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Abstract

PIEZO1 is a eukaryotic membrane protein that assembles as trimers to form calcium-

permeable, non-selective cation channels with exquisite capabilities for mechanical

force sensing and transduction of force into effect in diverse cell types that include

blood cells, endothelial cells, epithelial cells, fibroblasts and stem cells and diverse

systems that include bone, lymphatics and muscle. The channel has wide-ranging

roles and is considered as a target for novel therapeutics in ailments spanning cancers

and cardiovascular, dental, gastrointestinal, hepatobiliary, infectious, musculoskeletal,

nervous system, ocular, pregnancy, renal, respiratory and urological disorders. The

identification of PIEZO1 modulators is in its infancy but useful experimental tools

emerged for activating, and to a lesser extent inhibiting, the channels. Elementary

structure–activity relationships are known for the Yoda series of small molecule ago-

nists, which show the potential for diverse physicochemical and pharmacological

properties. Intriguing effects of Yoda1 include the stimulated removal of excess cere-

brospinal fluid. Despite PIEZO1's broad expression, opportunities are suggested for

selective positive or negative modulation without intolerable adverse effects. Here

we provide a focused, non-systematic, narrative review of progress with this pharma-

cology and discuss potential future directions for research in the area.
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1 | INTRODUCTION

Eukaryotes as varied as amoebae, moss, flies and humans experience

mechanical forces from phenomena such as cell movement, organ

structure, tissue contraction, fluid dynamics and gravity. This biology

is often tuned to the forces experienced for survival advantage

(Fritzsche, 2020). The forces may change with external challenges,

disease and tissue stiffening. How forces are sensed and transduced

into effects is therefore important to understand. Ion channels often

play key roles in force sensing and the PIEZO type of ion channel is

pivotal (Coste et al., 2010; Douguet & Honore, 2019; Kefauver

et al., 2020). Just two PIEZOs (in humans, PIEZO1 and PIEZO2)

confer exquisite force sensing and transduction across diverse

membrane, cell and tissue types (Alexander et al., 2023; Coste &

Delmas, 2024; Jiang et al., 2021; Murthy et al., 2017; Wu
Abbreviations: CED, C-terminal extracellular domain; STOML3, Stomatin-like protein 3;

GsMTx4, Grammostola Mechanotoxin #4.
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et al., 2017). The PIEZOs assemble as homomeric trimers to form

calcium, sodium and potassium-permeable non-selective cationic

channels (Jiang et al., 2021). Structural features of the channels have

been delineated (Jiang et al., 2021; Yang, Lin, et al., 2022). In the

closed state, the channels indent the membrane, forming a bowl-like

shape. Above the central ion pore sits a cap-like structure, the

C-terminal extracellular domain (CED). Projecting outwards from the

pore region are flexible membrane-embedded propeller blade-like

features that mediate force sensing. The channels change conforma-

tion in response to forces such as increased lateral tension in the

membrane, with the ion pore then opening to allow influx of calcium

ions (Ca2+) and other ions (e.g., the sodium ion, Na+), thereby trans-

ducing forces into cellular effects. The channels are highly dynamic

(Mulhall et al., 2023), responding to force within milliseconds (Coste

et al., 2010). They integrate with membrane lipids for ‘force from

lipids’ (Cox et al., 2017) and regulated behaviour such as the

suppression of inactivation—an adaptation to sustained force (Shi

et al., 2020). They interact with other proteins such as MyoD

Family Inhibitor Domain Containing to enable altered channel gating

(Zhou et al., 2023) and cell adhesion molecules such as cadherins

to enable cytoskeletal coupling and cell–cell junction localisation

(Chuntharpursat-Bon et al., 2023; Wang, Jiang, et al., 2022). PIEZO1

stands out with its broad, perhaps ubiquitous, expression. It is func-

tional in cells as diverse as adipocytes, cardiac fibroblasts, chondro-

cytes, collecting duct cells, endothelial cells, enterochromaffin cells,

epithelial cells, macrophages, monocytes, myeloid cells, myoblasts,

neurones, osteoblasts, pancreatic cells, platelets, red blood cells,

smooth muscle cells, stem cells, T cells, tumour cells and urothelial

cells (Jiang, Yang, et al., 2021). The numerous functions of PIEZO1

suggested from cell, animal and human studies are not reviewed

here but they relate to all major organs and systems (Jiang

et al., 2021).

Pharmacology is the science of discovering and investigating

drugs and other substances useful in the study of biology and the

development of new drugs. Here we focus on the emerging phar-

macology of PIEZO1, there being much less progress with the

pharmacology of PIEZO2. As yet, there are no therapeutic drugs

designed to target the PIEZOs but some drugs designed for other

purposes have been found to affect channel function. PIEZO1

pharmacology is therefore largely experimental at present but there

is the potential for therapeutic applications, which are being

actively explored. Substances that affect PIEZOs can mostly be con-

sidered as tool compounds that are helpful for understanding how

the channels work, the roles of the channels and the potential of

the channels as targets in the treatment of disease. Some of the

substances can be classed as small molecule modulators that fit

Lipinski rules for therapeutics drugs such as molecular weight of

less than 500 (Lipinski et al., 2001). Broad expression of PIEZO1

(Jiang et al., 2021) might argue against its viability as a therapeutic

target because multiple unwanted effects might arise. However,

specific effects do appear possible, perhaps because of variations in

PIEZO1 abundance, lipid associations, mechanical forces and

other factors.

2 | POSITIVE MODULATORS

2.1 | Yoda series

2.1.1 | Yoda1 discovery

About 3.25 million low molecular weight compounds from the

Novartis screening collection were tested for their ability to elevate

intracellular Ca2+ in HEK 293 cells overexpressing mouse PIEZO1

(mPIEZO1) and mouse PIEZO2 (mPIEZO2) (Syeda et al., 2015). About

9,000 compounds caused 50% activation above vehicle control. They

were retested in mPIEZO1-, mPIEZO2- and mock-transfected cells,

leading to focus on 2-(5-(([2,6-dicholorophenyl]methyl)thio)-1,3,4,-

thiadiazol-2-y)pyrazine (Figure 1a) as a PIEZO1 channel agonist. This

compound activated mPIEZO1 channels reconstituted in lipid bilayers,

suggesting a direct effect on PIEZO1 protein or something closely

associated. In patch-clamp experiments, it increased the mechanical

sensitivity of the channels, suggesting its classification as a positive

modulator. mPIEZO2 was not activated (Syeda et al., 2015) and Ca2+

elevation in murine red blood cells was prevented by genetic disrup-

tion of PIEZO1 (Cahalan et al., 2015), suggesting PIEZO1 specificity.

Concentrations required for 50% effect (EC50s) were indicated as

17.1 μM for mPIEZO1 and 26.6 μM for human PIEZO1 (hPIEZO1)

but saturating effects were not seen at the maximum concentration

used (100 μM) and some of the recording solutions were observed to

be opaque, suggesting precipitation of the compound. EC50s and

physicochemical limitations are discussed below. The compound was

named Yoda1, we assume after the catch-phrase ‘may the force be

with you’ of the Yoda character in Star Wars films distributed by 20th

Century Fox and Walt Disney Studios Motion Pictures. Yoda1 has

since been frequently used in this area of research. It and a few

analogues are the best pharmacological modulators of PIEZO1

identified so far. The commercial availability of such modulators has

positively influenced PIEZO1 research, attracting investigators to the

field and enabling the relatively easy manipulation of force sensing

pathways, and the testing of roles of PIEZO1 in diverse cell and tissue

types, including clinically relevant human samples.

