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Field observations of debris flows often show that a deep dry granular front is followed by
a progressively thinner and increasingly watery tail. These features have been captured in
recent laboratory flume experiments (Taylor-Noonan et al., J. Geophys. Res.: Earth Surf.,
vol. 127, 2022, e2022JF006622). In these experiments different initial release volumes
were used to investigate the dynamics of an undersaturated monodisperse grain–water
mixture as it flowed downslope onto a horizontal run-out pad. Corresponding dry granular
flows, with the same particle release volumes, were also studied to show the effect of
the interstitial fluid. The inclusion of water makes debris flows much more mobile than
equivalent volumes of dry grains. In the wet flows, the formation of a dry front is crucially
dependent on the heterogeneous vertical structure of the flow and the velocity shear.
These effects are included in the depth-averaged theory of Meng et al. (J. Fluid Mech.,
vol. 943, 2022, A19), which is used in this paper to quantitatively simulate both the wet
and dry experimental flows using a high-resolution shock-capturing scheme. The results
show that velocity shear causes dry grains (located near the free surface) to migrate
forwards to create a dry front. The front is more resistant to motion than the more watery
material behind, which reduces the overall computed run-out distance compared with
debris-flow models that assume plug flow and develop only small dry snouts. Velocity
shear also implies that there is a net transport of water to the back of the flow. This creates
a thin oversaturated tail that is unstable to roll waves in agreement with experimental
observations.
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X. Meng and others

1. Introduction

Debris flows are complex gravity-driven multiphase mixtures of sediment, debris and
water that form in mountainous regions. They are difficult to predict and often pose a
significant threat to both human life and infrastructure. Debris flows are becoming more
frequent due to global warming, which is increasing the number of high rainfall intensity
events that trigger their motion (Petley 2012). One example is from the 20 August 2014,
when heavy rainfall triggered 107 debris flows in Hiroshima city in southwest Japan,
causing 44 injuries and 74 deaths (Wang et al. 2015). Public documents also show that the
landslides, rockfalls and debris flows, caused by the 2008 Wenchuan earthquake, resulted
in approximately 20 000 deaths in the Sichuan Province of China (Yin, Wang & Sun 2009).
These disasters motivate the study of geophysical mass flows in order to determine their
mobility, flow path and final run-out distance, and hence assess their potential risk.

The motion of debris flows is closely related to that of dry granular flows (Savage &
Hutter 1989; Gray, Wieland & Hutter 1999; Gray, Tai & Noelle 2003; Denlinger & Iverson
2004; Johnson et al. 2012). An example of an experimental dry flow is shown in movie 1
in the online supplementary material available at https://doi.org/10.1017/jfm.2023.1023
(Taylor-Noonan et al. 2022). The 30◦ inclined section of the chute is 8.23 m long and
2.09 m wide, and transitions sharply onto a horizontal run-out pad of the same width.
A finite volume (in this case 0.8 m3) is released from behind the flume gate at the top
of the chute and accelerates downslope due to gravity, extending in length as it does so.
As the front reaches the run-out pad it rapidly decelerates and comes to rest, while the
remaining material continues to flow down the chute. As the moving grains impact the
stationary deposit a rapid change in velocity and thickness occurs as oncoming grains are
brought to rest, and this shockwave propagates upslope until the entire flow stops (Gray
et al. 2003).

When interstitial water is added to the initial charge of granular material, the subsequent
flow becomes much more mobile, and the run-out distance is considerably further than
that of a dry flow (Hampton 1979). This can be seen in Taylor-Noonan et al.’s (2022)
water-saturated experiment in movie 2 for a slightly smaller volume of 0.6 m3. Although
the initial mixture is saturated, during motion the body of grains dilates and the phreatic
(water) surface lies below the free surface of the grains (figure 1a). It is only when the
flow comes to rest, and the granular matrix consolidates, that water is pushed out and
the phreatic surface becomes visible (see figure 1b). This suggests that during flow, the
mixture body is layered, with a saturated region of water and grains adjacent to the flow
base, and a dry region of grains and air along the free surface. Taylor-Noonan et al. (2022)
measured the velocity profile at the sidewall, and showed that the flow sheared through its
depth. The combination of this velocity shear and the layered flow structure is important
for the formation of resistive large-amplitude dry fronts, which enhance the destructive
potential of debris flows (Pierson 1986; Iverson 2003; Johnson et al. 2012).

Gray & Ancey (2009) and Gray & Kokelaar (2010) showed that in dry granular flows
of large and small grains, particle-size segregation led to a vertical layering of the flow
with the large grains rising to the surface and small grains percolating down to the base.
When this vertical layering was combined with velocity shear, there was a net transport
of large grains to the flow front and smaller grains to the tail; a feature that can also be
seen in debris flows (Pierson 1986; Iverson 2003; Johnson et al. 2012; Scheidl, McArdell
& Rickenmann 2015). Importantly, large grains that were overrun at the flow front, were
able to rise towards the free surface again by particle-size segregation, allowing the layered
flow structure to be maintained. As a result, large-particle-rich fronts were able to develop
and grow (Gray & Kokelaar 2010). For monodisperse undersaturated mixtures of grains
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(b)

(a)

Front

Water

Figure 1. Experimental photographs of a granular-fluid mixture flowing down a 30◦ inclined plane onto a
horizontal run-out zone (Taylor-Noonan et al. 2022). The initial mixture consists of a volume of 0.6 m3 of
approximately spherical ceramic beads with diameter 3.85 mm that are initially saturated with water. Panel (a)
shows the dry snout 3 s after the release. The shear-induced dilatation of the body of grains implies that the
debris flow is largely undersaturated, and the phreatic (water) free surface is not visible. Panel (b) is taken 11 s
after the release when the grains stop moving, the grain matrix contracts and the water free surface becomes
visible. Movie 2 in the online supplementary material shows the full time-dependent evolution of the wet flow.

and water, the layering is a little different. The grains occupy both the surface air–grain
layer as well as the basal water–grain layer, while water just occupies the basal layer. The
implicit assumption here is that water always percolates down to maintain this vertical
layering, i.e. when a water–grain layer is sheared over an air–grain layer the water fills the
underlying empty pore space so quickly that this time scale can be ignored. Such a layering
will also lead to differential species transport and provides a plausible mechanism for the
formation of dry flow fronts.
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X. Meng and others

Unlike the dry granular particle-size segregation models (Gray & Ancey 2009; Gray
& Kokelaar 2010; Baker, Johnson & Gray 2016; Gray 2018), which assume that there is
an underlying bulk velocity field common to both the large and small grains, debris-flow
models typically have individual depth-averaged velocity fields for both the water and
the grains (Pitman & Le 2005; Pelanti, Bouchut & Mangeney 2008; Pudasaini 2012;
Bouchut et al. 2016; Meng & Wang 2018). However, most debris-flow models also assume
plug flow, so even if they resolve the water and grain free surfaces, differential species
transport due to velocity shear is precluded. Phase separation in such models can only
occur if one phase is more mobile than the other. Since water usually experiences less
resistance to motion than the grains, debris-flow models typically produce a fluid layer
in advance of the main granular front (Meng & Wang 2016). A notable exception to
this is the recent debris-flow model of Meng, Johnson & Gray (2022). This allows for
vertical structure and velocity shear, as well as disparate depth-averaged velocity fields
for the grains and the water. Meng et al. (2022) showed that their theory could capture
the steadily travelling wavefronts observed by Davies (1988, 1990) in his moving-bed
debris-flow flume experiments, which have a dry granular front ahead of the fluid front.

The aim of this paper is to show that Meng et al.’s (2022) theory can quantitatively
capture the formation of dry fronts and watery tails in the experiments of Taylor-Noonan
et al. (2022), as well as the feedback this has on the bulk dynamics. The theory uses a
basal friction law for dry granular flows that is based of the µ(I)-rheology (where µ is the
friction and I is the inertial number), which is moderated by the fluid-induced buoyancy
(Pouliquen & Forterre 2002; GDR-MiDi 2004; Jop, Forterre & Pouliquen 2006; Gray
& Edwards 2014). The theory assumes that the solids volume fraction Φ of the grains is
constant throughout the flow, i.e. dilation and contraction are not modelled. This precludes
the modelling of excess-pore-fluid-pressure effects (Iverson & Vallance 2001; McArdell,
Bartelt & Kowalski 2007; Pailha & Pouliquen 2009; Iverson et al. 2010; Johnson et al.

2012; Iverson & George 2014; Iverson et al. 2015; Wang et al. 2017; Sun et al. 2023).
In natural flows, contraction (during the initial failure and at slope angle transitions)
can generate excess-pore-fluid pressure that takes significant time to be diffused in finer
grained materials. This reduces the friction further and can lead to unexpectedly high
mobility and run-out distance, such as in the disastrous landslides on 22 March 2014
near Oso, Washington, USA (Iverson et al. 2015; Jordan et al. 2017). However, since
Taylor-Noonan et al. (2022) used relatively large grains, excess-pore-fluid-pressure effects
appear to be negligibly small in their experiments. In principle, the theory could be
extended to a µ(I), Φ(I) type rheology, to model the dilatation and contraction of the
grain matrix during flow in a simple way (GDR-MiDi 2004; Barker et al. 2017; Schaeffer
et al. 2019), but this is not done in this paper.

