices, note that by definition the
productivity of input qi is νi = V /qi , while the cost share is σi = piqi/V = pi/νi .
Again working to first order,

pi�qi 	 pi
νi

�V − pi
νi

V
�νi

νi
= σi

(
�V − V ν̂i

)
. (56)

In the final expression, ν̂i = �νi/νi is the productivity growth rate of input i .
Substituting the expressions for �V and pi�qi into Eq. (54) gives

�� 	
(
1 −

n∑

i=1

σi

)
(K�κ + κ I ) + V

n∑

i=1

σi ν̂i . (57)

In this equation, note that one minus the sum of cost shares of inputs is the profit
share π . Using the identity V = κK , and denoting the investment rate by g = I/K ,
Eq. (57) becomes

��

κK
	 π

(
κ̂ + g

) +
n∑

i=1

σi ν̂i . (58)
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At this point, the profit share and capital productivity can be identified as the zeroth
elements of the vectors of cost shares and productivities: σ0 ≡ π and ν0 = κ . Defining
the vector product so that σ ′ν̂ extends from 0 to n, Eq. (58) can be written

��

κK
	 πg + σ ′ν̂. (59)

In terms of the variables introduced above, the incremental rate of profit is calculated
as r = ��/I . Through a process of “turbulent arbitrage”, sectoral incremental profit
rates rapidly, but turbulently, adjust towards the prevailing value (Shaikh, 2016). This
suggests a rule for new investment of

�� > r I �⇒ ��

κK
>

r

κ
g. (60)

From Eq. (59), this leads to a version of Duménil and Lévy’s (1995; 2010) selection
frontier,

σ ′ν̂ >
( r
κ

− π
)
g. (61)

This inequality is an example of a selection frontier with a threshold. It shows that, if
the average profit rate r = πκ is less than the target incremental profit rate r , then cost-
weighted average productivity growth must be comparatively high in order to meet the
threshold. Conversely, if the average profit rate exceeds the target incremental profit
rate, then the threshold is lower.

In Shaikh’s theory of turbulent arbitrage, r is “turbulently equalized” to the equity
rate of return (Shaikh, 2016, p. 468). That is shown to exceed the interest rate i (Shaikh,
2016, p. 459), but is otherwise undetermined. Post-Keynesian theory provides possible
explicit expressions through the concept of a firm’s “finance frontier.” As discussed
by Lavoie (2022, pp. 142-146), various theoretical expressions for the finance frontier
take the form r = ai + bg, with different formulations producing different values for
a and b. The calibration assumes one particular form, r = i + g/(1 + �), where � is
the firm’s leverage. This expression combines both the interest rate, thereby capturing
monetary policy, and leverage, thereby capturing a measure of risk. Substituting into
Eq. (61),

σ ′ν̂ >

(
i + g/(1 + �)

κ
− π

)
g. (62)

In this formulation, the threshold that appears in the selection frontier is: a) increas-
ing in the interest rate i ; increasing in the investment rate g; declining in the average
profit share π and capital productivity κ . A rise in the threshold means that it is harder
to find profitable innovations, and therefore tends to slow the pace of innovation, other
things considered. However, because embodied productivity growth is also increasing
in the investment rate, a rise in the investment rate raises both sides of the inequality,
with ambiguous results. What is not ambiguous is that increasing the interest rate will,
other things remaining the same, tend to slow average productivity growth.
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5 Candidate forms for generating functions

The rules governing the aggregate generating function are: first, that it be first order
in cost shares; second, that its matrix of second derivatives (the Jacobian) be positive-
definite or positive semi-definite; and third, that if the cost share of input i goes to one,
then entries in the Jacobian matrix with index i go to zero. The first two conditions
are local, in that they apply in the vicinity of any cost share; the last is global, in that
it applies only at extreme values of cost shares.

When constructing generating functions it is important to not impose the fact that
cost shares sum to one until after having taken all derivatives. Otherwise, the rules
above will change (and become more complicated). The constraint on cost shares
should be imposed after computing productivity growth rates by taking derivatives.

The author has proposed possible forms for generating functions in prior papers.
They have all assumed a zero threshold: c = 0. First, a cost share-induced technolog-
ical change model was introduced in Kemp-Benedict (2020) that can be derived from
a generating function of the form

�(π,ω) = Aπ + Bω + Cω ln
ω

π
. (63)

The corresponding growth rates are

κ̂ = ∂�

∂π
= A − C

ω

π
, (64a)

λ̂ = ∂�

∂ω
= (B + C) + C ln

ω

π
, (64b)

while the Jacobian is

J = C

(
ω/π2 −1/π
−1/π 1/ω

)
. (65)

The Jacobian matrix can be shown to be positive semi-definite, with a null vector
equal to the cost shares. It does not satisfy the global condition of Jacobian matrix
elements going to zero when cost shares go to one, but can be used as a local approxi-
mation. This generating function is most useful in a model with a target rate of return,
because in that case the equation of motion for the profit share is linear,

π̇ = −π
(
A − C

ω

π

)
= Cω − Aπ = C − (A + C)π. (66)

At the equilibrium, π∗ = C/(A + C). Given the profit share, labor productivity
growth can be calculated using Eq. (64b).

It is difficult to generalize Eq. (63) to more than two inputs. For multiple inputs,
Kemp-Benedict (2022) introduced a generating function that can be written

�(σ ) = A′σ +
(

n∑

i=0

Biσ
k
i

) 1
k

. (67)
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This satisfies all of the conditions, both global and local, if k ≥ 1.
Neither of the function forms above is easily extended to the case of a nonzero

threshold with c �= 0. Furthermore, they are clearly ad hoc. That is not necessarily a
problem for practical applications. Many functional forms can behave similarly within
a modest range of values, and the criteria of analytical tractability and modest number
of free parameters help to choose between competing options. The examples above
may fit those criteria, and if they perform well when fitting the model, then they
may be used as long as variable values do not stray too far from the range of values
used in calibration. However, the growing number of assumptions in the passage from
two inputs to many, and from a zero threshold to a nonzero threshold, urges a more
systematic approach.

The approach taken in this paper is to take the expression for the generating function
that applies to a production unit, Eq. (3), and use it to construct candidate func-
tional forms for aggregate generating functions. In general, the aggregate generating
function, which from Eq. (9) is a weighted sum of production unit-level generating
functions, will not take the same form as that of an individual production unit. Explicit
aggregation may be possible, but that is a separate and challenging topic that will be
taken up in future work. Instead, the firm-level expression for the generating function
is used to construct candidate aggregate generating functions that are guaranteed to
have the required properties.