2.1.2 | Structure–activity relationships and
improvements on Yoda1

The Yoda1 2,6-dichloro substitution of the phenyl ring (Figure 1a) was

suggested as being critical for its effectiveness (Syeda et al., 2015).

Subsequent research largely supported this perspective, showing data

for eight variously substituted phenyl analogues in which seven mostly

or completely prevented activity (Evans et al., 2018). A fluorine in

place of one of the chlorines (Figure 1b) enabled retention of only

weak activity (Evans et al., 2018). Methyl groups in place of the chlo-

rines (Figure 1c) enabled good activity, however (Ludlow et al., 2023).

Other activity-retaining alterations of this ring were suggested in a

patent application (Li et al., 2021; Tang et al., 2022) and subsequent

work showed importance of the position of the chlorine atoms or
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isosteres of them (Goon et al., 2024). Alterations to the ‘left-hand’
side of the molecule (a pyrazine moiety in Yoda1—Figure 1a) were

tolerated and had potential value (Evans et al., 2018; Parsonage et al.,

2023). Replacing the pyrazine with a 4-substituted phenyl carboxylic

acid (Figure 1d) yielded a PIEZO1 agonist that was at least as good as

Yoda1 in potency and efficacy while also improving aqueous solubility

and microsomal stability and reducing protein binding (Parsonage

et al., 2023). The potassium salt of this analogue (Figure 1e) was

named Yoda2 (Parsonage et al., 2023). Specific chemical requirements

for channel activation were apparent (e.g., 4-substitution of the

carboxylic acid rather than 2- in Yoda2) (Parsonage et al., 2023)

(Figure 1d compared with Figure 1f), suggesting the existence of a

lock-and-key-like binding site on or close to the channel. Replacement

of the central thiadiazole ring was also tolerated, including by similarly

substituted thiazole (Figure 1g) (Ludlow et al., 2023) and oxadiazole

rings (Figure 1h,i) (Evans et al., 2018; Goon et al., 2024). Combining

the oxadiazole with 2-chloro-6-trifluoromethyl substitution in the

phenyl ring yielded a compound (Figure 1i) with slightly improved

potency compared with Yoda1 and better aqueous solubility (Goon

et al., 2024). The compound was named Yaddle1. The name relates to

another Star Wars character but ‘Yoda3’ would be more in-keeping

with its Yoda1 similarities. Other alterations to the central ring have

been explored but they did not enable activity (Goon et al., 2024).

Overall the data suggest that new and potentially better PIEZO1 ago-

nists can be achieved based on the Yoda1 template (e.g., Yoda2

[Parsonage et al., 2023] and Yaddle1 [Goon et al., 2024]). The Yoda

series contains promising PIEZO1-specific modulators. Their further

investigation and development is likely to be worthwhile.

2.1.3 | Dooku1

Yoda1 analogues that were weak agonists of PIEZO1 (or apparently

inactive) were tested for their ability to inhibit Yoda1-activated

F IGURE 1 Structures of Yoda series compounds. Chemical differences of analogues compared with Yoda1 are indicated in colour. (a) Yoda1.
The 2,6-dichlorophenyl moiety is shown on the right side of the molecule and its pyrazine moiety on the left. The central core is thiadiazole.
(b) Compound 2 g. Chemically the same as Yoda1 except for a fluorine (indicated in red) in place of a chlorine in the right-hand ring. Compared
with Yoda1, it is a weak agonist of PIEZO1. (c) KC124. Chemically the same as Yoda1 except for methyl groups (indicated in red) in place of the
chlorines in the right-hand ring. It has similar or slightly weaker agonist capability at PIEZO1 compared with Yoda1. (d) KC159. Chemically the
same as Yoda1 except for a 4-substituted phenyl carboxylic acid (4-benzoic acid group) (indicated in blue) in place of Yoda1's pyrazine group on
the left side. It has similar or stronger agonist capability at PIEZO1 compared with Yoda1. It has better aqueous solubility and other
physicochemical properties compared with Yoda1. (e) Yoda2 (KC289). The potassium salt of KC159, also showing improved properties compared
with Yoda1. (f) KC157. Chemically the same as Yoda1 except for a two-substituted phenyl carboxylic acid (indicated in blue) in place of Yoda1's
pyrazine group on the left side. It has no or very weak agonist capability at PIEZO1. (g) CHR-1871-032. It is chemically the same as Yoda1 except
for a 4-substituted phenyl carboxylic acid (indicated in blue) in place of Yoda1's pyrazine group on the left side and a monoazole (thiazole) instead
of a diazole (thiadiazole) in the central core (indicated in orange). It has slightly stronger agonist capability at PIEZO1 compared with Yoda1 and
better capability to rescue loss-of-function variant PIEZO1 channel function. (h) Compound 11. Chemically the same as Yoda1 except for an
oxadiazole in the central core (indicated in orange). Compared with Yoda1 it is a slightly less effective agonist at PIEZO1. (i) Yaddle1. Chemically
similar to Yoda1 except for the oxadiazole and 2-chloro-6-trifluoromethyl substitution in the phenyl ring. (j) Dooku1. It is chemically the same as
Yoda1 except for an oxadiazole in the central core (indicated in orange) and a 2-pyrrolyl instead of pyrazine group on the left. At overexpressed
hPIEZO1 channels it lacked agonist activity but it inhibited the action of Yoda1. Additional PIEZO1-related effects of Dooku1 occur (as described

in the main text), suggesting that it may have partial agonist capability (i.e., inhibitor or weak agonist capability) depending on context.

4716 KINSELLA ET AL.

 14765381, 2024, 23, D
ow

nloaded from
 https://bpspubs.onlinelibrary.w

iley.com
/doi/10.1111/bph.17351 by U

niversity O
f L

eeds T
he B

rotherton L
ibrary, W

iley O
nline L

ibrary on [11/12/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



PIEZO1 (Evans et al., 2018). Such studies led to interest in 2-([2,-

6-dichlorobenzyl]thio)-5-(1H-pyrrol-2-yl)-1,3,4-oxadiazole (Figure 1j),

which inhibited the action of Yoda1 but not constitutive channel

activity and was named Dooku1 (Evans et al., 2018). Consistent with

a ‘silent binder’ concept (Wijerathne et al., 2022), Dooku1 modulated

PIEZO1 single channel behaviour without affecting the channel's

opening probability, contrasting with the effect of Yoda1 (Wijerathne

et al., 2022). While Dooku1 inhibited the action of Yoda1 in other

studies (Barnett et al., 2023; Deivasikamani et al., 2019; Dela Justina

et al., 2023; Kenmochi et al., 2022; Matsunaga et al., 2021; Ogino

et al., 2023; Roh et al., 2020; Rong et al., 2024; Wadud et al., 2020;

Zeng et al., 2022), intriguing additional effects emerged. Yoda1 pro-

moted calcification of arterial smooth muscle cells and this effect was

inhibited by Dooku1 as expected (Evans et al., 2018) but Dooku1

without Yoda1 also inhibited calcification, suggesting a Yoda1-

independent effect (Szabo et al., 2022). Dooku1 also inhibited

mechanical activation of Ca2+ entry in odontoblasts (Matsunaga et al.,

2021) and activation of gap junction α-1 protein (connexin-43, Cx43)

in an osteocyte cell line (Zeng et al., 2022). Topical application of

Dooku1 to skin biopsies disrupted dermal-epidermal junctions

(Labarrade et al., 2023). Intraperitoneal injection of Dooku1 reduced

brain oedema in a mouse model of cerebral haemorrhage (Qu et al.,

2023) and Evans blue dye uptake in tibia bone (Zeng et al., 2022).