2. Large-landslide flume experiments

Taylor-Noonan et al.’s (2022) experiments were performed at the large-landslide flume at
Queen’s University in Canada. The flume consists of a 8.23 m long plane, inclined at ζ0 =
30◦ to the horizontal, which sharply connects to a 33 m long horizontal run-out pad (see
figure 2). The flume has transparent glass sidewalls that are 2.09 m apart. For the entire
inclined portion and for the first 3.68 m of the horizontal run-out portion, the base of the
flume is constructed from bare aluminium. Further down the flume, the base is constructed
from smooth concrete. At the top, a release box with a hinged door can accommodate up
to 1 m3 of dry or water-saturated grains. The initial charge, which ranged from 0.2 m3 to
1.0 m3, was held behind a gate that could be rapidly opened using pneumatic cylinders.
The opening velocity exceeded 1 m s−1 at the bottom edge. After the flume gate was
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Figure 2. Schematic diagram showing the 30◦ inclined plane and the horizontal run-out pad in Taylor-Noonan
et al.’s (2022) experiments. A terrain following curvilinear coordinate system oxyz is defined with the origin
at the top of the inclined plane, the x-axis in the downslope direction, the y-axis across the slope and the z-axis
being the upwards pointing normal. A Cartesian coordinate system OXYZ is also defined with the origin O at the
slope transition, the Z-axis pointing in the opposite direction to gravity and the X-axis aligned with x. The initial
saturated charge of grains and water lies in the region x ∈ [xt, xf ]. Blue shading corresponds to water, while
the grains occupy the region below the red free surface, which is partially filled with circular markers to denote
the grains. During motion (t > 0), velocity shear results in the surface layer of (light grey coloured) grains
migrating towards the front, whereas the (dark grey coloured) grains near the base are transported backwards
relative to the advancing front. The inset diagram shows how the assumed shape of the initial charge is modified
in the computations to account for the dilatation of the granular body as it begins to flow. The break in slope
lies 6.73 m downslope of gate at x = xf . The positions of the camera fields of view, ultrasonic height sensor and
pressure transducer are illustrated on the main diagram. Movies 1 and 2 in the online supplementary material
show typical dry and wet flow experiments.

opened, the mass accelerated down the inclined section, which was long enough (6.73 m)
to generate a mature debris flow, which is characterized by a deep dry granular flow front
followed by a progressively thinner and increasingly watery tail. This is closely akin to
those observed in the field (Pierson 1986; Kean et al. 2019).

Two different types of initial conditions were implemented in the experiments of
Taylor-Noonan et al. (2022). In the first, a series of five source volumes of dry
monodisperse spherical ceramic beads with diameter ∼3.85 mm were released on the
chute. The source volumes started at 0.2 m3 and incremented in 0.2 m3 intervals until
1 m3. In the second, identical volumes of water-saturated grains (of the same type used
in the dry tests) were released to evaluate the effect of the pore fluid. These different
initial conditions evolved into two dramatically different flow structures and deposit
morphologies.

Figure 3 shows two typical high-speed camera images taken 6.23 m downstream of the
gate and 0.5 m upstream of the slope break (see figure 2) for the dry and wet release
volumes of Vini = 0.8 m3. In both cases there is an in-focus dense granular region adjacent
to the wall, a few saltating grains above it and an out-of-focus perspective view of the free
surface further away from the wall. In the case of the wet flow, there is also a well-defined
phreatic surface adjacent to the wall, below which the grains are saturated. Taylor-Noonan
et al. (2022) used these high-speed images to determine the granular and phreatic free
surfaces (adjacent to the wall), and showed them on a space–time plot formed from the
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X. Meng and others

(b)

(a)

Figure 3. Taylor-Noonan et al.’s (2022) high-speed movie images of the (a) dry and (b) wet flow experiments
0.5 m upstream of the slope break, 0.94 s after the initial front arrival and for initial volumes Vini = 0.8 m3.
Movies 3 and 4 in the online supplementary material show the complete high-speed movie sequences, which
are very instructive. All of Taylor-Noonan et al.’s (2022) high-speed camera data is available from https://doi.
org/10.5683/SP3/1ZCUFY.

high-speed camera images. Figure 4 shows the space–time plot of the high-speed images,
and the granular and phreatic free surfaces, for the same experiment as figure 3. Note
that the diffuse/blurred region above the granular free surfaces, is simply the way the
out-of-focus grains (that are not adjacent to the wall) appear in these plots and has no
influence on the results.
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Figure 4. Taylor-Noonan et al.’s (2022) space–time plots measured 0.5 m above the slope break, for (a) dry
and (b) water-saturated granular flows with an initial volume Vini = 0.8 m3. The dense flow adjacent to the
glass sidewall is characterized by the black and white stippled region, while the diffuse/blurred region (above)
corresponds to out-of-focus grains that are not adjacent to the sidewall, as well as to a few saltating grains.
The red and blue lines are the grain and phreatic free surfaces determined from the individual high-speed
images by Taylor-Noonan et al. (2022) (see e.g. figure 3, where the interfaces are more clearly identifiable).
In panel (a), the flow in the tail is quite dilute and the surface of the dense granular regime is difficult to
define. The horizontal bands on the space–time plots are caused by dust, imperfections and water droplets on
the sidewall of the chute, as can be seen in the online movies 3 and 4.
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X. Meng and others

As mentioned above, the free surface positions of the grains and the water are
determined from the individual high-speed images (e.g. figure 3) where most of the time
they are clearly identifiable. The wet flows suppress grain saltation, compared with dry
flows, which may dilate significantly if they are only a few particle diameters in thickness.
This can lead to uncertainty in the position of the granular free surface in some of the
smaller dry releases (Taylor-Noonan et al. 2022). In the main dense body of the dry flow
(figure 4a) the thickness rises to a peak height of 5.5 cm approximately 1.2 s after the
initial front arrival, and then the thickness decreases until approximately 3.1 s when an
upslope propagating shockwave comes into view and partially brings the grains to rest.
This can be seen in movie 3, which is available in the online supplementary material.

For the water-saturated flow, the flow head is almost completely dry as shown in
figure 4(b) and movie 4. The grain peak height of 6.8 cm occurs only 0.5 s after the front
arrival, and is significantly higher than that of the dry grains. The peak height of 4.3 cm for
the phreatic (water) free surface occurs very slightly after that of the grains, implying that
the flow front is undersaturated. The grain and phreatic free surfaces both decrease rapidly
in height, while the wet flow remains undersaturated until approximately 3.4 s. After this
time the tail becomes very watery and the water free surface is almost of constant height
of 0.5 cm. Most of the wet flow is therefore in the undersaturated regime throughout the
duration of the flow, except at the thin watery tail, which develops a series of roll waves.

During motion of the dry flow, Taylor-Noonan et al.’s (2022) experiments (see their
figure 9) show that the moving body of grains dilates from its static state. However, the
dry experiments can still be modelled successfully without accounting for this dilation
as shown in § 5. This dilation is particularly important for the flows of wet experiments,
because it generates a mechanism of producing dry grains at the surface of the flowing
material, which can then be sheared forwards and ultimately creates a drier more resistive
flow front.

Movies 1 and 2 show that the water-saturated flow is much more mobile than the dry
flow. For an initial volume of 0.8 m3, the front of the wet flow extends 6.5 m down the
run-out pad from the break in slope, while the front of the dry flow only reaches 2.1 m. The
distal reach of the wet grains is therefore further than that of dry granular flows. Moreover,
the experiments showed that the wet flow run-out distance grows with increasing source
volume, while the barycentre of the dry deposits was almost identical for all five dry flow
volumes. A Faro Focus S 150 light detection and ranging (LiDAR) scanner was used by
Taylor-Noonan et al. (2022) to detect the final deposit morphology for each of the release
volumes. These detailed deposit profiles will be compared with the simulated wet and dry
flows using Meng et al.’s (2022) theory in §§ 5 and 6 of this paper.

3. Depth-averaged theory

Meng et al.’s (2022) depth-averaged theory for granular-fluid flows is used in this paper to
model the wet and dry experiments of Taylor-Noonan et al. (2022). This requires the theory
to be generalized to a terrain-following curvilinear coordinate system. In addition, since
the experiments show that the flow is predominantly undersaturated, some simplifications
can be made that make it easier to develop a numerical method.

3.1. Meng et al.’s depth-averaged equations

Let oxyz be a terrain-following curvilinear coordinate system with the x axis pointing down
the chute, the y-axis pointing across the slope and the z-axis being the upward pointing
normal, as illustrated in figure 2. The origin o is placed at the top of the chute upstream
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Granular-fluid avalanches

of the release gate and the local angle of inclination of the chute ζ = ζ(x). In these
coordinates the chute base lies along z = 0. The chute geometry and the initial conditions
are independent of y. Moreover, figure 1(a), and movies 1 and 2, show that the flow front
remains planar across the chute, without forming significant boundary layers adjacent to
the sidewalls. The sidewall friction and lateral gradients of physical quantities are therefore
neglected, and the whole flow is modelled independently of y.

In the curvilinear coordinate system the granular and phreatic (water) free surfaces lie
at z = hg and hw, respectively. When hg > hw the flow is undersaturated, while if hg < hw

the flow is oversaturated. These flow configurations are shown schematically in figure 2
of Meng et al. (2022). In the undersaturated regime there is a layer of dry grains above a
saturated mixture of grains and water, and the associated volume fractions of the grains
and the water are

φg = φc, 0 ≤ z < hg, φw =
{

0, hw ≤ z < hg,

1 − φc, 0 ≤ z < hw,
(3.1a,b)

respectively, where φc is constant (Iverson & Denlinger 2001). In the oversaturated regime,
there is a layer of water on top of the saturated mixture of grains and water. The volume
fractions of the grains and the water are therefore

φg =
{

0, hg ≤ z < hw,

φc, 0 ≤ z < hg,
φw =

{

1, hg ≤ z < hw,

1 − φc, 0 ≤ z < hg.
(3.2a,b)

Note that the assumption that the volume fraction of the grains φg equals φc wherever
grains are present, implies that Meng et al.’s (2022) theory cannot resolve excess
pore pressure effects that occur due to changes in volume fraction. Nevertheless, this
paper shows that Meng et al.’s (2022) theory is sufficient to quantitatively capture the
experiments of Taylor-Noonan et al. (2022).