5.1 Normally distributed potential productivity growth

Appendix A provides an alternative expression for production unit-level generating
functions that is fully equivalent to Eq. (3). It is written in terms of the characteristic
function of the distribution f (ν̂) of productivity growth rates for fit, but not necessarily
profitable, innovations. The final expression, Eq. (102), is reproduced here:

�(σ ; c) =
(
F(σ ′μ − c) + 1

2
− F(0)

) (
σ ′μ − c

)

− 1

2π

∫ ∞

−∞
dk

k
eik(σ

′μ−c)ϕ′
f 0(kσ ). (68)

In this expression, ϕ f 0(kσ ) is the characteristic function of f (ν̂) with zero mean
evaluated at kσ . The function F(x) is the cumulative distribution of a univariate
distribution constructed from the characteristic function of f (ν̂) evaluated at kσ .

In this paper the expression above is applied to a normal distribution of potential
productivity growth rates. While the generating function applies at the level of a
production unit, the goal will be adopted as a candidate generating function to be used
for aggregate analysis. It will be tested for suitability in an empirical analysis.

The characteristic function of the multivariate normal distribution with meanμ and
covariance matrix � is a standard result, and is given by

ϕ f (kσ ) = e− 1
2 σ ′�σk2+ikσ ′μ. (69)
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The expression in Appendix A requires the first derivative with the respect to k of
the distribution with zero mean. That is equal to

ϕ′
f 0(kσ ) = −σ ′�σke− 1

2 σ ′�σk2 . (70)

Otherwise, it needs the cumulative normal distribution N (x). The integral in which
ϕ′
f 0(kσ ) appears can be seen to be the inverse Fourier transform of the characteristic

function, which is simply the normal distribution itself. The result is

�(σ ; c) =
√

σ ′�σ

2π
e−(σ ′μ−c)2/2σ ′�σ + N

(
σ ′μ − c√

σ ′�σ

) (
σ ′μ − c

)
. (71)

This is the generating function when the distribution of productivity growth rates
is normally distributed with mean μ and covariance matrix �.

As noted above, strictly speaking this applies to a production unit. However, in this
paper we are using the formula for the generating function for a production unit as a
candidate functional form for an aggregate model.

5.1.1 Productivity growth rates

Following the development in Kemp-Benedict (2022), and as demonstrated in Eq. (4)
in the body of the paper, expressions for average productivity growth rates over prof-
itable technologies with improved fit are found by taking partial derivatives of�(σ ; c)
with respect to cost shares. The exponential in the first term of Eq. (71) and the cumu-
lative normal distribution in the second term potentially complicate any expression
for average productivity growth rates. However, their derivatives conveniently cancel,
as we now show. First, write

x ≡ σ ′μ − c√
σ ′�σ

. (72)

Next, note that a normal probability distribution function with respect to x , n(x),
appears in the first term in Eq. (71),

n(x) = 1√
2π

e−x2/2. (73)

With these definitions. Eq. (71) can be written

�(σ ; c) = n(x)
√

σ ′�σ + N (x)
(
σ ′μ − c

)
. (74)

Taking derivativeswith respect to the i th cost share σi gives the average productivity
growth rate for profitable innovations with respect to the i th input, ν̂i ,

ν̂i = √
σ ′�σ n′(x) ∂x

∂σi
+ (

σ ′μ − c
)
N ′(x) ∂x

∂σi
+ n(x)

(�σ )i√
σ ′�σ

+ N (x)μi . (75)
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The derivative of the cumulative normal distribution is the density, so N ′(x) =
n(x). Furthermore, the derivative of the distribution function is n′(x) = −xn(x).
Substitution gives

ν̂i =
(
−x

√
σ ′�σ + σ ′μ − c

)
n(x)

∂x

∂σi
+ n(x)

(�σ )i√
σ ′�σ

+ N (x)μi . (76)

From the definition of x in Eq. (72), the expression in parentheses vanishes, so the
partial derivative ∂x/∂σi need never be evaluated. Writing the final result in vector
form,

ν̂ = n(x)
�σ√
σ ′�σ

+ N (x)μ, where x = σ ′μ − c√
σ ′�σ

. (77)

This is the expression for average productivity growth rates under cost share-
induced technological change at the level of a production unit from innovations that
are both fit and profitable when the distribution of productivity growth rates for fit
innovations is normally distributed with a mean μ and covariance matrix �.

Because the aggregate generating function has the same properties as the generating
function for a production unit, this expression can also be applied as a candidate
generating function at the aggregate level. That is the procedure followed in this
paper.

While Eq. (77) can be used by itself, it does not distinguish between embodied and
disembodied technological change. That is, it combines changes in productivity due to
the addition of new capital and the retirement of old, on one hand, and improvements
with existing capital, on the other. That is treated next.

5.1.2 Combining embodied and disembodied technological change

We now return to the expression for productivity change with both embodied and
disembodied technological change given in Eq. (51). If all growth rate variables (with
a hat) and proportional change variables (with a check) are taken to be normally
distributed, the analysis can proceed reasonably rapidly from this point. Sums of
normally distributed variables are themselves normally distributed, with a mean and
covariance matrix equal to the sum of the means and the covariance matrices of the
component variables. For this reason, if κ̌m and q̌i,m are normally distributed, then so
is their difference ν̌i,m ≡ κ̌m − q̌i,m . The same holds true for the sum in Eq. (51).
Furthermore, if a normally distributed variable is multiplied by a scalar – in this case,
g – then the resulting product is also normally distributed, with a mean equal to the
scalar multiplied by the mean of the original variable and the covariance matrix equal
to the square of the scalar multiplied by the original covariance matrix.

Putting all of that together, the means and covariance matrices can be written

μ = μdis + gμm, (78a)

� = �dis + g2�m . (78b)
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Assuming the selection frontier inEq. (61), there is a nonzero threshold.The expression
for the average productivity growth rate is therefore,

ν̂ = n(x)

(
�dis + g2�m

)
σ

√
σ ′ (�dis + g2�m

)
σ

+ N (x)
(
μdis + gμm

)
, (79)

where

x = σ ′ (μdis + gμm
) − (r/κ − π) g

√
σ ′ (�dis + g2�m

)
σ

. (80)

We note that linearizing these expressions in g would yield a reduced-form model
with a Kaldor-Verdoorn type term. However, this paper adopts the full nonlinear
expression. While a linearized model – for example, a linear model in σ , g, and r
– might provide a good fit to data, the coefficients would be challenging to interpret,
whereas those of the nonlinear model are well defined. Furthermore, in the nonlinear
model parameters jointly impact both labor and capital productivity because they are
linked through the selection frontier. In a linearized model the underlying connection
is lost.

Eqs. (79) and (80) express the model derived in this paper in its final form. The
model captures the influence of the pace of investment and income distribution on both
embodied and disembodied technological change. Following the evidence presented
by Shaikh (2016) and Kemp-Benedict (2023), profitability is assessed through the
incremental profit rate.

