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the context of spatial choice modelling using high resolution
mobility data
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ABSTRACT
Accounting for similarity among alternatives is important for hav-
ing unbiased estimates and behaviourally reasonable substitutions.
Capturing similarity in a spatial context is a challenging task and the
common approach of discretising space into a number of disjoint
nests generally leads to uncaptured spatial correlations. On the other
hand, relying onmore complex error structures quickly leads to com-
putational issues. In the present paper, we propose an alternative
approach, where a Cross-Nested Logit (CNL) modelling framework
with a flexible correlation structure is used, where space is treated
as continuous, while the allocation can be parameterised based on a
range of similarity factors. The proposed structure is applied in the
context of mode and destination choices of shopping trips using
a smart-phone GPS panel survey from Leeds, UK. Results indicate
that in addition to the improvements in model fit, the proposed CNL
specification is able to uncover interesting findings about individual
mobility behaviour.
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1. Introduction

Individuals produce trips in order to participate in activities and fulfil their everyday needs
(Bhat and Koppelman 2003). The location and accessibility of those activities play an impor-
tant role in the trips that are produced. For example, individuals with car availability in
their household could be more likely to choose a major suburban shopping centre with
an abundance of parking spaces to cover their grocery shopping needs. On the other hand,
individuals with no available car might choose a nearby shopping destination or a shop-
ping destination in the city centre with good public transport accessibility. The activity
locations and the modes available to access them could thus have important environmen-
tal, social and economic implications (Brundtland Commission 1987). Understanding the
relative impacts of different factors on the mode and destination choices is therefore an
important first step for formulating sustainable planning andpolicymeasures – for instance
devising targeted measures to improve accessibility and reduce car dependency.
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Destination choice models are of paramount importance for demand forecasting, as
they provide insights on individual preferences for certain locations depending on the
time of day, activity purpose, and mode availability, amongst others. Much of the work
in destination choice modelling focuses on discretionary activities (shopping, leisure, etc.),
since those activities give the individual the freedom to choose from a range of possible
locations on a day-to-day basis. However, given the large numbers of available alterna-
tives and high level of heterogeneity associated with choices, modelling the choice of
destinations for discretionary activities presents a number of significant challenges for
the transport system. The choice of transportation mode is also considered to play an
important role in the choice of destination and vice versa. Transportation models used in
practice often consider destination choice to precede mode choice, commonly referred
to as steps 2 and 3 in a traditional 4-step demand model (Ortuzar and Willumsen 2011).
There is empirical evidence, however, suggesting that the direction of causality between
the two choice dimensions is less than clear and it could depend on trip characteristics,
level of service variables and individual socio-demographics (Chakour and Eluru 2014;
Keya et al. 2021). Since there is not a general consensus as to which choice dimension
comes first, it would be safer to examine the two decision processes in a joint fashion
acknowledging the complex interrelations between them (Ben-Akiva 1973; Ozonder and
Miller 2019).

Mathematical travel behaviour models relating to questions of where (destination
choice models) and how (mode choice models) individuals travel have been the primary
tool for quantifying the relative impact of factors affecting individual behaviour and fore-
casting future demand for the transport system and related services. Early modelling
applications in spatial contexts focused on the use of spatial interaction models, mainly
aggregate Gravity models (Haynes and Fotheringham 1985), which draw analogies from
Newton’s law of gravity, assuming that, all else held equal, larger (in terms of population,
employment opportunities, etc.) and closer (in terms of distance, travel time or cost) areas
are going to attract more trips. Since its inception, the Gravity model has been exten-
sively used in aggregate transport models (Ortuzar and Willumsen 2011) and studies of
Regional/Urban Economics (Duranton, Henderson, and Strange 2015), in general. A non-
parametric extension of the gravity model, called the radiation model, was proposed by
Simini et al. (2012).