The grains and the water are assumed to be incompressible with constant intrinsic
densities ̺g⋆ and ̺w⋆, respectively. They also have independent velocity fields u

g =
(ug, wg) and u

w = (uw, ww), where the components are measured in the downslope and
normal directions. The depth-averaged velocities of the grains and the water, ūg and ūw, in
the downslope direction are defined as

ūg =

∫ hg

0
φgug dz

∫ hg

0
φg dz

=
φgug

φ̄g
, ūw =

∫ hw

0
φwuw dz

∫ hw

0
φw dz

=
φwuw

φ̄w
, (3.3a,b)

respectively. Meng et al. (2022) defined the proportion of the flow height that is occupied
by grains in the undersaturated and oversaturated regimes as

H =
{

1, hg > hw, (undersaturated),

hg/hw, hg ≤ hw, (oversaturated),
(3.4)

which is useful in defining a unified system of equations (their equations (4.68)–(4.77))
that are valid in both the undersaturated and oversaturated regimes. In the undersaturated
regime Meng et al.’s (2022) equations can be written in conservative form, which is
convenient for the development of numerical methods (Kurganov & Tadmor 2000).
However, in the oversaturated regime the equations cannot be written in conservative
form, due to the buoyancy terms in their equations (4.72) and (4.73), which makes
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X. Meng and others

the construction of numerical methods more complex (Maso, LeFloch & Murat 1995;
LeVeque 2002; Parés 2006; Diaz, Kurganov & de Luna 2019).

Since Taylor-Noonan et al.’s (2022) experiments are predominantly in the
undersaturated regime, this paper makes the minimal possible modification to the
equations (in the oversaturated regime) in order to put them in conservative form.
Specifically the modified depth-averaged grain and water mass and momentum balance
equations are assumed to be

∂

∂t
(hgφc) +

∂

∂x
(hgφcūg) = 0, (3.5)

∂

∂t
(hgφcūg) +

∂

∂x
(χghgφc(ūg)2) +

∂

∂x

(
1

2
(hg)2φcg cos ζ

)

= L
g, (3.6)

∂

∂t
(hwφ̄w) +

∂

∂x
(hwφ̄wūw) = 0, (3.7)

∂

∂t
(hwφ̄wūw) +

∂

∂x
(χwhwφ̄w(ūw)2) +

∂

∂x

(
1

2
(hw)2φ̄wg cos ζ

)

= L
w, (3.8)

respectively, where g is the constant of gravitational acceleration, Lg and Lw are source
terms and φ̄w is the depth-averaged water concentration. Using the assumed vertical water
concentration distribution in the undersaturated and oversaturated regimes (3.1b)–(3.2b)
as well as the definition (3.4) it follows that

φ̄w =
1

hw

∫ hw

0
φw dz = (1 − φc

H). (3.9)

Equations (3.5)–(3.8) are identical to those of Meng et al. (2022) in the undersaturated
regime, while in the oversaturated regime the equations are asymptotically equivalent in
the limit as the water thickness tends to the granular thickness from above, i.e. hw → hg+.
Moreover, the form has been chosen so that when hg = 0, (3.7)–(3.8) reduce to the shallow

water equations. In the convective momentum terms in (3.6) and (3.8), χν = (uν)2/(ūν)2

is the shape factor and its value deviates from unity for sheared velocity profiles. For
non-unity values of the shape factor, the characteristic structure of the depth-averaged
system changes, and leads to the formation of a thin precursor layer ahead of the granular
front, which is unphysical (Saingier, Deboeuf & Lagrée 2016). Saingier et al. (2016) also
showed that at low Froude numbers, non-unity values of the shape factor make very little
difference to the overall shape of the granular flow front for h > 0. This paper therefore
assumes that χν = 1 for both species ν = g, w for simplicity, in line with virtually all other
debris-flow models (Pitman & Le 2005; Pelanti et al. 2008; Pudasaini 2012; Bouchut et al.

2016; Meng & Wang 2018).
Since the buoyancy terms in equations (4.72) and (4.73) of Meng et al. (2022) have

been subsumed into the modified momentum balances (3.6) and (3.8), it follows that the
leading-order source terms for the grains and the water are

L
g = hgφcg sin ζ

︸ ︷︷ ︸

Gravity

−
ūg

|ūg|

(

1 − γH
hw

hg

)

µbhgφc(g cos ζ + κ(ūg)2)

︸ ︷︷ ︸

Basal friction

+
Cd

̺g⋆
(ψw(s) − ψg(s))

︸ ︷︷ ︸

Darcy drag

, (3.10)
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Granular-fluid avalanches

L
w = hwφ̄wg sin ζ

︸ ︷︷ ︸

Gravity

− Cwūw|ūw|
︸ ︷︷ ︸

Basal friction

−
Cd

̺w⋆
(ψw(s) − ψg(s))

︸ ︷︷ ︸

Darcy drag

, (3.11)

where γ = ̺w⋆/̺g⋆ is the density ratio, µb is a Coulomb-like basal friction coefficient
for the grains and κ = −∂ζ/∂x is the curvature of the terrain-fitted coordinates, which
modifies the basal pressure in the friction law (Savage & Hutter 1991; Gray et al. 1999;
Viroulet et al. 2017). The water experiences a turbulent basal drag with the bed shear stress
coefficient Cw, and the relative motion of the grains and the water within the mixture
generates a Darcy drag, with Darcy drag coefficient Cd. The functional form of these
coefficients, as well as the basal granular friction is discussed at greater length in § 3.2.
The grain and water stream functions ψg and ψw in the Darcy drag terms are defined by

ψg(s) =
∫ s

0
ug dz, ψw(s) =

∫ s

0
uw dz, (3.12a,b)

where the internal height of the saturated grain–water mixture

s =

{

hw, hg > hw, (undersaturated),

hg, hg ≤ hw, (oversaturated).
(3.13)

The stream functions allow the grain and water downslope velocity profiles with z to
influence the relative motion of the two species. Specific profiles will be considered in
§ 3.3. It is these terms that are responsible for the deviation of Meng et al.’s (2022) theory
away from conventional debris-flow models that assume plug flow (Pitman & Le 2005;
Pelanti et al. 2008; Iverson & George 2014; Bouchut et al. 2016; Meng & Wang 2016).
Note that Meng et al.’s (2022) depth-averaged viscous term for the water is neglected in
(3.11), since it is not needed to model the experiments of Taylor-Noonan et al. (2022). In
addition, the use of the terrain-fitted coordinates implies that the basal topography gradient
terms in equations (4.72) and (4.73) of Meng et al. (2022) are zero, since b = 0.

3.2. Granular friction, basal water drag and Darcy drag laws

Although the base of Taylor-Noonan et al.’s (2022) chute is not roughened with particles,
it is still rough enough that internal shear dominates over basal slip, as shown by the
experimental peak flow velocity data in figure 5. It is therefore appropriate to apply the
rough-bed basal friction law of Pouliquen & Forterre (2002), i.e.

µb(Fr, hg) = µ1 +
µ2 − µ1

1 +
βhg

L Fr

, (3.14)

where the Froude number Fr is defined as

Fr =
ūg

√
ghg cos ζ

. (3.15)

The rate-dependent friction law therefore starts at µ1 = tan ζ1 at Fr = 0 and asymptotes
towards µ2 = tan ζ2 as Fr/hg tends towards infinity. The parameter β is an empirical
constant and L has the dimension of a length and is dependent on the properties of
the particles and on the basal roughness. On a rough bed, the basal friction law (3.14)
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X. Meng and others
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Measurement
Cubic profile
Bagnold profile
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Figure 5. Non-dimensional downslope velocity profiles for the grains as a function of the non-dimensional
depth, for the cubic (m = 0.5), Bagnold (m = 2) and linear shear with basal slip models (αg = 0.6). The blue
shaded region represents the ±1 standard deviation about the downslope velocity in Taylor-Noonan et al.’s
(2022) 0.8 m3 experiment. The measurements are made in a 0.02 s observation time window during peak flow
(their figure 6c) at 0.5 m above the slope break at approximately t = 2.05 s.

can be derived directly from the µ(I)-rheology for granular flows (GDR-MiDi 2004; Jop,
Forterre & Pouliquen 2005; Gray & Edwards 2014). For flows on smoother slopes, Goujon,
Thomas & Dalloz-Dubrujeaud (2003) and Weinhart et al. (2012) have shown that (3.14)
still provides a good approximation for the friction, although the difference between ζ2
and ζ1 has to be reduced.

The bed shear stress for the water phase takes account of the turbulent friction arising
from the bottom of the channel. In the Meng et al. (2022) paper, Cw was based on the
Manning equation for open channel flows (Manning 1891), and has the form

Cw = φ̄w gn2

(hw)1/3
, (3.16)

where n is the Manning coefficient (Chertock et al. 2015). The factor φ̄w ensures that it
reduces to the classical Chézy coefficient for water in the absence of grains. However,
there are other empirical relations in the literature. The coefficient Cw can also be related
to the Darcy–Weisbach friction factor f DW as

Cw = φ̄w f DW

8
, (3.17)

where the factor φ̄w again ensures that in the absence of grains (3.17) reduces to the
classical form of the pure water bed shear stress. A general and well-verified friction factor
f DW is the White–Colebrook function corresponding to open channel flows (Silberman
et al. 1963; Kleinhans 2005),

√

8

f DW
= 5.74 log10

(
hw

ks

)

+ 6.24, (3.18)
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Granular-fluid avalanches

where ks is Nikuradse roughness length commonly related to some grain size percentile
of the mass frequency distribution. Since Taylor-Noonan et al. (2022) experiments are
monodisperse, the hydraulic roughness length is chosen to be equal to the grain diameter,
i.e. ks = d (Kleinhans 2005). For the simulations shown in this paper, CW is assumed to
obey the Manning equation (3.16). However, all of the computations have also been done
with the Darcy–Weisbach formulation (3.17)–(3.18), and the results are virtually identical.
The only difference appears to be in the tail of the flow, where the roll waves have a
different amplitude and wavelength. The fact that the results are not sensitive to the precise
formulation of CW suggests that the buoyancy reduced granular friction (3.10) dominates
the response of the system.