6 Calibrating to historical data

A candidate function form for a generating function to be applied at aggregate level
must be tested for its ability to reproduce observations. Themodel defined by Eqs. (79)
and (80) was calibrated to three countries – India, China, and the United States – using
Bayesian analytical techniques. The Penn World Table (PWT) (Feenstra et al., 2015)
was used as the main data source. As described below, for a two-input model (labor
and capital), the PWT provides nearly all of the needed data. The target incremental
profit rate r is specified as in Eq. (62).

6.1 Data

The main source of data is the Penn World Table version 10.01 (Feenstra et al.,
2015), which extends at its maximum from 1951 to 2019. For many countries the
time series begins much later. The relevant variables are: the labor share labsh;
employment empl; the real value of the capital stock following the perpetual inven-
tory method rnna; the depreciation rate delta; and real GDP from the national
accounts rgdpna.

The PWT capital stockmeasure rnnawas used in preference to the capital services
measure rkna because the latter applies a different measure of value to that used in
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this paper. As explained in Section 4, in this paper the value of capital is determined
by the prices of capital goods and services, consistent with rnna, whereas the value
of capital services rkna is determined by a presumed rental rate of capital (Inklaar
et al., 2019). In the model presented here, the rental rate of capital appears in the target
incremental profit rate.

Real interest rates were obtained from the World Bank World Development Indi-
cators (WDI, variable FR.INR.RINR). Coverage for this variable is sparse, and
constitutes the main constraint on data availability. The other significant constraint is
the labsh variable from the PWT. To generate as complete a data set as possible, the
PWT records a constant labor share in years prior to and after the span of actual data.
Because cost shares are crucial explanatory variables in the model developed in this
paper, only years with data for the labor share are included.7

Preparation of country data sets followed this procedure: 1) extract data from PWT
10.01, find the earliest and latest years at which labsh begins to change, and truncate
the series by setting them to the start and ending years; 2) setω = labsh and π = 1−
ω; 3) calculate the growth rate of capital productivity κ̂ from the seriesrgdpna/rnna
and the growth rate of labor productivity λ̂ from the series rgdpna/empl; 4) estimate
the investment rate g as the sum of delta and the year-on-year growth rate of rnna;
5) set the interest rate i to the real interest rate from WDI. The variables ω, π , g, and
i are model inputs. The variables κ̂ and λ̂ are observations.

For India, data are available from1978 through2017.However, the deep recession in
1979 was flagged as seriously problematic in a leave-one-out cross-validation (LOO)
robustness check, so the years 1978 and 1979 were omitted and the data used for
calibration extends from 1980 to 2017. For China, data are available from 1992 to
2016. The 1997 recession was flagged as “slightly high” in an LOO check, but was
retained in the calibration data set. For United States, data are available from 1961
through 2019.8

6.2 Implementation in Stan

The Bayesian calibration procedure was carried out with the R interface to Stan using
rstan ver. 2.26.22. The Stan code is provided in Appendix B. The model structure
is hierarchical, in that there are sub-groups: disembodied and embodied technological
change. However, with respect to the data, this structure is latent; it is suggested by the
underlying NK model but not reflected in macro-level observations. The means and
covariance matrices entering Eqs. (79) and (80) characterize an unobserved probabil-
ity of discovering fit candidate innovations, while observed technological change is

7 See (Feenstra et al., 2015, AppendixB,p. 25). Additionally, if there were missing data within the series of
estimated labor shares, rather than prior to the first observation or following the final observation, Feenstra et
al. applied a linear interpolation. However, even though these are not observations, the linearly interpolated
segments are difficult to detect, so they were included in the data set for this paper.
8 A standard guideline is at least 10 observations per parameter. However, that guideline derives from
the asymptotic behavior of linear regression models, and is not appropriate for a Bayesian analysis of a
nonlinear model. Nevertheless, while keeping that caveat in mind, the values are reported here for those
concerned about over-fitting: there were 6.3 observations per parameter for India, 4.2 for China, and 9.8 for
the United States.

123

544 E. Kemp-Benedict



of innovations that are both fit and profitable, and the effects of embodied and disem-
bodied technological change are entangled in the observed data. As discussed below,
this creates some challenges to parameter identification.

Before discussing identification, we note that empirical estimates of productiv-
ity growth include changes in capacity utilization at fixed technology, whereas the
theoretical model simulates changes in technology at normal utilization. The cost
share-induced technological change mechanism tends to drive capital and labor pro-
ductivity growth in opposite directions, although not exclusively. In contrast, changes
in utilization drive estimated productivity growth in the same direction. To proxy
changes in utilization, a variable γ was computed as the growth rate of the ratio of
GDP to the trend in GDP as estimated with a two-sided Hodrick-Prescott filter.9 The
trend was calculated using the R package hpfilter ver. 1.0.2 with a parameter
λ = 6.25 appropriate for annual data (Ravn and Uhlig, 2002). The variable γ is
multiplied by a vector of input-specific parameters α.

As noted above, problems arise with identification and scale when the model is
presented as in Eqs. (79) and (80). Typically, g varies by a moderate amount around
an average that is on the order of 0.1; to first order, then, changes in μdis and μm can
offset one another, leading to a potential degeneracy. A similar degeneracy can apply
to �dis and �m . Furthermore, while μdis and gμm are expected to be of similar orders
of magnitude, on the order of 1.0, that means that μm , when not multiplied by g, will
be on the order of 10. For �m the factor is 1/g2, or about 100. Such large deviations
in the scale of the parameters can cause problems with calibration.

Both the scale mismatch and – to some extent – the potential degeneracy were
addressed by reparameterizing the model. First, the normalized deviation of g from
its median value g was calculated as u = g/g − 1.10 Then, with this definition, new
vectors μa and μb and matrices �a and �b were defined as

μa = (
μdis + μmg

)
, (81a)

μb = μmg, (81b)

�a = �dis, (81c)

�b = �mg
2. (81d)

Note that Eq. (81c) is simply a relabeling of�dis. This definition was assumed in favor
of one parallel to Eq. (81a) because �m(g2 − g2) is not positive definite when g < g.