Yoda1 and Dooku1 both caused PIEZO1-dependent enhancement of

energy metabolism in endothelial cells, suggesting an agonist effect of

Dooku1 (Jiang, Zhang, et al., 2023). Yoda1 antagonist and agonist

effects of Dooku1 occurred in red blood cells (Hatem et al., 2023).

Dooku1 may therefore be a partial or inverse agonist at PIEZO1,

activating or inhibiting the channels depending on context. Actions of

exogenous modulators may vary depending on the amount of

constitutive channel activity and presence of endogenous modulators

such as lipids.

2.1.4 | Potency variation and physicochemical
properties

Potencies reported for Yoda1 vary substantially. Yoda1 EC50s of

0.16–0.23 μM have been determined for activation of Ca2+ entry

(Evans et al., 2018; Yoneda et al., 2019) and modulation of gene

expression occurred at 0.125 μM (Choi et al., 2019), suggesting

effects of Yoda1 at nM concentrations and thus much lower than

those anticipated from the initial observations and indicated in the

above text (Syeda et al., 2015). When considering Yoda1's potency, it

is important to address its aqueous solubility, which is relatively poor

in the μM concentration range. The solubility limit of Yoda1 in phos-

phate buffer is 0.2–3.8 μM (Goon et al., 2024; Parsonage et al., 2023)

and so its common use at concentrations of 10 μM or higher in

physiological buffers may mean the concentration of Yoda1 that is

dissolved and available to the channels is less than indicated. Precipi-

tation out of aqueous solution may depend on assay conditions, which

are not standardised between different laboratories or even the same

laboratory. An organic solvent may be used to improve the solubility

of Yoda1 (such as DMSO) but the amount of it used and the protocol

for its use vary. Use of a solvent such as DMSO may affect the soft-

ness of cells (Yanamandra et al., 2024) and thereby change the

mechanical environment of the PIEZO1 channels and their Yoda1

sensitivity.

There may be other factors that contribute to the absolute

potency and, particularly, to explaining effects of Yoda1 in the nM

concentration range. Such factors include the duration of exposure to

Yoda1 (longer exposure improves its potency (Ludlow et al., 2023)),

the host cell or tissue type (e.g., endothelial cells and lymphatics have

high sensitivity (Choi et al., 2019; Du et al., 2024; Evans et al., 2018)),

native or overexpressed PIEZO1 (e.g., native channels may be more

sensitive (Parsonage et al., 2023)), limited accessibility of the channels

due to subcellular structures (e.g., cell–cell junctions (Chuntharpursat-

Bon et al., 2023)), cell attachment to substrates, mechanical forces in

the assay (e.g., due to cell–cell contact) and the type of assay

(e.g., fluorescence from an intracellular Ca2+ indicator such as fura-2)

(Parsonage et al., 2023), a reporter such as FM1–143 (Della Pietra

et al., 2023) or genetically engineered Green Fluorescence Protein

construct (Yaganoglu et al., 2023), or electrical current detected by

patch-clamp (Coste et al., 2010; Parsonage et al., 2023). It is unknown

how a factor such as longer exposure to a compound may improve its

apparent potency but this could be because there is better equilibra-

tion of the compound with the active site, which may allow more

complete access of the modulator via a lipid barrier or progress with a

forward binding association.

We do not imply criticism of any data set; in our laboratory we

observe potency variability in apparently similar conditions. We raise

the matter for awareness, particularly for its relevance to studies of

structure–activity relationships. In such studies, effects of a novel

compound must be carefully compared against a benchmark com-

pound (e.g., a Yoda1 analogue compared with Yoda1). For instance,

the kinetic and thermodynamic solubility limits of Yoda2 are 14–

27.5 μM in phosphate buffer, at least an order of magnitude better

than those of Yoda1 (Parsonage et al., 2023). Therefore, use of Yoda2

as a benchmark and template for new analogues may reduce compli-

cations relating to compound solubility. In our experience, better

potency, reliability and complete dose–response curves (e.g., curves

that reach saturation) are obtained with overexpressed mPIEZO1

rather than overexpressed hPIEZO1. Therefore, using mPIEZO1 as a

starting point may be technically helpful when developing new phar-

macology for these channels. In general, the investigator needs to be

careful about data interpretation and inferences for structure–activity

relationships of such compounds. Oil–water partition coefficients are

likely to vary for different analogues, affecting their solubility and

interaction with the biological site of action, especially if it is

membrane-embedded.

2.1.5 | Enhancement of force-dependent gating

Yoda1 enhances PIEZO1 channel mechanical (pressure) sensitivity,

slows channel inactivation (closure during mechanical stimulation),

KINSELLA ET AL. 4717
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slows channel deactivation (closure after mechanical stimulation) and

stabilises the channel open state (Syeda et al., 2015), consistent with

the observation that it increases the distance between blades in

PIEZO1 channels (Mulhall et al., 2023). It is described as an enhancer

of force-dependent gating rather than a force-independent agonist. It

can, however, be effective without the experimenter applying exoge-

nous force, perhaps because endogenous forces in cells or between

cells and substrates are sufficient to prime the channels. For example,

Yoda1 nicely mimics effects of fluid shear stress on endothelium with-

out shear stress being applied (Rode et al., 2017; Wang et al., 2016).

Given that Yoda1 is a chemical, it lacks the directionality of force and

may not activate other force-dependent mechanisms unless they are

PIEZO1-dependent, but synergies with actions of forces may lead to

force-like effects of such modulators. The potential for synergy

between Yoda series compounds and mechanical force is interesting

from mechanistic and translational perspectives because it could pro-

vide a route to selective modulation (e.g., at sites of fibrosis or

focused ultrasound stimuli). Further investigation is needed, however.

Is it possible, for example, to predict under what conditions synergy

would be strongest? Does synergy need sustained or only transient

presence of PIEZO1 modulator? Does synergy occur with modulators

other than Yoda series compounds and with other mechanically-

sensitive channels?

2.1.6 | Evidence for direct interaction

The concept of Yoda1's direct interaction with PIEZO1 (Syeda

et al., 2015) has been supported by results from surface plasmon res-

onance studies with a purified mPIEZO1 fragment comprising amino

acids 1–2190 (Wang et al., 2018) (the full-length protein is 2547

amino acids). The fragment encompassed the majority of the blade

region, which is normally mostly membrane-embedded. It lacked the

ion pore region, CED or distal C-terminus. The binding dissociation

constant was 45.6 μM (Wang et al., 2018), which is 2–22 times

higher than EC50s of functional effects (Evans et al., 2018; Syeda

et al., 2015). The higher value for binding may be explained by con-

siderations such as precipitation of Yoda1 (as discussed above), low

mechanical force in the assay (that may reduce channel conforma-

tions favourable for interaction), the use of detergent to solubilise

the fragment (Wang et al., 2018) (that may remove lipids that

improve Yoda1 interaction) or the existence of other, higher affinity,

binding sites.

The activating effect of Yoda1 on PIEZO1 channels is seen within

1 s and gradually progresses to a maximum within 10–60 s, when

either electrical current or intracellular Ca2+ is measured (Lhomme

et al., 2019; Rode et al., 2017; Syeda et al., 2015; Wang et al., 2016).

Responses may then continue or decay over periods of minutes. Such

time courses are not proof for a direct mechanism but do not argue

against it either. Methodological considerations and physical factors in

the cells complicate measurements of rates and the interpretation of

the arising values. Considerations and factors include the speed

of application of the substance, the experimental readout and barriers

to diffusion such as the lipid bilayer. Mechanical activation of PIEZO1

channels is possible within milliseconds but, in the studies showing

this, high-speed pressure pulses or rapid cell indentation (‘poking’)
were applied to cells (Wu et al., 2017). Although such speed of deliv-

ery is not achieved with Yoda series compounds, small molecule acti-

vation does appear to be slower than mechanical activation.