The form of the Darcy drag coefficient is

Cd = µw (1 − φc)2

k
, (3.19)

where µw is the dynamic viscosity of water and the permeability k = (1 − φc)3d2/

(180(φc)2) is determined by Carman’s formula for packing of spheres with diameter d

(Kozeny 1927; Carman 1937; Goharzadeh, Khalili & Jørgensen 2005).

3.3. Assumed velocity profiles and associated stream functions

Vertical structure and velocity shear through the flow depth produce an important
mechanism for differential species transport and the formation of large-rich and/or dry
debris-flow fronts (Gray & Kokelaar 2010; Johnson et al. 2012; Baker et al. 2016; Gray
2018; Viroulet et al. 2018). In Meng et al.’s (2022) theory, shear-induced differential
species transport is achieved by assuming downslope velocity profiles through the flow
depth that deviate from plug flow.

In this paper three different granular velocity profiles are investigated that provide
reasonable fits to Taylor-Noonan et al.’s (2022) peak grain velocity data shown in figure 5.
A general power-law downslope velocity, that satisfies the no-slip condition at the base
and vanishing shear on the free surface, is given by

uν(z) =
1 + 2m

1 + m
ūν

[

1 −
(

1 −
z

hν

)(1+m)/m
]

, (3.20)

where ν = g, w. This tends to a linear profile as the parameter m → ∞ and tends to a plug
profile as m → 0 (Ng & Mei 1994). The case m = 2 corresponds to a Bagnold profile,
which arises naturally from the µ(I) rheology for dry granular flows (GDR-MiDi 2004;
Jop et al. 2006; Gray & Edwards 2014). This is consistent with the assumed basal granular
friction law (3.14), and provides a reasonable fit to the experimental velocity data for the
grains shown in figure 5. A better fit is obtained for the case m = 0.5, which corresponds
to a cubic profile. Rather than this indicating a deviation away from the µ(I) rheology,
the apparently better fit is likely due to the grains slipping somewhat on the smooth
aluminium chute base. One can also simply assume a linear velocity profile with basal
slip to characterize either the grains or water velocity field

uν(z) = ūν
(

αν + 2(1 − αν)
z

hν

)

, (3.21)

where for ν = g, w and the variable αν ∈ [0, 1] controls the magnitude of the basal slip
velocity (Gray & Thornton 2005; Gray & Ancey 2009). When αν = 0, (3.21) reduces to
a linear profile with no slip at the base, and it reduces to plug flow, when αν = 1. For
simplicity, the water is assumed to have a plug-flow profile, i.e. uw(z) = ūw.
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X. Meng and others

The assumed grain and water velocity profiles enter Meng et al.’s (2022) theory
indirectly through the stream functions defined in (3.12). These are evaluated on the
internal grain–water mixture surface s defined in (3.13). It follows that for the power law
velocity profile (3.20), the stream function is

ψν(s) =
m

1 + m
hν ūν

[
1 + 2m

m

( s

hν

)

− 1 +
(

1 −
s

hν

)(1+2m)/m
]

, (3.22)

and for the linear profile (3.21) it is

ψν(s) = hν ūν

[

αν
( s

hν

)

+ (1 − αν)
( s

hν

)2
]

. (3.23)

For the assumed plug-flow water velocity field it follows that

ψw(s) = sūw. (3.24)

The stream functions are used in the Darcy-drag terms in the momentum sources (3.10)
and (3.11). These control the relative depth-averaged motion of the grains and the water in
the water-saturated granular region at the base of the flow.

4. Numerical method and physical parameters

4.1. Numerical method

The system of conservation laws (3.5)–(3.8) is solved numerically using the
shock-capturing non-oscillatory central scheme of Kurganov & Tadmor (2000). This
robust scheme has been used to successfully solve a number of closely related systems of
conservation laws for dry granular flows (Edwards & Gray 2015; Baker et al. 2016; Rocha,
Johnson & Gray 2019), debris flows (Meng et al. 2018, 2020) and submarine landslides
(Sun et al. 2023). The method is a semidiscrete Riemann-free solver that maintains
the non-oscillatory property by using a flux limiter. Here, the weighted essentially
non-oscillatory limiter detailed in Noelle (2000) is chosen, as in Baker et al. (2016). The
non-oscillatory central scheme requires the system of (3.5)–(3.8) to be written in a vector
form

∂U

∂t
+

∂F (U)

∂x
= S(U), (4.1)

where the vector of conservative fields is defined as

U = (Hg, Mg, Hw, Mw)T = (hgφc, hgφcūg, hwφ̄w, hwφ̄wūw)T. (4.2)

Three field variables are easy to express in terms of the conservative variables

hg =
Hg

φc
, ūg =

Mg

Hg
, ūw =

Mw

Hw
, (4.3a–c)

but the relation for hw is dependent on whether the flow is undersaturated or oversaturated.
Using the definition of φ̄w in (3.9), it follows that

hw =

⎧

⎪
⎨

⎪
⎩

Hw

1 − φc
, (undersaturated),

Hw + Hg, (oversaturated),

(4.4)
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Granular-fluid avalanches

and hence the depth-averaged water concentration is

φ̄w =

⎧

⎨

⎩

1 − φc, (1 − φc)Hg > φcHw, (undersaturated),

Hw

Hw + Hg
, (1 − φc)Hg ≤ φcHw, (oversaturated).

(4.5)

In the undersaturated regime the flux vector F is

F (U) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Mg

(Mg)2

Hg
+

1

2

(Hg)2

φc
g cos ζ

Mw

(Mw)2

Hw
+

1

2

(Hw)2

1 − φc
g cos ζ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (1 − φc)Hg > φcHw, (4.6)

while in the oversaturated regime it is

F (U) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Mg

(Mg)2

Hg
+

1

2

(Hg)2

φc
g cos ζ

Mw

(Mw)2

Hw
+

1

2
(Hw + Hg)Hwg cos ζ

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (1 − φc)Hg ≤ φcHw. (4.7)

The characteristic wave speeds λi (i = 1, . . . , 4) of the system in both the undersaturated
and oversaturated regimes are evaluated in Appendix A. In the undersaturated regime the
structure of the system uncouples to generate two shallow-water-type systems (for the
grains and for the water) that are weakly coupled through the momentum source terms.
In the oversaturated regime there is stronger coupling through the flux vector. The system
of equations is non-strictly hyperbolic in both undersaturated and oversaturated regimes,
with explicit characteristic wave speeds given by (A4) and (A7).

The source vector S is

S(U) =

⎛

⎜
⎝

0
Lg

0
Lw

⎞

⎟
⎠ , (4.8)

where Lg and Lw are defined in (3.10) and (3.11), respectively. The appearance of
the water basal friction term in the form −(1 − φcH)gn2uw|u|w/(hw)1/3 is a potential
challenge to the discretization of the source vector S(U), as the underlying semidiscrete
system becomes stiff when the water thickness hw is small. In this case, small numerical
oscillations might cause negative values of water thickness, which in turn would make
it impossible to evaluate the characteristic wave speeds λ3,4 in (A4b) and (A7b). To
prevent the appearance of the negative thickness, this paper adopts the correction strategy
of Chertock et al. (2015) to correct the slopes of the conservative variables for small
thicknesses during the reconstruction. Additionally, the water velocity at the centres of
the cells, required to compute the water basal friction term, is computed at cell j using the
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X. Meng and others

desingularization formula

ūw
j =

2Hw
j Mw

j

(Hw
j )2 + max((Hw

j )2, α2)
, (4.9)

where α = 5 × 10−5 m. Equation (4.9) ensures that its influence on the water velocity
is negligibly small for the thicknesses hw ≥ 100α/(1 − φc), which are sufficiently small
compared with the peak flow depth. Since Kurganov & Tadmor’s (2000) semidiscrete
approach is an explicit scheme, a small time step �t is needed to maintain stable
computation. To avoid reducing the time step significantly and simultaneously preserve
strong stability of the computation, a splitting technique is used to discretize the water and
grain basal friction terms. This has proved to be effective in ensuring a stable computation
without the expense of decreasing the time step significantly (see Liang & Marche 2009).
The time step �t is given by

�t ≤
�x

|a|
CFL, where a = max {|λi|} , i = 1, . . . , 4, (4.10)

and the Courant–Friedrichs–Lewy number CFL = 0.1 is chosen.

4.2. Computational geometry and boundary conditions

The computational domain is 20 m in length and the gate is located at xf = π m. In the
experiments, the inclined plane is sharply connected to a horizontal plane. This causes the
curvilinear coordinates oxz to overlap for z > 0 at the slope break. To avoid overlap in the
flow thicknesses in the computations, a short smooth transition is therefore added between
the inclined and horizontal planes. The inclination angle of the slope is

ζ(x) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ζ0, 0 ≤ x ≤ xa,

ζ0

(

1 −
x − xa

xb − xa

)

, xa < x < xb,

0◦, x ≥ xb,

(4.11)

where ζ0 = 30◦, xa = xf + 6.73 m, xb = xf + 7.13 m. These values are summarized in
table 1. The inclined section therefore extends 6.73 m downstream of the gate and the
smooth transition is 0.4 m in length. The smooth transition is sufficiently small compared
with the overall chute length that its influence on the debris-flows dynamics is small. The
centrifugal forces induced by the change in curvature κ = −∂ζ/∂x does, however, change
the basal pressures in the transition region. This is accounted for by the curvature term in
the granular source terms (3.10). Free outflow conditions are specified at either end of the
domain, but in most simulations no material reaches either boundary. The computation
domain is discretized into 4667 grid points, implying �x = 0.0042857 m.

