
This is a repository copy of Unifying Model Execution and Deductive Verification with 
Interaction Trees in Isabelle/HOL.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/216720/

Preprint:
Foster, Simon orcid.org/0000-0002-9889-9514, Hur, Chung-Kil and Woodcock, Jim 
orcid.org/0000-0001-7955-2702 (2024) Unifying Model Execution and Deductive 
Verification with Interaction Trees in Isabelle/HOL. [Preprint] 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Unifying Model Execution and Deductive Verification with
Interaction Trees in Isabelle/HOL

SIMON FOSTER, University of York, UK

CHUNG-KIL HUR, Seoul National University, South Korea

JIM WOODCOCK, Southwest University, China, Aarhus University, Denmark, and University of

York, UK

Model execution allows us to prototype and analyse software engineering models by stepping
through their possible behaviours, using techniques like animation and simulation. On the other
hand, deductive verification allows us to construct formal proofs demonstrating satisfaction of
certain critical properties in support of high-assurance software engineering. To ensure coherent
results between execution and proof, we need unifying semantics and automation. In this paper,
we mechanise Interaction Trees (ITrees) in Isabelle/HOL to produce an execution and verification
framework. ITrees are coinductive structures that allow us to encode infinite labelled transition
systems, yet they are inherently executable. We use ITrees to create verification tools for stateful
imperative programs, concurrent programs with message passing in the form of the CSP and Circus

languages, and abstract system models in the style of the Z and B methods. We demonstrate how
ITrees can account for diverse semantic presentations, such as structural operational semantics, a
relational program model, and CSP’s failures-divergences trace model. Finally, we demonstrate how
ITrees can be executed using the Isabelle code generator to support the animation of models.
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2 Simon Foster, Chung-Kil Hur, and Jim Woodcock

1 INTRODUCTION

Model-based engineering uses models to produce software with a high level of assurance [20,
42, 62]. Typically, engineers create behavioural models, such as state machines and activity
diagrams, which abstractly specify a systemŠs behaviour and can be subjected to prototyping
using animation, simulation, and testing. These techniques require that models are executable,
so we step through their behaviour [12, 17]. When models are accompanied by suitable
formal semantics, they can be further subjected to formal veriĄcation to ensure they satisfy
the requirements in every possible state [48]. The models can be reĄned further to produce
veriĄed code and related artefacts, creating high-integrity software with traceable links to
the original requirements.

To ensure that these heterogeneous artefacts and analysis results can be applied coherently,
there is a need to tie them together using unifying formal semantics to avoid semantic gaps
that can introduce weaknesses [33, 51]. This semantics should allow us to give a formal
mathematical meaning to each model used in the development hierarchy and account for
the relations between them. It should also support execution to support early-stage proto-
typing [12]. Moreover, the semantics must have tool support with a high level of automation
to minimise the expertise engineers require. Whilst semantic frameworks exist that support
such a uniĄcation, such as Hoare and HeŠs Unifying Theories of Programming [40] (UTP),
the models are expressive but not usually executable. For formal methods to be accessible,
we, therefore, need to support models that are inherently executable and veriĄable.

Theorem proving is a powerful veriĄcation technique for analysing software engineering
models and code by automating deductive proof steps. Proof assistants like Coq, Isabelle,
and Lean provide a Ćexible foundation for mathematical reasoning. They can be applied to
many engineering paradigms, from high-level design models [28, 30], potentially including
interactions with the physical environment [31], to low-level code. Moreover, theorem provers
can support the veriĄcation of systems with a very large, or even inĄnite, state space through
symbolic logic techniques and compositional reasoning. However, unlike simulation and
model-checking techniques, proof assistants typically have a high entry bar and require
signiĄcant investment before meaningful results can be obtained. Consequently, to harness
the beneĄts of theorem proving in software engineering, we need to improve access with
early-stage prototyping techniques, such as animation1 and simulation, and high levels of
automation.

The contribution of this article is an Isabelle-based framework to support model-based
engineering called Isabelle/ITrees. Our library implements the Interaction Tree (ITree)
formalism of Xia et al. [66], which crucially supports formal models that are both directly
executable and subject to veriĄcation by proof [67]. ITrees provide a natural encoding of
operational semantics using coinductive techniques, where we can step through a modelŠs
behaviour in terms of its internal steps and external interactions. Though ITrees are intrinsi-
cally elementary structures, they have the potential to act as a unifying semantics model
for a variety of software engineering artefacts. Our tool supports a tight development cycle
where animation and veriĄcation activities can be intertwined.

ITrees are coinductive structures, which intuitively correspond to symbolic labelled transi-
tion systems. They intrinsically support mutable states and events and can model complex
inĄnite behaviours. Our mechanisation of ITrees generalises the original work [66] by using
partial functions to model visible events. This allows us to support both external choice

1In this context, animation refers to the interactive probing of a model’s behaviour. Simulation is similar
but is typically less interactive and, on the whole, more sophisticated.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: August 2024.
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and deadlock in the style of the CSP process algebra [13, 38, 55], along with the algebraic
semantics of these operators, which broadens our implementationŠs application.

Our general, highly extensible framework can be applied to software engineering artefacts at
various abstraction levels. We use this to provide shallow embeddings of imperative programs,
communicating processes, and high-level system models in the style of the Z [58] and B [1]
speciĄcation languages. This is supported through results from Hoare and HeŠs Unifying
Theories of Programming [25, 40] (UTP) to unify denotational, operational and axiomatic
semantics, and in particular, the UTP semantics for the Circus process language [26, 29, 64].

Our tool beneĄts from IsabelleŠs powerful proof tools, notably the sledgehammer theorem
prover integration [9], to automate the discharge of veriĄcation conditions and other proof
obligations. Moreover, we employ IsabelleŠs code generator to provide execution of programs
and animation of high-level models.

The structure of our paper is as follows. In ğ3, we show how ITrees are mechanised in
Isabelle/HOL, including the core operators. We show how to derive structural operational
semantics from ITrees, characterise weak bisimulation, which allows the abstraction of silent
events, and provide theorems for reasoning about process iteration using chains. In ğ4, we
show how to model and verify imperative programs using ITrees, demonstrate a link with our
previous UTP-based relation semantics, and provide automated program veriĄcation using
Hoare logic. In ğ5, we show how deterministic CSP and Circus processes can be semantically
embedded into ITrees, including operators like external choice and parallel composition.
We also link ITrees with the standard failures-divergences semantic model for CSP, which
justiĄes their integration with other CSP-based techniques. In ğ6, we show how the code
generator can be used to generate animations. In ğ7, we apply our library to develop a
simple automated formal method for modelling systems, similar to the B-method [1]. In ğ8,
we consider related work, and in ğ9, we conclude.

This paper extends our previous CONCUR 2021 paper [27]. We add results in the new
section on imperative programming (ğ4), including total correctness Hoare logic and UTP-
style predicative semantics, a new section on modelling with Z-Machines (ğ7), new theorems
on iteration chains (ğ3), and additional narrative and more minor results throughout. All
our results have been mechanised and can be found in the accompanying repository2, and
clickable icon links next to each speciĄc result, with for Isabelle and for Haskell.

Notation. Our presentation uses both textbook-style notation and Isabelle code, though
we generally prefer the former. This mixture is unavoidable, as the Isabelle code, though
ultimately the single source of truth, is often more pedantic than necessary for a human reader
and less accessible. We largely restrict IsabelleŠs code to modelling and veriĄcation examples
to support the use of our tools. The reader interested in how the textbook mathematics is
mechanised can follow the Isabelle links ( ).

2 BACKGROUND

This section introduces the foundational concepts used in this paper: Isabelle/HOL and the
Circus language. Circus is used to motivate the value of ITrees in providing formal semantics
for process algebraic languages. We also use the Z mathematical toolkit in our semantic
deĄnitions, which is used in Circus.

2https://github.com/isabelle-utp/interaction-trees
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4 Simon Foster, Chung-Kil Hur, and Jim Woodcock

2.1 Isabelle/HOL

Isabelle/HOL, at its core, is a proof assistant for Higher Order Logic (HOL). It implements
a Gentzen-style natural deduction system, which can be used to prove or falsify the validity
of arguments formalised using predicate logic. The language of HOL is a strongly typed
polymorphic 𝜆-calculus, which can be used to formalise mathematical theories in a functional
style. In particular, Isabelle/HOL provides a typed set theory, arithmetic theories (natural
numbers, integers, real numbers, etc.), and various data structures, such as lists and records.
As in functional programming languages, programs can speciĄed using algebraic data types
and recursive functions, with termination checks provided. These features give an expressive
and extensible mathematical language in which various programming and modelling notations
can be described.

Several facilities complement these modelling features for automating proof. Isabelle
provides a simpliĄer (simp), which automates equational rewriting of terms, and a classical
reasoner (blast), which implements the tableaux method for automating natural deduction.
Additionally, there is a resolution prover (metis) for Ąrst-order predicate calculus and
access to several SMT solvers, such as CVC4 and Z3, in the smt method. These various
proof methods can be coordinated using the sledgehammer tool, which constructs proofs
automatically using external automated proof tools.

The development of theories in Isabelle is centred around theory documents, which are
used for modelling and proof. A theory document (extension .thy) consists of a sequence
of commands, manipulating IsabelleŠs state by deĄning a function or starting a proof. The
document model has two levels of syntax: (1) outer-syntax, which gives the syntax to
individual commands, and (2) inner-syntax, which gives syntax to terms of the logic in typed
𝜆-calculus. An example deĄnition command is given below:

definition square :: "nat ⇒ nat" where

"square x = x * x"

The command begins with a major keyword (definition), which is highlighted, followed
by a type declaration for a new constant, square, which is a total function from natural
numbers to natural numbers (nat ⇒ nat). Following the type declaration, there is a minor
keyword (where) and then the deĄnitional equation for the function. Speech marks delimit
this deĄnitional equation since it is inner-syntax formed using the term language. The
document model of Isabelle is extensible so that new commands can be implemented for
bespoke modelling tasks using the meta-language Isabelle/ML.

The combination of an expressive and rigorous mathematical language and a high degree
of automated proof make Isabelle ideally suited to formal veriĄcation for various languages.
This requires that the semantics of the target language Ąrst be formalised as an Isabelle
theory package and a suitable proof calculus (such as Hoare logic) be provided to form
speciĄcations and verify programs. Isabelle also provides a code generator for mathematical
programs, which can be used to automate code production from veriĄed artefacts.

2.2 Circus and Z

Circus is a formal language for modelling imperative and concurrent systems. It combines
the communication primitives from the CSP process algebra with imperative programming
primitives from DijkstraŠs guarded command language (GCL) and rich state modelling
facilities as provided by the Z notation [58].
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Z is a formal language for specifying software using set theory and relational calculus.
CSP is a language for modelling concurrent systems, such as protocols. It provides several
modelling primitives, including.

• event preĄx (a → P): perform event a and then enable P;
• guard (B & P): enable P only when condition B is true;
• external choice (P ✷ Q): allow the environment to choose P or Q;
• parallel composition (P |[A ]|Q): run P and Q in parallel synchronising on events in A;
• hiding (P \ A): internal events in set A.

Events are typically input events a?x → P (x) or output events b!v → Q, where a and b
are channels carrying typed data. The standard semantics for CSP is called the failures-
divergences model [55], a denotational semantics based on traces, which we cover in ğ5.3.

In addition to these CSP operators, Circus also contains typical imperative programming
operators from GCL like assignment (x := e), sequential composition (P # Q), and iteration
(while B do C od). From Z, it gains a mathematical toolkit, including data structures like
sets, partial functions (A ↦→ B), Ąnite functions (A ↦ ↦→ B), and sequences (lists), and also
the ability to form abstract data types using Z schemas.

We also use the Z mathematical toolkit for partial functions in our semantic deĄnitions.
We can specify partial functions using 𝜆 x ∈ A • f (x), which restricts a function f to the
domain A3. We can calculate the domain of a partial function f with dom(f ). An empty
partial function {↦→} has an empty domain. We also use the domain restriction (◁) and
override operators (⊕) from the Z mathematical toolkit, which have the following deĄnitions:

A ◁ f ≜ (𝜆 x ∈ A ∩ dom(f ) • f (x))

f ⊕ g ≜ (𝜆 x ∈ dom(f ) ∪ dom(g) • if x ∈ dom(g) then g (x) else f (x))

We have implemented the Z mathematical toolkit in an Isabelle library as a hierarchy of
types4. With the associated theorems, we can use IsabelleŠs simpliĄer to automate the
calculation of a partial functionŠs domain and other properties.

As an example Circus process, we formalise a simple reactive buffer. We introduce three
channels: Input to accept a new input, Output to offer an output, and State to show the
current state of the buffer. We consider a buffer containing a sequence of natural numbers N

for simplicity. We also introduce a single variable, buf , which stores the values present in
the buffer. The reactive behaviour of the buffer is then speciĄed below:

Example 2.1 (Unbounded Buffer in Circus).

buf := [] # while true do

Input?(i) → buf := buf @ [i]

✷ (length (buf ) > 0) & Output!(hd buf ) → buf := tl buf

✷ State!(buf ) → Skip

od

The buffer enters a reactive inĄnite loop after initially setting the buffer to be an empty
list ([]). The buffer provides three options using the external choice operator (✷). It can
accept an input over Input, extending the buffer using the list append operator (xs @ ys).
If the buffer is not empty (its length is non-zero), it can offer the head of the buffer over

3This is distinguished from the total function notation 𝜆 x . g (x ) by a different separator (•)
4Z-Toolkit library: https://github.com/isabelle-utp/Z_Toolkit.
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(4)
𝜏

// (5)
Input.y

//

Output.x

&&

State.[x ]

��

(6)
𝜏

// (7)
Input.z

//

Output.x

%%

State.[x,y]

��

(8)
𝜏

&&

(1)
𝜏

// (2)

Input.x

@@

State.[ ]
// (3)

𝜏
// (2) (2)

Fig. 1. An ITree fragment for the buffer example (approximate)

Output and contract the buffer by removing the head. Finally, it can display the current
state of the buffer over the State channel.

