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Abstract

Motivation

There exists an unexplained diverse variation within the predefined colon cancer stages

using only features from either genomics or histopathological whole slide images as prog-

nostic factors. Unraveling this variation will bring about improved staging and treatment out-

comes. Hence, motivated by the advancement of Deep Neural Network (DNN) libraries and

complementary factors within some genomics datasets, we aggregate atypia patterns in his-

topathological images with diverse carcinogenic expression frommRNA, miRNA and DNA

methylation as an integrative input source into a deep neural network for colon cancer

stages classification, and samples stratification into low or high-risk survival groups.

Results

The genomics-only and integrated input features return Area Under Curve–Receiver Oper-

ating Characteristic curve (AUC-ROC) of 0.97 compared with AUC-ROC of 0.78 obtained

when only image features are used for the stage’s classification. A further analysis of predic-

tion accuracy using the confusion matrix shows that the integrated features have a weakly

improved accuracy of 0.08%more than the accuracy obtained with genomics features.

Also, the extracted features were used to split the patients into low or high-risk survival

groups. Among the 2,700 fused features, 1,836 (68%) features showed statistically signifi-

cant survival probability differences in aggregating samples into either low or high between

the two risk survival groups.

Availability and Implementation: https://github.com/Ogundipe-L/EDCNN

1. Introduction

There are over 67 cancer primary sites in the human body [1], among which are the brain,

breast, colon and several other cancer types that have been identified and detected in various
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parts of the body. The lung has the highest cancer cases and the colon ranks fourth. According

to the World Health Organization 2020 report, cancer is the leading cause of death accounting

for over ten million deaths (https://www.who.int/news-room/fact-sheets/detail/cancer)) with

colon cancer accounting for 916 000 deaths. Available research tools and datasets provided by

the cancer research community for analyzing causes and treatment of cancer types are geno-

mics and histopathological whole slide images datasets among others, each consisting high-

dimensional features embedding the complex pathological pattern of each cancer stages [2].

The cancer staging system determines the amount and spread of cancer in a patient’s body and

the most common practice is the use of the TNM (Tumor-Node-Metastasis) system (https://

www.cancer.gov/about-cancer/diagnosis-staging/staging). T describes the size of the tumor

and any spread of cancer into nearby tissue; N describes the spread of cancer to nearby lymph

nodes; and M describes metastasis (spread of cancer to other parts of the body). This system

was created and is updated by the American Joint Committee on Cancer (AJCC) and the

International Union Against Cancer (UICC). The TNM staging system is used to describe

most types of cancer. Higher performance measure and improved accuracy has been shown

using a deep neural network to extract patterns from multimodal data sets for cancer staging

compared with using the TNM signature often considered to be a subjective system [3–5]. The

available deep neural networks still require the development of an efficient and effective model

for accurate and improved classification and effective treatment management.

Colon cancer is a malignant tumor of the large intestine or of the rectum that affects both

males and females irrespective of age group [6–9]. This cancer could occur by genetic muta-

tions or through heredity in an individual. Hundreds of millions of cases have been diagnosed

every year and tens of thousands of deaths reported globally every year [10]. In terms of mor-

tality rate, colon cancer is ranked second [11, 12]. Cancer diagnosis can be classified into four

stages ranging from I to IV where stage I implies that the cancer is in early stages and IV indi-

cates that the cancer is in advanced stages (https://www.cancercenter.com/cancer-types/

colorectal-cancer/stages).

One of the most challenging areas in cancer research is staging, which is an indicator of the

patient’s most likely outcome, life expectance and chances of cure [13–16]. Researchers study-

ing colon cancer are working on various ways to unravel the means of prevention, treatment

and timely detection of the disease to reduce the mortality and incidence rate as well as

improve the quality of life for people infected with colorectal cancer [17, 18]. Deep learning

computational framework has been deployed in the study and analysis of biospecimen data

ranging from features encoding and extraction to integration and transformation of heteroge-

neous biological data [19–21]. Most of the previous studies only concentrated on unimodal

data feature studies, and some that are based on multimodal data are either purely clinical tri-

als [22–24], or use linear models and eigengenes to extract features as the baseline framework

[25], or are earlier deep learning frameworks [26]. However, our study relies on bimodal

fusion of features from genomics (DNAmethylation, mRNA, and miRNA) and slide images

cumulating into quadruple datasets for tumor stage examination using a deep learning frame-

work. The analysis and result of our proposed model show a slight improvement in cancer

stage prediction and 68% of the integrated features cluster the samples into high-low survival

risk groups.