4.3. Initial conditions for the dry simulations

Dry grains are initially packed in a triangular region behind a vertical gate at x = xf and
have a horizontal free surface. In the terrain-following curvilinear coordinates the initial
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Granular-fluid avalanches

Parameter Measured values Model values

Chute angle, ζ0 30 ◦ —
Position of the gate, xf — 3.14 m
Position of the start of the slope break, xa — 9.87 m
Position of the end of the slope break, xb — 10.27 m
Initial solids volume fraction, φ

g

ini — 0.585
Flowing solids volume fraction, φc — 0.48
Diameter, d 3.85 mm 3.85 mm
Water density, ̺w⋆ tap water 1000 kg m−3

Water viscosity, µw tap water 0.001 Pa s
Solid density, ̺g⋆ 2241 kg m−3 2241 kg m−3

Manning’s coefficient, n — 0.016 s m−1/3

Table 1. Computational chute geometry and physical parameters used to simulate Taylor-Noonan et al.’s
(2022) debris-flow experiments.

height is therefore given by

h
g
ini =

⎧

⎪
⎨

⎪
⎩

(xf − x) cot ζ0, xm ≤ x ≤ xf ,

(x − xt) tan ζ0, xt < x < xm,

0, otherwise,
(4.12)

where xm is the downslope position of the maximum depth (measured normal to the
plane) and xt is the maximum upstream position of the triangular pile. The initial grain
volume Vini is uniformly distributed across the chute, which is of width W = 2.09 m. The
two-dimensional projected area can therefore be used to determine xt and xm, which are
given by the expressions

xt = xf −

√

2Vini

W sin ζ0 cos ζ0
, xm = xf − (tan ζ0)

√

2Vini sin ζ0 cos ζ0

W
, (4.13a,b)

respectively. Computations for the dry granular flows assume that hw = 0 and Cw = 0,
which implies that the depth-averaged water mass and momentum balances (3.7)–(3.8) are
trivially satisfied. The depth-averaged granular mass and momentum balances (3.5)–(3.6)
then reduce to those of Viroulet et al. (2017).

4.4. Initial conditions for wet simulations

In the wet flow experiments the initial volume of grains held behind the gate is in exactly
the same configuration as the dry grains in § 4.3, and occupies a total volume Vini. The
only difference is that the interstices between the grains are now occupied by water rather
than air. Since the grains are initially saturated, the intrinsic volumes of grains and water
(i.e. the volumes of the pure phases) are therefore

V
g⋆

ini = Viniφ
g

ini, Vw⋆
ini = Vini(1 − φ

g

ini), (4.14a,b)

where φ
g
ini is the granular volume fraction in the initial deposit.

Meng et al.’s (2022) theory uses a constant solids volume fraction φg = φ̄g = φc that
does not change during flow. The only way to model the initial dilatation of the granular
matrix, observed in the Taylor-Noonan et al.’s (2022)’s experiments, is therefore to change
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X. Meng and others

the assumed initial configuration to account for the subsequent change in φg from φ
g

ini =
0.585 to φc = 0.48. For the grains, this is done by expanding the initial height, to account
for the solids volume fraction, without changing the initial x position, i.e.

hg
new =

φ
g

ini

φc
h

g
ini, (4.15)

where h
g

ini(x) is defined in the same way as the initial dry height (4.13). In particular, the
maximum height, which is still attained at x = xm, is now

hg
max =

φ
g
ini

φc
(xf − xm) cot ζ0. (4.16)

This expansion of the granular body in the normal direction to the chute, changes the
assumed angle between the gate and the bed to

θ = arctan

(
h

g
max

xf − xm

)

= arctan

(

φ
g

ini

φc
cot ζ0

)

, (4.17)

as shown in the inset diagram in figure 2. This modifies the gate angle from 60◦ in the dry
case, to θ = 63.67◦ in the wet case, independently of the initial volume.

The total volume of the water Vw⋆
ini is also conserved, but it now occupies a smaller

projected area in the xz plane, because there is more pore space between the grains. For
simplicity, it is assumed that the water remains in contact with the gate and occupies a
triangular region defined by

hw
ini =

⎧

⎪
⎨

⎪
⎩

hw
max(xf − x)/(xf − xw), xw ≤ x ≤ xf ,

hw
max(x − xt)/(xw − xt), xt < x < xw,

0, otherwise,
(4.18)

where x = xw is the downslope position of the maximum water height hw
max. Accounting

for the dilatation of the grain matrix, conservation of Vw⋆
ini implies

hw
max =

(

1 − φ
g

ini

1 − φc

)

(xf − xm) cot ζ0. (4.19)

This implies that in curvilinear coordinates the maximum initial height of the water lies at

xw = xf − hw
max cot θ. (4.20)

As can be seen in the inset of figure 2, the net effect of these modifications is to produce an
initially saturated flow front that transitions to an undersaturated region in the tail, where
the peak height occurs (in terrain-following coordinates).

4.5. Physical parameters used in the simulations

Taylor-Noonan et al. (2022) provided the values of the slope angle ζ0, the grain and water
densities ̺g⋆ and ̺w⋆, the grain diameter d and the water viscosity µw. The base of the
inclined plane is made of bare aluminium and therefore this paper assumes Manning’s
coefficient n = 0.016 s m−1/3, which is within the commonly used range (see Chow 1959).
In the current theory, the solids volume fraction φc is assumed to be constant; however, it
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Figure 6. Comparison between experimentally measured deposit morphology (red dash line) and theoretical
predictions using the parameters for PVC rod (blue dotted line with the symbol ‘⋆’), for glass beads (blue
dash–dot line with the symbol ‘�’) and the parameters used in the paper (red solid line). The parameters are
summarized in table 2. This plot is made using the Cartesian coordinate system OXZ shown in figure 2.

varies with time and space in the experimental flows, as discussed in § 4.4. Taylor-Noonan
et al.’s (2022) wet experiment data (in their figure 9) suggests that φc = 0.48 is a good
approximate mean value. The initial solids volume fraction of φ

g
ini = 0.585 is that of a

very loose random packing. These experimental parameters and computational choices
are summarized in table 1.

In addition, it is necessary to provide values of the parameters in the dynamic basal
friction law (3.14) for the grains. The grains are of mean diameter d = 3.85 mm. With
such large grains direct measurements of the friction angles are difficult to obtain, because
it is not easy to carry out the tilting table experiments to determine hstop(ζ ) as in Pouliquen
& Forterre (2002). This paper therefore adopts the same values of L = 1.65 × d and
β = 0.135 used by Meng et al. (2022) to match Davies’s (1988, 1990) moving-bed-flume
experiments with polyvinyl chloride (PVC) cut rod on a toothed belt.

To provide insights into the choice of angles ζ1 and ζ2, the parameters corresponding
to the glass beads presented in Pouliquen (1999) and the PVC rod presented in Meng
et al. (2022) are first used to conduct a series of dry flow calibration simulations. These
are compared with the deposit in Taylor-Noonan et al.’s (2022) experiment with an initial
0.8 m3 volume of dry grains. Figure 6 shows that simulations with the PVC rod leave a
significant deposit on the chute. This implies that hstop(ζ0) > 0 when ζ2 > ζ0. This is not
the case in the experiments, and hence the maximum friction angle ζ2 should be smaller
than the slope angle ζ0. The simulations for glass beads show that the avalanche front,
avalanche tail and the centre of mass of the deposit all lie too far upstream compared with
Taylor-Noonan et al.’s (2022) measured deposit. This is an indication that on average the
friction is too high for the ceramic particles on the smooth aluminium bed. A good fit
to Taylor-Noonan et al.’s (2022) deposit is obtained by decreasing the value of ζ2 and
increasing the value of ζ1 as shown in figure 6. All the computational results in the rest of
this paper use the same frictional parameters, which are given in the last row of table 2.

5. Dry simulations

Figure 7 and movie 5 show the simulated temporal and spatial evolution of the dry granular
free surface after a 0.8 m3 volume release. The mass accelerates downslope due to gravity
and spreads rapidly due to the gradients of the depth-averaged internal pressure (the
third term of the left-hand side of (3.6)). These pressure gradients result in the tail of
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X. Meng and others

ζ1 ζ2 L β

Glass beads 20.9◦ 29.1◦ 1.65 × d 0.146
PVC rod 24.57◦ 36.5◦ 1.65 × d 0.135
Ceramic beads on aluminium 22.2◦ 25.6◦ 1.65 × d 0.135

Table 2. Material properties for (a) glass beads (Pouliquen 1999), (b) PVC rod on a rough bed (Davies 1990;
Meng et al. 2022) and (c) the present choice of parameters for Taylor-Noonan et al.’s (2022) experiments with
approximately spherical rough ceramic beads on a smooth aluminium chute.

the avalanche remaining stationary until approximately 2 s. At t = 1.69 s the flow front
reaches the horizontal run-out plane, where the g sin ζ component of the gravitational
acceleration becomes zero. Basal granular friction then rapidly brings the front to rest by
t = 2.6 s. Meanwhile, the main body of grains is still accelerating down the chute. For
t > 2.6 s, these grains impact the frontal deposit, causing a shockwave to form (a rapid
change in the flow thickness and velocity), which propagates upstream. This brings the
oncoming flow rapidly to rest and builds up a thick deposit (Savage & Hutter 1991; Gray
et al. 2003; Viroulet et al. 2018). By t = 6.76 s the entire flow has been brought to rest and
forms a compact static deposit that is largely contained in the region x ∈ [10, 12] m, and
whose centroid is located at x ≃ 11 m.