2.1.7 | Interaction site and wedge hypothesis

Computer simulations of the central region of mPIEZO1 (including

part of the blades) led to the suggestion of a Yoda1 interaction site in

a hydrophobic pocket (Botello-Smith et al., 2019). Physical alteration

at this site by mutation of alanine (A) to tryptophan (W) at position

2094 inhibited Yoda1 activation of the channels in laboratory experi-

ments (Botello-Smith et al., 2019). Inhibition could have arisen

because of reduced binding of Yoda1 at the pocket but other explana-

tions are possible such as conformational changes in the channel that

indirectly inhibited the action of Yoda1. The A2094W mutant was

suggested to have normal mechanical sensitivity but the mechanical

activation curve was altered in shape, the current amplitude was

lower and the current kinetics were faster (Botello-Smith et al., 2019).

Based on such studies, the idea has been proposed that Yoda1

enhances PIEZO1 force sensitivity by binding at a pocket in the

blades, acting like a wedge to increase the susceptibility of the blades

to force (Botello-Smith et al., 2019). Further data supporting this idea

have come from a cross-linking strategy that reduced Yoda1 effects

and computational poses of Yoda1 and Yoda1 analogues in a channel

fragment with calculated apparent affinities depending on protein

conformation (Jiang, Wijerathne, et al., 2023). The data are consistent

with the idea that Yoda1 enhances force-dependent gating.

2.1.8 | Selectivity

The original suggestion of Yoda1's selectivity for PIEZO1 (Syeda

et al., 2015) has been supported by results from numerous subse-

quent studies. Effects of 0.1–50 μM Yoda1 were abolished or strongly

reduced by PIEZO1 deletion or depletion in mice or cultured cells

(Blythe et al., 2019; Cahalan et al., 2015; Caolo et al., 2020; Choi

et al., 2019; Endesh et al., 2023; Lhomme et al., 2019; Li et al., 2019;

Liu et al., 2023; Liu, Xu, et al., 2021; Luo et al., 2023; Malko

et al., 2023; Morley et al., 2018; Mousawi et al., 2020; Nonomura

et al., 2018; Rode et al., 2017; Roh et al., 2020; Suzuki et al., 2018;

Swain et al., 2022; Uchida et al., 2021; Wang et al., 2016; Xie

et al., 2023; Yang, Zeng, et al., 2022; Ye et al., 2022; Yoneda

et al., 2019), suggesting that Yoda1's many effects on cells, tissues

and mice are indeed mediated via PIEZO1. Fewer studies have been

performed with Yoda2 but dependence of its effects on PIEZO1 have

also been suggested (Parsonage et al., 2023). Selectivity of 5-μM

Yoda2 has been investigated in a Eurofins' Hit Profiling Screen, pro-

viding binding data for 30 proteins including ion channels and recep-

tors. It reduced binding of ligands to adenosine A2A receptors (40%)
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and prostanoid EP4 receptors (63%), but it largely lacked effects on

binding to the other proteins of the assay (Parsonage et al., 2023). As

the EC50 values for activation of PIEZO1 by Yoda2 were 0.15–

1.14 μM, the binding data are consistent with Yoda2 having PIEZO1

specificity at suitable concentrations. Endothelial PIEZO1 deletion

prevented endothelium-dependent relaxation by 0.1–10 μM Yoda2

(Parsonage et al., 2023). Dooku1 at 10 μM lacked effects on endoge-

nous ATP-evoked Ca2+ elevation, store-operated Ca2+ entry and

overexpressed TRPV4 and TRPC4 channels, so it too exhibited

PIEZO1 selectivity (Evans et al., 2018).

2.1.9 | PIEZO2

Yoda1 or Yoda2 did not evoke Ca2+ signals in

mPIEZO2-overexpressing cells, suggesting no activation of PIEZO2

(Lacroix et al., 2018;Parsonage et al., 2023 ; Syeda et al., 2015). Con-

sistent with this result, depletion of native PIEZO2 in HeLa cells had

only a small effect on Ca2+ entry evoked by Yoda1, contrasting with

the �50% reduction caused by PIEZO1 depletion (Parsonage

et al., 2023). Similar observations were made for Yoda1 in INS-

1832/13 cells (Ye et al., 2022). Yoda2-evoked Ca2+ entry in HeLa

cells was more significantly reduced after PIEZO2 depletion, however,

and depletion of both PIEZO1 and PIEZO2 was more effective against

the Yoda2 response than depletion of PIEZO1 or PIEZO2 alone

(Parsonage et al., 2023). Yoda2 may therefore be able to activate

PIEZO2 channels in some contexts (Parsonage et al., 2023) but further

investigation is needed. It could be important to include appropriate

exogenous mechanical forces to prime the PIEZO2 channels in the

assay. PIEZO2 appears to be more selective in its mechanical sensitiv-

ity than PIEZO1 (Jiang et al., 2021), so it may not be primed for chem-

ical activation in routine Ca2+ assays, in which exogenous mechanical

forces are often not applied.

2.1.10 | In vivo use

Despite Yoda1's unfavourable physicochemical properties for in vivo

use (Parsonage et al., 2023), it has often been used in vivo in mice

with success, for example by administering repeated intraperitoneal

injections (Choi et al., 2024, 2019, 2022; Li et al., 2019; Liu

et al., 2023; Matrongolo et al., 2023; Rong et al., 2024; Wang, Yuan,

et al., 2022; Xu et al., 2023; Yang, Zeng, et al., 2022; Zhang, Lin,

et al., 2023; Zhao et al., 2024; Zhong et al., 2020). Various responses

are described, including cardiovascular-related effects, consistent with

the prominent expression of PIEZO1 in endothelium (Beech &

Kalli, 2019; Li et al., 2014) and the high sensitivity of endothelial

PIEZO1 channels to Yoda1 (Choi et al., 2019; Evans et al., 2018). The

ability of whole animal systemic Yoda1 to enhance lymphatic struc-

ture and function is striking (Choi et al., 2024, 2019, 2022). It is con-

sistent with observations in humans that genetic disruption of

PIEZO1 associates with lymphatic disease (Fotiou et al., 2015; Ludlow

et al., 2023; Lukacs et al., 2015). Local delivery of Yoda1 has also been

explored, including intracranial delivery that improved β-amyloid

clearance (Jantti et al., 2022), forebrain delivery that reduced memory

after sleep deprivation (Zhang, Lu, et al., 2023), nodose ganglion deliv-

ery that lowered blood pressure (Cui et al., 2023), intramuscular

delivery that reduced muscle atrophy-associated gene expression

(Hirata et al., 2022), intragastric deliver that reduced inflammation of

intestinal mucosa (Rong et al., 2024) and intravesicular bladder deliv-

ery that stimulated urinary voiding (Beca et al., 2021). As described

above, Dooku1 has also been used successfully in vivo by intraperito-

neal injection (Qu et al., 2023). These Yoda1 and Dooku1 studies

have, in most cases, not revealed major adverse effects. Therefore,

despite broad expression of PIEZO1 in many cell and tissue types, it

may be possible to achieve selective beneficial consequences. This

may be because PIEZO1 has different sensitivities to agonists

depending on the host cell type and context (e.g., local mechanical

forces on cells) (Figure 2a,b). As with most pharmacology, dose and

administration are important considerations. Some doses and types of

administration may result in adverse effects; for example, local injec-

tion of Yoda1 in the tail of rats caused intervertebral disc degenera-

tion (Wu et al., 2022).