9 Hamilton (2017) offered a trenchant critique of the Hodrick-Prescott filter. While his critique has been
disputed (Franke et al., 2024), neither the critique nor the defense is central to the analysis in this paper.
The choice was made on practical grounds. Labor and capital productivity growth rates estimated from
data deviate due to fluctuations that impact both in the same direction and that are not part of the model.
Because filtering the time series for productivity growth rates could distort them and give a false signal, as
a compromise a proxy for the common deviations was generated by applying a filter to the time series for
GDP, which is itself neither an explanatory nor a dependent variable in the model.
10 The median was used because deviations in accumulation are typically skewed, with larger negative
deviations than positive ones.
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The transformations in Eqs.(81) can be inverted after the model is fit, to recover
μdis, μm , �dis, and �m . The fitted model can be expressed in terms of transformed
variables as

ν̂ = n(x)

[
�a + �b(1 + u)2

]
σ

√
σ ′ [�a + �b(1 + u)2

]
σ

+ N (x)
(
μa + μbu

) + αγ, (82)

where

x = σ ′ (μa + μbu
) − (r/κ − π) g

√
σ ′ [�a + �b(1 + u)2

]
σ

. (83)

Following the recommendation in the Stan User’s Guide (Stan Development Team,
2022, Sec. 1.13), the covariance matrices �k , where k ∈ {a, b}, were parameterized
as scale vectors τ k multiplied by correlation matrices �k :

�k = τ̃ k�k τ̃ k . (84)

In this expression, a tilde indicates a diagonal matrix constructed from a vector.
The reparameterization renders μa , μb, τ a and τ b of similar orders of magnitude,

each of them O(1). Moreover, the τ k must be positive, while the μk can be either
positive or negative. These expectations are reflected in the priors, shown below in
Eqs. (85). Theα coefficients thatmultiply theGDPgrowth rate deviationγ are assigned
a moderately informative prior limited to the unit interval with a peak at one-half.
For other parameters, prior predictive checks11 were used to ensure that the priors
generated distributions of estimated productivity growth rates consistent with typical
growth rates while allowing for possible extreme values. The priors were further
adjusted to eliminate divergent transitions after Stan’s warmup period.12

When developing the prior distributions, the following criteria were applied: (1)
No bias towards embodied vs. disembodied technological change; (2) No bias towards
labor vs. capital productivity growth; (3) Bias against cost share-based explanations
of productivity growth. Criterion (1) was selected because it is unclear whether there
is a systematic bias in technological change towards embodied or disembodied causal
factors. Criterion (2) was selected because the Duménil and Lévy model (Dumènil
and Lèvy, 1992; Duménil and Lévy, 2010) is intended to explain biased technological
change even when the underlying distribution is symmetric, so a bias should not
be imposed. Criterion (3) is necessary because of residual identification problems
between μk and τ k . Given the need to bias in one direction or the other, this choice
was motivated by the desire to discover through the data, rather than impose through
the prior, whether cost shares are significant in explaining productivity change.

Together, criteria (1) and (2) suggest that the priors for �k , μk , and τ k should be
the same for k ∈ {a, b} and for both labor and capital. Criterion (3) is implemented by

11 Estimates of the dependent variable ν̂ generated by drawing parameter values from the prior distribution.
12 Formore information about the “divergent transitions afterwarmup”warning issued byStan’sNoU-Turn
Sampler (NUTS), see the Stan web site (https://mc-stan.org/misc/warnings.html#divergent-transitions-
after-warmup).
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choosing a comparatively tight prior for the τ k parameter with amean value below that
of theμk parameter in absolute value (0.5 compared to 1.5). As a result of these criteria,
any bias in the posterior towards embodied vs. disembodied change, between labor
vs. capital, or towards cost share-induced technological change arises from the data
rather than the prior. As a check on the differences, prior and posterior distributions
for the μk and τ k parameters are provided in Appendix C.

Taking all of the above into consideration, the selected priors are:

�k ∼ LKJCorr(3), (85a)

τ k ∼ Gamma(25, 50), (85b)

μk ∼ Normal(−1.5, 1.0), (85c)

α ∼ Beta(2, 2). (85d)

The LKJCorr distribution in Eq. (85a) is a distribution of correlationmatrices provided
by Lewandowski et al. (2009). The argument to the distribution must be greater than
one, with smaller values leading to broader distributions; the value of 3 results in a
moderately informative prior for the off-diagonal terms in the correlation matrices.

The leverage parameter � is expected to be O(1). It was initially assigned a prior
of � ∼ Gamma(2, 2). However, experience with the calibration process showed that
this parameter was very weakly constrained. In calibration runs, it was fixed at � = 1.

Deviations were assumed to be normally distributed with mean zero and stan-
dard deviations σk . The standard deviations were assigned half-Cauchy priors, σk ∼
Half-Cauchy(0, 0.1).

To be clear, the normally distributed deviations are separate from the normal dis-
tribution functions that appear in the model itself in Eqs. (82) and (83). In the model,
the cumulative normal distribution function and the normal density function enter as
nonlinear functions of themodel parameters; in the calibration, the normal distribution
characterizes deviations between observations and fitted values.

Table 1 Parameter estimates for India

Mean s.e. s.d. 2.50% 25% 50% 75% 97.50% neff R̂

μdis,1 0.5 0.01 0.4 -0.1 0.2 0.4 0.7 1.4 777 1.00

μdis,2 -1.2 0.01 0.3 -1.8 -1.3 -1.1 -1.0 -0.7 1572 1.00

μm,1 -7.0 0.06 2.0 -11.6 -8.1 -6.8 -5.7 -3.8 1033 1.00

μm,2 2.4 0.06 2.3 -2.6 0.9 2.5 3.9 6.8 1731 1.00

�dis,1,1 0.2 0.00 0.1 0.1 0.1 0.2 0.2 0.3 2987 1.00

�dis,2,2 0.3 0.00 0.1 0.1 0.2 0.3 0.4 0.6 2180 1.00

�dis,1,2 0.0 0.00 0.1 -0.2 -0.1 0.0 0.0 0.1 1098 1.00

�m,1,1 16.8 0.15 6.9 7.2 11.8 15.5 20.1 33.7 2189 1.00

�m,2,2 46.7 0.54 18.7 17.4 32.7 44.2 57.9 89.1 1217 1.00

�m,1,2 -3.5 0.23 8.5 -22.0 -8.5 -3.1 2.0 12.3 1350 1.00
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Table 2 Parameter estimates for China

Mean s.e. s.d. 2.50% 25% 50% 75% 97.50% neff R̂

μdis,1 -0.4 0.01 0.5 -1.4 -0.7 -0.4 -0.1 0.7 3447 1.00

μdis,2 -1.0 0.01 0.3 -1.7 -1.2 -1.0 -0.7 -0.4 2723 1.00

μm,1 -1.8 0.05 2.9 -7.8 -3.6 -1.7 0.1 3.8 3527 1.00

μm,2 2.3 0.04 1.8 -1.4 1.2 2.4 3.5 5.9 2586 1.00

�dis,1,1 0.2 0.00 0.1 0.1 0.2 0.2 0.3 0.4 3082 1.00

�dis,2,2 0.3 0.00 0.1 0.1 0.2 0.3 0.4 0.6 2636 1.00

�dis,1,2 0.0 0.00 0.1 -0.2 -0.1 0.0 0.1 0.2 2950 1.00

�m,1,1 6.7 0.05 2.7 2.9 4.8 6.3 8.1 13.0 2880 1.00

�m,2,2 12.1 0.11 4.8 4.8 8.7 11.4 14.9 23.6 1782 1.00

�m,1,2 0.5 0.07 3.4 -6.1 -1.8 0.6 2.8 7.1 2193 1.00

6.3 Results

The model was fitted to data for India, China, and the United States. This choice of
countries offers a contrast between large continental economies classified as lower
middle income, upper middle income, and high income by the World Bank.