3 INTERACTION TREES AND OPERATIONAL SEMANTICS

This section introduces Interaction Trees (ITrees), develops the main theory in Isabelle/HOL,
derives operational semantics, and provides several novel results. ITrees were originally
mechanised in Coq by Xia et al. [66]. Our mechanisation in Isabelle/HOL brings unique
advantages, including a Ćexible front-end syntax, automated proof tools, and code generation
to several languages.

3.1 Interaction Trees as Codatatypes

ITrees are potentially inĄnite trees whose edges are decorated with events, representing the
interactions between a process and its environment. For intuition, an example ITree is shown
in Figure 1 for the buffer in Example 2.1. The nodes are labelled with numbers for reference,
and the edges with events, including visible events, such as Input .x , and invisible events (𝜏).

From the initial node (1), a single 𝜏 event is possible, which corresponds to assigning []
to the buf state variable (buf := []). Two visible events are presented to the environment,
Input .x and State.[]. The latter event, State.[] indicates that the buffer is empty, so an
Output event is unavailable. The former event, Input .x, corresponds to an inĄnite family of
events for each possible value the channel can carry, such as x = 0, x = 1, x = 3 and so on.
We can describe such inĄnite families in Isabelle/HOL symbolically as a term containing a
free variable (x), such that ITrees can have inĄnite breadth.

If an input is received, we transition to node (4), from which a single 𝜏 event occurs, which
corresponds to the assignment appending x to the buffer (buf := buf @ [x]). From node (5),
three events are possible: Input .y, Output .x , and State.[x]. At this point, the buffer contains
a single value x , which we can output or input another value y. Again, x and y are families
of possible values carried by channels Input and Output. If another value y is input, the
buffer is updated accordingly, leading to node (7). The tree continues in this manner and
thus has an inĄnite depth. It can alternatively be considered as an unfolding of a labelled
transition system.

We now describe the type in Isabelle that allows us to denote ITrees formally. ITrees
are parametrised over two sorts (types): E of events and R of return values (or states).
There are three possible interactions: (1) termination, returning a value in R; (2) an internal
event (𝜏) followed by a successor ITree; or (3) a choice between several visible events. In
Isabelle/HOL, we encode ITrees using a codatatype [8, 11]. A codatatype is similar to an
algebraic datatype, having several disjoint constructors. However, the crucial difference is
that whereas elements of a datatype are Ąnite, elements of a codatatype may be inĄnite.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: August 2024.
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Definition 3.1 (Interaction Tree Codatatype).

codatatype ('e, 'r) itree =

Ret 'r | Sil "('e, 'r) itree" | Vis "'e ↦→ ('e, 'r) itree"

The codatatype command creates a type called itree, with two type parameters ’e and ’r,
and three constructors. Type parameters ’e and ’r encode the sorts E and R. Constructor
Ret represents a return value, and Sil is an internal event that evolves to a further ITree.
A visible event choice (Vis) is represented by a partial function (A ↦→ B) from events to
ITrees, with a potentially inĄnite domain. For example, in Figure 1 at node (2), a visible
event choice is presented whose domain is {Input .x | x ∈ N} ∪ {State.[]}.

The representation of visible events is the main deviation from ITrees in Coq [66], which
has visible events composed of output to the environment, followed by the answer. The
beneĄt of using a partial function is to allow a straightforward encoding of deadlock and
external choice, where the ITree offers several events to the environment (for a more detailed
comparison, see ğ8). Moreover, a side effect of this design decision is that we only need
rank-1 polymorphism for the encoding, which makes the development in Isabelle possible.

We also use the notation 𝜆 c.x | B (x) • P (x), which pattern matches on events over
channel c, whose parameters x also satisfy predicate B. With this notation, we can describe
the main choice block of the buffer example:

Example 3.2 (Buffer: Single Step ITree).

BufBody (buf ) ≜ Vis
©«
(𝜆 Input .x • Ret (buf @ [x]))
⊕ (𝜆 Output .v | #buf > 0 ∧ v = hd (buf ) • Ret (tl (buf )))
⊕ (𝜆 State.s | s = buf • Ret (buf ))

ª®¬
This constructs a visible event choice over a partial function composed of three parts using
the override operator (⊕). Here, parameter buf is a list of natural numbers, which is the
current contents of the buffer. The Ąrst function accepts a value x over channel Input and
returns the buffer with x appended. The second function allows us to output a value v over
Output, but only when the buffer is non-empty. Then, v is the head of the buffer, and the
function returns the contracted buffer. The third function allows us to advertise the current
values in the buffer but leaves the buffer unchanged. Since the three functions have disjoint
domains, they can be commuted over the override operator. Such an example is encoded
more naturally using the Circus operators, but we defer denoting these to ğ5.

We sometimes use ✓v to denote Ret v, 𝜏P to denote Sil P, and [] e ∈E → P (e) to denote
Vis (𝜆 e ∈ E • P (e)), which are more concise and suggestive of their process algebra equiv-
alents. We write e1 → P1 [] · · · [] en → Pn for an enumerated choice with E = {e1, · · · , en}.
We use 𝜏nP for an ITree preĄxed by n ∈ N internal events. We deĄne stop ≜ Vis {↦→}, a
deadlock situation where no event is possible. An example is a → 𝜏 (✓x) [] b→ stop, which
can either perform the event a followed by a 𝜏 , and then terminate returning x, or perform
the event b and then deadlock.

We call an ITree unstable if it has the form 𝜏P, and stable otherwise. The ITree in Figure 1
is stable in nodes (2), (5), and (7) and unstable in all other numbered nodes. An ITree
stabilises, written P ⇓ , if it becomes stable after a Ąnite sequence of 𝜏 events, that is
∃ n P ′ • P = 𝜏nP ′ ∧ stable (P ′). An ITree that does not stabilise is divergent, written
P ⇑ ≜ ¬(P ⇓). We call an ITree pure if it has the form of 𝜏nP, where P has the form of
either ✓x , stop, or diverge. The external environment cannot inĆuence a pure ITree, which
must either terminate, deadlock (abort) or diverge.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: August 2024.



8 Simon Foster, Chung-Kil Hur, and Jim Woodcock

3.2 ITree Combinators

Using the constructors mentioned so far, we can only specify ITrees of Ąnite depth. InĄnite
ITrees can be speciĄed using primitive corecursion [8], which is the dual of recursion but
allows non-terminating productive deĄnitions. We deĄne such an ITree below:

Definition 3.3 (Divergent ITree).

primcorec div :: "('e, 's) itree" where "div = 𝜏 div"

The primcorec command creates a typed constant which obeys several corecursive equations
(following the where). Each deĄnition requires that a constructor guards every corecursive
call on the right-hand side of an equation, ensuring it is productive. This means that, though
the deĄnition does not terminate, it is always possible to strip off the next constructor.

ITree div represents the divergent ITree that does not terminate and only performs internal
activity. Though self-referential and non-terminating, its deĄnition is productive since we
can always remove the next 𝜏 . Since div never stabilises, it is divergent, div ⇑ . Moreover,
we can show that div is the unique Ąxed-point of 𝜏n+1 for any n ∈ N, 𝜏n+1P = P ⇔ P = div ,
and consequently div is the only divergent ITree: P ⇑ → P = div .

We give another inĄnite ITree below:

Definition 3.4 (Run ITree).

primcorec run :: "'e set ⇒ ('e, 's) itree" where

"run E = Vis (map_pfun (𝜆 x. run E) (pId_on E))"

Here, the type 'e set denotes the set of all subsets of type 'e. ITree run E can repeatedly
perform any e ∈ E without ceasing. It has the equivalent deĄnition of run E ≜ []e ∈ E →
run E , an ITree that can repeatedly choose any event in E . It also has the case run ∅ = stop.
The formulation above uses the function map pfun :: (’b⇒’c) ⇒ (’a ↦→’b) ⇒ (’a ↦→’c)
which maps a total function over every output of a partial function. The function pId on E
is the identity partial function with domain E. This formulation is required to satisfy the
syntactic guardedness requirements. For the sake of readability, we omit these details in the
following deĄnitions.

Corecursive deĄnitions can have several equations ordered by priority, like a recursive
function. Using such a set of equations, we specify a monadic bind operator for ITrees [66].

Definition 3.5 (Interaction Tree Bind). We Ąx P,P ′ : (E,R)itree, K : R ⇒ (E, S)itree,

r : R, and F : E ↦→ (E, S)itree. Then, P >>= K is deĄned corecursively by the equations

✓r >>= K = K r

𝜏P ′ >>= K = 𝜏 (P ′ >>= K )

Vis F >>= K = Vis (𝜆 e ∈ dom(F ) • F (e) >>= K )

The intuition of P >>= K is to execute P, and whenever it terminates (✓r), pass the given
value r on to the continuation K , yielding K r . If the Ąrst ITree can perform a 𝜏 event, this
is performed Ąrst, and the remaining ITree is bound to K . If the Ąrst ITree can perform a
visible event e ∈ dom(F ), then we perform e, pass this on to F , and bind the result to K .

We term K a Kleisli tree [66], or KTree since it is a Kleisli lifting of an ITree. KTrees are
important for deĄning processes that depend on a previous state. For this, we deĄne the type
synonym (E, S)htree ≜ (S ⇒ (E, S)itree) for a homogeneous KTree. For example, BufBody
is homogeneous Kleisli tree of type int list ⇒ (E, int list)itree. Intuitively, the construction
K (s) can be read as Şthe Klesli tree K started in the initial state s.Ť. We deĄne the Kleisli
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composition operator P # Q ≜ (𝜆 x .P x >>= Q), symbolised because it is used as a sequential
composition. Bind satisĄes several algebraic laws:

Theorem 3.6 (Interaction Tree Bind Laws).

Ret x >>= K = K x

P >>= Ret = P

P >>= (Q # R) = (P >>= Q) >>= R

div >>= K = div

Ret # K = K

K # Ret = K

K1 # (K2 # K3) = (K1 # K2) # K3

run E >>= K = run E

Bind satisĄes the three monad laws: it has Ret as left and right units and is essentially
associative. Moreover, both div and run are left annihilators for bind since they do not
terminate. The monad laws show that (#,Ret) also forms a monoid; # is commutative and
has Ret as its left and right units.

The laws of Theorem 3.6 are proved by coinduction, using the following derivation rule.

Theorem 3.7 (ITree Coinduction). We fix a relation R : (E,R)itree↔ (E,R)itree.

Then, given (P,Q) ∈ R we can deduce P = Q provided that the following conditions hold:

(1) ∀(P ′,Q′) ∈R . is Ret(P ′) = is Ret(Q′) ∧ is Sil(P ′) = is Sil(Q′) ∧ is Vis(P ′) = is Vis(Q′);
(2) ∀(x, y). (Ret x,Ret y) ∈ R → x = y;
(3) ∀(P ′,Q′) (Sil P ′, Sil Q′) ∈ R → (P ′,Q′) ∈ R;
(4) ∀(F ,G) (Vis F ,Vis G) ∈R → (dom(F ) = dom(G) ∧ (∀ e ∈dom(F ) • (F (e),G (e)) ∈ R)).

To show that P = Q, we need to construct a (strong) bisimulation relation R, which intuitively
relates two ITrees, and show that (P,Q) ∈ R. There are four provisos to show that R is a
bisimulation. The Ąrst requires that only ITrees of the same kind are related; that is, a Ret is
only related to a Ret, a Sil with a Sil , and a Vis with a Vis. Here, is Ret, is Sil , and is Vis
distinguish the three cases. The second proviso states that if (✓x ,✓y) ∈ R then x = y, two
related ITrees must return equal values. The third proviso states that internal events must
yield bisimilar continuations: (𝜏P, 𝜏Q) ∈ R → (P,Q) ∈ R. The Ąnal proviso states that for
two visible interactions, the two functions must have the same domain (dom(F ) = dom(G)),
and every event e ∈ dom(F ) must lead to bisimilar continuations. Most of our ITree proofs
in Isabelle apply this law and then use a mixture of equational simpliĄcation and automated
reasoning with sledgehammer to generate proofs that discharge the resulting provisos.

Next, we deĄne an operator for iterating ITrees in the style of a while-loop:

Definition 3.8 (Iteration).

corec while :: "('s ⇒ bool) ⇒ ('e, 's) htree ⇒ ('e, 's) htree" where

"while b P s = (if (b s) then Sil (P s >>= while b P) else Ret s)."

This is not primitively corecursive since the corecursive call uses >>=, and so we deĄne it
using the corec command [7, 10] instead of primcorec. This requires us to show that
>>= is a ŞfriendlyŤ corecursive function [7]: it consumes at most one input constructor to
produce one output constructor. A while loop iterates whilst the condition b is satisĄed
by state s. In this case, a 𝜏 event is followed by the loop body and the corecursive call.
If the condition is false, the current state is returned. We introduce the exceptional cases
loop F ≜ while (𝜆 s.True) F and iter P ≜ loop (𝜆 s.P) (), which represent inĄnite loops with
and without state, respectively. We can show that iter (✓( ) ) = div since it never terminates
and has no visible behaviour.
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10 Simon Foster, Chung-Kil Hur, and Jim Woodcock

With while, we can easily complete the deĄnition of the buffer: Buffer ≜ while BufBody [].
This iterates the buffer body in Example 3.2 over and over to provide the complete ITree
shown in Figure 1. The initial empty state of the buffer is provided with the parameter [].

3.3 Structural Operational Semantics and Weak Bisimulation

The ITree model allows us to naturally describe structural operational semantics for our
abstract language. We give a big-step operational semantics to ITrees using an inductive
predicate.