Daly (1982) formally extended the specification of the Gravity model by re-formulating
it as a Multinomial Logit (MNL) model (McFadden 1973) and making it applicable for dis-
aggregate analysis. In that specification, the utility function is split into variables of travel
impedance and variables measuring the attraction of a destination, called size variables.
Due to the vast number of elemental locations, e.g. specific stores in the context of shop-
ping destinations, some form of aggregation usually needs to take place, such as at the
level of traffic analysis zones. Size variables are used in order to best represent the utility of
elemental alternatives within the aggregated destination alternatives (Kristoffersson, Daly,
and Algers 2018). Since then, most studies focusing on destination choice have relied on
structures belonging to the family of random utility maximisation (RUM) models, such as
MNL, and have relied on Daly’s specification with the inclusion of size variables.

One of the main principles governing the behaviour explained by an MNL model is the
IIA (independent and irrelevant alternatives) principle. This postulates that no unobserved
correlation exists among alternatives in the choice set, hence a change in the attributes
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of one alternative will proportionately affect the demand for the other alternatives in the
choice set. As in many other areas of application, this assumption is unlikely to be valid in
the context of destination choice, or indeed joint mode and destination choice. The key
issue then relates to how to best capture the correlation among alternatives in an efficient
way.

Capturing unobserved correlation among alternatives requires the use of further exten-
sions of the MNL model. One approach involves the addition of the same multivariate
random term in the utility function of alternatives that are assumed to share common
unobserved characteristics. That model, known as the Error Components (EC) model, has
the limitation of requiring simulation during estimation, thus significantly increasing the
computational cost, while also often being subject to identification issues (Walker, Ben-
Akiva, and Bolduc 2007). A different approach that has the advantage of having a closed
form solution and not requiring simulation is the GEV family of models (McFadden 1978),
which includes a wide range of models, such as the Nested Logit (NL) and the Cross
Nested Logit (CNL) models (Small 1987; Vovsha 1997). The NL model (Daly et al. 1978;
Williams 1977) has arguably been the most prominent GEV specification utilising a tree
structure in which the choice set is partitioned into a finite set of nests, where each nest
consists of similar/substitute alternatives.

Similarity among alternatives is highly dependent on the choice context itself, and this
affects the decision on how to treat it. In a mode choice context, similarity among alterna-
tives such as car, public transport and walking, can depend on the level of comfort, privacy
and flexibility that eachmode alternative can provide to the decisionmaker. Inmany cases,
the use of a simple Nested Logit structure (Daly et al. 1978; McFadden 1973; Williams 1977)
is then appropriate. A more complex topic of study when it comes to correlation between
alternatives has been that of route choice, where similarity can occurwith overlapping links
between two different route alternatives with prominent examples including the C-Logit
(Cascetta et al. 1996) and Path Size (Ben-Akiva and Bierlaire 1999) models. Similarities in a
destination choice context, however, can be much more complex, since they can depend
onpublic transport accessibility, availability of parking spots or other specific amenities, the
existence of other competing neighbouring locations, etc. and a range of characteristics
that the analyst might not be in a position tomeasure explicitly. Furthermore, there is not a
clear consensus in the literature whether similar nearby locations would increase the utility
of a destination, due to agglomeration effects, or decrease its utility due to spatial compe-
tition (Bernandin Jr, Koppelman, and Boyce 2009; Bhat, Govindarajan, and Pulugurta 1998;
Schüssler and Axhausen 2007).