In recent research involving cancer diagnostics and prognostic outcomes, multimodal data-

sets have been adopted to improve prediction and prognostic accuracies. For example, Vale-

Silva et al [27] extracts and integrates features from four different modalities for deep learning

survival predictions. Complementary features are extracted from tissue biopsy imaging, copy

number variation, gene, miRNA expression and DNAMethylation data. Elsewhere, Heo et al

[28] established the use of multimodal imaging to achieve higher precision to determine the

PLOS ONE Integrating genomics data and histopathological images to predict stages and survival in colon cancer

PLOSONE | https://doi.org/10.1371/journal.pone.0305268 September 3, 2024 2 / 15

Cancer Genome Atlas (TCGA-COAD cohort,

available on https://portal.gdc.cancer.gov/) and the

histopathological images of the same TCGA cohort

were downloaded from https://zenodo.org/records/

2530835#.YzbcnuzMLpC.

Funding: The author(s) received no specific

funding for this work.

Competing interests: NO authors have competing

interests

https://www.who.int/news-room/fact-sheets/detail/cancer
https://www.cancer.gov/about-cancer/diagnosis-staging/staging
https://www.cancer.gov/about-cancer/diagnosis-staging/staging
https://www.cancercenter.com/cancer-types/colorectal-cancer/stages
https://www.cancercenter.com/cancer-types/colorectal-cancer/stages
https://doi.org/10.1371/journal.pone.0305268
https://portal.gdc.cancer.gov/
https://zenodo.org/records/2530835#.YzbcnuzMLpC
https://zenodo.org/records/2530835#.YzbcnuzMLpC


restaging of rectal cancer after chemoradiotherapy (CRT). Also, Olatunji et al [29]shows that a

multimodal dataset is more predictive of distance metastasis (DM) than when an unimodal

dataset is used. This research study focuses on improvement in the accuracy prediction of

colon cancer into any of the four (I-IV) stages. The contributions of this research study are:

Design of a novel algorithm for data preprocessing conditions on identifying tumor quality

within histopathological images and inclusion of genes within the genomics dataset that satisfy

a certain set condition/requirement.

We are identifying and fusing complementary features from genomics and histopatholog-

ical images to improve accuracy and performance in cancer stage prediction and survival risk

stratification.

Training of DNNmodel with effective data rate and avoiding information redundancy

through effective and robust data preprocessing

2. Materials andmethodology

All datasets are fully available on publicly available secondary data repositories without restric-

tion; no new data has been generated while undertaking this study. The data used in this study

was downloaded from TCGA-COAD (https://portal.gdc.cancer.gov/), the Cancer Genome

Atlas (TCGA) colon cancer cohort with TCGA-Assembler function 2. Five different sets of

data relating to colon adenocarcinoma (COAD) colon cancer type were downloaded from

their respective source (assayPlatform) shown in Table 1 are (Clinical, DNAmethylation,

miRNA, mRNA, Hematoxylin and Eosin (H&E) stained histopathological images). Based on

our research plan, the first set of data download is the genomics which resulted in 448 samples

of clinical records with 80 features, 328 samples of mRNA expression with 20,502 features, 261

samples of miRNA expression with 1,870 features, and 353 samples of DNAmethylation with

20,759 features. After applying the comprehensive preprocess procedures as explained in sec-

tion (2.2) on the genomics datasets 255 samples are estimated to have data present in (DNA

methylation, miRNA, mRNA). We proceeded (https://portal.gdc.cancer.gov/) to get the

Hematoxylin and Eosin (H&E) stained histopathological images of colon cancer for the 255

samples that have data in the genomics but got only 177 equivalent samples as in the genomics

with images datasets. See Tables 1 and 2 for details in sample sizes.

Table 1. Sample and feature size of genomics dataset before and after preprocessing.