Definition 3.9 (Big-Step Operational Semantics).

−

P
[ ]
−→ P

P
tr
−→ P ′

𝜏P
tr
−→ P ′

e ∈ E F (e)
tr
−→ P ′

( [] x ∈ E • F (x))
e#tr
−−−→ P ′

The relation P
tr
−→ Q means that P can perform the trace of visible events contained in the

list tr : E list and evolve to the ITree Q. This relation skips over 𝜏 events. The Ąrst rule
states that any ITree may perform an empty trace ([]) and remain in the same state. We
sometimes omit the trace and write P −→ P ′. The second rule states that if P can evolve
to P ′ by performing tr , then so can 𝜏P. The Ąnal rule states that if e is an enabled visible
event, and P (e) can evolve to P ′ by doing tr , then the event choice can evolve to P ′ via e#tr ,
which is tr with e inserted at the head. This inductive predicate is different from the trace

predicate (is trace of) in [66], since P
tr
−→ P ′ records both the trace and the continuation

ITree. It is, therefore, more general and provides the foundation for characterising structural
operational and denotational semantics.

We next prove some important theorems of the transition relation.

Theorem 3.10 (Transition Relation Properties).

(P
tr1
−−→ Q ∧ Q

tr2
−−→ R) → (P

tr1 @ tr2
−−−−−−−→ R) (sequential transitions)

(P
tr
−→ Vis F ∧ P

tr @ [e]
−−−−−−→ P ′) → e ∈ dom(F ) (events resolve choices)

(P
tr
−→ Ret x ∧ P

tr
−→ Ret y) → x = y (termination is deterministic)

(P
tr1
−−→ Q ∧ tr2 ≤ tr1) → (∃R.P

tr2
−−→ R) (preĄx closure)

A pair of sequential transitions can be combined by appending the two traces, tr1 and tr2.
Whenever an event e follows a visible choice over F , that event must have been enabled by
F . If we can reach two return ITrees by the same trace, then the two values returned must
be equal Ű termination is deterministic. Finally, whenever P can reach Q by performing tr1,
every preĄx of tr2 must also have an intermediate successor ITree R.

With these laws, we can prove the usual operational laws for sequential composition as
theorems:

Theorem 3.11 (Sequential Operational Semantics).

−

skip→ ✓( )

P
tr
−→ P ′

(P >>= Q)
tr
−→ (P ′ >>= Q)

P
tr1
−−→ ✓x Q(x)

tr2
−−→ Q′

(P >>= Q)
tr1 @ tr2
−−−−−−−→ Q′

The skip process immediately terminates, returning (). If the left-hand side P of >>= can
evolve to P ′ performing the events in tr , the overall bind evolves similarly. If P can terminate
after doing tr1, returning x, and the continuation Q(x) can evolve over tr2 to Q′ then the
overall >>= can also evolve over the concatenation of tr1 and tr2, tr1 @ tr2, to Q′.
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Strong bisimulation is a useful equivalence, but we often wish to abstract over 𝜏s. We,
therefore, also introduce weak bisimulation, P ≈ Q, as a coinductive-inductive predicate.
Given a relation R, we deĄne ≈R inductively:

Definition 3.12 (Weak Bisimulation).

−
✓x ≈R ✓x

P ≈R Q
𝜏P ≈R Q

P ≈R Q
P ≈R 𝜏Q

∀ e ∈ E • R(F (e),G (e))
( [] x ∈ E • F (x)) ≈R ( [] x ∈ E • G (x))

(≈) ≜
⋃
{R | R ⊆ {(div , div )} ∪ (≈R)}

It requires us to construct a relation R such that whenever (P,Q) in R both stabilise, all
their visible event continuations are also related by R. For example, 𝜏m P ≈ 𝜏n Q whenever
P ≈ Q. We have proved that ≈ is an equivalence relation, and P ≈ div → P = div .

3.4 Iteration Chains

To reason about iteration (while b do P od), as usual, we need to characterise iteration chains.
This, for example, is necessary for us to verify the properties of the buffer example. A chain
is typically a sequence of states reached during an iterationŠs successive stages. For ITrees,
we also need to consider the events that occur during iteration.

We adopt the notation s ⊢ P
chn
−−−→∗ s′ to mean that state s′ :: S can be reached when

the loop body P :: (E, S)htree is started in state s :: S , by following the chain chn. Here,
chn :: (E list × S) list is a list of trace and state pairs, each element of which denotes a single
terminating execution of P. The formal deĄnition of an iteration chain is given using the
inductive predicate below.

Definition 3.13 (Iteration Chains).

Ů

s ⊢ P
[ ]
−→∗ s

P (s)
tr
−→ ✓s0 s0 ⊢ P

chn
−−−→∗ s1

s ⊢ P
(tr,s0 )#chn
−−−−−−−−−→∗ s1

This does not yet consider the loop condition, which will be added subsequently. The Ąrst
rule states that P can complete execution at state s by performing zero iterations starting
in s. This occurs when the condition of a loop is false initially. The second rule allows a
chain extension by a single execution of P. If P, when started in state s, terminates in the
intermediate state s0 having performed the trace tr , and P can further transition to s1,
when started from s0 via chain chn, then we can preĄx chn with the element (tr, s0). For
example, s0 may result from the loop bodyŠs Ąrst iteration with the trace tr , and then chn
characterises all subsequent iterations.

Next, we use chains to deĄne a partial iteration (b, s) ⊢ P
tr
−→∗
✓

s′, which intuitively means
that P is executed several times, starting in s and reaching s′, whilst yielding trace tr .
Moreover, in each intermediate state, the condition b remains satisĄed. We deĄne this
operator directly using iteration chains:

Definition 3.14 (Partial Iteration).

(b, s) ⊢ P
tr
−→∗
✓

s′ ⇔ ∃(chn, s0, tr0) •

(
b(s) ∧ s ⊢ P

chn
−−−→∗ s0 ∧ (∀ s ∈ states(chn) • b(s))

∧ P (s0)
tr0
−−→ ✓s′ ∧ tr = trace(chn)@ tr0

)
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Here, the function states extracts the set of all states a chain encounters, and trace is the
concatenated trace described by the whole chain. Using this deĄnition, we can now state the
main theorem for reasoning about terminating loops.

Theorem 3.15 (Terminating Loops).

(while b do P od) (s)
tr
−→ ✓s′ ⇔ (¬b(s) ∧ s = s′ ∧ tr = []) ∨

(
b(s) ∧ (b, s)

tr
−→∗
✓

s′ ∧ ¬b(s′)
)

If a loop terminates in state s′, when started in initial state s, then there are two possibilities.
Firstly, s does not satisfy the condition, so s′ is the same as s, and an empty trace is emitted.
Secondly, s does satisfy the condition; there is a partial iteration from P to s′ emitting tr ,
and s′ does not satisfy the condition. In other words, the loop is executed several times, with
each intermediate satisfying b, and ends in a state that exits the loop. A consequence of this
theorem is that a chain leads to the existing terminating state whenever a loop terminates.
This theorem equips us to reason about the partial and total correctness of programs in ğ4.

The proof of this theorem is complex and requires induction on the structure of the
transition relation in DeĄnition 3.9. Our approach is to show that every transition of an
iteration leads to an ITree of the form Q >>=while b do P od , that is a preĄxed iteration, where
the preĄx Q is a partial execution of the loop body. The interested reader is directed to our
proofs in Isabelle/HOL, which total about 300 lines of Isar.

We have now completed the foundational mechanisation of ITrees. In the next section,
we will apply our theory to the modelling and veriĄcation of imperative programs before
further considering reactive and concurrent programs in ğ5.

4 IMPERATIVE PROGRAMS AND AXIOMATIC SEMANTICS

This section builds on ITrees to develop a theory of Dijkstra-style imperative programs
and an associated Hoare logic for partial and total correctness, which can be used to verify
programs. The language is implemented as a shallow embedding in Isabelle/ITrees, thus
maximising the scope for proof automation. We also develop the weakest precondition
calculus and a link with a UTP-style predicative semantics [40], which provides the basis for
a reĄnement calculus.

4.1 Modelling Imperative Programs

Imperative programs can be modelled as homogeneous Kleisli trees, S ⇒ (E,S)itree, where
S is the programŠs store type. Programs are typically pure for every initial state, meaning
they depend only on their internal store for computation. An exception is nondeterministic
programs, which we model using a special event to resolve any internal choices (see ğ4.3).

The store of an imperative program consists of a Ąnite set of mutable state variables. In
our work [25, 26, 29], each state variable is modelled as a lens [23], x :: V =⇒ S, where V
is the variableŠs type, and S is the store type. A lens is a pair of functions get :: V ⇒ S
and put :: S ⇒ V ⇒ S, which query and update the variables present in state S, and
satisfy intuitive algebraic laws [25]. They allow an abstract representation of stores, where no
explicit model is required to support the laws of programming [39]. Lenses can be designated
as independent, x ⊲⊳ y, meaning they refer to different regions of S.

An expression or assertion over the state variables is a function e :: S ⇒ V, where V is the
return type. For example, if x and y are state variables, then the expression x + y is denoted
by 𝜆 s. getx s + gety s. This function retrieves the values of x and y from the state s and adds
them together. We can check whether an expression e uses a lens x using unrestriction,
written x ♯ e. If x ♯ e, then e does not use x in its valuation, for example x ♯ (y + 1), when
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x ⊲⊳ y. Updates to variables can be expressed as a sequence of maplets using the notation
[x1 { e1, x2 { e2, · · · ], with xi :: Vi =⇒ S and ei :: S ⇒ Vi , which represents a function
S ⇒ S.

Creation of program store types is facilitated by the zstore command in Isabelle/HOL:

zstore S = x1::T11 x2::T2 ... xn::Tn where "P(x1, x2, ..., xn)"

This generates a set of lenses x1 · · · xn, which have type Ti =⇒ S , for i ∈ {1..n}. An
independence property is also generated for each pair of lenses: xi ⊲⊳ xj where i ≠ j. Our
expression parser automates the lifting of terms containing such lenses so that expressions
like x + y are semantically interpreted as 𝜆 s. getx s + gety s. Options invariant predicates
following the where clause can also accompany store types. Internally, a store is compiled
into a record type S with a collection of lenses and an invariant assertion S inv : S ⇒ B.

We can now denote the operators of an idealised imperative programming language.
Sequential composition is modelled by Kleisli composition (P # Q). The remaining operators
are given below:

Definition 4.1 (Imperative Program Operators).

C1 ⊳P ⊲C2 ≜ (𝜆 s. if P (s) then C1 (s) else C2 (s))

⟨𝜎⟩ ≜ (𝜆 s.Ret (𝜎 (s)))

x := e ≜ ⟨[x { e]⟩

Skip ≜ ⟨[{]⟩

Stop ≜ (𝜆 s. stop)

Div ≜ (𝜆 s. div )

¿P? ≜ Skip ⊳P ⊲ Stop

C1 ⊳P ⊲C2 is our algebraic notation for a conditional statement (if-then-else), where P is
the condition. Operator ⟨𝜎⟩ lifts a function 𝜎 : S ⇒ S to a KTree. It is principally used
to represent assignments, which can be constructed using our maplet notation, such that
a single assignment x := e is ⟨[x { e]⟩. Since substitutions can assign multiple variables,
they can also represent simultaneous assignment, (x, y) := (e, f ). Similarly, the vacuous Skip
statement is denoted by an empty assignment. Stop is simply a Kleisli-lifted version of the
ITree stop, which deadlocks (or aborts) in any initial state, and Div similarly diverges in
every initial state. Finally, ¿P? is a test operator, which deadlocks when P is false and
otherwise has no effect. These operators satisfy all the usual laws of programming [39], a
small selection of which is shown below. These laws give equational algebraic semantics for
imperative programs.

Theorem 4.2 (Laws of programming).

Skip # C = C # Skip = C

x := e # y := f = y := f # x := e if x ⊲⊳ y, x ♯ f , y ♯ e

⟨𝜎⟩ # ⟨𝜌⟩ = ⟨𝜌 ◦ 𝜎⟩

x := e # (C1 ⊳P ⊲C2) = (x := e # C1) ⊳P [e/x] ⊲(x := e # C2)

C1 ⊳P ⊲(C2 ⊳P ⊲C3) = C1 ⊳P ⊲C3
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Skip is the unit of sequential composition. Two variable assignments commute provided their
variables are independent (x ⊲⊳ y), and their respective expressions do not depend on the
adjacent variable. More generally, the sequential composition of two state updates 𝜎 and 𝜌

entails their functional composition. Assignment can be pushed into a conditional by Ąrst
substituting the assignment into the condition P. Finally, an outer conditional masks an
inner one, meaning that C2 is an unreachable branch. Such laws can be used for symbolic
execution and optimisation of imperative programs.

4.2 Concrete and Symbolic Execution

A particular beneĄt of our ITree-based semantics is that imperative programs can be directly
executed. A non-divergent and non-aborting pure ITree reduces to the form of 𝜏n (✓s′ ), for
n ∈ N, where s′ is the Ąnal state of the program. This is a particular case of a stable ITree.
Consequently, an imperative program can be executed by supplying an initial state s and
stripping off all the 𝜏s (internal steps) until s′ is reached. If the program is divergent (i.e.,
non-terminating), it will never get a Ąnal state, so that that execution will hang.

To aid the modelling of programs in our tool, we provide the following command:

Definition 4.3 (Program command).
s

program Pr (x1 :: T1, · · · , xn :: Tn)
overS = Body (x1, · · · , xn)

{
=

(
Pr :: T1 × · · · × Tn ⇒ S ⇒ (E,S)htree)
Pr ≜ (𝜆(x1, · · · , xn).Body (x1, · · · , xn))

)

A program takes a tuple of parameters (x1, · · · , xn) and operates over a store S. The programŠs
body is a parametric ITree in x1 · · · xn . These parameters are not program variables (lenses)
but logical variables. Intuitively, they are constants that cannot be written to.