2.1.11 | Therapeutic drug discovery

The physicochemical properties of Yoda2 are improved over those of

Yoda1 (Parsonage et al., 2023) but they are still not optimal. Never-

theless, Yoda2 shows that progress can be made towards a drug-like

molecule while retaining and even improving PIEZO1 agonist capabil-

ity. The chemical structures of Yoda1, Yoda2, Yaddle1 and Dooku1

are, however, published (Evans et al., 2018; Goon et al., 2024;

Parsonage et al., 2023; Syeda et al., 2015) (Figure 1). It may be possi-

ble to further optimise the Yoda series for commercially viable thera-

peutic drug development but non-obvious novel PIEZO1 agonists

with suitable physicochemical properties and structure–activity rela-

tionships may be necessary, or more advantageous. Intracellular Ca2+

assays can be used to identify PIEZO1 agonists (Parsonage

et al., 2023; Syeda et al., 2015) and so they may be deployed in the

future to identify novel activators, ideally in new ways that maximise

the chance of revealing relevant new chemical matter. A weakness of

Ca2+ assays may be that they do not usually incorporate exogenous

force, nor make use of the gold-standard recording technique for ion

channels, which is patch-clamp; an electrophysiology technique that

controls membrane voltage and intracellular and extracellular ionic

concentrations, buffers and other constituents. First steps have been

made towards high throughput automated planar patch-clamp for

PIEZO1 with fluid flow as the stimulus (Murciano et al., 2023). Ago-

nists such as Yoda1 and KC159 (Figure 1d) have been characterised

using this approach (Murciano et al., 2023; Parsonage et al., 2023).

This patch-clamp innovation offers potential for screening chemical

libraries. In addition to developing the chemistry of PIEZO1 modula-

tion, a fruitful approach may be the development of in vivo drug deliv-

ery methods for existing modulators (Guan et al., 2023; Yang

et al., 2023).
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F IGURE 2 Concepts for cell/ tissue type-specific effects of PIEZO1 agonists. Diagram of contexts predicted to result in weak (a) or strong
(b) effects of Yoda series agonists. (a) Organ/ tissue with one or more of: low PIEZO1 channel expression; weak PIEZO1 force sensitivity (e.g., due
to loss-of-function PIEZO1 mutation; low force environment (e.g., due to sparse and/or soft extracellular matrix, weak cell–cell contact, little or
no shear stress); fast PIEZO1 inactivation (i.e., reducing PIEZO1 channel functional capability); low lipid regulation (e.g., loss of PIEZO1 activity
due to depletion of phosphatidylinositol 1, 4, 5-triphosphate; or weak downstream pathways (e.g., due to depleted calpain). An example of Cell
type 1 may be physiological cardiac myocytes which, although experiencing a high force context because of the heartbeat, may express very little
PIEZO1. (b) Organ/tissue with one or more of: strong PIEZO1 channel expression; strong PIEZO1 force sensitivity (e.g., due to gain-of-function
PIEZO1 mutation); strong force environment (e.g., due to dense and/or stiff extracellular matrix, strong cell–cell contact, fluid shear stress); slow
or disabled PIEZO1 inactivation (i.e., due to sphingomyelinase activity or MyoD Family Inhibitor Domain Containing protein); high lipid regulation
(e.g., due to ω-3 fatty acids); or strong downstream pathways (e.g., due to coupling to nitric oxide synthase). An example of Cell type 2 may be
lymphatic endothelial cells.

F IGURE 3 Possible clinical indications for modulators. (a) Positive modulators. The potential uses are suggested based on effects of Yoda
series agonists observed in in vivo or ex vivo preclinical experimental studies. (b) Negative modulators. The potential uses are suggested based on
effects of PIEZO1 genetic depletion or inhibitors. Potential uses of negative modulators may also be inferred from the suggested
contraindications and adverse effects of Yoda series agonists, which are specified in the main text. (a, b) Supporting studies are described and
referenced in the main text. The indications are exemplars and not an exhaustive list of what might be possible.
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2.1.12 | Potential clinical indications and other
benefits

PIEZO1 agonists have been suggested for treating various diseases or

their symptoms including lymphedema (Choi et al., 2022; Ludlow

et al., 2023), placental insufficiency (Morley et al., 2023), premature

labour (Barnett et al., 2023), systemic hypertension (Wang, Yuan,

et al., 2022; Yang, Zeng, et al., 2022), pulmonary hypertension (Porto

Ribeiro et al., 2022), erectile dysfunction (Dela Justina et al., 2023),

muscle, bone and joint degeneration (Bernareggi et al., 2022; Dienes

et al., 2023; Guan et al., 2023; Hu et al., 2023; Li et al., 2019), bone

fracture healing (Liu et al., 2022), periodontal degeneration (Zhang,

Lin, et al., 2023), sepsis (Rong et al., 2024), malaria (Lohia et al., 2023),

immune stimulation (vaccine adjuvant) (Goon et al., 2024), inflamma-

tion and oedema of the CNS (Malko et al., 2023) including hydroceph-

alus (Choi et al., 2024), renal damage caused by acute hyperglycaemia

(Fei et al., 2023), colitis (Rong et al., 2024), intestinal motility disorder

(Xu et al., 2023), weight loss (Zhao et al., 2024), paracetamol-induced

hepatotoxicity (Liu et al., 2023), β-amyloid accumulation in the brain

(Jantti et al., 2022), toxic waste accumulation in the brain (Matrongolo

et al., 2023), glaucoma (Morozumi et al., 2021; Uchida et al., 2021)

and prune belly syndrome (Amado et al., 2024) (Figure 3a). Many more

possibilities may exist due to the numerous, and varied, functions of

PIEZO1 (Jiang et al., 2021); for example, the potential to enhance

health benefits of physical exercise has been suggested

(Sciancalepore et al., 2022). Although the suggestions of clinical indi-

cations and other benefits are based mostly on findings with Yoda1,

other chemically distinct PIEZO1 agonists may be similarly useful.

2.1.13 | Potential contraindications and adverse
effects

The broad expression and many functions of PIEZO1 raise potential

concerns about it as a therapeutic target. However, in vivo administra-

tion of Yoda1 or Dooku1 in mice seems to be largely beneficial rather

than adverse (as described in the above sections). Moreover, gain-

of-function PIEZO1 variants are common in some human populations,

conferring apparently beneficial rather than adverse consequences

(Ma et al., 2018). Furthermore, there is evidence for lymphatic speci-

ficity (Choi et al., 2022), suggesting that PIEZO1 agonists (at least at

low concentrations) might not uniformly activate PIEZO1 in all cell

types. Nevertheless, PIEZO1 research is relatively new and so con-

cerns might arise as we learn more. Adverse effects of PIEZO1 ago-

nists have already been observed or might be predicted based on

what we know. There is potential for PIEZO1 agonists to cause or

exacerbate heart failure (see Beech, 2023), inflammation after myo-

cardial infarction (Sun et al., 2024), vascular calcification (Szabo

et al., 2022), lower limb ischaemia (Xie et al., 2023), hypertensive

nephropathy (Ogino et al., 2023), thrombosis (Evtugina et al., 2023),

cancer (Xiong et al., 2022; Zhang et al., 2022; Zhu et al., 2022), osteo-

arthritis (Wang, Li, et al., 2022), spinal disc degeneration (Wu

et al., 2022), colitis (Leng et al., 2022), anaemia (Cahalan et al., 2015),

sickle disease (Nader et al., 2023), pain including tactile-driven and

migraine pain (Dolgorukova et al., 2021; Mikhailov et al., 2019; Shin

et al., 2023; Wetzel et al., 2017), demyelination and neuronal damage

(Velasco-Estevez et al., 2020) and presbyopia (Doki et al., 2023).