Biological data/assayPlatform Before Preprocessing After Preprocessing

No. of Samples No. of Features No. of Overlapping Samples No. of Features

Clinical/ BiospecimenClinicalData 448 80 255 80

mRNA/ (gene.normalized_RNAseq 328 20,502 255 16,377

miRNA /(mir_Hiseq.hg19.mirbase20) 261 1,870 255 420

DNAmethylation /(methylation_450) 353 20,759 255 20,129

https://doi.org/10.1371/journal.pone.0305268.t001

Table 2. Sample size distribution across whole slide images and genomics data.

Whole slide images Genomics sample size

Stages Sample size Number of Tiles mRNA miRNA DNAMethylation

I 30 27,358 30 30 30

II 67 47,397 67 67 67

III 54 21,492 54 54 54

IV 26 15,914 26 26 26

177 112,161 177 177 177

https://doi.org/10.1371/journal.pone.0305268.t002
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2.1 Genomics datasets preprocessing

We develop a preprocess model parameterized by the datasets with the output satisfying the

following criteria: (i) First, a biological feature (in any of methylation or mRNA or miRNA

data) is removed, if more than 20% of the patients have a 0 value for it. (ii) A sample is

removed if more than 20% of its features are missing. (iii) Then a substitution function in

python is used to fill out the missing values with zero. (iv) Only common samples (individuals)

existing in all the data sets (mRNA, miRNA, methylation) are kept. (v) The data sets (mRNA,

miRNA, methylation) are individually normalized with z-score. (vi) The z-score normalized

data are combined and re-normalized with unit scale (L2-norm) transform.

2.2 H&E histopathological image preprocessing

The stained hematoxylin and eosin whole slide images downloaded from The Genome Atlas

(TCGA-COAD) of colon cancer are large in size with an average of 2GB and high resolution.

Each of the 177 whole slide image samples used in the study was divided into several tiles of size

224 x 224 pixels with openslide-python packages, we built a sub-python function called MX to

filter out patches with less than 30% cellular tumor content. The MX function selects all patches

with cellular content equal to or greater than 30% through the thresholding method by estimat-

ing the patches’ background noise and the foreground tumour content. The thresholding proce-

dure entails converting the patch images in RGB to grayscale color and segmented into

background and cell component regions. Patches with foreground content equal to or greater

than 70% are selected for training the prediction model. After preprocessing a total of 112,161

image tiles satisfy the conditions and requirements set out for the research study. Salient fea-

tures are extracted from the resulting 112,161 image samples and integrated with equivalent

genomics features extracted from combinations of mRNA, miRNA and DNAmethylation.

2.3 Features extraction from (mRNA, miRNA, DNAmethylation)

We concatenate 16,377 features frommRNA, with the 420 features and 20,129 frommiRNA

and DNAmethylation, respectively to obtain a multimodal dataset with 36,926 features. We

input the 36,926 merged features frommiRNA, mRNA and DNAMethylation into an autoen-

coder (AE) neural network designed specifically to encode its input. The AE leverages a scalable

hyperparameter optimization framework that searches the AE space for best hyperparameter

values for a sequence of bottleneck encoding features that will ensure optimal performance of

the AE network for the classification and stratification purposes as proposed in [30]. After sev-

eral trials, 652 extracted features give an optimum cancer stage prediction accuracy.

2.4 Features extraction from Hematoxylin and Eosin (H&E) stained
histopathological images

Features extraction from the image patches is carried out using transfer learning and fine-tun-

ing processes with ResNet50 deep neural network based on the standard transfer learning

workflow. Following the standard workflow: First, pretrained weights from ResNet50 are

loaded into a defined base model, then, the layers in the base model freeze. We then defined a

new predictor on the based model, we defined a new model on base model with new predictor

and trained the new model on some of the histopathology image tiles across the four cancer

stages. Next, we used the new model with weights adapted to histopathological images for the

extraction of 2,048 salient features from each of the 112,161 image tiles. The ResNet50 prepro-

cessing input aid to zero-center each color channel for each image tile without scaling during

the extraction process.
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2.5 Integration of features extracted from histopathological images and
genomics

Methods for combining vector representation from histopathological and genomics include

an element-wise product or sum, Multimodal Compact Bilinear pooling (MCB) [31] and con-

catenation. Bilinear pooling computes the outer product between two vectors, which allows, in

contrast to the element-wise product, a multiplicative interaction between all elements of both

vectors. On the other hand, the concatenation method linked the two representations in series.