As an example, below is the deĄnition of a simple imperative program for reversing a list:

Example 4.4 (List Reversal Program).

program reverse (xs :: int list) over state =

"ys := []; i := 0;

while i < length xs

do

ys := xs!i # ys;

i := i + 1

od"

We deĄne the program reverse, with input parameter xs :: int list. It operates over
the store type state, containing the variables i :: nat and ys :: int list. The program
iterates through the input xs, pushing each element on ys, with the result that xs is reversed.

We deĄne a command execute that executes an ITree-based program with given arguments.
It depends on the deĄnition of a global constant called MAX SIL STEPS :: nat, an upper
bound on the number of 𝜏 events that can be skipped over and acts as a timeout for execution.
A program is executed using a function un Sils n :: nat ⇒ (E,S)itree ⇒ (E,S)itree, which
strips a number n of 𝜏 events of an ITree, with n ≤ MAX SIL STEPS. We then execute a
program using IsabelleŠs evaluation mechanism, as present in the value command, which
evaluates an executable term [2, 36]. The evaluator can perform concrete execution using
the SML code generator and symbolic execution using normalisation by evaluation or the
simpliĄer. The former is most efficient, and so is the default behaviour for execute.
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An execution can produce one of four possible results: (1) termination with a Ąnal state,
(2) an abort, (3) a visible event, and (4) a timeout. A timeout occurs if MAX SIL STEPS
𝜏 events have occurred without producing a return or visible event. A termination results
if execution encounters a Ret before reaching the maximum number of 𝜏s. This being the
case, the interface displays the Ąnal state of each variable. For example, if we call execute
"reverse [1,2,3]", the command generates code, executes it, and then reports termination
with the Ąnal state [y { [3, 2, 1], i { 3].

Abortion occurs when an empty visible event is encountered (i.e. stop), following a Ąnite
number of 𝜏 events. Thus, if the execute command encounters a Vis constructor, it checks
whether the choice function is empty. If it is empty, then the execution has aborted. Otherwise,
it indicates that an event choice was encountered and goes no further. For ITrees that use
visible events, we typically cannot use such a non-interactive execution. We must instead
rely on animation (ğ6), which allows further user input when a visible event is presented.

4.3 Nondeterminism

The operators given so far allow us to model only deterministic programs, which typically
reduce to pure functions on the state. However, nondeterminism is useful both as a speciĄca-
tion device and where design choices are deferred. Nondeterministic decisions can be encoded
by introducing a special channel nd, which the environment can conceptually use to resolve,
acting as an oracle. Here, I is an index type, which denotes the maximum cardinality of
any choices. Whilst, in theory, I can be any type, we can typically only animate countable
choices, and therefore, for now, we set I ⊆ N. We can now use this to deĄne the internal
choice operator.

Definition 4.5 (Countable nondeterminism).
Assume a channel nd carrying a value of type N and a set I ⊂ N exists. Then, we encode

nondeterministic choice as
l

i∈I

• C (i) ≜ Vis (𝜆 nd .i | i ∈ I • P (i)) .

This constructs a visible event choice over nd events parameterised by the elements of
I . The particular index chosen is passed to P as a parameter. We can then deĄne a

binary nondeterministic choice as C1 ⊓C2 ≜

(d
i∈{0,1} • C1 ⊳ i = 0 ⊲C2

)
. Programs containing

nondeterministic choices cannot be directly executed using the execute command, as the
events must be resolved using animation (see ğ6).

4.4 Predicative Semantics and Refinement

We now focus on a predicative semantic interpretation for ITrees, which allows us to link
with the established UTP predicative semantics for imperative programs [15, 40]. This
semantics has many uses, but one particular use is to provide a notion of reĄnement for
nondeterministic imperative programs.

UTP uses predicate calculus as a unifying language for programs and speciĄcations.
Dijkstra-style programs can be denoted as alphabetised relations, predicates that relate the
initial values of variables to their Ąnal values. For example, assuming a store with three
integer variables x, y, and z, an assignment x := x + 1 can be denoted by the predicate
x ′ = x + 1 ∧ y′ = y ∧ z ′ = z, where x is the initial value of x and x ′ is its Ąnal value.

Central to UTP is a notion of reĄnement P ⊑ Q for alphabetised relations P and Q, which
means that Q is more deterministic or concrete than Q. For example, we can write the
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speciĄcation x ′ > x , which means that in the Ąnal state, x should be strictly greater than its
initial value. Then, using reĄnement, we can demonstrate that x ′ > x ⊑ x := x + 1, meaning
that the program on the right implements the speciĄcation on the left. The reĄnement order
induces a complete lattice of alphabetised relations. It gives rise to Ąxed-point operators 𝜇 F
(least Ąxed point) and 𝜈F (greatest Ąxed point), which can specify iterative and recursive
behaviour. UTP provides the predicative semantics for the Circus language [50].

To relate our ITree-based semantics with such predicative semantics, we must distinguish
a programŠs terminating states from divergence. We can reason about termination and

divergence with our transition relation, P
tr
−→ Q. Terminating imperative programs are

characterised by pure ITrees that eventually reach a Ret. We deĄne the set of return values
of an ITree using the following function:

Definition 4.6 (Return Values). R(P) = {x | ∃ tr .P
tr
−→ ✓x}.

R(P) induces the set of possible values a process P may return, whenever P terminates.
In other words, R(P) is the set of reachable Ąnal states. If R(P) = ∅, then P can never
terminate. R(P) abstracts over all possible traces through existential quantiĄcation, and
therefore, it does not distinguish return values that arise from different event interactions. All
events are, therefore, effectively treated as nondeterminism in this semantic interpretation.
Below, we give the valuations of R(P) for the main ITree constructors.

Theorem 4.7 (Return Values for ITree Constructors).

R(✓x) = {x}

R(𝜏P) = R(P)

R(Vis(F )) =
⋃
{R(P) | P ∈ ran(F )}

R(P >>= Q) =
⋃
{R(Q(x)) | x ∈ R(P)}

R(stop) = R(div) = ∅

A Ret returns a single value. A Sil returns the values following the 𝜏 event. A visible event
(Vis) returns all possible values returned by the continuation ITrees, P ∈ ran(F ). If we view
the ITree as a transition graph, we take the values returned on all paths. A bind P >>=Q Ąrst
calculates the return values of P, then uses these as the possible inputs for Q, and calculates
all the resulting return values. Neither stop or div have any return values because they do
not successfully terminate. We can now use this function to provide a predicative semantic
interpretation for ITrees.

Definition 4.8 (Predicative semantics). JPKp = (𝜆(s, s′). s′ ∈ R(P (s)))

The function JPKp induces a predicate of type S × S ⇒ B for the homogeneous ITree P,
which corresponds to a binary relation. Thus, JPKp (s, s

′) holds whenever s′ is reachable from
the start state s. With this function, we can show that our imperative programs respect a
UTP-style predicative semantics [40].

Theorem 4.9 (Predicative semantics of loop-free imperative programs).

J⟨𝜎⟩Kp (s, s
′) = (s′ = 𝜎 (s))

JP # QKp (s, s
′) =

(
∃ s0 • JPKp (s, s0) ∧ JQKp (s0, s

′)
)

JP ⊳B ⊲QKp =
( (

B (s) ∧ JPKp (s, s
′)
)
∨

(
¬B (s) ∧ JQKp (s, s

′)
) )
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JStopKp (s, s
′) = JDivKp (s, s

′) = False

JP ⊓QKp (s, s
′) =

(
JPKp (s, s

′) ∨ JQKp (s, s
′)
)

A state update applies the update function to the initial state s to obtain the Ąnal state s′.
The semantics of an assignment x := e is a special case, conceptually x ′ = e(s) ∧ y′ = y, for
all other variables y in S. The predicative semantics for P # Q yields the usual deĄnition of
relational composition: an intermediate state s0, a Ąnal state for P and an initial state for
Q. Conditional behaves as P when B is true in the initial state and Q otherwise. Both Stop
and Div have the same interpretation False, as this semantics cannot distinguish between
deadlock and divergence. Finally, a state pair is satisĄed by a nondeterministic choice P ⊓Q
if it is satisĄed by either P or Q, which is the usual UTP interpretation of nondeterministic
choice as disjunction [40].

Next, we consider the predicative semantics of iteration. First of all, we note the following
corollary of Theorem 3.15:

Corollary 4.10 (Iteration return values).

R((while b do P od) (s)) = {s′ | (¬P (s) ∧ s = s′) ∨ (∃ tr .B (s) ∧ (B, s)
tr
−→∗
✓

s′ ∧ ¬B (s′))}

The return values for a loop started in state s is precisely the set of states for which there
is a number of iterations of P yielding some trace tr . Whilst we could now express the
predicative semantics in these terms, it is more convenient and concise to do this in terms of
the reĆexive transitive closure operation R∗. We Ąrst reiterate a result of the Isabelle/HOL
standard library:

Theorem 4.11 (Reflexive Transitive Closure paths).

R∗ (s, s′) ⇔ s = s′ ∨ (∃ xs. ∀ i < length (xs).R((s#xs)!i, xs!i) ∧ x ′ = last (xs))

A pair of states (s, s′) are related by R∗ either when s = s′, or there is a path xs leading
from s to s′ through several iterations of R. Here, the path is a list of states, where each
consecutive pair of states, starting from s and ending with s′, are related by R. With this
result, we can now express the predicative semantics of iteration:

Theorem 4.12 (Predicative semantics of iteration).

Jwhile B do C odKp = (¿B? ; JC Kp)
∗ ; ¿¬B?

For conciseness, the predicate semantics for while is expressed point-free. The notation ¿P?
denotes a test, i.e. 𝜆(s, s′).P (s) ∧ s′ = s, which skips states that satisfy P. The semicolon
operator (P ; Q) denotes relational composition, such that JP # QKp = (JPKp ; JQKp). In this
relational context, a while loop iterates C when B is true and ends when B is false. This
corresponds to the usual Kleene algebra interpretation of iteration [3, 34].

The predicative interpretation in Theorem 4.9 induces a homomorphism between the ITree
semantics and the relational semantics for each of the imperative programming operators (:=,
#, ⊳ b ⊲, etc.). This homomorphism is not only of theoretical interest but also practical beneĄt.
Using the equations as code equations for the Isabelle/HOL code generator [36] allows us to
employ the ITree semantics as a means to generate code for and execute relational imperative
programs (see ğ6). We can also use our predicative semantics to obtain a notion of reĄnement
for ITrees. We Ąrst recall the usual deĄnition of reĄnement for relational programs in UTP:

Definition 4.13 (Predicative refinement). (P ⊑ Q) ≜ (∀(s, s′).Q(s, s′) → P (s, s′))
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This is the usual UTP deĄnition of reĄnement as a universally closed reverse implication.
SpeciĄcally, P is reĄned by Q (P ⊑ Q) if Q contains no more observable behaviours than
P. Since we can interpret an ITree as a predicate, we can deĄne (P ⊑p Q) ≜ JPKp ⊑ JQKp.
In particular, we can now use reĄnement to reduce nondeterminism: P ⊓ Q ⊑p P. This
reĄnement relation forms a preorder, but it is not antisymmetric. This is because the
predicative semantics is too coarse and does not, for example, distinguish Stop and Div ,
which are both False. For antisymmetry, we would need a Ąner predicative interpretation,
such as the UTP theory of designs [15] or reactive designs [26], but this is out of the scope
of this paper.

4.5 Hoare logic and Weakest Preconditions

We can now use our predicative interpretation of ITrees to deĄne a partial correctness Hoare
logic.

Definition 4.14 (Partial Correctness Hoare Logic).

{P }C {Q } ≜ (∀(s, s′, tr) • P (s) ∧ C (s)
tr
−→ ✓s′ → Q(s′))

Whenever P is satisĄed by initial state s, and C when started in s terminates in Ąnal
state s′, it follows that Q is satisĄed by s′. This is partial correctness because we do not
commit if C aborts or does not terminate. We can handle these additional aspects separately
through deadlock-freedom and termination checks or by a total correctness Hoare logic. Our
deĄnition of the Hoare triple can alternatively be characterised directly using reĄnement in
the UTP style, as the following theorem demonstrates.

Theorem 4.15. {P }C {Q } if and only if (P ◀ → Q ▶) ⊑ JC Kp

Here, P ◀ and Q▶ are shorthands for 𝜆(s, s′).P (s) and 𝜆(s, s′).Q(s′) lift these predicate
expressions to pre- and postconditions. We construct a relational speciĄcation for the program
and then use it to assert a reĄnement. This allows us to obtain all the laws of Hoare logic
for straight-line programs (cf. [25]), for example:

Theorem 4.16 (Hoare logic laws).

P → Q [e/x]

{P } x := e {Q }

{P }C1 {Q } {Q }C2 {R }

{P }C1 # C2 {R }

{P }C1 {Q } {P }C2 {Q }

{P }C1 ⊓ C2 {Q }

For while loops, using the construct introduced in DeĄnition 3.8, there is a little more
work to be done. Recall the partial correctness law for Hoare logic:

Theorem 4.17 (Partial Correctness While law).

{P ∧ B }C {P }

{P }while B do C od { ¬B ∧ P }

Here, P is the loop invariant, which must remain true whenever the body C is executed. We
outline the mechanised proof below, which uses Theorem 3.15.