The model was fitted with Stan using the No U-Turn Sampler (NUTS) (Hoffman
and Gelman, 2014). The sampler was initialized with a specified seed to ensure repro-
ducibility of the results. (Calibrations were also run with a random seed to check that
the results did not depend significantly on the choice of seed.) Samples were drawn
from four chains, each with 2000 iterations, of which the warm-up took half. The
samples were not thinned, so the total number of post–warm-up draws was 4000.

Themean values for the posterior distribution are shown in Table 1 for India, Table 2
for China, and Table 3 for the United States, together with distributional information:
the standard error of the mean s.e.; the standard deviation s.d.; and percentiles of the

Table 3 Parameter estimates for the United States

Mean s.e. s.d. 2.50% 25% 50% 75% 97.50% neff R̂

μdis,1 -0.3 0.01 0.3 -0.8 -0.5 -0.3 -0.1 0.3 1901 1.00

μdis,2 -0.4 0.01 0.4 -1.2 -0.6 -0.4 -0.1 0.3 1913 1.00

μm,1 -1.3 0.11 4.6 -9.1 -4.4 -1.7 1.5 8.7 1620 1.00

μm,2 -9.5 0.12 5.8 -21.6 -13.3 -9.2 -5.6 1.3 2129 1.00

�dis,1,1 0.2 0.00 0.1 0.1 0.2 0.2 0.3 0.4 2994 1.00

�dis,2,2 0.3 0.00 0.1 0.1 0.2 0.3 0.4 0.6 2155 1.00

�dis,1,2 0.0 0.00 0.1 -0.2 -0.1 0.0 0.0 0.2 2214 1.00

�m,1,1 59.2 0.37 21.7 25.8 43.8 56.2 71.5 109.1 3358 1.00

�m,2,2 86.3 0.68 32.2 34.0 62.9 82.5 105.6 158.6 2260 1.00

�m,1,2 -2.8 0.54 23.7 -49.3 -18.7 -3.3 13.4 43.5 1894 1.00
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distribution. The final two columns report Stan-specific statistics: a “crude”measure of
sample size neff that adjusts for any autocorrelation induced by the sampling process;
and an indicator R̂ that approaches R̂ = 1 at convergence. For the covariancematrices,
the diagonal elements are shown first and then the off-diagonal element.

As noted earlier, the expected orders of magnitudes of parameters areμdis ∼ O(1),
μm ∼ O(10), �dis ∼ O(1), �m ∼ O(100). These expectations are partly enforced
in the Stan implementation of the model, depending on the strength of the prior; they
are also borne out in the table. Furthermore, entries for μk can be either positive or
negative, as can the off-diagonal elements of the covariance matrices�k . The diagonal
elements of the covariance matrices must be positive. These conditions are enforced
in the Stan model implementation, and therefore also observed in the results.

Posterior predictive checks – that is, plots of simulated values for ν̂ generated by
Stan after the calibration – are shown in Fig. 1. The graph for each country shows
capital productivity growth in the upper panel and labor productivity growth in the
lower panel.

6.4 Discussion

The calibration results, together with the simulations, show that the model derived
in this paper and presented in Eqs. (79) and (80) can represent macroeconomic time
trends in countries at very different levels of economic development with some fidelity.
In particular, in Fig. 1, despite the very different productivity growth rate trajectories
in the three countries, the model was able to fit each of them reasonably well, par-
ticularly in India and the United States. The fitted model would not have anticipated
the outstanding labor productivity growth in China in the first decade of the 21st Cen-
tury, but that was also the decade following China’s accession to the WTO, which
had numerous impacts on innovation. India and the United States also experienced
structural shifts and shocks, such as the oil shocks of the 1970s. However, due to data
limitations, no attempt was made to model structural breaks. Data limitations also
prevented out-of-sample testing.

Some patterns are notable in the graphs. For India, the labor and capital productivity
growth rate trends in both the model and the data are roughly mirror images. In the
model, their trajectories were driven by a generally increasing investment rate g and
profit share π over the period. In contrast, in China and the United States, productivity
growth rates feature more subtle dependence on the investment rate, cost shares, and
interest rate.

The parameter estimates in Tables 1, 2, and 3 likewise show some regularities,
although with only three countries as a basis of comparison, any observations are
tentative. To interpret labor and capital productivity growth jointly, it can be useful
to calculate their difference μk,2 − μk,1 for k ∈ {dis,m}. This indicator corresponds
to the mean value of the growth rate of capital per worker for fit, but not necessarily
profitable, innovations in the candidate generating function.

Two points are important to keep in mind when examining this indicator. First,
strictly speaking, it is the difference of means of a distribution that would apply at the
level of a production unit. Here it is applied at aggregate level, so the interpretation
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Fig. 1 Productivity growth rates: Data and simulation
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is made on an “as-if” basis. That would be inappropriate if the indicator were used
for further analysis, but it is used here strictly as a way to interpret results. Second,
μk,1 and μk,2 are not the mean values of realized productivity growth rates; those are
given by Eq. (79). Instead, they are model parameters that – if the model is correct –
are the mean values for candidate innovations that have passed a fitness evaluation but
have not been subjected to a capital budgeting assessment. In a mature economy in
particular those values are expected to be negative: when the potential of a technology
has been explored over many decades, most of the available options will be a step
backward in terms of productivity.

If the difference μk,2 − μk,1 is positive, then it implies capital deepening, while a
negative value implies reverse capital deepening. Considering embodied technological
change, the value of μm,2 − μm,1 is 9.4 for India, 4.1 for China, and -8.2 for the
United States. The implication is that the fit (but likely not profitable) embodied
innovations accessible to India andChina are capital deepening, while those accessible
to the United States are reverse capital deepening. In contrast, the mean value for
disembodied technological change is consistent with reverse capital deepening in
India and China, and to negligible change in the capital-labor ratio in the US.

These results make sense; in a country with a high capital-labor ratio like the US,
most of the alternatives for new technology will have lower capital-labor ratios, but
they will not be profitable. Similarly, in a country with a comparatively low capital-
labor ratio, capital-intensive technologies will be available, but introducing them may
not translate into increased labor productivity. The challenge of identifying profitable
technologies at the frontier can be offset by broadening search (Terjesen and Patel,
2017; Torres de Oliveira et al., 2022). This should be reflected in the variance, and it is
notable that the entries for�m are substantially larger for theUS (Table 3) than they are
for India (Table 1) or China (Table 2). Regarding disembodied technological change,
regardless of the country’s income level, the most accessible “fit” modifications using
existing capital will likely not meet the profitability criterion, a result consistent with
reverse capital deepening (or no effect on capital deepening) at the mean for fit but
unprofitable disembodied innovation.