Individually, each type of data adopted carries a different mutated and complex topological

outlay of cancerous tumor, each with limited amount of biology carcinogenic factors. We con-

jectured combining them would provide more complementary and comprehensive prediction

features. We aggregate the encoded features in each data by concatenating extracted 652 fea-

tures from the genomics and 2048 features from histopathological images to create new multi-

modal data with 2700 features for each sample as represented in Fig 1.

The feature extraction process from image tiles and the genomics datasets concluded with

the dimensions of 112,161(samples)x2048(dimensions) and 177(samples)x652(dimensions),

respectively. We used a many-to-one technique to concatenate vectors from the images and

genomics datasets, requiring that concatenated features from both sides (image and genomics)

have the same patient identification code. The concatenation procedure generates a fused data-

set of size 112,161(samples)x2700(dimensions).

To guarantee that an equal number of rows from each of the three modality options (i.e. (i)

images only, (ii) genomics only, (iii) fused image and genomics) are utilized for training the

prediction models, the complete fused dataset is labeled as the integrated dataset with dimen-

sions 112,161x2700.

The datasets with 112,161 rows in each modality were divided into 89,729 (80%) for the

training and 22,432 (20%) for model testing. At the patient’s level, this represents 142 (80%)

samples for training and 35 (20%) samples for testing.

The analysis and result of the study were based on the testing portion of the datasets, equiv-

alent to 22,432 (20%) in each modality.

2.6 Deep Neural Network (DNN) implementation

To implement the first two steps of the proposed DNN which are features extraction processes,

we chose two network models which are sparse autoencoder (AE) [30] and ResNet50 [32]. The

sparse autoencoder is adopted for joint encoding and merged features frommRNA, miRNA

and DNAmethylation using combinations of non-linear functions. The resulting encoded

genomics features are embedded with robust phenotypic nomenclature more definitive for the

cancer staging and survival risk stratification. The second model, ResNet50—a 50-layer residual

deep neural network was also used for feature extraction from the histopathological images.

ResNet50 is the 50 layers of ResNet framework proposed by [32]. ResNet is a residual learning

mechanism embedded within the deep Convolutional Neural Network (CNN) to make it more

effective. The residual training mechanism is designed to handle dual problems of vanishing gra-

dients and degradation of training accuracy. The three functional layers within neural network

activating the extractions of salient features from image tiles, are the convolution, pooling and

average-pooling layers. Features from images are extracted as proposed in [33].

2.7 Training, evaluation and testing setup

To prevent overfitting and ensure equal proportions of samples per stages are selected in each

batch of data used in training the classifier, the datasets is divided into training and validation
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Fig 1. The proposed DNNmodel with three major steps (A) extraction of salient features from concatenated biological genes of mRNA, miRNA and
DNA-Methylation (B)feature extraction from histopathological images (C) CNN stages prediction with fused features.

https://doi.org/10.1371/journal.pone.0305268.g001
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set 80% and testing set 20%. The 80% portion for the training and validation is further divided

into training set 80% and validation set 20% using a stratified 5-fold method. According to dis-

tribution of the datasets as shown in the Table 3, the dataset is imbalanced across all the stages

with samples in stage1 having 24.39%, stage 2 with 42.26%, stage 3 with 19.16% and stage 4

with 14.19%. We adopted 5-fold stratified sampling to preserve the stage frequency across each

train and validation fold. During training Stratified 5-fold sampling and batching procedure

are adopted to ensure randomness and preserve the stage frequency across each training and

validation session.

The unimodal and multi-modal features are trained under the same experimental condi-

tion. The classifier was trained thrice, the first and the second training was done with encoded

genomics and histopathological image data as input, while the third training used input from

the integrated features of the encoded genomics and histopathological image.

2.8 Classification model and evaluation metrics

We hypothesized that synthesizing and aggregating extracted features from histopathological

images and genomics Fig 1A and 1B as input data into CNN Fig 1C for colon cancer stages

prediction and risk stratification may lead to an improvement and more accuracy in predic-

tion and survival risk stratification. We test the validity of our hypothesis after reducing the

dimension and consequently learn a lower-dimensional and compressed representation from

the genomics and histopathological images.