The simulated flow dynamics is similar to that observed in experiments, and shown in
movie 1 for a 0.8 m3 release. In fact, Taylor-Noonan et al. (2022) released five different
initial volumes ranging from 0.2 to 1 m3. Quantitative comparisons of the simulations with
Taylor-Noonan et al.’s (2022) LiDAR measurements of the deposit heights are shown
in figure 8. The parameters ζ1 and ζ2 were chosen in § 4.5 to match the Vini = 0.8 m3

deposit shown in figure 8(d). Figure 8 shows that using the same parameters, all the
computed deposits are in close agreement with the morphology seen in the experiments. In
particular, the results capture Taylor-Noonan et al.’s (2022) experimental observation that
the position of the centre of mass of each deposit lies at approximately the same position,
independently of the initial volume. This is despite the fact that the Vini = 0.2 and 0.4 m3

experiments become dilute during the flow. The ability of the dry model to capture both
the centre of mass position and the spread of the deposit for all the initial release volumes
provides independent verification that the selected parameters are good ones.

6. Wet flow simulations assuming a cubic velocity profile

6.1. Temporal and spatial evolution of an 0.8 m3 saturated release

The simulated temporal and spatial evolution of the release of 0.8 m3 of initially water
saturated grains is shown in figure 9. As detailed in § 4.4, the dilation of the granular matrix
on failure (and hence the dilated grain matrix during flow) are modelled by adjusting the
initial granular and water heights to account for the dilatation. This results in the front of
the flow being initially saturated, and the tail of the flow being undersaturated at t = 0+

(see the inset in figure 2). The initial collapse looks similar to that of the dry grains (t ≃
1 s). However, the presence of the water in the main body of the flow reduces the basal
granular friction in the source term (3.10), allowing the whole body to spread out faster
than the purely dry flow. The tail of the grains therefore starts to move from its initial
position by t ≃ 1.82 s.
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Figure 7. Simulated temporal and spatial evolution of the granular free surface after 0.8 m3 of grains are
released from the flume gate. Since the flow height is very small compared with the chute length, the flow
thickness is multiplied by a factor of four and projected normally to the chute along the straight grey lines to
aid visualization. An animation is included in the online supplementary material (movie 5). Note that the view
has been chosen to allow direct comparison with the wet simulations in §§ 6 and 7.

By t = 1 s a dry front has already formed. Small dry fronts can form in plug-flow
simulations due to mobility differences between the grains and the fluid, as will be
shown in § 7.1. Here, a cubic velocity profile (3.20) is assumed, and the increased size
of the dry front is due to the combination of vertical structure and velocity shear.
This allows the undersaturated flowing layer of dry grains near the free surface to be
rapidly transported to the front, even though it started at the back of the initial release
volume.

On the inclined section, the dry granular front is able to grow in size because dry grains
are being continually supplied by velocity shear, and because the internal water front
experiences high resistance. This increased resistance is due to the water friction term in
(3.11) remaining finite as hw → 0, whereas all the other terms in the water momentum
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Figure 8. Comparison of the predicted deposit morphology (solid red line) and that measured in
Taylor-Noonan et al.’s (2022) experiments (red dashed line) for a release of (a) 0.2, (b) 0.4, (c) 0.6, (d) 0.8
and (e) 1.0 m3 of dry granular material. Black lines represent the basal terrain and black ‘⋆’ symbols mark
the start and end of the smooth transition. Black ‘◦’ and red ‘⋆’ represent barycentres of the experimental and
predicted deposit, respectively. All the results are plotted in OXZ coordinates. Note that the view has been
chosen to allow direct comparison with the wet simulations in §§ 6 and 7.
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Figure 9. Simulated spatial and temporal evolution of the grain and phreatic free surfaces after the 0.8 m3

of water-saturated grains are released from the flume gate. The simulations assume the cubic velocity profile
(3.20) with m = 0.5, and the water has a plug-flow profile. Since the flow height is very small compared with
the chute length, the flow thickness is multiplied by a factor of four and projected normally to the chute along
the straight grey lines to aid visualization. An animation is included in the online supplementary material
(movie 6). The inset depicts the roll waves developed in the tails at t = 5 s in the range x ∈ [8.26, 9.42] m and
indicated by the dashed box.

balance (3.8) tend to zero, i.e. the water friction generates singular behaviour. As the
flow stretches out and the water layer becomes progressively thinner it experiences more
basal resistance. In order to overcome this, an infinite gradient has to form at the water
front for it to move.

The whole mixture accelerates more rapidly downslope than the purely dry flow. Indeed
by t = 1.5 s, the dry front has already reached the horizontal run-out plane, where it
decelerates and tries to stop. It does not fully come to rest, but is pushed along by
the pressure exerted by the continued supply of high-speed, low-friction undersaturated
material from upstream. The dry front impedes the flow, and a bulbous head forms that

980 A11-23

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
23

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss
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is analogous to that developed in bidisperse particle flows (Denissen et al. 2019). At the
transition between the thinner more mobile upstream region and the thicker more slowly
moving head, a shockwave forms. The shock is smaller than the purely dry case and
does not immediately start travelling upstream. Instead, for 1.69 ≤ t ≤ 3.64 s the shock
travels downslope at a slightly slower speed than both the granular and water fronts, which
move downstream approximately in unison. For times t ∈ [3.64, 4.16] s, the shock briefly
propagates a short distance upstream, before dissipating. During the whole of this time
t ∈ [1.69, 4.016] s the thicker undersaturated head region grows in size. The fact that
granular and water fronts move at the same speed (at least for a brief period of time),
suggests that the flow front is similar to the first type of travelling wave solutions found by
Meng et al. (2022). Meanwhile, in the tail, the grains experience less basal friction than
the water, and they are able to flow faster downslope to leave a thin oversaturated region
on the chute that takes a very long time to drain down.

At t ≃ 4.29 s, the granular front essentially stops, and there is some residual slow water
percolation through the grains. A diffuse wave then travels upslope and almost all the
grains come to rest by t = 6.24 s. In the tail, the flow goes unstable and a close-up view
shows that a series of roll waves form (see inset plot in figure 9). Similar waves can also be
seen in the wet experiments in movie 2. At approximately t = 8 s the grains are completely
deposited on the horizontal run-out plane and the pore water drains slowly out of the
granular matrix.

6.2. Comparison with Taylor-Noonan et al.’s (2022) experimental time series

Taylor-Noonan et al. (2022) photographed the flow with a high-speed camera that was
located 0.5 m upstream of the slope break at x = xf + 6.23 m. They used these images to
determine the approximate position of the granular and phreatic (water) free surfaces as a
function of time (see also, e.g. figures 3 and 4). Taylor-Noonan et al.’s (2022) experimental
results are now compared with the simulated time series for each of the release volumes
in figure 10(a–e). All the simulated flow profiles show that there is an initially dry front,
that is followed by an undersaturated flow with a peak height that occurs within the first
second after the initial front arrival. The arrival time of the wet front is broadly in line
with that observed in experiment, although some of the fronts are highly undersaturated,
but not completely dry. The main body of the flow travels past the camera within the
first two seconds, when the flow is travelling very quickly. The peak height increases with
increasing initial release volume, with the granular peak height occurring slightly before
the phreatic peak height in all cases. Two seconds after the initial front arrival, all the
flows are much thinner and slower, and there is a gradual transition to the oversaturated
regime, where roll waves form both in the experiments and the numerical simulations. The
simulated time series for the granular and phreatic free surfaces are in good quantitative
agreement with measurement. This is remarkable, given that the basal granular friction
law was calibrated by matching the deposit position of a single dry experiment. The results
are also in broad qualitative agreement with some debris-flow types observed in the field
(McArdell et al. 2007; Nagl, Hübl & Kaitna 2020).

It is also interesting to compare the wet results with the equivalent time series for dry
flows. These are shown in figure 10( f –j). For the smaller initial volumes Vini = 0.2 and
0.4 m3, high-speed images in Taylor-Noonan et al.’s (2022) supplementary material show
that the dry flows become dilute. This makes determining the free surface more difficult,
and since the flow is expanded, the discrepancy between the theoretical and measured
free-surface heights is significant. As the source volume of the dry flows increases,
however, a larger portion of the flow depth exceeds 10 particle diameters and the grains
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Figure 10. Comparison of the predicted and measured time-series of the flow depths at x = xf + 6.23 m for
both (a–e) wet and ( f –j) dry granular flows with source volumes of (a, f ) 0.2, (b,g) 0.4, (c,h) 0.6, (d,i) 0.8 and
(e, j) 1.0 m3. The dashed red and blue lines show the experimental granular and phreatic (water) free surfaces
determined by Taylor-Noonan et al. (2022). The solid red line shows the grain thickness and the grey hashing
shows the region occupied by grains. The blue solid line shows the position of the phreatic free surface, and
the region beneath it is shaded blue to help visualize the water-saturated region. Taylor-Noonan et al.’s (2022)
high-speed camera data is available from https://doi.org/10.5683/SP3/1ZCUFY.
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behave more like a dense flow. The comparisons for the larger initial dry granular volumes
are therefore very good. For all the volumes, the computed dry flows are slower than the
wet flows, which leads to a wider time series, with a lower peak height, than the wet flows.
In addition, roll waves do not emerge in the tail of the dry flows, which is also captured
by the theory. For Vini = 0.8 and 1.0 m3, the upslope propagating shockwaves (which
deposit the grains) come into the camera field of view, and the data after approximately
three seconds is cut (Taylor-Noonan et al. 2022). For the wet flows, it is evident that
the fluid viscosity suppresses most of the saltation (regardless of the initial release
volume), so the theoretical and experimental comparisons are better than for the dry
flows.