A simple NL model can still be used of course, where, in the context of shopping store
choice, Suarez, Rodriguez-Poo, andMoral (2004) utilised an NL specification grouping loca-
tion alternatives into nests of hypermarkets that resulted in a better model fit than a base
MNL model and in significant substitution patterns among alternatives belonging within
the same nest. Nonetheless, the required division of destinations into mutually exclusive
nests is arbitrary, and can be counter-intuitive, with for example heightened correlation
between two destinations at opposite sides of a hypermarket cluster and with no corre-
lation between two adjacent destinations that are in different clusters. Ideally, an analyst
would thuswant to capture the correlation between each pair of destinations, as in a Paired
Combinatorial Logit (PCL) model (Chu 1989; Koppelman and Wen 2000; Pravinvongvuth
and Chen 2005), which is a simplified specification of a CNLmodel inwhich the unobserved
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Figure 1. Nesting structure of a PCL specification.

correlation among alternatives is captured by specifying nests for each pair of alternatives
in the choice set Figure 1. An alternative i can belong to every nest by a certain percentage
to be estimated, called the allocation parameter αi,ij, measuring the allocation probabil-
ity of alternative i into the nest with alternative j. The αs should be between 0 and 1 and
they should add up to 1.0 for every target alternative i. The Spatially Correlated Logit (SCL)
model of Bhat and Guo (2004) adapts the allocation parameters of the PCL specification
to account for similarities among adjacent traffic analysis zones (zones sharing a common
boundary) in a residential location choice context. A similar SCL-based specification was
also proposed in Bekhor and Prashker (2008) in the context of shopping destination choice.
An important limitation of those approaches is that the spatial correlations among non-
adjacent zones are assumed to be zero. The alternative of working with each possible pair
of alternatives of course quickly becomes difficult in terms of the number of parameters to
estimate.

All of the aforementioned specifications share a common characteristic; they present
some formof spacediscretisation either in the formof hypermarkets or basedonadjacency.
Discretising space, however, can quickly lead to a wide range of different potential nest-
ing structures to be examined, such as nests based on administrative area or geographical
location relative to the city centre etc. More importantly, it fails to treat space as continu-
ous, whichwould bemore behaviourally plausible, since setting arbitrary borders on amap
would hardly have any real behavioural meaning, especially in the context of discretionary
activity location choice. In fact, Tobler’s first law of geography (Tobler 1970) postulates
that in a spatial context ‘everything relates to everything else, but near things are more
related than distant things ’. The study of Sener, Pendyala, and Bhat (2011) based their
proposed methodology around that principle by addressing the main limitation of Bhat
and Guo (2004) and relaxing the allocation parameters to account for spatial correlation
across all alternatives in the choice set. Their proposed SCL specification, however, failed
to provide any significant improvements in terms of model fit compared to a base MNL
model in their empirical application. In addition to that, the main limitation of the spec-
ification in Sener, Pendyala, and Bhat (2011) is the large number of nests that had to be
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specified, which has to be equal to the number of all possible combinations of two alter-
natives in the same nest, hence J!

(J−2)!(2)! , where J is the total number of alternatives in
the choice set. In a more recent study, Weiss and Habib (2017), moving away from GEV
models, proposed an ECmodel to account for spatial unobserved correlation among alter-
natives in a park & ride location choice model. They based their methodology on Tobler’s
principle, however, due to the high computational cost, the choice set was constrained
to include only the five closest alternatives from the origin of each trip, a simplification
that is fair to assume in the context of park & ride location choice, but not behaviourally
reasonable in the context of shopping destination choice. Therefore, the first limitation
that the current study will aim to address is to propose a more efficient nesting structure
suitable for uncovering unobserved correlations among destinations without imposing an
analyst-specified grouping of alternatives, while being flexible enough to treat space as
continuous.