The CNN classifier comprises of different layers including: the input layer, convolutional

layers, pooling layers, and the output layer. The classifier is parameterized with categorical

cross-entropy loss function, Adam optimizer (a replacement optimization algorithm for sto-

chastic gradient descent for training deep learning models) and metric accuracy. The training

and validation fitting is set to run for 100 epochs.

The experiment was designed and implemented on a server with ubuntu operating system

fitted with 3 sets of NVIDIA GeForce GTX 1080 Ti GPU devices with a memory size of 10410

MB per GPU device. The entire code used during the implementation are python based on

TensorFlow, Pandas, and scikit-learn libraries. Our proposed model is used to train each

group of features. Two unimodal classifications, one based on image features and the other

based on genomics features with the third classification based on fused features from images

and genomics, and we measure the accuracy of DNN cancer stage prediction with Area Under

the Curve Receiver Operating Characteristic (AUC ROC) metrics.

3. Results

3.1 Deep neural network for cancer stage prediction with unimodal and
multimodal datasets

Following the earlier data preprocessing, ResNet50 transfer learning and fine-tuning feature

extractions from histopathology images and features extractions from genomics datasets with

stacked autoencoder. We did feature integration on extractions from histopathological images

Table 3. Number of samples (i.e. image tiles) per cancer stage for training the predictive model.

Sample Stages No. of samples available for predictive model % per stage

Stage1 27,358 24.39

Stage2 47,397 42.26

Stage3 21,492 19.16

Stage4 15,914 14.19

https://doi.org/10.1371/journal.pone.0305268.t003
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and genomics by concatenating of the extracted features from images and genomics from the

same sample.

We train the cancer stage predictive model with the unimodal and integrated features fol-

lowed by survival risk stratification based on the integrated features. For each group of data

80% of the samples are used for training and validation while the remaining 20% was set aside

as testing data.

The training and validation section adopted 5-fold stratified methods on the 80% dataset

meant for that purpose. Each fold runs for 100 epochs and accuracy measured as average over

the 5-folds.

Performance and accuracy metrics are measured with AUROC Table 4 and confusion

matrix Table 5 based on 20% test data never seen before by the learning predictive model.

AUROC result (Fig 2A–2C) for stage prediction based on image features gives area under the

curve (AUC) as 0.76 accuracy in stages 2 and 3 predictions and 0.79 AUC accuracy in predict-

ing stages 1 and 4 cancer stages. Predictive accuracy with genomics features returns 0.97 AUC

across all the four cancer stages. Likewise, predictive accuracy with integrated features from

genomics and images returns 0.97 AUC across all the four cancer stages. Further analysis of

the result computed with confusion matrix shows that there is 0.08% improved prediction

accuracy using the integrated features from images and genomics datasets.

Table 4. AUC-ROC value for each cancer stages under each category of features.

Cancer
stages

AUC based on features from images (%
accuracy)

AUC based on features from genomics (%
accuracy)

AUC based on features fromWSI + genomics (%
accuracy)

I 0.79 0.97 0.97

II 0.76 0.97 0.97

III 0.76 0.97 0.97

IV 0.79 0.97 0.97

https://doi.org/10.1371/journal.pone.0305268.t004

Table 5. Confusion matrix analysis for unimodal and multimodal features estimated on test data which is 20% of the entire samples.

Images Confusion Matrix Samples correctly predicted all stages %Accuracy %Improvement in accuracy

True Stages Stage1 2912 995 1134 430

Stage2 1121 5486 2157 716

Stage3 527 964 2436 369

Stage4 277 814 697 1395

Stage1 Stage2 Stage3 Stage4 12229 54.52

Predicted Stages

Genomics True Stages Stage1 3825 1540 19 87

Stage2 0 9374 106 0

Stage3 0 1007 3291 0

Stage4 0 813 0 2370

Stage1 Stage2 Stage3 Stage4 18860 84.08 29.56

Predicted Stages

Integrated True Stages Stage1 3823 1619 26 3

Stage2 0 9395 80 5

Stage3 0 1007 3291 0

Stage4 0 813 0 2370

Stage1 Stage2 Stage3 Stage4 18879 84.16 0.08

Predicted Stages

https://doi.org/10.1371/journal.pone.0305268.t005
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Fig 2. The predictive model AUC results using different input features (A) images only features (B) genomics only features and (C) Integrated features
images and genomics.