Proof. From DeĄnition 4.14, we need to show that given an initial state s satisfying
P, whenever (while B do S od) (s) −→ ✓s′ , then it follows that s′ satisĄes ¬B and P (partial
correctness). From Theorem 3.15, we know that the loop terminates immediately or executes
several times. Suppose it terminates immediately, then clearly P (s) and ¬B (s). Suppose it
executes, a chain chn leads to s′ such that ¬B (s′). The premises of the loop invariant law
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tell us that for any state s0, such that P (s0) and B (s0), whenever C (s0) −→ ✓s1 then also
P (s1). As a result, we can deduce that any s0 ∈ states(chn) and subsequent state s1 must
maintain the invariant. This being the case, it also particularly follows that P (s′), since s′ is
such an s1 state. This completes the proof. □

In addition to Hoare logic, we can also characterise the weakest (liberal) preconditions:

Definition 4.18 (Weakest Preconditions).

wp C P ≜ (𝜆 s. ∃ s′ . JC Kp (s, s
′) ∧ P (s′))

wlp C P ≜ (𝜆 s. ∀ s′ . JC Kp (s, s
′) → P (s′))

The weakest precondition wp C P obtains the weakest precondition required for C to reach
a state satisfying P. It formally requires that for any initial state s, there is a Ąnal state s′,
such that P (s′). In particular, we can use the weakest precondition to calculate the domain
or ŞpreconditionŤ of a program: pre (C ) ≜ wp C true. For ITrees, this is the set of initial
states that do not lead to deadlock or divergence. For imperative programs speciĄcally, this
can be considered the initial states for which the program terminates. The weakest liberal
precondition is similar, but for any Ąnal state s′ of C that P (s′) holds, it does not require
such an s′ exists. Both of these laws satisfy the standard laws [19], which we have previously
presented for Isabelle/UTP [25].

As usual, we can use the simpliĄer to calculate the weakest preconditions for a program in
Isabelle/HOL equationally. Moreover, we also prove the following standard theorem linking
Hoare logic and wlp:

Theorem 4.19. {P }C {Q }⇔ (P → wlp C Q)

We can prove a Hoare triple by calculating the wlp, and then proving the precondition P
satisĄes the resulting predicate. Finally, we can use wp to deĄne the total correctness Hoare
triple:

Definition 4.20 (Total Correctness Hoare Logic).

[P ] C [Q ] ≜
(
{P }C {Q } ∧ (P → pre (C )

)
This follows the usual intuition of total correctness = partial correctness + termination.
Here, P → pre (C ) means that the precondition is a sufficient condition to ensure that C
terminates. With this deĄnition, we can obtain the corresponding laws to those in 4.16, and
also the total correctness law for loops, which requires a decreasing variant expression V :

Theorem 4.21 (Total Correctness While law).

[P ∧ B ∧ V = z ] C [P ∧ V < z ]

[P ] while B do C od [ ¬B ∧ P ]

The proof of this depends on Theorem 3.15.
We will make further use of the weakest preconditions when we develop our Z-Machine

tool in Section 7. For now, we are turning our attention to the automation of program
veriĄcation.

4.6 Verification Condition Generation

Automation of program veriĄcation is conducted, as usual, through a veriĄcation condition
generator (VCG). Our VCG method repeatedly applies Hoare logic laws to obtain a collection
of veriĄcation condition predicates. These predicates can often be discharged by IsabelleŠs
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automated proof methods, like blast, metis, and smt, with the help of sledgehammer . If
veriĄcation fails, we can Ąnd errors using counterexample Ąnders, like nitpick and quickcheck .

For automated reasoning, we need laws that avoid the introduction of meta-variables,
as these can introduce backtracking and hamper automation. For example, the general
sequential composition law in Theorem 4.16 and iteration law in Theorem 4.17 introduce
variables that only appear in the hypotheses, and a suitable witness must be supplied.
Instead, we specialise the Hoare logic theorems to avoid this. In particular, we introduce the
following two corollaries for assignment.

Corollary 4.22 (Forward and Backward Assignment Laws).

{ x = e[x0/x] ∧ P [x0/x] }C {Q }
x0 ∉ fv (e,P )

{P } x := e # C {Q }

{P }C {Q [e/x] }

{P }C # x := e {Q }

The forward law allows us to push the effect of the assignment into the precondition. We
introduce a new Ąxed logical variable, x0, which stands for the initial value of x before the
assignment occurred. We substitute x for x0 in the assigned expression e and the precondition
P. The backward law similarly applies the assignment to the postcondition.

VCG, as usual, depends on the annotation of loops with invariants. We adopt the approach
of Armstrong et al. [3] and introduce the syntax while B invariant I do C od , which annotates
with the invariant I . This annotation is semantically vacuous and exists only to help proof
automation using the following derived law.

Theorem 4.23 (Loop Invariant Annotation).

{ I ∧ B }C { I } P → I ¬B ∧ I → Q

{P }while B invariant I do C od {Q }

This uses requires we prove that I is an invariant of the loop body, I weakens precondi-
tion P, and I strengthens postcondition Q when the loop condition does not hold. The
proof combines the consequence law and the partial correctness law for while loops. Sim-
ilarly, we derive a corresponding total correctness law, which uses a variant annotation:
while B invariant I variant V do C od , where V is the variant expression.

Finally, we implement the vcg proof method, which implements the following steps:

(1) Atomise assignments and conditionals where possible, using the Theorem 4.2;
(2) Repeatedly apply specialised Hoare logic laws as introduction rules to decompose goal;
(3) Evaluate substitutions in resulting expressions and convert them to HOL proof obliga-

tions.

The result is a set of VCs for which discharge can be attempted. We can now annotate
our imperative list reversal program from Example 4.4 with an invariant and a variant to
allow its veriĄcation:

Example 4.24 (Annotated List Reversal Program).

program reverse (xs :: int list) over state =

"ys := []; i := 0;

while i < length xs

invariant ys = rev (take i xs)

variant length xs - i

do

ys := xs!i # ys;
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i := i + 1

od"

We supply the invariant ys = rev(take i xs), since ys is always the Ąrst i elements of
xs in reverse. The functions take and rev are deĄned in Isabelle/HOL. The variant length
xs - i counts down from the length of xs to zero.

With this, we want to prove the Hoare triple [True ] reverse(xs) [ ys = rev (xs) ]: the
imperative program satisĄes the functional speciĄcation provided by the rev function.
Applying the vcg method to this proof goal yields a single veriĄcation condition:

xs ! i # rev (take i xs) = rev (take (i + 1) xs) for i < length(xs).

This states that taking the Ąrst i + 1 elements of xs and then reversing it can be achieved
by appending the ith element of xs at the beginning of the reversed i elements. This can be
discharged by sledgehammer using the built-in laws from Isabelle/HOL. The variant proof is
straightforward and discharged simply by the simpliĄer.

Although this is a trivial example, we have veriĄed more substantial benchmark examples,
such as sorting algorithms, with a high level of automation provided by sledgehammer .

5 REACTIVE AND CONCURRENT PROGRAMMING

In this section, we move on from imperative programs and give an ITree semantics to
deterministic fragments of the CSP [13, 38] and Circus [50, 64] process languages. Our
deterministic CSP fragment is consistent with the one identiĄed by Roscoe [56, Section 10.5].
The standard CSP denotational semantics is provided by the failures-divergences model [13,
56], and we provide preliminary results on linking to this in ğ5.3.

5.1 CSP

CSP processes are parametrised by an event alphabet (Σ), which speciĄes the possible ways a
process communicates with its environment. For ITrees, Σ is provided by the type parameter
E . Whilst the event sort of an ITree E is typically inĄnite, in process algebraic languages,
like CSP, it is usually expressed in a Ąnite set of channels, which can carry data of various
types. Here, we characterise channels abstractly using prisms [52], a concept well known in
the functional programming world:

Definition 5.1 (Prisms). A prism is a quadruple (V, Σ,match, build) where V and Σ are
non-empty sets. Functions match : Σ ↦→ V and build : V ⇒ Σ satisfy the following laws:

match(build x) = x y ∈ dom(match) → build (match y) = y

We write X : V
Δ

−→E if X is a prism with ΣX = E and VX = V .

Intuitively, a prism abstractly characterises a datatype constructor, E , taking a value of
type V. Then, build is the constructor, and match is the destructor, which is partial due
to the possibility of several disjoint constructors. For CSP, each prism models a channel in
E carrying a value of type V. We have created a command chantype, which automates
the creation of prism-based event alphabets. Technically this is achieved by creation of an
algebraic data type, with a constructor for each channel, and corresponding prism for each
constructor.

CSP processes typically do not return data, though their components may, and so they
are typically denoted as ITrees of type (E, ())itree, returning the unit type (). An example
is skip ≜ Ret (), which is a degenerate form of Ret. We now deĄne the basic CSP operators.
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Definition 5.2 (Basic CSP Constructs).

inp :: (V
Δ

−→E) ⇒ V set ⇒ (E,V )itree

inp c A ≜ Vis (𝜆 e ∈ dom(matchc) ∩ buildc (| A |) • Ret (matchc e))

outp :: (V
Δ

−→E) ⇒ V ⇒ (E, ())itree

outp c v ≜ Vis {buildc v ↦→ Ret ()}

guard b :: B⇒ (E, ())itree

guard b ≜ (if b then skip else stop)

An input event (inp c A) permits any event over the channel c, that is e ∈ dom(matchc),
provided that its parameter is in A (e ∈ buildc (| A |)). It returns the value received for use
by a continuation. It corresponds to the trigger construct in [66]. With this and monadic
bind, the usual CSP input preĄx can be denoted as

c?x → P (x) ≜ (inp c UNIV >>= P)

where UNIV is the set of all values of a particular type. The input preĄx receives any value
over c and then passes it on to P.

An output event (outp c v) permits a single event, v, on channel c and returns a null value
of type (). We can then denote the standard CSP output preĄx as

c!v → Q ≜ (outp c v >>= (𝜆 x .Q)

We also deĄne the special case sync e ≜ outp e () for a basic event e :: ()
Δ

−→E . A guard b
behaves as skip if b = true and otherwise deadlocks. It corresponds to the guard in CSP,
which can be deĄned as b & P ≜ (guard b >>= (𝜆 x .P)).

Using the monadic ŞdoŤ notation, which boils down to applications of >>=, we can now
write simple reactive programs such as do{x ← inp c; outp d (2 · x); Ret x}, which inputs x

over channel c : N
Δ

−→E , outputs 2 · x over channel d, and Ąnally terminates, returning x.
Next, we deĄne the external choice operator, P ✷ Q, where the environment resolves the

choice with an initial event of P or Q. In CSP, ✷ can also introduce nondeterminism; for
example, (a → P) ✷ (a → Q) introduces an internal choice since the a event can lead to
P or Q, and is equal to a → (P ⊓ Q). Since we explicitly wish to avoid introducing such
nondeterminism, we make a design choice to exclude this possibility by construction. There
are other possibilities for handling nondeterminism in ITrees, which we consider in ğ9. As
for >>=, we deĄne external choice corecursively using a set of ordered equations.

Definition 5.3 (External choice). P ✷ Q, is deĄned by the following set of equations:

(Vis F ) ✷ (Vis G) = Vis (F ⊙ G)

(Sil P ′) ✷ Q = Sil (P ′ ✷ Q)

P ✷ (Sil Q′) = Sil (P ✷ Q′)

(Ret x) ✷ (Vis G) = Ret x

(Vis F ) ✷ (Ret y) = Ret y

(Ret x) ✷ (Ret y) = (if x = y then (Ret x) else stop)

where F ⊙ G ≜ (dom(G) −◁ F ) ⊕ (dom(F ) −◁ G)

An external choice between two functions, F and G, essentially combines all the choices
presented using F ⊙ G. The caveat is that if the domains of F and G overlap, then any
events in common are excluded. Thus, ⊙ restricts the domain of F to maplets e ↦→ P where
e ∉ dom(G), and vice-versa. This has the effect that (a → P) ✷ (a → Q) = stop, for example.
In the special case that dom(F ) ∩ dom(G) = ∅, P ⊙ Q = P ⊕ Q. We chose this behaviour to
ensure that ✷ is commutative, though we could alternatively bias one side.

Internal steps on either side of ✷ are greedily consumed. Due to the equation order, 𝜏
events have the highest priority, following a maximal progress assumption [37]. Return events
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also have priority over visible events. If two returns are present, then they must agree on
the value. Otherwise, they deadlock. External choice satisĄes several essential properties:

Theorem 5.4 (External Choice Properties).

P ✷ Q = Q ✷ P stop ✷ P = P div ✷ P = div P ✷ (𝜏n Q) = (𝜏n P) ✷ Q = 𝜏n (P ✷ Q)

(Vis F ✷ Vis G) >>= H = (Vis F >>= H ) ✷ (Vis G >>= H )

The external choice is commutative and has stop as a unit. It has div as an annihilator
because the 𝜏 events mean no other activity is chosen. A Ąnite number of 𝜏 events on the left
or right can be extracted to the front. Finally, bind distributes from the left across a visible
event choice. We prove these properties using coinduction (Theorem 3.7), case analysis
on stability of constituent processes, followed by several invocations of sledgehammer to
discharge the resulting provisos.

Using the operators deĄned so far, we can implement the buffer from Examples 2.1 using
a monadic syntax:

chantype Chan = Input::int Output::int State::"int list"

definition buffer :: "int list ⇒ (Chan, int list) itree" where

"buffer = loop (𝜆 s.

do { i ← inp Input {0..}; Ret (s @ [i]) }

✷ do { guard(length s > 0); outp Output (hd s); Ret (tl s) }

✷ do { outp State s; Ret s })"

We Ąrst create a channel type Chan, which has channels (prisms) for inputs and outputs
and to view the current buffer state. We deĄne the buffer process as a simple loop with
a choice of three branches inside. The variable s::int list denotes the state. The Ąrst
branch allows a value to be received over Input, and then returns s with the new i value
appended, and then iterates. The second branch is only active when the buffer is not empty.
It outputs the head on Output and returns the tail. The Ąnal branch outputs the current
state. In ğ6, we will see how such an example can be animated.