6.3. Comparison with Taylor-Noonan et al.’s (2022) final deposits

A LiDAR scanner was used to determine the deposit height of the grains after the water
had fully drained out (at least a day after the experiment). In this final configuration the
grains have a denser packing than during flow when shear induces dilation. In order to
compare the simulations with the experimental data it is necessary to now contract the
granular matrix. At each location the depth of the grains is therefore adjusted to account
for the increase in solids volume fraction from its flowing value φc to its deposited value,
which is assumed to be the same initial solids volume fraction φ

g

ini,

h
g
dep =

(

φc

φ
g

ini

)

hg. (6.1)

The water height is then adjusted to conserve mass

hw
dep =

⎧

⎪
⎨

⎪
⎩

(

1 − φc

1 − φ
g
ini

)

hw, hg > hw,

hw, hg ≤ hw.

(6.2)

Figure 11 shows a comparison between the deposit thickness adjusted for the increase
in volume and Taylor-Noonan et al.’s (2022) measured deposit thickness for the five
wet release volumes. As has been seen in the simulations of the 0.8 m3 case (figure 9),
the dry front tries to stop when it reaches the horizontal plane, but the high-mobility
undersaturated flow behind pushes the front forwards. As a result the wet flow deposits
all show markedly increased run-out distances compared with the dry deposits (figure 8).
The larger wet releases go further than the smaller wet ones, which contrasts with the dry
case, where the deposit centre of masses were all approximately at X ≃ 1 m. Also, rather
than forming a large heap at the bottom of the chute, the wet deposits are thinner and
spread out along the run-out pad. The thickest part of the deposit is in the vicinity of the
front. Here there is a flat-topped deposit that is thicker and longer for the larger release
volumes. The simulated deposit then connects to a thinner upstream section that did not
pass through the shock that forms during the deposition process, shown in figure 9 and
movie 6. The simulation and experimental deposits are in very good agreement with each
other, both in terms of their overall morphology, their front positions and thicknesses.
There are, however, some differences. The experimental deposits do not show evidence
of a shockwave having formed, and so have a much more gradual transition between the
thick frontal section and the thinner tail. This may be an indication that the viscosity of the
granular material is able to diffuse the shock (Gray & Edwards 2014). In addition, a thin
layer of granular material remains on the chute in the experiments, but the computations
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Figure 11. Comparison of the simulated granular free surface adjusted for the decrease in volume (red solid
line) with the experimental free surface (red dashed line) for initial release volumes of (a) 0.2, (b) 0.4, (c) 0.6,
(d) 0.8 and (e) 1.0 m3 of water-saturated grains (Taylor-Noonan et al. 2022). The predicted profiles assume a
cubic velocity profile during flow and are taken at t = 8 s when the grains (grey hashed region) have stopped
moving and the pore water (blue shaded region) is draining out of the matrix. The black lines are the basal
terrain, and the ‘⋆’ symbols mark the start and end of the smooth transition.
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show that all the grains drain off. This may be an indication that the assumed friction in
the tail is too low in the simulations.

7. Wet flow simulations for different velocity profiles

7.1. Wet flow simulations assuming plug flow

The model in this paper differs from traditional debris-flow models by its inclusion of
vertical flow structure and velocity shear, which provide an important mechanism for the
differential transport of the water and the grains (Meng et al. 2022). In contrast, traditional
debris-flow models usually assume plug flow of both the grains and the water through the
depth of the flow, i.e.

ug = ūg, uw = ūw, (7.1a,b)

(Iverson & Denlinger 2001; Pitman & Le 2005; Pelanti et al. 2008; Pudasaini 2012; Iverson
& George 2014; Bouchut et al. 2016; Meng & Wang 2018). In order to quantify the
difference between the two approaches it is useful to solve the current model with the
plug flow assumption (7.1). It follows from (3.12) that the grain and water stream functions
are

ψg(s) = sūg, ψw(s) = sūw, (7.2a,b)

where recall that s is defined as the height of the saturated grain–water layer in (3.13).
These stream functions modify the Darcy drags in the source terms (3.10) and (3.11), and
hence change the relative mobility of the grains and the water.

Figure 12 shows the computed temporal and spatial evolution of a 0.8 m3 release of
water-saturated grains assuming plug flow. Just as in the cubic velocity case, shown in
figure 9, the initial release rapidly spreads out as it flows down the chute, and the flow
front reaches the run-out pad at an almost identical time of t = 1.5 s. The subtle difference
is that the flow front only has a very small dry region. Since shear-induced transport
has been eliminated in these simulations, the dry front that forms is purely due to the
fact that the grains are more mobile than the water near the flow front. This mobility
difference is a direct consequence of the degenerate nature of the basal friction law for
the water, which requires an infinite gradient to form at the water front for it to propagate
downslope. This mobility-induced relative motion of the water and grains near the front
also implies that immediately behind the flow front the material is oversaturated (at
t = 1.5 s). This is not observed in Taylor-Noonan et al.’s (2022) time series in figure 10(d),
where the phreatic surface is below the grain surface in the vicinity of the front. In
addition, now that shear-induced transport has been eliminated, the dry grains in the
initially undersaturated region in the release (figure 2) cannot migrate forwards. The tail
of the flow therefore remains undersaturated and does not develop roll waves, which also
contradicts Taylor-Noonan et al.’s (2022) observations.

Although the small region of dry grains at the front may look like a small difference
at t = 1.5 s to the simulations in figure 9, it has a profound effect on the subsequent
flow on the horizontal run-out pad. The increased amount of water close to the front
dramatically increases its mobility, so it is easier to push it forwards. As a result, when
the grains finally stop at approximately t = 7 s the front lies at slightly over 18 m. This
contrasts with a run out of approximately 16.4 m when velocity shear is included (as seen
in figure 9). Figure 13 shows that all the initial release volumes lead to extended run-out
behaviour with the plug-flow assumption. Making a plug-flow assumption in debris-flow
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Figure 12. Simulated spatial and temporal evolution of the grain and phreatic free surfaces when 0.8 m3 of
water-saturated grains is released from behind the flume gate. Both the grains and the water are assumed to
have the plug-flow velocity profiles defined in (7.1). Since the flow height is very small compared with the chute
length, the flow thickness is multiplied by a factor of four and projected normally to the chute along the straight
grey lines to aid visualization. An animation is included in the online supplementary material (movie 7).

models may therefore lead to enhanced run-out predictions, dramatically different local
flow compositions and the suppression of roll waves.

7.2. Influence of the assumed velocity profile on the final deposit morphology

The numerical simulations in § 7.1 of this paper showed that the run-out distance was
overpredicted when plug-flow velocity profiles were assumed for the grains and the water.
In contrast, the simulations in § 6 show that Meng et al.’s (2022) model is able to make
good quantitative predictions for the position of the Taylor-Noonan et al.’s (2022) deposit,
when a cubic granular velocity profile is assumed. Figure 5 shows that there is quite a bit
of scatter in Taylor-Noonan et al.’s (2022) peak-flow velocity data. A variety of functional
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Figure 13. Comparison of the simulated granular free surface adjusted for the decrease in volume (red solid
line) with the experimental free surface (red dashed line) for initial release volumes of (a) 0.2, (b) 0.4, (c) 0.6,
(d) 0.8 and (e) 1.0 m3 of water-saturated grains (Taylor-Noonan et al. 2022). The predicted profiles assume plug
flow and are taken at t = 8 s when the grains (grey hashed region) have stopped moving and the pore water
(blue shaded region) is draining out of the matrix. The black lines are the basal terrain, and the ‘⋆’ symbols
mark the start and end of the smooth transition.
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Granular-fluid avalanches

forms could have been chosen to fit it. One may therefore legitimately ask how sensitive
are the latter results to the precise parameterization of the velocity profile?

Figure 14 shows a comparison of the computed deposits for plug-flow (figure 14a),
cubic (figure 14b), Bagnold (figure 14c) and linear profile with basal slip (figure 14d),
velocity profiles, using the fitting parameters from § 3.3. The results in figure 14(b–d) use
shear profiles that are broadly in agreement with one another, and all of them provide a
good fit to Taylor-Noonan et al.’s (2022) measured deposit height. This indicates that the
precise velocity profile parameterization is not that important, provided that the overall
shear rate is similar. In contrast, as discussed in § 7.1, plug flow eliminates shear-induced
differential species transport, which reduces the size of the dry front and allows the
debris-flow to run-out considerably further, as shown in figure 14(a).

8. Discussion and conclusions

This paper develops a numerical method to solve the recent depth-averaged granular-fluid
theory of Meng et al. (2022) and uses it to simulate Taylor-Noonan et al.’s (2022)
large-scale granular-fluid flow experiments. Meng et al.’s (2022) theory resolves the
vertical structure of the grains and the water as well as velocity shear, which allows
shear-induced species transport to enhance, or compete against, mobility difference-driven
transport between the species (Gray & Kokelaar 2010; Baker et al. 2016). Meng et al.’s
(2022) model is therefore able to resolve novel new waveforms. In particular, it is
able to capture the granular-fluid waves observed in Davies’s (1988, 1990) moving bed
flume experiments, which have coexisting (i) dry, (ii) undersaturated, (iii) oversaturated
and (iv) watery regimes. This is something that traditional debris-flow models, which
assume plug flow, were not fully able to capture (Iverson & Denlinger 2001; Pitman &
Le 2005; Pelanti et al. 2008; Pudasaini 2012; Iverson & George 2014; Bouchut et al. 2016;
Meng & Wang 2018).

A modified form of Meng et al.’s (2022) theory is considered in this paper. Firstly, the
theory is generalized to terrain-following coordinates in order to fit a curvilinear coordinate
system to Taylor-Noonan et al.’s (2022) inclined chute and run-out pad (Savage & Hutter
1991; Gray et al. 1999; Viroulet et al. 2017). In addition, the second-order depth-averaged
viscous terms are neglected. This reduces the equations to a system of four conservation
laws that can be written in conservative form in the undersaturated regime, but which
contain non-conservative terms in the oversaturated regime. The undersaturated system is
non-strictly hyperbolic, has well-defined jump conditions across discontinuities and is only
weakly coupled through the source terms. On the other hand, the oversaturated equations
are more strongly coupled and it is unclear whether the equations are always hyperbolic.
The existence of non-conservative terms also implies that the jump conditions are not
uniquely defined without appealing to additional physics.