Indeed, proposals have been made for therapeutic value of PIEZO1

inhibitors (Aykut et al., 2020; Beca et al., 2021; Liu et al., 2018; Pan

et al., 2022; Qin et al., 2022; Romac et al., 2018; Shin et al., 2023; Sun

et al., 2024; Swain et al., 2022; Wang, Li, et al., 2022; Wetzel

et al., 2017; Xiong et al., 2022; Zhang et al., 2018, 2024, 2021)

(Figure 3b). However, the strong expression of PIEZO1 in cell types

such as endothelium, combined with constant exposure of such cells

to mechanical force (e.g., from flow of blood or lymph and pulsatile

pressure) and other factors may enable selective amplification of

PIEZO1 function by low doses of Yoda series agonists (Figure 2b).

PIEZO1 agonists may therefore be a route to new medicines;

e.g., that safely enhance lymphatic function and thereby address

unmet problems such as lymphedema. The suggestions of contraindi-

cations and adverse effects are based on findings with Yoda1 and, in

some cases genetic data, but such effects may or may not occur with

other types of PIEZO1 activation.

2.2 | CMPD15

Computational analysis of a chemical library based on knowledge of

the Yoda series and its presumed interactions with PIEZO1 identified

CMPD15, a potential chemically distinct agonist of mPIEZO1, albeit

with lower potency and efficacy than Yoda1 (Jiang, Wijerathne,

et al., 2023). Details of the actions and structure–activity relationships

of CMPD15 are not yet known. Other novel activators were sug-

gested in the same study (Jiang, Wijerathne, et al., 2023). Computa-

tional methods could therefore help to identify novel PIEZO1 agonists

and understand their actions, but further development is needed. The

approach would ideally be supported by laboratory data showing

the structure of PIEZO1 in complex with Yoda1, a Yoda1 analogue or

CMPD15. This is, however, challenging to achieve due to the large

size of PIEZO1, PIEZO1 dynamics, and the likelihood that the interac-

tions with small molecules are complicated by lipids, which it may not

be possible to include in the structural studies or which may be

unknown.

2.3 | Jedi1 and Jedi2

Screening of about 3,000 Tsinghua University and Maybridge chemi-

cals in an intracellular Ca2+ assay led to two PIEZO1 activators that

may be classed as chemical fragments distinct from Yoda1 (Wang

et al., 2018). Chemically related to each other, they are named Jedi1

and Jedi2 (Wang et al., 2018). They activate the channels at high

(�mM) concentrations and have binding constants of 2.75 and

2.77 mM at the N-terminal mPIEZO1 fragment (amino acids 1–2190)

(Wang et al., 2018). At 0.5–1 mM, Jedi2 mimicked effects of Yoda1

on both red blood cells (Lohia et al., 2023) and principal and
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intercalated cells of the renal collecting duct (Pyrshev et al., 2023).

Progress with this type of agonist is needed if it is to match the

capabilities of the Yoda series, ideally with insight into the structure–

activity relationships and identification of analogues with potency in

the low μM or nM concentration range.

3 | NEGATIVE MODULATORS

Negative modulators that inhibit PIEZO1 function are also sought

(Thien et al., 2024). They may have experimental value for determining

functions of PIEZO1 and clinical utility as indicated already and outlined

in Figure 3b. PIEZO1 is up-regulated in some disease conditions and

may have different properties in these settings. PIEZO1 may not oper-

ate the same in health and disease if different factors associate with

PIEZO1 in the two conditions, so it may be possible to target ‘diseased
PIEZO1’. Partly reduced PIEZO1 expression (e.g., due to heterozygous

gene variation) occurs without obvious adverse effect in humans

(Fotiou et al., 2015), suggesting that partial inhibition of ‘healthy
PIEZO1’ by a small molecule might not have unacceptable adverse

effect. In this way, a PIEZO1 inhibitor may achieve benefits by reducing

adverse effects of ‘diseased PIEZO1’ while sparing enough ‘healthy
PIEZO1’ for normal physiological functions (Figure 4).

3.1 | OB-1 and OB-2

Stomatin-like protein 3 (STOML3) is an endogenous regulator of

PIEZO channels (Poole et al., 2014). Screening of 35,000 small mole-

cules at 10 μM in a STOML3 self-association assay identified

molecules OB-1 and OB-2, which, in subsequent assays, were found

to slowly (1–3 h) inhibit mechanically activated endogenous PIEZO1

channel currents by 50% at 10 nM (Wetzel et al., 2017). These mole-

cules were therefore suggested to be indirectly acting PIEZO1 modu-

lators, potentially selectively modulating cells containing both

STOML3 and PIEZO1 (or PIEZO2) (Wetzel et al., 2017). There are

therefore at least two concepts for achieving PIEZO1 inhibition, one

of which is a small molecule from the Yoda series (or equivalent) that

binds and stabilises a compact channel state (Figure 5a). Dooku1

might act in this way in some circumstances. Another concept is a

small molecule that disrupts an associated mechanism such as

F IGURE 4 Model of how PIEZO1 inhibitor (negative modulator)
therapy might work. The model is adapted from Beech (2023). PIEZO1
expression or activity is assumed to be low in the healthy tissue of the
patient but elevated in diseased tissue, in which there may also be

increased PIEZO1 expression and/or activity and increased mechanical
stress and tissue fibrosis (e.g., in the heart in heart failure). In the model,
PIEZO1 inhibitor inhibits the excess PIEZO1, leading to therapeutic
benefit. Healthy PIEZO1 may also be suppressed by the inhibitor but
adverse (unwanted) effects of the inhibitor (i.e., on healthy tissue) may
occur only at supra-therapeutic inhibitor concentrations when there is
more than 50% PIEZO1 inhibition. Human genetic studies suggest that
50% loss of PIEZO1 does not have obvious adverse effect. In this
model, the partial inhibition of ‘Diseased PIEZO1’ and sparing of some
‘Healthy PIEZO1’ enables a therapeutic window within a specified
concentration range of the inhibitor (i.e., depending on dose of the
inhibitor and the protocol for its administration). It may, therefore, be
possible to achieve therapeutic benefit without unacceptable adverse
effects.

F IGURE 5 Concepts for PIEZO1 modulation by small molecules. Examples of how small molecule modulation of PIEZO1 may occur.

(a) Modulation by Yoda series molecules (or equivalents) that stabilise compact or loose channel conformations that favour ion pore closure
(compact conformation) or ion pore opening (loose conformation). PIEZO1 channel (blue) is shown in simple schematic form in helicopter
perspective (from above). An agonist such as Yoda1 is suggested to act like a wedge, facilitating activation of the channel by mechanical force.
Yoda1 analogues such as Dooku1 may do the reverse: stabilising the compact conformation, yet acting via a similar or overlapping binding
pocket. (b) Depiction of the proposed mechanism of PIEZO1 inhibition by OB-1 and OB-2 small molecules, acting via the STOML3 protein. With
this mechanism, the inhibition occurs slowly via STOML3 disruption and depends on STOML3 (or a similar molecule) expressed with PIEZO1
(e.g., in tactile neurones).
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STOML3 (Figure 5b). OB-1 and OB-2 might act in this way in cell

types that co-express STOML3 with PIEZOs (Wetzel et al., 2017).