In general, the prevailing technology, distribution, pace of investment, and bor-
rowing costs combine to determine profitability. Insight can be gained by looking at
the separate z-scores for disembodied and embodied technological change. These are
calculated as

zk ≡ σ ′μk√
σ ′�kσ

. (86)

Results are shown in Fig. 2. As can be seen from the figures, the estimated z-score
for embodied technological change (the lower panel) is lower in the United States than
in India or China. This is consistent with the US being on the technological frontier,
as profitable technologies are less readily available. The z-score for disembodied
technological change is higher in the US than in China and India, again consistent
with the US being on the technological frontier; once a new technology is introduced,
there is a learning period in which productivity gains are comparatively rapid (Grosse
et al., 2015). In contrast, there are fewer opportunities for technological advance with
mature technologies.
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Fig. 2 Estimated z-scores
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Notably, India’s z-scores show opposite trends for disembodied and embodied tech-
nological change. The shifts coincide with a fall in the wage share, suggesting that, at
the mean values of the distribution of fit innovations, lower wage costs tend to make
embodied innovations less profitable (because they are capital deepening) and disem-
bodied technological change more profitable (because it is reverse capital deepening).
At the start of the period, India’s z-scores resembled those of China, while by 2019
they had approached values typical of the US.

7 Discussion

Building on prior work of the author Kemp-Benedict (2019, 2022), which itself built
on the work of Duménil and Lévy (1995, 2010), this paper offers an explicit analytical
functional form for cost share-induced technological change.The functional form takes
into account the observation of Shaikh (2016) that incremental rates of profit, rather
than average rates of profit, are most relevant for firm finance. The proposed model
was tested against empirical data in a Bayesian statistical framework and was shown
to perform reasonably well, in that the model can reproduce patterns observed in the
data with plausible estimates for the model parameters.

One implication of the model is that the rate of productivity growth, given by
Eq. (79), depends on profitability through the variable x defined in Eq. (80). The
ultimate reason for the dependence is the assumption that firms compare profitability
of potential innovations to a target marginal profit rate, consistent with the observation
of Shaikh (2016) and Kemp-Benedict (2023) that marginal profit rates follow similar
patterns across sectors. Furthermore, in the empirical model, the target marginal profit
rate is assumed to depend on the interest rate, following Lavoie’s presentation of the
finance frontier (Lavoie, 2022). The model therefore predicts that productivity should
tend to move opposite to interest rates. This prediction was tested indirectly through
the empirical analysis. To supplement that evidence, Fig. 3 directly compares the
US prime rate against labor productivity growth measured as output per hour in the
nonfarm business sector from 1960 to 1990. (Note that this is a different measure
of labor productivity than used for model testing and shown in Fig. 1.) The selected
period includes a time of extremely high interest rates, and during that time labor
productivity indeed tended to decline when interest rates rose and vice versa.

When considering the interacting contributions of distribution, investment, and
interest rate on productivity growth, any expression for cost share-induced techno-
logical change paper must be complemented by other dynamics. The model of cost
share-induced technological change is intended as a component within larger models
that include price and wage-setting procedures, determination of the interest rate, an
investment function, and a specification of demand. Those additional dynamics will
feed back upon productivity growth. Within such an expanded model, the produc-
tivity growth model presented in this paper can be used to endogenize technological
change. This point wasmade in the paper through five comparatively simple examples.
They showed that theoretically interesting results can emerge from the interaction of
cost share-induced technological change with price and wage dynamics. Depending
on price- and wage-setting behavior, the equilibria of example models were shown to
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Fig. 3 Bank prime loan rate (blue line) and the year-on-year percent change in labor productivity (red line),
quarterly data, from 1960 to 1990

produceHarrod-neutral technological change, convergence toHarrod’s natural growth
rate, and, in a multi-sector setting, stable relative prices.

Looking beyond the model in this paper, which assumed incremental technological
change, productivity growth could be resuscitated through more radical change. That
could be captured by “fat-tailed” distributions of potential productivity growth rather
than the thin-tailed normal distribution. For the mathematical analysis in this paper to
carry over, it would be necessary that those fat-tailed distributions maintain their form
under linear combinations of independent randomly distributed variables, a property
known as “stability” in statistics. Both stability and fat tails characterize everymember
of the family of Lévy-stable distributions except for the normal, which is stable but
thin-tailed. Lévy-stable distributions are therefore candidates for a cost share-induced
technological change model that features non-incremental improvements.

8 Conclusion

This paper expanded on the classical-evolutionary model of cost share-induced tech-
nological change introduced byKemp-Benedict (2019, 2022), which itself built on the
pioneering work of Dumènil and Lèvy (1992); Duménil and Lévy (2010). The model
accounts for both embodied and disembodied technological change, and incorporates
the finding from Shaikh (2016) that the relevant profitability criterion for investors is
the incremental profit rate, rather than the average profit rate.
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The model was calibrated to historical data for India, China, and the United States.
These countries were chosen because they represent lower-middle, upper-middle, and
high-income large economies. The data used for calibration are available for many
countries, opening the possibility for further exploration. The fitted parameters are
amenable to reasonable economic interpretation, while outputs of simulations with
the fitted model were shown to have some diagnostic value.

Appendix A Generating functions from characteristic functions

This subsection demonstrates that the generating function can be written in terms of
the characteristic function of the distribution f (ν̂).

The derivation starts by writing the Heaviside function in Eq. (3) in terms of its
Fourier transform. This is a standard result, and it is given by13

h(x) =
∫ ∞

−∞
dk

1

2

(
δ(k) − i

πk

)
eikx = 1

2
− i

2π

∫ ∞

−∞
dk

k
eikx . (87)

Substituting Eq. (87) into the expression for the generating function in Eq. (3) gives

�(σ ; c) = 1

2

(
σ ′μ − c

) − i

2π

∫ ∞

−∞
dk

k

∫
d ν̂ f (ν̂)

(
σ ′ν̂ − c

)
eik(σ

′ν̂−c), (88)

where μ is the mean value of ν̂ over the distribution of fit candidate innovations f (ν̂).
The final integral in this expression can be written

∫
d ν̂ f (ν̂)

(
σ ′ν̂ − c

)
eik(σ

′ν̂−c) = −i
d

dk

∫
d ν̂ f (ν̂)eik(σ

′ν̂−c)

= −i
d

dk
e−ikcϕ f (kσ ), (89)

where ϕ f (·) is the (multivariate) characteristic function of the distribution f (ν̂). Sub-
stituting this expression into Eq. (88), the result is

�(σ ; c) = 1

2

(
σ ′μ − c

) − 1

2π

∫ ∞

−∞
dk

k

d

dk
e−ikcϕ f (kσ ). (90)

This is a general expression, true for any distribution f (ν̂), and is fully equivalent
to Eq. (3) in the body of the paper.