https://doi.org/10.1371/journal.pone.0305268.g002
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3.2 Integrated latent space and survival analysis

We analyzed the proportion of the fused 2,700 extracted features that will group the patients

into low and high-risk survival groups necessary for assessing the survival outcome. The

survival analysis was built around three vectors representation. The first vector being the

fused features and the other two vectors—vital status (indicating when the sample is alive or

dead) and last contact days are from clinical record of patient with colon cancer disease. To

achieve our set objectives, the median value of each extracted feature was estimated, and

sample value under each feature classified as either belonging to low or high-risk survival

group compared with its median value. The Kaplan-Meier estimator was used to estimate

and visualize the difference between the low and high-risk survival sample groups under

each feature individually and compare-survival algorithm of the scikit-survival library is

used to compute the p-values related to statistical significance between the low and high-

risk groups. The Kaplan-Meier method is an estimator for analyzing time-to-event data

whose survival-time covariates are right censored, while the compare-survival function is

the K-sample log-rank hypothesis test of identical survival functions. It compares the pooled

hazard rate with each group-specific hazard rate. The alternative hypothesis is that the haz-

ard ratio of at least one group differs from the others at some time. To control the probabil-

ity of committing a type I error among the n = 2700 statistical test, we adopt Bonferroni

Correction (BC) for adjusting the alpha level value which was originally set to 0.05. The BC

is given as:

anew �
aoriginal

n
ð1Þ

Where αnewl is the adjusted alpha level, αoriginal is the original alpha level and n is total num-

ber of statistical tests perform. This translates into a situation that we reject the null hypothesis

of each test within the multiple statistical tests only when the raw p-value is less than

anew � aoriginal=n ¼
0:05=

2700
¼ 1:8519e�5: ð2Þ

Analysis indicates that 1,836 of the 2,700 extracted features are statistically significant.

3.3 Survival risk stratification with extracted features

The Kaplan-Meier estimator for some most significant extracted features showing the survival

functions of patient in low and high-risk survival. Fig 3. gives the visual representation of the

relationship between time and the probability of a patient in low or high-risk class surviving

beyond a given time point. As shown in Fig 3, the wide gap between the two functions is an

indicator that we can confidently argue that 68% of the extracted features conveniently group

the samples into low or high-survival class. The result of p-values (showing the top five most

significant features from genomics and images individually) by the log-rank statistical test sup-

port that majority of the extracted features can stratify the patients into low and high-risk sur-

vival groups is as shown in Table 6. These features with statistically significant p-value rejects

the null hypothesis stating that there is no statistically significant difference between the high

and low risk survival clusters. Also, the significance of the estimated p-values supports the evi-

dence that the extracted features can stratify the samples into low and high-risk survival groups

required and necessary for clinical prognosis. The 1836 stratification features consist of 1204

and 632 of image and genomics features respectively. We show the top 10 distinguishing fea-

tures (five genomics, five image features) in Table 6 in terms of their capability to present the

survival stratification.

PLOS ONE Integrating genomics data and histopathological images to predict stages and survival in colon cancer

PLOSONE | https://doi.org/10.1371/journal.pone.0305268 September 3, 2024 10 / 15

https://doi.org/10.1371/journal.pone.0305268


Fig 3. KaplanMeier samples stratification into low or high-risk survival group according to the most
distinguishing 10 features among 1,836 features with statistically significant p-values Fig 3. (A-E) are genomics
features and Fig 3. (F-J) are image features.

https://doi.org/10.1371/journal.pone.0305268.g003
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4. Discussion