Since, Taylor-Noonan et al.’s (2022) experiments are predominantly in the
undersaturated regime, this paper makes a minimal modification to the oversaturated
equations in order to write them in conservative form. The undersaturated equations
are completely unaffected by this modification, and the oversaturated equations are
asymptotically equivalent to the original non-conservative system as hw → hg+. In
addition, the system degenerates to the shallow-water equations as hg → 0 and to the
dry granular flow equations when the water friction coefficient Cw = 0 and hw → 0.
The modified system has the advantage of being non-strictly hyperbolic, with explicit
expressions for the wave speeds in both the undersaturated and oversaturated regimes
(see Appendix A). The fact that the entire system can be written in conservative form
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Figure 14. Comparison of the simulated granular free surface adjusted for the decrease in volume (red
solid line) with the experimental free surface (red dashed line) for an initial release volume of 0.8 m3 of
water-saturated grains (Taylor-Noonan et al. 2022). The predicted profiles are taken at t = 8 s when the grains
(grey hashed region) have stopped moving and the pore water (blue shaded region) is draining out of the matrix.
In the computations the velocity profile of the grains is assumed to be (a) plug-flow, (b) cubic, (c) Bagnold and
(d) linear with basal slip. The black lines are the basal terrain, and the ‘⋆’ symbols mark the start and end of
the smooth transition.

also implies that standard numerical methods can be used (Kurganov & Tadmor 2000;
LeVeque 2002).

Although Taylor-Noonan et al.’s (2022) wet experiments start from a fully saturated
state, the matrix of grains dilates during flow. This dilation is not because the initial source
volume is compacted, but because once the material has failed it behaves more like a
µ(I), Φ(I) type dry granular rheology, with the solid volume fraction Φ decreasing with
increasing non-dimensionalized shear rate, i.e. the inertial number I (GDR-MiDi 2004;
Da Cruz et al. 2005; Andreotti, Forterre & Pouliquen 2013; Barker et al. 2017; Schaeffer
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Granular-fluid avalanches

et al. 2019; Barker et al. 2023). The granular layer is therefore slightly expanded and the
phreatic surface sinks as the water fills the newly generated pore space. Meng et al.’s
(2022) theory assumes that the solids volume fraction is constant, so it cannot explicitly
account for dilation and contraction. This paper therefore makes the pragmatic assumption
of modifying the initial condition to account for the dilatation on failure, computes the
flow with a representative value of the solids volume fraction and then contracts the grain
matrix to compare the final deposits (see §§ 4.4 and 6.3).

One of the important consequences of dilatation is that it creates a thin surface layer of
dry grains on top of the water-saturated mixture. When this is combined with velocity
shear, the dry layer (which is in the fastest moving part of the flow) is preferentially
transported forwards towards the flow front. Conversely, the water-saturated grains close
to the slower moving base are transported towards the flow tail (although everything is
still moving downstream). Generally, the water flows downslope more quickly than the
grains in the lower, saturated part of the flow and helps drag grains downslope. However,
when the thickness at the tail is sufficiently thin, the basal friction experienced by the
water is higher than that acting on the grains, which allows a watery tail to form. The
Darcy interaction drag acts to reduce the velocity difference between the two species. As
the dry snout arrives at the horizontal run-out plane, the downslope component of gravity
vanishes, and hence the flow decelerates. Nevertheless, the ensuing water flow pushes the
high-resistance front forward as well as locally dragging grains forward through Darcy
interaction force.

This paper shows that shear-induced species transport is an important mechanism for
enhancing the size of dry fronts. This is important because dry fronts are much more
resistive than wet fronts, and so retard the flow. As shown in figure 9, when shear-induced
transport is included, simulations of Taylor-Noonan et al.’s (2022) experiments have
a shorter overall run-out distance, compared with simulations that assume plug flow
(figure 12). Figure 14 shows that so long as the amount of shear is similar, the predicted
run-out distance is insensitive to the particular granular velocity profile through the flow
depth, i.e. cubic, Bagnold and linear shear with basal slip profiles (detailed in § 3.3)
all give similar results. This illustrates the importance of including a representative
velocity profile for saturated flows in which excess pore water pressures are not
maintained.

An important corollary of this is that, if shear-induced species transport can be
suppressed (by producing a plug-like velocity profile) then the run-out distance can be
enhanced, provided the source volume has a high water content near the front (figure 12
and movie 7).

A major strength of Meng et al.’s (2022) theory is that it is able to quantitatively
predict the run-out distances of both Taylor-Noonan et al.’s (2022) wet and dry flows,
using the same set of parameters in all simulations. In particular, it is able to capture
Taylor-Noonan et al.’s (2022) experimental observation that the centre-of-mass of the dry
deposit lies in approximately the same position for all of the release volumes (figure 8).
This is a consequence of the abrupt change in slope, which makes the flow front strongly
decelerative. As the dry mass flows downslope, the internal pressure causes the flow to
spread and with increasing flow volume the fronts therefore have greater momentum.
This increased momentum allows them to penetrate further onto the run-out pad, but they
still stop rapidly. A shockwave then propagates upslope bringing the rest of the flow to
rest (Gray et al. 2003). For larger masses the pressure gradients oppose the motion in
the tail of the avalanche, which allows the grains to stop further upslope. The net effect
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is to leave the centre-of-mass position approximately unchanged as the release volume
increases.

The deposit morphology for the water-saturated releases is rather different as shown
in figure 11. Here the run-out distance is extended with increasing initial volume. This
reflects the fact that the interstitial water reduces the basal granular friction in the source
terms (3.10). This makes the grains, and hence the mixture as a whole, much more mobile,
so it can accelerate up to higher speeds on the inclined section of the chute. Moreover,
when the mixture flows out onto the horizontal run-out pad the deceleration is much more
gradual. Larger volumes, which spread more effectively on the inclined section due to the
larger internal pressure, can therefore carry their increased momentum onto the chute and
flow further. A similar volume-dependent run-out distance could also be achieved for a
dry granular flow by inclining the run-out pad to angle just below ζ1 to make them weakly
decelerative.

Interestingly, the simulations in figures 9 and 10 show that roll waves develop in
the tail of the oversaturated flow, when velocity shear is included, in accordance with
Taylor-Noonan et al.’s (2022) experimental observations. Roll waves do not form when
plug flow is assumed. This difference is likely due to the compositional changes, which
allow the flow with shear-induced transport to develop an oversaturated tail, while
plug-flow simulations remain undersaturated throughout almost all of their evolution.
As Meng et al. (2022) showed, when shear induced species migration is included, the
theory has the capacity to support new forms of steadily propagating waves that exhibit
compositional changes along their length (Davies 1988, 1990), not just roll waves. Meng
et al.’s (2022) theory therefore opens up a rich new avenue of research into wave formation
in multiphase systems.

Supplementary movies. Supplementary movies of the experiments and flow simulations are available at
https://doi.org/10.1017/jfm.2023.1023. In addition, all of Taylor-Noonan et al.’s (2022) experimental data used
in this paper is archived at https://doi.org/10.5683/SP3/1ZCUFY.
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Appendix A. Characteristic wave speeds of the system

The vector system of conservation laws (4.1) is written in quasilinear form

∂U

∂t
+ A(U)

∂U

∂x
= S(U), (A1)
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where A = ∂F/∂U . In the undersaturated regime

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

−
(Mg)2

(Hg)2
+

Hgg cos ζ

φc

2Mg

Hg
0 0

0 0 0 1

0 0 −
(Mw)2

(Hw)2
+

Hwg cos ζ

1 − φc

2Mw

Hw

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A2)

The characteristic wave speeds of A are given by solving for the eigenvalues λ using |A −
λ1| = 0, where 1 is the identity matrix. In conservative variables the characteristics are

λ1,2 =
Mg

Hg
±

√

Hgg cos ζ

φc
, λ3,4 =

Mw

Hw
±

√

Hwg cos ζ

1 − φc
. (A3a,b)

Using (4.2) the characteristic wave speeds can also be expressed in field variables

λ1,2 = ūg ±
√

hgg cos ζ , λ3,4 = ūw ±
√

hwg cos ζ . (A4a,b)

The system therefore uncouples into two shallow-water-like systems for the grains and
the water. The wave speeds relative to the depth-averaged velocity ūν , ν = g, w are cg =√

hgg cos ζ and cw =
√

hwg cos ζ , respectively.
In the oversaturated regime the systems are more strongly coupled

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0

−
(Mg)2

(Hg)2
+

Hgg cos ζ

φc

2Mg

Hg
0 0

0 0 0 1

1

2
Hwg cos ζ 0 −

(Mw)2

(Hw)2
+

2Hw + Hg

2
g cos ζ

2Mw

Hw

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (A5)

The characteristic wave speeds in conservative variables are

λ1,2 =
Mg

Hg
±

√

Hgg cos ζ

φc
, λ3,4 =

Mw

Hw
±

√

Hwg cos ζ +
1

2
Hgg cos ζ , (A6a,b)

and in field variables are

λ1,2 = ūg ±
√

hgg cos ζ , λ3,4 = ūw ±
√

hwg cos ζ −
1

2
hgφcg cos ζ . (A7a,b)

The characteristics for the grains in the oversaturated regime are therefore the same as
those in the undersaturated regime, but the characteristic wave speeds for the water are
now modified by the presence of the grains. Note that the system remains non-strictly
hyperbolic, because in the oversaturated regime hw > hg > hgφc/2.
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