This formulation of the generating function can be developed further using some
properties of generating functions. First, it is possible to write

ϕ f (kσ ) = eikσ
′μϕ f 0(kσ ), (91)

13 See https://mathworld.wolfram.com/FourierTransformHeavisideStepFunction.htm at Wolfram Math-
World.
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where ϕ f 0(kσ ) is for a distribution with zero mean. It has the properties ϕ f 0(0) = 1
andϕ′

f 0(0) = 0,where the prime indicates the first derivativewith respect to k.Making
this substitution and taking the derivative inside the integral sign gives

�(σ ; c) = 1

2

(
σ ′μ − c

) − i

2π

(
σ ′μ − c

) ∫ ∞

−∞
dk

k
eik(σ

′μ−c)ϕ f 0(kσ )

− 1

2π

∫ ∞

−∞
dk

k
eik(σ

′μ−c)ϕ′
f 0(kσ ). (92)

In the final integral, ϕ′
f 0(kσ ) is zero at k = 0. As long as it goes to zero at least as

fast as k – that is, it goes to zero as ka , where a ≥ 1 – the integral is regular and factor
of 1/k does not play a role.

The second integral is potentially problematic because ϕ f 0(kσ ) = 1 at k = 0.
To show that it, too, may be regular, write the characteristic function as the sum of a
symmetric and an asymmetric part:

ϕ f 0(kσ ) = ϕ+
f 0(kσ ) + ϕ−

f 0(kσ ), (93)

where

ϕ±
f 0(kσ ) = 1

2

(
ϕ f 0(kσ ) ± ϕ f 0(kσ )

)
. (94)

Then it is possible to show that

∫ ∞

−∞
dk

k
eik(σ

′μ−c)ϕ+
f 0(kσ ) = 2i

∫ ∞

0

dk

k
ϕ+
f 0(kσ ) sin

[
k(σ ′μ − c)

]
, (95a)

∫ ∞

−∞
dk

k
eik(σ

′μ−c)ϕ−
f 0(kσ ) = 2

∫ ∞

0

dk

k
ϕ−
f 0(kσ ) cos

[
k(σ ′μ − c)

]
. (95b)

The first of these expressions is regular because limx→0 sin x/x = 1. The second
is regular as long as ϕ−

f 0(kσ ) goes to zero at k = 0 at least as fast as k. Note that these
results hold only if σ ′μ �= c. When σ ′μ = c the second integral in Eq. (92) has a
simple pole at k = 0 with a residue equal to one.

Assuming the integral is regular, define a function

J (b) ≡ − i

2π

∫ ∞

−∞
dk

k
eibkϕ f 0(kσ ). (96)

In terms of this function, the generating function can be written

�(σ ; c) = 1

2

(
σ ′μ − c

) + (
σ ′μ − c

)
J (σ ′μ − c)

− 1

2π

∫ ∞

−∞
dk

k
eik(σ

′μ−c)ϕ′
f 0(kσ ). (97)
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Because the integrand in J (b) is regular for b �= 0, it is possible to take its derivative
with respect to b,

J ′(b) = 1

2π

∫ ∞

−∞
dk eibkϕ f 0(kσ ). (98)

But this is just the inverse of a characteristic function. Specifically, it is a univariate
probability distribution with mean zero that can be derived from the multivariate
distribution by applying this formula. Writing that distribution function, which has
mean zero, as f0(x),

J ′(b) = f0(b). (99)

While the expression for J (b) is regular, the demonstration relied on the fact that
b �= 0. For that reason, when integrating J ′(b) it is necessary to avoid the value b = 0.
When σ ′μ > c, the integral should be taken from a small positive value and the limit
taken to zero,

J (σ ′μ − c) = lim
ε→0+

∫ σ ′μ−c

ε

db J ′(b) = F(σ ′μ − c) − F(0), (100)

where F(x) is the cumulative distribution of f (x). When σ ′μ < c, the integral should
be taken from a small negative value and the limit taken to zero, again giving

J (σ ′μ − c) = lim
ε→0−

∫ σ ′μ−c

ε

db J ′(b) = F(σ ′μ − c) − F(0), (101)

Substituting into the expression for �(σ ; c) gives

�(σ ; c) =
(
F(σ ′μ − c) + 1

2
− F(0)

) (
σ ′μ − c

)

− 1

2π

∫ ∞

−∞
dk

k
eik(σ

′μ−c)ϕ′
f 0(kσ ). (102)

This is the final, general, expression for the generating function in terms of a charac-
teristic function.

The integral in Eq. (102) depends on the particular distribution and must be eval-
uated on a case-by-case basis. The other term can be seen as a smoothed version of
the Heaviside function. When σ ′μ = c, the expression in parentheses is 1/2. It is
less than 1/2 when σ ′μ < c and greater than 1/2 when σ ′μ > c, rising more or less
steeply depending on the shape of the distribution. The range is from 1/2 − F(0) to
3/2 − F(0). If the distribution is symmetric, then F(0) = 1/2 and the range is from
0 to 1, as with the Heaviside function. But if, for example, the distribution is skewed
towards negative values of σ ′ν̂, then the minimum will be negative and the maximum
will be less than one.

Appendix B Stan calibration code
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// gaussian_model.stan
// Stan ver. 2.26

data {
int<lower=0,upper=1> priorOnly; // Flag for using
the prior distribution only
int<lower=1> N; // Number of observations
int<lower=1> D; // Number of inputs
array[N] vector[D] y; // Observations (productivity growth rates)
array[N] vector[D] s; // Cost shares
vector[N] g; // Investment rate
vector[N] kappa; // Capital productivity
vector[N] i; // Interest rate
vector[N] dgdp; // Deviation of GDP growth rate trend
// Prior parameters
vector[D] mu_prior_m;
vector<lower=0>[D] mu_prior_s;
vector<lower=0>[D] tau_prior_m;
vector<lower=0>[D] tau_prior_s;
real<lower=1> Om_prior_shape;
vector<lower=0>[D] sigma_prior_shape;

}

transformed data {
vector[N] profshare;
vector[N] u;
vector[N] r = i + g/2.0; // Leverage = 1
real g_median;
vector[N] g_sort;
int mid_N_upper;
int mid_N_lower;
for (n in 1:N) {

profshare[n] = s[n][1];
}
// Deviations from median of g (Stan v. 2.27 has median built in,
but not 2.26) g_sort = sort_asc(g);
mid_N_lower = (N + 1) %/% 2;
mid_N_upper = mid_N_lower + (N + 1) % 2;
g_median = 0.5 * (g_sort[mid_N_lower] + g_sort[mid_N_upper]);
u = g/g_median - 1;