3.2 | Benzbromarone

Benzbromarone is a small molecule that has been used in the treat-

ment of gout (Azevedo et al., 2019). It was suggested to inhibit the

Ca2+-activated Cl� channel subunit TMEM16A (Zhang et al., 2013)

but this finding has been challenged and instead it has been suggested

to inhibit PIEZO1 (Liang et al., 2023). Yoda1-evoked Ca2+ entry in red

blood cells was inhibited by 50% by 4.3 μM benzbromarone. Further-

more, 20 μM benzbromarone almost abolished mechanically-evoked

currents in hPIEZO1-overexpressing HEK 293 cells (Liang

et al., 2023). Benzbromarone also activated Ca2+-activated K+ chan-

nels, albeit at higher concentrations (Gao et al., 2023).

3.3 | Inorganic substances

Gadolinium (Gd3+), in the lanthanide series, has been used as a

blocker of various calcium channel types in studies for at least

40 years (Bourne & Trifaro, 1982). Due to similarity in size to Ca2+, it

can plug channels at or near their ion selectivity filter. Gd3+ was used

in the original study of mechanically activated mPIEZO1 channels,

causing 84% block at 30 μM (Coste et al., 2010). PIEZO2-dependent

currents were similarly inhibited (Coste et al., 2010). Ruthenium red, a

histological dye, has also been used for at least 40 years in research

on calcium channels, particularly to block calcium release mechanisms

(Miyamoto & Racker, 1982). It blocked PIEZO1 and PIEZO2 channels

by about 75% at 30 μM (Coste et al., 2010). However, ruthenium red

did not block Drosophila melanogaster PIEZO channels, leading to sug-

gestion of a region in mPIEZO1 mediating inhibition by ruthenium red

(Coste et al., 2015).

3.4 | Natural products

3.4.1 | Grammostola Mechanotoxin #4 (GsMTx4)
and dietary lipids

GsMTx4 is a lysine-rich peptide discovered via a screen of spider

venoms against mechanosensitive cationic currents of astrocytes

(Suchyna, 2017). At 20 μM, it reduced the inter-blade distance of

PIEZO1 channels (Mulhall et al., 2023), consistent with it acting as a

PIEZO1 inhibitor (Bae et al., 2011) that promotes a compact (closed)

channel conformation (Mulhall et al., 2023). There are effects on

channel activity at 10-times lower concentration, with 2.5 μM

inhibiting pressure-evoked current through PIEZO1 channels by 71%

(D-enantiomer of GsMTx4) or 80% (L-enantiomer) and 4 μM inhibiting

cell indentation-evoked currents by 58% (Bae et al., 2011). It has been

used quite extensively as a PIEZO1 inhibitor in vitro and in vivo, with

beneficial effects suggested such as protection against lung injury

during mechanical ventilation (Zhang et al., 2021), bladder hyperactivity

(Liu et al., 2018) and neurodegeneration and late-stage demyelinating

disease (Velasco-Estevez et al., 2020). It is not selective for PIEZO1,

however. GsMTx4 also inhibits currents mediated by PIEZO2 channels

(55% inhibition of pressure-evoked currents by 5 μM) (Alcaino

et al., 2017), TRPC5 non-selective cationic channels (98% inhibition

hypo-osmotic shock-evoked currents by 5 μM) (Gomis et al., 2008),

TRPC6 non-selective cationic channels (70% inhibition of uridine

triphosphate-evoked currents by 5 μM) (Spassova et al., 2006) and

NaV1.1-1.7 sodium channels and KV11.1 and KV11.2 potassium chan-

nels (50% inhibition of voltage-activated currents by 7.4–14.1 μM)

(Redaelli et al., 2010). GsMTx4 may lack specificity because of its

mechanism of action which, although still unclear (Mulhall et al., 2023),

appears to involve an action on lipids of the membrane, altering lateral

membrane tension (Gnanasambandam et al., 2017). Membrane-

embedded channels such as PIEZO1 are sensitive to lipid types, and

changes in membrane tension caused by different lipids and changes in

lipid abundances. PIEZO1 channels are modulated by endogenous

lipids such as phosphatidylinositol 4, 5-bisphosphate (Borbiro

et al., 2015), phosphatidylserine (Tsuchiya et al., 2018) and cholesterol

(Chong et al., 2021) and dietary lipids such as cholesterol and the satu-

rated fatty acid margaric acid (Romero et al., 2019) and polyunsatu-

rated fatty acids (e.g., docosahexaenoic acid) (Romero et al., 2019).

Channels such as PIEZO1 may be particularly sensitive to membrane-

modulating agents like GsMTx4 (Cox & Gottlieb, 2019), amyloid β pep-

tides (Maneshi et al., 2018) and lipid changes because PIEZO1 force

sensing involves lipid interactions (Cox et al., 2017; Jiang et al., 2021).

3.4.2 | Phytochemicals

Screening of 105 plant-derived and synthetic chemicals against

Yoda1-evoked Ca2+ entry in endothelial cells suggested 9 compounds

that inhibit PIEZO1 by at least 75% at 10 μM: salvianolic acid,

escin, menthol, trenbolone acetate, 4-hydroxychalcone, cortodoxone

(11-deoxycortisol), artemisinin, adrenosterone and jatrorrhizine (Pan

et al., 2022). Salvianolic acid B and escin are chemically complex plant-

derived substances that have been studied extensively without refer-

ence to PIEZOs for therapeutic benefits and anti-oxidant and anti-

inflammatory actions (Fazliev et al., 2023; He et al., 2023). Menthol, a

simple small molecule, is plant-derived and suggested to act via

TRPM8 channels, causing cold-sensation (Kashio & Tominaga, 2022).

Artemesinin has anti-malarial effects and is a prominent plant-derived

therapeutic agent (Wells et al., 2015). There is relatively little specific

knowledge of 4-hydroxychalcone but many plant-derived chalcones

are suggested to be beneficial against cancer and other diseases (Hba

et al., 2023). Jatrorrhizine, also plant-derived, is suggested to have var-

ious health benefits and mechanisms of action (Rolle et al., 2021).

Trenbolone, cortodoxone and adrenosterone are steroids. Further

studies of effects on PIEZO1 and PIEZO1-related signals are reported

for salvianolic acid B (Grannemann et al., 2023; Pan et al., 2022), escin

(Wang et al., 2023), artemisinin (Gan et al., 2023) and jatrorrhizine

(Hong et al., 2023). Salvianolic acid B inhibited Yoda1-evoked Ca2+
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entry in endothelial cells by 50% at 1.37 μM and at 10 μM it inhibited

Yoda1-evoked Ca2+ entry by about 80% in PIEZO1-overexpressing

HEK 293 cells without effect on other Ca2+ signals investigated (Pan

et al., 2022). Escin inhibited Yoda1-evoked Ca2+ entry in endothelial

cells by 50% at 1.78 μM (Wang et al., 2023). On a technical note,

when escin is used in patch-clamp studies to permeabilize the mem-

brane patch for electrical access (Fan & Palade, 1998), it may inadver-

tently modulate PIEZO1. Artemisinin (50 μM) partially inhibited

Yoda1-evoked Ca2+ signals in endothelial and other cell types (Gan

et al., 2023). Jatrorrhizine (10 μM) partially inhibited Yoda1-evoked

Ca2+ signals in endothelial cells (Hong et al., 2023). A separate screen

of 92 natural products against Ca2+ entry in endothelial cells identified

tubeimoside I as a PIEZO1 inhibitor and five other compounds causing

at least 70% inhibition of Ca2+ entry (Liu et al., 2020). Dose–response

analysis suggested that 1.1 μM tubeimoside I inhibited Yoda1-evoked

Ca2+ entry in endothelial cells by 50% (Liu et al., 2020). The natural

products Xueshuantong (Liu, Zhang, et al., 2021) and isoquercitrin

(Guo et al., 2024) are also PIEZO1 inhibitors. In summary, diverse

phytochemicals (plant-derived chemicals) inhibit PIEZO1 activity in

the μM concentration range. No information is yet available on the

structure–activity relationships and it may be challenging to determine

structure–activity relationships in some cases because of the large and

complex nature of the compounds. It is not yet clear if the compounds

affect PIEZO1 directly or via intermediates. In contrast to the phyto-

chemicals mentioned above, matrine (a component of herbal medicine)

potentiated Yoda1-evoked Ca2+ entry after 24-h exposure, suggesting

a potential novel route to PIEZO1 enhancement (Jin et al., 2024).