Cancer grouping has a vast practical application in early detection, targeted therapies and sur-

vival risk management. Research outcomes have shown that different molecular datasets are

now available and have been studied for better comprehension and implementation of the

mentioned cancer group application. Most available molecular datasets still required the devel-

opment of novel computational techniques for the extraction of essential information leading

to improved survival of colon cancer patients. Some of the major challenges requiring urgent

computation techniques tools are highly related to understanding molecular states of the avail-

able molecular data such as the genetic mutation, microsatellite instability status, co-expres-

sion pattern, biological markers, methylation, and several other molecular states synonymous

with different cancer stages or groups. Novel methods are needed for the analysis of several

molecular states identified in the unimodal and multimodal datasets for effective and robust

cancer stages early detection, targeted therapies, and survival risk management. Some of the

benefits of cancer stage accurate prediction include the determination of the best treatment for

the patient, estimating the chances of the cancer returning or spreading after initial treatment,

determining the chances of patient recovery and the best clinical trial options. Also, cancer

staging helps in verifying how new treatments work among large groups of patients with the

same diagnosis.

Colon cancer stages classification and prognostic require information about the tumor size,

extent of spread of the disease to the nearest lymph nodes and metastasis to a distance site

which are necessary for clinical treatment and survival. Our fused features from histopatholog-

ical whole slide images and functional genomics provide a complementary model for effective

stages prediction. The resulting fused features’ latent space vectors aggregate microenviron-

ment of tumors and molecular signals in both datasets. The result obtained from this research

confirms previous result that genomics data represent the state-of-the-art for cancer stages

prediction and the subjective nature of using histopathology images for cancer stage predic-

tion. The 0.08% improved accuracy in cancer stage prediction in this research study indicates

weak evidence contrary to expectation that integrated features will bring about significantly

improved accuracy in cancer stages prediction.

Our result is consistent with findings obtained from previous studies showing that geno-

mics features outperform images features predictive accuracy. Whereas the multimodal fea-

tures from our studies did not give a clear improvement in predictive accuracy, others have

shown similar trend or mediocre improvement in prediction accuracy. Examples of previous

studies related to ours are in prediction of molecular subtypes of human breast cancer using

multimodal data integrated from histopathological image, CNV and gene expression data.

Also, studies on cancer prognosis prediction with multi-modal (histopathological images and

mRNA) and multimodal representation for pan-cancer prognosis prediction [34–36]

respectively.

Table 6. Features with significant p-values characterizing the low-high risk samples stratification in KaplanMeier curve.

The top five most significant distinguishing genomics features The top five most significant distinguishing image features

Features Fig Caption p-values Features Fig Caption p-values

v2611 A 1.13E-257 v540 F 1.81E-114

v2324 B 7.49E-256 v869 G 2.70E-101

v2356 C 1.28E-254 v93 H 7.01E-85

v2337 D 1.14E-248 v0 I 1.99E-84

v2489 E 1.14E-248 v173 J 8.49E-80

https://doi.org/10.1371/journal.pone.0305268.t006
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Although our proposed deep neural network predictive model did not give expected differ-

ences in prediction accuracy between multimodal and genomics features in cancer stages pre-

diction, 68% of the extracted features significantly had stratified the samples into low or high-

risk survival group. These are features that are critical in informing viable cancer stages predic-

tion and for analyzing risk factors within each survival group. While several constraints are

encountered during the study, there are ways to improve them. First, only three genomics

datasets are considered and therefore, extending the study to include other genomics and tran-

scriptional dataset such as somatic mutation (SM), Copy number variation (CNV), and

Reverse Phase Protein Array (RPPA) data expression could result in higher prediction accu-

racy and risk stratification. Also, the algorithm for integrating both features may have an effect

on the performance of the classifier. Hence consideration and implementation of other inte-

gration algorithms are areas to be considered in future studies, particularly improvement in

algorithm on selection of images tiles based on percentage of tumor content when image fea-

tures only are used for predictive purpose. Another notable limitation is the absence of another

independent datasets that involve both image and genomics data from the same samples, to

verify and test our proposed framework. This will also be considered in future study. Stratifica-

tion of samples into low and high-risk survival was based on the median values of each

extracted feature which can be considered a deterministic approach, this could be compared

with a stochastic approach of stratification in a future study.

Other cancer research areas that might benefit from our proposed framework include the

classification of cancer of unknown, discernment of tumor microenvironment and microsatel-

lite instability. In conclusion, extracted features that significantly stratified samples into clearly

delineated low-high risk survival groups in this research study could be examined or linked

with new or existing cancer biomarkers useful in diagnosis, prognosis and therapeutics cancer

treatment in future research.
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