Next, we tackle parallel composition. The objective is to deĄne the usual CSP operator
P |[E ]| Q, which requires that P and Q synchronise on the events in E and can otherwise
evolve independently. We Ąrst deĄne an auxiliary operator for merging choice functions.

mergeE (F ,G) = (𝜆 e ∈ dom(F ) \ (dom(G) ∪ E) • Left (F (e)))

⊕ (𝜆 e ∈ dom(G) \ (dom(F ) ∪ E) • Right (G (e)))

⊕ (𝜆 e ∈ dom(F ) ∩ dom(G) ∩ E • Both(F (e),G (e))

Operator mergeE (F ,G) merges two event functions, which are being offered by two parallel
composed ITrees. Each event is tagged depending on whether it occurs on the Left, Right,
or Both sides of a parallel composition. An event in dom(F ) can occur independently when
not in E or dom(G). The latter proviso is required, like for ✷, to prevent nondeterminism
by disallowing the same event from occurring independently on both sides. An event in
dom(G) can occur independently through the symmetric case for dom(F ). An event can
synchronise provided it is in the domain of choice functions and the set E . We use this
operator to deĄne the generalised parallel composition. For the sake of presentation, we
present partial functions as sets.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: August 2024.



24 Simon Foster, Chung-Kil Hur, and Jim Woodcock

Definition 5.5. P ∥E Q is deĄned corecursively by the following equations:

(Vis F ) ∥E (Vis G) = Vis
©«
{e ↦→ (P ′ ∥E (Vis G)) | (e ↦→ Left (P ′)) ∈ mergeA(F ,G)}
⊕ {e ↦→ ((Vis F ) ∥E Q′) | (e ↦→ Right (Q′)) ∈ mergeE (F ,G)}
⊕ {e ↦→ (P ′ ∥E Q′) | (e ↦→ Both(P ′,Q′)) ∈ mergeE (F ,G)}

ª®¬
(Sil P ′) ∥E Q = Sil (P ′ ∥E Q) P ∥E (Sil Q′) = Sil (P ∥E Q′)

(Ret x) ∥E (Ret y) = Ret (x, y)

(Ret x) ∥E (Vis G) = Vis {e ↦→ Ret x ∥E Q′ | (e ↦→ Q′) ∈ G}

(Vis F ) ∥E (Ret y) = Vis {e ↦→ P ′ ∥E Ret y | (e ↦→ P ′) ∈ F }

The most complex case is for Vis, which constructs a new choice function by merging
F and G. Three partial functions again represent the three cases. The Ąrst two allow the
left and right to evolve independently to P ′ and Q′, respectively, using one of their enabled
events, leaving their opposing side, Vis G and Vis F , respectively, unchanged. The third case
allows them both to evolve simultaneously on a synchronised event.

The Sil cases allow 𝜏 events to happen independently and with priority. If both sides can
return a value, x and y, respectively, then the parallel composition returns a pair, which can
later be merged if desired. The Ąnal two cases show what happens when only one side has a
return value, and the other has visible events. In this case, the Ret value is retained and
pushed through the parallel composition until the other side also terminates.

We use ∥E to deĄne two special cases for CSP: P |[E ]| Q ≜ (P ∥E Q) >>= (𝜆(x, y).Ret ())
and P ||| Q ≜ P |[ ∅ ]| Q. As usual in CSP, these operators do not return any values, and so
P,Q :: (E, ())itree. The P |[E ]|Q operator is similar to ∥E , except if both sides terminate, any
resultant values are discarded, and a null value is returned. This is achieved by binding to a
simple merge function. P and Q do not return values, so this does not affect the behaviour,
just the typing. The interleaving operator P ||| Q, where there is no synchronisation, is
deĄned as P |[ ∅ ]| Q. We prove several algebraic laws:

(P ∥E Q) = (Q ∥E P) >>= (𝜆(x, y).Ret (y, x)) div ∥E P = div

P |[E ]| Q = Q |[E ]| P P ||| Q = Q ||| P skip ||| P = P

Parallel composition is commutative, except that we must swap the outputs, and so |[E]| and
||| are commutative as well. Parallel has div as an annihilator for similar reasons to ✷. For |||,
skip is a unit since there is no possibility of communication and no values are returned.

The Ąnal operator we consider is hiding, P \ A, which turns the events in A into 𝜏s:

Definition 5.6 (Hiding). P \ A is deĄned corecursively by the following equations:

Vis (F ) \ A =




Sil (F (e) \ A) if A ∩ dom(F ) = {e}

Vis {(e,P \ A) | (e,P) ∈ F } if A ∩ dom(F ) = ∅

stop otherwise

Sil (P) \ A = Sil (P \ A) Ret x \ A = Ret x

We consider a restricted version of hiding where only one event can be hidden at a time
to avoid nondeterminism. When hiding the events of A in the choice function F , there are
three cases: (1) there is precisely one event e ∈ A enabled, in which case it is hidden; (2) no
enabled event is in A, in which case the event remains visible; (3) more than one e ∈ A is
enabled, and so we deadlock. We again impose maximal progress here so that an enabled
event to be hidden is prioritised over other visible events: (a → P [] b→ Q) \ {a} = 𝜏P, for
example. Despite the signiĄcant restrictions on hiding, it supports the typical pattern where
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one output event is matched with an input event. Moreover, a priority can be placed on the
order in which events are hidden, rather than deadlocking, by sequentially hiding events.
Hiding can introduce divergence, as the following theorem shows: (iter (sync e)) \ e = div .

5.2 Circus

While CSP processes can be parametrised to allow modelling states, there is no support
for explicit state operators like assignment. The do notation somewhat allows variables,
but these are immutable and are not preserved across iterations. Circus [50, 64] is a CSP
extension allowing state variables.

We can characterise Circus through a Kleisli lifting of CSP processes that return values so
that Circus actions are homogeneous KTrees. Then, thanks to the compositionality of our
ITree-based semantics, we can use the operators deĄned in ğ4, such as assignment x := e, to
allow manipulation of the state. Then, we deĄne the core operators for concurrency:

Definition 5.7 (Circus Operators).

c?x :A→ F (x) ≜ (𝜆 s. inp c A >>= (𝜆 x .F (x) s))

c!e → P ≜ (𝜆 s. outp c (e s) >>= (𝜆 x .P s))

P ✷ Q ≜ (𝜆 s.P (s) ✷ Q(s))

P |[ns1 |E |ns2]|Q ≜
(
𝜆 s. (P (s) ∥E Q(s)) >>= (𝜆(s1, s2). s ◁ns1 s1 ◁ns2 s2)

)
The operators are deĄned by the lifting of their CSP equivalents. An output c!e → P carries
an expression e rather than a value, which can depend on the state variables. The main
complexity is the Circus parallel operator, P |[ns1 |E |ns2]|Q, which allows P and Q to act on
disjoint portions of the state, characterised by the name sets ns1 and ns2. We represent ns1
and ns2 as independent lenses, ns1 ⊲⊳ ns2, though they can be thought of as sets of variables
with ns1 ∩ ns2 = ∅. The deĄnition of the operator Ąrst lifts ∥E and composes this with a
merge function. The merge function constructs a state consisting of the ns1 region from the
Ąnal state of P, the ns2 region from Q, and the remainder from the initial state s. This is
achieved using the lens override operator s1 ◁X s2, which extracts the region described by X
from s2 and overwrites the corresponding region in s1, leaving the complement unchanged.

We can now model the buffer from Example 2.1 with these operator deĄnitions. Given a
state variable buf::int list, the buffer can be expressed in Isabelle/HOL as follows:

Example 5.8. Buffer in ITree-based Circus

buf := [];

loop ((Input?(i) → buf := buf @ [i])

✷ (length(buf) > 0 & Output!(hd buf) → buf := tl buf)

✷ State!(buf) → Skip)

We update the state with assignments threaded through sequential composition.
Our Circus operators satisfy several standard laws [29, 50], beyond the CSP laws, for

example:

⟨𝜎⟩ # (P ✷ Q) = (⟨𝜎⟩ # P) ✷ (⟨𝜎⟩ # Q)

P |[ns1 |E |ns2]|Q = Q |[ns2 |E |ns1]| P if ns1 ⊲⊳ ns2

State updates are distributed through external choice from the left. Circus parallel composi-
tion is commutative, provided that we also switch the name sets.
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5.3 Denotational Semantics

Next, we show how ITrees are related to the standard failures-divergences semantics of
CSP [13]. The utility of this link is to both allow symbolic veriĄcation of ITrees and
allow them to act as a target of step-wise reĄnement. In this way, we can use the existing
mechanisation of the CSP set-based and relational semantics [29, 60] to capture and reason
about nondeterministic speciĄcations and use ITrees to provide executable implementations.

In the failures-divergences model, a process is characterised by two sets: F :: (E✓ list ×
E set) set and D :: P(E list), which are, respectively, the set of failures and divergences. A
failure is a trace of events plus a set of events that can be refused at the end of the interaction.
A divergence is a trace of events that leads to divergent behaviour. A distinguished event
✓ ∈ E is used as the Ąnal element of a trace to indicate that this is a terminating observation.

For example, consider the process a → c → skip ✷ b→ div , which initially permits an a
or b event, and following a permits a c event. It exhibits the failure ( [], {c}) since before
any events are performed, the event c is being refused. A second failure is ( [a], {a, b}), since
after performing an a, only c is enabled, and the other events are refused. A third failure is
( [a, c,✓], {a, b, c}), which represents successful termination, after which all events are refused.
This process also has a divergence trace [b] since the process diverges after performing event
b. If a divergent state is unreachable, then D is empty. Here, we show how to extract F and
D from any ITree, and thus processes constructed from the operators of ğ5.

In CSP, one likes to show that there are no divergent states, a property called divergence
freedom. The following inductive-coinductive deĄnition captures it:

Definition 5.9 (Divergence Freedom).

−
✓x
⇒ R

P ⇒ R
𝜏P ⇒ R

ran(F ) ⊆ R
Vis F ⇒ R

div-free ≜
⋃
{R | R ⊆ {P | P ⇒ R}}

Predicate P ⇒ R is deĄned inductively. It requires that P stabilises to a Ret or a Vis
whose continuations are all contained in R. Then, div-free is the largest set consisting of
all sets R = {P | P ⇒ R} and is coinductively deĄned. If we can Ąnd an R such that for
every P ∈ R, it follows that P ⇒ R, that is R is closed under stabilisation, then any P ∈ R
is divergence-free. Essentially, R needs to enumerate the symbolic post-stable states of an
ITree; for example, R = {run E} satisĄes the provisos and so run E is divergence-free. We

have proved that P ∈ div-free ⇔ (�s • P
s
−→ div ), which gives the operational meaning.

With our transition relation, we can deĄne RoscoeŠs step relation, which links the opera-
tional and denotational semantics of CSP [56, Section 9.5]. The utility of this deĄnition and
the following theorems is to permit symbolic veriĄcation of CSP processes by calculating
their set-based characterisation.

Definition 5.10 (Roscoe’s Step Relation).

(P
s
=⇒ P ′) ≜ ((∃ t ∈ Σ list • s = t @ [✓x] ∧ P

t
−→ ✓x ∧ P ′ = stop) ∨ (set (s) ⊆ Σ ∧ P

s
−→ P ′))

Here, set (s) extracts the set of elements from a list. The step relation is similar to
s
−→, except

that the event type is adjoined with a special termination event ✓. We deĄne the enlarged
set Σ

✓
≜ Σ∪ {✓x | x ∈ S}, which adds a family of events parametrised by return values, as in

the semantics of Occam [54], which derives from CSP. A termination is signalled when the
transition relation reaches a Ret x in the ITree, where the trace is augmented with ✓x and
the successor state is set to stop. We often use a condition of the form set (s) ⊆ Σ to mean
that no ✓x event is in s. We can now deĄne the sets of traces, failures, and divergences [56]:
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Definition 5.11 (Traces, Failures, and Divergences).

traces (P) ≜ {s | set (s) ⊆ Σ
✓ ∧ (∃P ′ • P

s
=⇒ P ′)}

P ref E ≜ ((∃F • P = Vis F ∧ E ∩ dom(F ) = ∅) ∨ (∃ x • P = Ret x ∧ ✓x ∉ E))

failures (P) ≜
{
(s,X ) | set (s) ⊆ Σ

✓ ∧ (∃Q • P
s
=⇒ Q ∧ Q ref X )

}
divergences (P) ≜ {s @ t | set (s) ⊆ Σ ∧ set (t) ⊆ Σ ∧ (∃Q • P

s
=⇒ Q ∧ Q⇑ )}

The set traces (P) is the set of all possible event sequences that P can perform. For failures (P),
we need to determine the set of events that an ITree is refusing, P ref E . If P is a visible
event, Vis F , then any set of events E outside of dom(F ) is refused. If P is a return event,
Ret x , then every event other than ✓x is refused. With this, we can implement RoscoeŠs form
for the failures. Finally, the divergences is simply a trace s leading to a divergent state Q⇑ ,
followed by any trace t. We exemplify these deĄnitions with two calculations of failures:

failures (inp c A) =
{([],E) | ∀ x ∈ A • c.x ∉ E} ∪ {([c.x],E) | x ∈ A ∧ ✓ ∉ E}
∪ {([c.x,✓( ) ],E) | x ∈ A}

failures (P >>= Q) =
{(s,X ) | set (s) ⊆ Σ ∧ (s,X ∪ {✓x | x ∈ S}) ∈ failures (P)}
∪ {(s @ t,X ) | ∃ v • s @ [✓v] ∈ traces (P) ∧ (t,X ) ∈ failures (Q(v))}

The failures of inp c A consist of (1) the empty trace, where no valid input on c is refused;
(2) the trace where an input event c.x occurred, and ✓( ) is not being refused; and (3) the
trace where both c.x and ✓( ) occurred, and every event is refused. The failures of P >>= Q
consist of (1) the failures of P that do not reach a return, and (2) the terminating traces
of P, ending in ✓v appended with a failure of Q(v), the continuation. With the help of
IsabelleŠs simpliĄer, these equations can be used to calculate the failures and divergences
automatically, which can be easier to reason with than directly applying coinduction.