}

parameters {
// Tech change mean
vector[D] mu_a;
vector[D] mu_b;
// Unscaled prior for covariances
corr_matrix[D] Om_a_unsc;
corr_matrix[D] Om_b_unsc;
// Scale parameters for covariances
vector<lower=0>[D] tau_a;
vector<lower=0>[D] tau_b;
// Prediction error scale
vector<lower=0>[D] sigma;
// GDP gr deviation multiplier
vector<lower=0,upper=1>[D] dgdp_mult;

}
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transformed parameters {
//-------------------------------------------
// Tech change distribution
//-------------------------------------------
// Calibrated parameters
// Scale parameters for covariances
cov_matrix[D] Om_a = quad_form_diag(Om_a_unsc, tau_a);
cov_matrix[D] Om_b = quad_form_diag(Om_b_unsc, tau_b);
//-------------------------------------------
// Convenient reparameterizations
//-------------------------------------------
matrix[N,D] Om_s; // (Om_a + Om_b * (2u + uˆ2)) * s
vector[N] V; // s' * Om_s
matrix[N,D] mu; // mu_a + mu_b * u;
vector[N] x; // Argument for normals
vector[N] ncdf_x; // Standard normal CDF at x
vector[N] npdf_x; // Standard normal PDF at x
for (n in 1:N) {

V[n] = 0;
for (d1 in 1:D) {

Om_s[n,d1] = 0;
mu[n,d1] = mu_a[d1] + u[n] * mu_b[d1];
for (d2 in 1:D) {

Om_s[n,d1] += (Om_a[d1,d2] + (1 + u[n])ˆ2 * Om_b[d1,d2]) *
s[n][d2]; V[n] += s[n][d1] * Om_s[n,d1];

}
}
V[n] = sqrt(V[n]); // Calculate square root of the quadratic form
x[n] = (s[n]' * mu[n,]')/V[n] - (r[n]/kappa[n] - profshare[n]) *
g[n];

}
ncdf_x = Phi(x);
// Divisor is sqrt(2*pi)
npdf_x = exp(-x .* x/2)/2.50662827463100050242;

}

model {
vector[D] alpha;
vector[D] beta;

mu_a ˜ normal(mu_prior_m,mu_prior_s);
mu_b ˜ normal(mu_prior_m,mu_prior_s);
alpha = (tau_prior_m ./ tau_prior_s)ˆ2;
beta = tau_prior_m ./ tau_prior_sˆ2;
tau_a ˜ gamma(alpha,beta);
tau_b ˜ gamma(alpha,beta);
Om_a_unsc ˜ lkj_corr(Om_prior_shape);
Om_b_unsc ˜ lkj_corr(Om_prior_shape);
sigma ˜ cauchy(0,sigma_prior_shape);
dgdp_mult ˜ beta(2,2);

if (!priorOnly) {
for (d in 1:D) {

y[,d] ˜ normal(npdf_x .* Om_s[,d] ./ V + ncdf_x .* mu[,d] +
dgdp_mult[d] * dgdp, sigma[d]);

}
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} else {
print(''Prior only'');

}
}

generated quantities {
// Model parameters
cov_matrix[D] Om_m;
cov_matrix[D] Om_d;
vector[D] mu_m;
vector[D] mu_d;
real Om_m_scale;
real Om_d_scale;
// Simulated outputs
array[N] vector[D] y_sim;
// Simulated outputs
real z_m[N];
real z_d[N];
// Log likelihood
vector[N] log_lik = rep_vector(0,N);

// Invert the fitted parameters to find the model parameters
mu_d = mu_a - mu_b;
mu_m = mu_b/g_median;
Om_d = Om_a; // This is an alias, to keep the notation simple
Om_m = Om_b/g_medianˆ2;
// This works for arrays of any size D >= 2
Om_m_scale = Om_m[1,2]/sqrt(Om_m[1,1] * Om_m[2,2]);
Om_d_scale = Om_d[1,2]/sqrt(Om_d[1,1] * Om_d[2,2]);

for (n in 1:N) {
z_m[n] = (s[n]' * mu_m)/sqrt(s[n]' * Om_m * s[n]);
z_d[n] = (s[n]' * mu_d)/sqrt(s[n]' * Om_d * s[n]);

}

for (d in 1:D) {
y_sim[,d] = normal_rng(npdf_x .* Om_s[,d] ./ V + ncdf_x .*

mu[,d] +
(1.0 - priorOnly) * dgdp_mult[d] * dgdp,

sigma[d]);
}

if (!priorOnly) {
for (d in 1:D) {

for (n in 1:N) {
log_lik[n] += normal_lpdf(y[n,d] | npdf_x[n] * Om_s[n,d]

/ V[n] +
ncdf_x[n] * mu[n,d] +
dgdp_mult[d] * dgdp[n], sigma[d]);

}
}

}

}
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Appendix C Comparison of prior and posterior distributions

This appendix contains plots of prior and posterior distributions for each component
of the μk and τ k parameters. Plots for India are in Fig. 4, for China in Fig. 5, and the
United States in Fig. 6. The light blue band in each plot is the 50% confidence interval,
while the dashed blue line is themean of the prior. The top two plots, labeled (a) and (b)
in each figure, are draws from the prior distribution and are nearly identical between
the countries. The bottom two plots, labeled (c) and (d), are posterior distributions.
Any differences between the prior and posterior distributions can be attributed to the
data.

The posterior distributions for the μk are, for the most part, much more sharply
peaked than the prior distributions, while the dispersion in the prior and posterior
distributions for the τ k are similar. (However, notice that the scales on the x-axis
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Fig. 4 Prior and posterior plots for India of the μk and τ k parameters
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Fig. 5 Prior and posterior plots for China of the μk and τ k parameters

are quite different between the μk and τ k plots; that is because the priors for the τ k

parameters are narrower than for the μk .)
One common feature to note is that the means for the τa,2 and τb,2 parameters in

each country lie to the right of the means for τb,1 and τa,1 in the posterior distribution.
The τ k parameters are associated with cost share dependence, while the second index
is for labor, so this suggests that labor productivity is more sensitive to cost than is
capital productivity. That is a plausible conclusion in that much innovation is aimed at
reducing labor costs. Moreover, the shift is most pronounced in India, which showed
the greatest variation in cost shares over the historical data period, suggesting that
the shift is a real phenomenon brought out by the data. The difference is largest
for τ b, which is associated with embodied technological change, consistent with the
introduction of labor-saving new machinery.
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Fig. 6 Prior and posterior plots for the United States of the μk and τ k parameters
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