4 | DISCUSSION AND CONCLUSIONS

Since the discovery of mechanically activated PIEZO1 channels (Coste

et al., 2010) there has been impressive progress with PIEZO1

pharmacology. Concepts for achieving PIEZO1 modulation are pro-

posed (Figure 5) and there is notable momentum with the emerging

class of Yoda series compounds (Figure 1). Yoda1 in particular has

been studied by multiple independent research groups and shows

promising specificity and apparent direct action on the channels. As

yet, other small molecule and natural product modulators remain less

understood or studied. Some may not be directly acting or suitable for

development but others may provide novel and complementary per-

spectives. There are indirectly acting small molecules that may enable

context-specific modulation (e.g., OB-1) and the study of effects of

existing therapeutic drugs may provide rapid routes to safe inhibition

of unwanted PIEZO1 activity (e.g., benzbromarone). The names of

positive and negative modulators are summarised (Figure 6). Expres-

sion and function of PIEZO1 channels may alternatively be modulated

by RNA interference and gene modification (Albuisson et al., 2013;

Ludlow et al., 2023). Antibodies targeting the channels may direct che-

micals to PIEZO1 (Qin et al., 2022) and could potentially modify chan-

nel function themselves (e.g., by promoting internalisation of PIEZO1

protein). Overall, the possibilities are exciting and the idea of PIEZO1

modulation shows tractability and promise. Investigators have a

PIEZO1 pharmacological toolkit available (Figure 6) and foundations

for developing more modulators and PIEZO1-targeted therapeutics.

The Yoda series contains useful and promising small molecule

modulators of PIEZO1, which act mostly as agonists but with poten-

tial for inhibition too. Actions in the nM concentration range have

been observed and potency data show the potential for improvement

through medicinal chemistry. Additional research on the molecules is

likely to be beneficial. Such research could expand knowledge of the

chemical structure–activity relationships available, determine the spe-

cific atomic features required for agonist, partial agonist and antago-

nist properties and reveal modulators of this type that have better

drug-like physicochemical properties and novel chemistry that can be

protected for commercial investment. Improvements such as these

F IGURE 6 Summary list of PIEZO1 modulators. The blue schematic in the middle is a side-view sketch of the PIEZO1 channel in a lipid
membrane, with cations above in the extracellular medium potentially going through the ion pore of the channel once open. The main

physiological activator of the channels is mechanical force (e.g., increased membrane tension). Listed on the left in green are substances that have
been suggested to activate or enhance PIEZO1 activity by whatever mechanism. Listed on the right in red are substances that have been
suggested to inhibit PIEZO1 activity by whatever mechanism. The substances do not necessarily act directly or specifically on PIEZO1. Several
independent results and complex data sets are available for some of the substances, whereas for others there may only be one experimental result
available. Details of the underlying studies and notes of caution and interpretation are available via the main text. Potential additional modulators
have been suggested from results of chemical screens. Other approaches to altering PIEZO1 include RNA interference and gene modification.
Anti-PIEZO1 antibody has been used to direct chemical to cells. The side-view sketch of PIEZO1 channel was generated from BioRender.
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may be necessary for therapeutically targeting PIEZO1 channels. A

modulator binding site has not been definitively identified but there

are reasons to think it exists, quite possibly on PIEZO1. Laboratory

structural data for the binding site would be helpful to support the

idea of the existence of a PIEZO1 chemical-binding pocket and poten-

tially inform the development of improved and novel modulators tar-

geted to such a pocket. It may be possible to obtain such structural

insight using advanced cryogenic electronic microscopy or other

structural biology approaches in which Yoda1 or analogues such as

Yoda2, Yaddle1 or Dooku1 are used. Yoda2 and Yaddle1 might be

beneficial because they have improved aqueous solubility and so

could be incubated with PIEZO1 protein at higher concentrations than

Yoda1 (thereby increasing the probability of observing a small

molecule-occupied structural class). Dooku1 may be useful if it stabi-

lises PIEZO1 in a closed conformation, potentially minimising the

number of structural classes observed and increasing the resolution of

a binding site, ideally at the atomic scale.

In experimental research, it can be helpful to have access to both

PIEZO1 activators and inhibitors, but the idea that both might have

therapeutic value is challenging. How could it be beneficial and with-

out adverse effects to activate and inhibit the same mechanism? We

do not know yet if it could be safe (and effective) but the results of

numerous studies suggest that it might be possible. The arguments for

developing agonists (rather than inhibitors) are perhaps strongest

because we have the Yoda series as a framework and results from ani-

mal preclinical studies suggest benefits, as summarised in Figure 3a.

The discovery that many people live with a PIEZO1 gain-of-function

variant (Ma et al., 2018) is encouraging from a safety perspective

because, while these people are not necessarily unaffected by such

variants, major adverse effects seem to be avoided, suggesting that

long-term exposure to a PIEZO1 agonist may be tolerable provided

that the dose and administration are appropriate. Careful consider-

ation should, of course, be given to potential adverse effects.

The pharmacological toolkit for PIEZO2 is much less advanced

than that for PIEZO1. Indirect inhibition via STOML3, ion pore-

blocking by Gd3+ and potentially indirect inhibition by GsMTx4 are

possible, but specific agents and targeted small molecule activators

and inhibitors for PIEZO2 are currently lacking. Inhibition of PIEZO2

but not PIEZO1 channels by dioctanoyl phosphatidic acid and palmi-

toyl lysophosphatidic acid (Gabrielle et al., 2024) might provide starting

points for PIEZO2 inhibitor pharmacology. The Yoda series might also

provide a route to such pharmacology if there is truly cross-over from

PIEZO1 to PIEZO2 (Parsonage et al., 2023). Other routes to PIEZO2

modulation might arise from improved structural resolution (Wang

et al., 2019) and screening of chemical libraries for PIEZO2 modula-

tors. Screening may be optimal if it incorporates mechanical activation

of the channels in the biological assay, as has been developed for

PIEZO1 in automated patch-clamp assays (Murciano et al., 2023).

In conclusion, PIEZO1 pharmacology is available and useful in

laboratory and preclinical settings. Further developments of it are

likely to be possible and should, in our view, be pursued for improved

tools for research. Results from pharmacological studies using such

tools provide useful complementary data alongside those of genetic

studies, sometimes circumventing limitations of genetic approaches

and providing a more effective guide to priorities for drug discovery

initiatives. We suggest there are good reasons to explore PIEZO1 acti-

vator and inhibitor therapeutics provided that suitable attention is

given to key factors such as the clinical indication, pharmacotoxicity,

dose and administration route.

4.1 | Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corre-

sponding entries in http://www.guidetopharmacology.org and are

permanently archived in the Concise Guide to PHARMACOLOGY

2023/24 (Alexander, Christopoulos et al., 2023; Alexander, Mathie

et al., 2023).
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