We conclude this section with some important properties of our semantic model:

Theorem 5.12 (Semantic Model Properties).

(s,X ) ∈ failures(P) ∧ (Y ∩ {x | s @ [x] ∈ traces(P)} = ∅) → (s,X ∪Y ) ∈ failures(P)

s ∈ divergences(P) ∧ set (t) ⊆ Σ→ s @ t ∈ divergences(P)

P ≈ Q → (failures(P) = failures(Q) ∧ divergences(P) = divergences(Q))

P ∈ div-free⇔ divergences(P) = ∅

P ∈ div-free→ (∀ s a • s @ [a] ∈ traces(P) → (s, {a}) ∉ failures(P))

The Ąrst two are standard healthiness conditions of the failures-divergences model [56],
called F3 and D1, respectively. F3 states that if (s,X ) is a failure of P then any event
that cannot subsequently occur after s, according to the traces, must also be refused. D1

states that the set of divergences is extension closed. We have also proved that two weakly
bisimilar processes have the same divergences and failures. The following result links the
coinductive deĄnition of divergence freedom and the set of divergences. The Ąnal result
demonstrates that ITrees satisfy RoscoeŠs deĄnition of determinism for CSP [56]. If an ITree
P is divergence-free, there is no trace after which an event can be accepted and refused.

Finally, we have stronger results relating weak bisimulation with the trace and divergence
semantics.

Theorem 5.13. P ≈ Q ⇔ (traces(P) = traces(Q) ∧ divergences(P) = divergences(Q))
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Fig. 2. Animating the CSP buffer

We can prove a weak bisimulation between P and Q by showing that these processes have
the same traces and divergences. We do not need to consider the refusals because this level
has no nondeterminism. Alternatively, we could consider nondeterminism similarly to that
shown in ğ4.3 by introducing a distinguished event that the semantic model abstracts. In
this case, the refusal information is vital, and this particular result would no longer hold.

6 ANIMATION BY CODE GENERATION

This section shows how ITrees can be animated by code generation and develops a command
called animate. This command can be used to execute and probe the behaviour of an
ITree-based model. In contrast to the execute command of ğ4, it is interactive and requires
that the user selects a visible event in order to proceed.

The Isabelle code generator [35, 36] can be used to extract code from (co)datatypes,
functions, and other constructs to functional languages like SML, Haskell, and Scala. Although
ITrees can be inĄnite, this is not a problem for languages with lazy evaluation so that we
can step through the behaviour of an ITree. Code generation then allows us to support the
generation of veriĄed animators and provides a potential route to correct implementations.

The main complexity is a computable representation of partial functions. Whilst A ↦→ B is
partly computable, we can only apply it to a value and see whether it yields an output. For
animations and implementations, however, we typically want to determine a menu of enabled
events for the user to select. Moreover, calculating semantics for CSP operators like ✷ and ∥
requires us to compute with partial functions. For this, we need a way of calculating values
for functions dom, ◁, and ⊕, which is impossible for arbitrary partial functions. Instead, we
need a concrete implementation and a data reĄnement [35]. We choose associative lists as
an implementation, A ↦→ B ≈ (A × B) list, which limits us to Ąnite constructions. However,
it has the beneĄt of being easily printed, making the animator easier to implement. ITrees
then have the following representation in Haskell:

data Pfun a b = Pfun_alist [(a, b)];

data Itree a b = Ret b | Sil(Itree a b) | Vis(Pfun a (Itree a b))
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Each of the semantic deĄnitions detailed in sections 4 and 5, including corecursive functions,
automatically map to Haskell functions operating over this structure. For constructs like inp
(DeĄnition 5.2), there is more work to support code generation since these can potentially
produce an inĄnite number of events which an associative list cannot capture. Consider,

for example, inp c {0..}, for c : N
Δ

−→E , which can produce any event c.i for i ≥ 0. We can
code generate this by limiting the value set to be Ąnite, for example, {0..3}. Then, the code
generator maps this to a list [0, 1, 2, 3], which is computable.

The code for the animator steps through 𝜏s until it reaches either a ✓x , in which case
we terminate, or a Vis, in which case the user can choose an option. Since divergence is a
possibility, we limit the number of 𝜏s that will be skipped. The user can continue or abort
the animation after n = 20 𝜏 steps. If an empty event choice is encountered, the animation
terminates due to deadlock. Otherwise, it displays a menu of events, allows the user to
choose one, and recurses following the given continuation.

We only need to augment the generated code for a particular ITree with the animator
code to generate an animator. We develop a command animate, which inputs a deĄned
ITree and performs an animation. The command (1) runs the code generator, (2) adds the
animator code, (3) compiles the code using the Glasgow Haskell Compiler (GHC), and (4)
Ąnally runs the binary on a console. This required us to modify Isabelle to add functionality
in the PIDE editor interface to start the animation. Technically, this is provided by a new
Şactive areaŤ5, which is a clickable part of the Output tab in the interface. When the user
places their cursor over the animate command in the editor, a ŞStart animationŤ link is
shown, which the user can click to start the animation using the jEdit command-line console.

Fig. 2 shows an animation of the CSP buffer in ğ5, with the possible inputs limited to
{0..3}. We provide an empty list as a parameter for the initial state. The animator tells us
the events enabled and allows us to pick one. If we try to pick a value that is not enabled,
the animator rejects this. Since lenses and expressions can also be code generated, we can
also animate the Circus version of the buffer with the same output.

As a more sophisticated example, we have implemented a distributed ring buffer adapted
from the original Circus paper [64]. The idea is to represent a buffer as a ring of one-place
cells and a controller that manages the ring.

It has the following form:

(Controller |[ {rd .c,wrt .c | c ∈ N} ]| ( ||| i ∈ {0..maxbuf } • Cell (i))) \ {rd .c,wrt .c | c ∈ N}

where rd .c and wrt .c are internal channels for the controller to communicate with the ring,
hidden in the overall process network. The individual cells do not communicate with each
other, hence the use of interleaving |||, but the controller communicates with all cells. Channel
rd .c is used to read the current value of cell c, and wrt .c is used to write a value. Each cell
is a single place buffer with a state variable val and has the following form:

Definition 6.1 (Ring Buffer Cell).

Cell (i) ≜ wrt?v → val := v # loop (wrt?v → val := v ✷ rd!val → Skip)

Initially, the cell is empty, awaiting a write command over channel wrt. Following this, the
cell can either overwrite its current value or advertise its current value over channel rd.
The cells are arranged through indexed interleaving, and the buffer size is maxbuf + 1. The
channels input and output communicate with the overall buffer.

5Please see src/Pure/PIDE/active.ML in the Isabelle source code for more information.
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The controller has four state variables: (1) sz :: N, the current buffer size; (2) rtop :: N a
pointer to the next available cell; (3) rbot :: N the index of the Ąrst value stored; (4) cache ::

∫
the cached Ąrst element of the buffer. The controller is described using the following actions:

Definition 6.2 (Ring Buffer Controller).

InputCtrl ≜
sz < maxbuf & input?x →(

sz = 0 & sz := 1 # cache := x
✷ sz > 0 & wrt .rtop!x → sz := sz + 1 # rtop := (rtop + 1)mod maxring

)

OutputCtrl ≜

sz > 0 & output!cache →

©«
sz > 1 & rd .rbot?x →

sz := sz − 1 # cache := x #
rbot := (rbot + 1)mod maxring

✷ sz = 1 & sz := 0

ª®¬
Controller ≜ sz := 0 # rtop := 0 # rbot := 0 # loop (InputCtrl ✷ OutputCtrl)

InputCtrl represents a controller input. An input can be accepted if the size is less than
maxbuf . If the buffer is empty (sz = 0), the element is placed in the cache. Otherwise, it is
sent to the next available cell at rtop. The index rtop is updated using modulo arithmetic
to characterise the circular nature of the buffer. OutputCtrl represents a controller output.
If the buffer is non-empty, then the buffer can output the cached head. Following this, if
there is more than one element, the controller retrieves the element at rbot, decreases the
buffer size, updates that cache, and Ąnally updates the rbot index. If the buffer only had one
element, there is no buffer head to cache. The overall behaviour of the controller is to start
empty, with both rtop and rbot pointing to index 0, and then to iterate a choice between
InputCtrl and OutputCtrl.

We tested the animator on the ring buffer, using an Apple M3 Pro with 18GB of memory
as the platform. We set up the example so that we can vary maxbuf to observe the scalability
of the animator. On this platform, we can efficiently animate this example for a relatively
small ring of 100 cells, with a similar output to Figure 2, which is a very satisfying result.

We were also able to animate with a much larger ring with 850 cells, which requires about
3 seconds to compute the next step. With 5000 cells, the animator takes around 50 seconds
to calculate the next transition. The highest number of cells we could reasonably animate is
around 2000. However, we have not attempted to optimise the code, and several data types
could be replaced with efficient implementations to improve scalability. Thus, this approach
to animation and potential implementation is very promising.

7 SYSTEM MODELLING WITH Z-MACHINES

In this section, we apply our ITree and Circus library to create a formal modelling language
and tool called ŞZ-MachinesŤ, which is in the style of the Z speciĄcation language [58, 65],
and B method [1]. Z-Machines are a form of abstract machine, similar to B machines [1], that
use our Z toolkit as the underlying expression language. Z-Machines act as a case study for
our ITrees library by demonstrating its applicability in creating accessible veriĄcation tools.
We implement several Isabelle commands for creating Z-Machine artefacts and a technique
for verifying invariants. We illustrate these commands using a variant of the buffer example
(Example 2.1), which is bounded to a speciĄc size and can be considered as a speciĄcation
for the ring buffer in ğ6.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: August 2024.



Unifying Model Execution and Deductive Verification with Interaction Trees in Isabelle/HOL 31

A Z-Machines consists of a set of operations that act over a state, formally:

Definition 7.1 (Z-Machine). A Z-Machine consists of (1) a state space type S ; (2) a
set of state invariants Pi : S ⇒ B; (3) a set of operations Opj : Tj ⇒ ((), S)htree, each
parametrised by Tj ; and (4) an initialisation I : S .

Operations are used to update the value of state variables deterministically and can optionally
take inputs and produce outputs. Each operation in a Z-Machine is given a semantics as a
parametric homogeneous Kleisli tree. The parameters are used to encode inputs and outputs
for the operation. The operations are composed in an action system [5] to produce the
overall Z-Machine ITree, which can be veriĄed and animated.

We consider each command to create the Z-Machine components and their formal semantics.
Each command is interpreted as a set of updates on the Isabelle document model, which
creates deĄnitions and other formal artefacts.

We use the zstore command (ğ4.1), to create the bounded buffer state space:

Example 7.2 (Bounded Buffer Store).

consts MAX_SIZE :: "nat" and VAL :: "int set"

zstore Buffer =

sz :: "nat"

buf :: "int list"

where

"sz = length buf"

"sz ≤ MAX_SIZE"

This creates two variables: sz and buf , and links them using an invariant. Variable sz
represents the size of the buffer, and buf is its contents. Using the consts command, we
also declare two abstract constants. MAX SIZE characterises the maximum size of the
buffer. VAL is a Ąnite set of integers representing the possible values we can insert into the
buffer. These abstract constants can be assigned concrete deĄnitions later for animation and
veriĄcation. The store also has two invariants, requiring (1) that the buffer size is the same
as the length and (2) that the size is no greater than the maximum size.

Operations are deĄned using the zoperation command, which has the following syntax:

Definition 7.3 (Operation Syntax).

param ::= name ∈ term

operation ::= zoperation name params param∗ pre term update assignment

An operation consists of a name, a set of parameters, a precondition term, and an update.
A parameter consists of a name and a term, characterising the set of values from which
the parameter is drawn. We use this set to bound the possible inputs to an operation to
allow animation, similar to ğ6. The precondition acts as a guard for the operation, which
must be satisĄed for the operation to be executed. The update is a sequence of simultaneous
assignments to variables in state space.

As part of generating the Z-Machine semantics, each operation is assigned a unique event

channel, Opc
j : Tj

Δ

−→E , sharing the same name and as part of a generated channel type E .

The semantics of an operation is shown below:
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Definition 7.4 (Operation Semantics).
u
wwv

zoperation Opj

params x1∈A1 · · · xn ∈An

pre P
update𝜎

}
��~ =

(
Opj ≜ Opc

j ?®x ∈
®A | P (®x) → 𝜎 (®x)

)

where ®x = (x1, · · · , xn) and ®A = A1 × · · · ×An

Here, A × B denotes the Cartesian product of the two sets A and B. An operation accepts

parameters that inhabit the corresponding parameter sets ( ®A) and satisĄes the precondition
P in the context of the current state. The operation update is executed when such parameters
are provided, with the parameters as inputs (®x). Parameter sets are speciĄed as expressions,
meaning the acceptable parameters can vary from state to state. When the Z-Machine is in a
state that satisĄes the precondition P of an operation for a particular valuation of parameters
(®x), the event Opc

j .®x is enabled. If the current state cannot satisfy the precondition, an

operationŠs behaviour is Stop.
Below, we deĄne three operations for the bounded buffer:

Example 7.5 (Buffer Operations).

zoperation Input =

params v∈VAL

pre "sz < MAX_SIZE"

update "[ sz' = sz + 1, buf' = buf @ [v] ]"

zoperation Output =

params v∈VAL

pre "sz > 0" "v = hd buf"

update "[ sz' = sz - 1, buf' = tl buf ]"

zoperation Size =

emit sz

The Ąrst operation, Input, adds a value to the buffer. It has one parameter, v, drawn from
VAL, to enumerate the possible events. The precondition requires that the size is strictly less
than the maximum size. The update increases the size and adds the new value to the buffer.
The second operation, Output, likewise has a single parameter, but this time represents an
output. The precondition requires that the buffer is non-empty and that the output value is
at the bufferŠs head. The update decreases the size and removes the head from the buffer.
The third operation, Size, allows us to view the current size of the buffer. It uses the keyword
emit, which is shorthand for an operation of a single output parameter equal to the given
expression, in this case sz.

Once semantics have been assigned for each of the operations, we can give the overall
semantics for the Z-Machine itself:

Definition 7.6 (Z-Machine Syntax and Semantics).

zmachine ::= zmachine name init term operations name∗
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Fig. 3. Animating the Bounded Buffer Z-Machine

u
v

zmachine M
init 𝜎

operations Op1 · · ·Opn

}
~ = (M ≜ ⟨𝜎⟩ # loop(Op1 ✷ Op2 ✷ · · · ✷ Opn))

A Z-Machine consists of an initialisation assignment (𝜎) and a set of operations. The Z-
Machine initialises the state using 𝜎 and then enters a loop where the user can choose an
enabled operation for execution. Below is the Z-Machine for the bounded buffer:

Example 7.7 (Bounded Buffer Z-Machine).

zmachine Bounded_Buffer =

init "[sz' = 0, buf' = []]"

operations Input Output Size

This Z-Machine initialises sz and buf , and collects together the operations.
Z-Machines can be animated using the animate command developed in ğ6, provided each

operation draws parameters from Ąnite sets or enumerable types. If this is not the case, the
code generator will give an error message, and similarly, if any operation uses an undeĄned
abstract constant. An example animation is shown in Figure 3. The animator displays the
enabled operations and parameter combinations at each point, and the user can select one.
Since the animator needs to enumerate all possibilities, we supply a Ąnite set VAL and limit
the buffer to size 3.

VeriĄcation of Z-Machines involves identifying invariants that characterise speciĄc critical
properties. We then need to show that the initialisation establishes the invariants and that
each operation preserves them, meaning that the machine satisĄes them in any reachable
state. Using the weakest preconditions, we can calculate the necessary conditions for an
operation to maintain invariants. SpeciĄcally, we need to show that P → wp Opj P for
each operation. The weakest precondition calculation results in proof obligations (POs),
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which must be discharged to complete the veriĄcation. We provide a proof method called
zpog full (Z proof obligation generator), which generates the set of POs required for an
operation to satisfy the speciĄcation. This method implemented by application of the weakest
precondition laws using the simpliĄer (see ğ4.5), and by IsabelleŠs automated deduction
methods. The POs can typically be discharged with the help of the sledgehammer tool.
Below, we verify that the bounded buffer Z-Machine satisĄes the invariants.

Example 7.8 (Bounded Buffer Invariant Verification).

lemma Init_correct: "Init establishes Buffer_inv"

by zpog_full

lemma Size_correct: "Size(n) preserves Buffer_inv"

by zpog_full

lemma Input_correct: "Input(v) preserves Buffer_inv"

by zpog_full

lemma Output_correct: "Output(v) preserves Buffer_inv"

apply zpog_full

apply (metis diff_le_self dual_order.trans)

done

Here, C establishes P is short-hand for the Hoare triple {True }C {P }, and C preserves P is
short-hand for {P }C {P }. The proofs proceed by application of the weakest precondition
laws by zpog full. For the Ąrst three proofs, the simpliĄer can solve the POs automatically.
For the fourth proof obligation, some arithmetic reasoning is required, which we automate
with a call to sledgehammer. This produces a proof using the resolution prover metis and
several laws relating to the order on natural numbers.

8 RELATED WORK

InĄnite trees are a ubiquitous model for concurrency [61]. In particular, ITrees can be seen
as a restricted encoding of MilnerŠs synchronisation trees [46, 47, 63]. In contrast to ITrees,
synchronisation trees allow multiple events from each node, including visible and 𝜏 events.
They have seen several generalisations, most recently by Ferlez et al. [21], who formalise
Generalized Synchronisation Trees based on partial orders, deĄne bisimulation relations [22],
and apply them to hybrid systems. Our work differs because ITrees use explicit computation
and corecursion, but mutual insights will likely be gained.

ITrees [66], and their mechanisation in Coq, have been applied in various projects as a
way of deĄning abstract yet executable semantics [41, 44, 45, 57, 70Ű72]. They have been
used to verify C programs [41] and an HTTP key-value server [44]. Chappe et al. [16]
introduce Choice Trees as a conservative extension of ITrees. The main innovation is to add
nondeterminism support through constructors brS and brD, which replace the Sil constructor.
Whereas Sil is deterministic, these two constructors allow a Ąnite number of internal choices.
Constructor brS represents ŞsteppedŤ branching, where a 𝜏 transition accompanies the
resolution of an internal choice. In contrast, brD is ŞdelayedŤ branching, where deadlocked
(ŞstuckŤ in [16]) branches are eliminated from the choice. The latter choice is similar to the
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external choice since deadlocked branches are likewise pruned but more closely resembles
angelic nondeterminism [53].

The Coq mechanisation of ITrees uses features unavailable in Isabelle, notably type
constructor variables (rank-n polymorphism). Though this is an apparent weakness, the
quest to implement ITrees in the more restrictive type system of Isabelle/HOL has entailed
several unique advantages. In [66], the Vis constructor has two parameters, rather than one,
for the output event e : E A and k : A → itree E R, a total function, for the continuation.
There, E is a type constructor representing the output sent to the environment, which is
parametric over A, the type of answers received back from the environment. In contrast,
our work instead (1) Ąxes a non-parametric event universe E ; (2) uses a partial function of
type E ↦→ (E,R) itree; and (3) uses prisms [52] to characterise channels.

Our one-parameter version of Vis is, in some respects, more general than the two-parameter
one since it allows a variety of communication paradigms and a natural encoding of external
choice [13]. In [66], the focus is on a communication scheme where (1) the process sends an
output to the environment in E A, and (2) the environment then answers back with a value
in A. In CSP, such a scheme can be encoded either with a single event (e.g. c!y?x → P (x)),
where the outputs and inputs are present as parameters, or via two separate events for the
input and output communication (e.g. c!y → d?x → P (x)).

Additionally, Coq ITrees [66] only permit choices to be made by the environment when
the answer is returned, not in the output event itself. CSPŠs external choice operator has yet
to be encoded in Coq ITrees, and [16] has only nondeterministic (i.e. internal) choice. Such
an encoding could be achieved via a special event in choose : E I to represent that the ITree
is asking the environment to resolve a choice, with I being the possible inputs. Similarly,
modelling deadlock could use a special event deadlock : E ∅ with an empty return type. This
disadvantage of such an encoding is that a custom notion of equality is required to reproduce
algebraic laws such as P ✷ stop = P. We see our natural encoding of external choice as
the central contribution of our work. At the same time, this additional generality comes at
a cost since the interpretation combinator of the original works [66], which harnesses the
output-input pattern to interpret events as monadic actions, requires more effort to encode.

The use of partial functions in our work means that external choice operators can be
straightforwardly implemented by the composition of the underlying choice functions (e.g.
using P ⊙ Q). This, in turn, means that the algebraic properties of the choice combinator
lift to ITrees directly and allow Ćexible algebraic semantics. One technical exception to the
generality of our work is the situation where an empty answer is used (A = ∅), which in
the Coq work allows a Vis that performs an output but has no continuations. Isabelle/HOL
has no empty type since all types must exhibit one element and cannot support empty
answers. This behaviour requires a slightly different encoding where the output is sent,
and the process immediately deadlocks, though this requires two Vis operators rather than
one. Aside from this situation, we can usually encode the two-parameter version Vis e k as

[] x ∈dom(matche) → k (matche (x)) with e : A
Δ

−→E .
A further beneĄt of having a Ąxed E is that ITrees become simpler semantic objects. For

example, traces can be represented simply as lists of events rather than the bespoke type
used in [66]. These are amenable to Ąrst-order automated proof [9], which has allowed us to
develop our library quickly and with minimal effort.

Previously, we have demonstrated an Isabelle-based theory library and veriĄcation tool
for reactive systems [26, 29]. This supports veriĄcation and step-wise development of
nondeterministic and inĄnite-state systems based on the CSP [13, 38] and Circus [64]

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: August 2024.



36 Simon Foster, Chung-Kil Hur, and Jim Woodcock

process languages. This includes a speciĄcation mechanism called reactive contracts and
a calculational proof strategy. Extensions of our theory support reasoning about hybrid
dynamical systems, which makes it ideal for verifying autonomous robots.

The Z notation has been implemented in a HOL-based theorem prover several times,
notably in ProofPower-Z [4] and HOL-Z [14]. HOL-Z is also implemented in Isabelle/HOL and
includes a parser for Z schemas, formal semantics, and proof support. Our implementation
is less advanced, does not have the Z schema calculus, and uses types rather than sets to
characterise the hierarchy of data structures in Z. This aids proof automation through the
type system but at the expense of Ądelity to the Z standard. Nevertheless, our implementation
of Z-Machines provides proof and animation support, provided that a Z model can be encoded
in our restricted subset.

Several tools are available to analyse CSP processes, including the FDR reĄnement
checker [32], and the PAT model checker [59]. These tools offer a more automated approach
to analysis than formal proof, though they require the generation of explicitly labelled
transition systems, which is hampered by the state explosion problem. FDR has a simple
tool, ProBE, for exploring process behaviour by stepping through their deĄnitions. PAT
has a more feature-rich CSP simulator that allows users to perform various simulation
tasks: (1) Complete Ąnite-state generation based on the execution graph. (2) Automatic
random simulation. (3) User interactive simulation with step-by-step execution and trace
display and replay. These tools are valuable complements that co-exist in the veriĄcation
ecosystem. Our focus is on symbolic analysis of processes using proof, though our ITree
animator can be applied to search-based analysis, similar to model checking. Moreover, tools
like sledgehammer greatly increase automation, making veriĄcation via proof a realistic
possibility.

Recently, the set-based theory of CSP has also been mechanised in the Isabelle-based
HOL-CSP tool [18, 60], which is also based on the failures-divergences model. They have used
their library to verify the deadlock-freedom of the famous Şdining philosophersŤ example for
an arbitrary number of philosophers N ≥ 2. A further application is modelling and verifying
autonomous vehicles, including the continuous dynamics [18]. This work is complementary
to our library since HOL-CSP is not limited to deterministic constructions, but on the
other hand, HOL-CSP process speciĄcations are not executable. We hope to combine these
libraries to realise these mutual beneĄts.

9 CONCLUSIONS

In this paper, we have demonstrated how Interaction Trees [66] can be used to unify animation
and deductive veriĄcation of software models, from high-level system models to lower-level
program models, in Isabelle/HOL. Our approach harnesses the codatatype package [8] to
encode inĄnite transition systems, and the code generator [35, 36] to provide animation
and execution. Our results indicate that the technique provides both tractable veriĄcation,
with the help of IsabelleŠs proof automation [9], and efficient execution. Though ITrees
are intrinsically deterministic, we have shown how to model nondeterministic behaviour
using special events. We applied our technique to simple imperative programs, the CSP and
Circus process languages [50], and to an abstract machine notation based on Z [58]. We note,
however, that it applies to various other process algebraic and modelling languages.

Our work has many practical applications in producing veriĄed simulations, and we have
several associated lines of ongoing work. In a parallel paper [69], we have used our ITree
library to mechanise semantics for the RoboChart language [48], a formal UML-like language
for modelling robots with denotational semantics based on CSP. However, this semantics
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does not yet consider the real-time operators, which will require us to consider discrete
time, which we believe can be supported using a dedicated time event in ITrees, similar to
tock-CSP [55]. This will build on our colleagues.Š work with ✓-tock [6], a new semantics for
tock-CSP.

Separately, we have also used our Z-Machine formalism to give a simpliĄed semantics to
RoboChart state machines [68], for the purpose of compositional invariant-based veriĄcation,
including deadlock checking. We plan to link Isabelle/HOL with the Eclipse-based RoboTool
modelling environment to allow seamless veriĄcation and feedback for software engineers.
This link will open up a pathway from graphical models to verify implementations of
autonomous robotic controllers. In concert with this, we will also explore links to our other
theories for hybrid systems [24, 49], to allow veriĄcation of controllers in the presence of a
continuously evolving environment.

The work described in this paper has also been used pedagogically to support two
courses on assured software engineering, one for third-year undergraduates and one for
external industrial participants. Our courses use our implementation of imperative programs
and Hoare logic to teach program veriĄcation and Z-Machines to teach Z-based formal
speciĄcation. The beneĄt of this approach is that students need only learn a single tool
(Isabelle) to support the different pedagogical goals. Moreover, IsabelleŠs document model
has allowed us to create DSLs that support appropriate abstraction levels to minimise the
technical detail we expose to students. Our studentsŠ feedback has been universally positive,
and we plan to report further on this when we have more data.

In the future, we plan to link ITrees to our formalisation of formally reactive con-
tracts [26, 29], which provides both denotational semantics for Circus and a reĄnement
calculus for reactive systems, building on our link with failures-divergences. We will also
further investigate the failures-divergence semantics of our ITree process operators and
determine whether failures-divergences equivalence entails weak bisimulation. We will also
continue to expand our imperative program veriĄcation tool by considering more advanced
concepts, like memory management and associated separation logic. We could also consider
the generation of imperative code, using a suitable mechanised semantics for a language
target. Finally, we will provide a more user-friendly interface for our simulator, as found in
animators like FDR4Šs probe tool [32] and ProB [43] for Event-B.
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