Our discussion so far has focused on the treatment of correlation between destinations
alone. However, as discussed earlier, destination choices are often made jointly with mode
choices, and the simultaneous modelling of the two raises additional issues in the treat-
ment of the correlation between alternatives. In the context of a jointmode anddestination
choice modelling, while most of the early applications revolved around the use of MNL
models (Adler and Ben-Akiva 1976; Richards and Ben-Akiva 1974; Southworth 1981), in
recent years more advanced modelling specifications have been put forward, mainly NL
models. Twomain approaches have been used for the specification of the nesting tree, one
withmode at the upper level and destination at the lower, known asMode-over-Destination
(MoD), and another structure where destination is at the upper level andmode at the lower
level, known as Destination-over-Mode (DoM) Figure 2. An MoD nesting structure implies
that the errors in destination choice are smaller than in mode choice, hence the choice
of destination is more deterministic than the choice of mode, while the opposite is true
for DoM. Those NL specifications are simply a way of representing the error distribution
across the choice dimensions and do not imply a sequential decision making process, as
was emphasised in Daly et al. (1978). Each one of the two aforementioned nesting struc-
tures has to be tested for a specific application context (Ozonder andMiller 2019) and there

Figure 2. NL structures for joint mode and destination choice model. (a) Destination over Mode NL
structure and (b) Mode over Destination NL structure.
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is empirical evidence suggesting that it could be influenced by the socio-cultural charac-
teristics of the sample (Kristoffersson, Daly, and Algers 2018; Newman 2010), while it could
also change through the years due to network and administration changes (Fox 2015; Fox
et al. 2014).

Independent of whether mode is nested above destination or destination above mode,
additional levels of nesting could be introduced to capture differential levels of correla-
tion between different groups of destinations, just as in a NL model for destination choice
alone. The limitations of this have already beenmade clear in our discussion of destination
choicemodels. A further limitation arises in NLmodels of multiple choice dimensions, such
as a joint mode and destination model. In such models, the NL nesting structure imposes
constraints on the captured correlation. For example, in a MoD NL specification, full cor-
relation is only explained along the mode dimension and two alternatives sharing similar
unobserved characteristics based on their location will not be nested together leading to
uncaptured correlation and hence to biased estimates. Similarly, in a DoM NL specifica-
tion, only correlation among alternatives sharing the same location can be explained. Hess
and Polak (2006) demonstrated the benefits of a CNL structure for such multi-dimensional
choice processes in a joint model of airport, airline and access mode choice for the Greater
LondonArea, where a joint alternative is allowed to belong to all three nests of the different
choice dimensions at the same time. The αj,ms in that study were fixed to 1/3 assuming an
equal proportion of each alternative falling within each nest. That study was later extend-
ing to a multi-regional context covering multiple metropolitan areas in the East Coast of
the United States (Hess et al. 2006). A CNL specification allows for a simultaneous captur-
ing of correlation across all choice dimensions and for all alternatives, where, as in a PCL
model, the degree of membership of an alternative j to a specific nestm in CNL is captured
by specifying an additional allocation parameterαj,m, with 0 ≤ αj,m ≤ 1 and�M

m=1αj,m = 1.
The advantage of CNL over PCL is that it provides amuch simpler nesting structure without
the need of specifying nests for each pair combination of alternatives. CNL models have,
however, not gainedmuch attention in destination and joint mode and destination choice
modelling, with Schüssler and Axhausen (2009) going as far as arguing that CNL models
are not suitable to be used in spatial choice modelling that usually includes a large num-
ber of alternatives, mainly due to the increased estimation time forcing the analyst to work
with only a subset of the initial dataset. To the best of the authors’ knowledge, the study
of Ding et al. (2014) and more recently the study of Fox, Patrunu, and Daly (2019) are the
only examples presenting a CNL application for joint mode and destination choices, with
a nesting structure inspired by the study of Hess and Polak (2006), where an alternative
is allowed to belong to one destination and one mode nest at the same time with αdest

and αmode, respectively, Figure 3. In the study of Ding et al. (2014), the authors followed
an approach similar to the study of Hess and Polak (2006) keeping the αj,ms fixed to 0.5 to
avoid numerical issues during estimation. Nonetheless, their proposed CNL specification
failed to outperform a base MNL and a DoM NL model in terms of model fit. In the study
of Fox, Patrunu, and Daly (2019), a grid search approach was employed for finding the best
combination of αj,ms, but still their CNL model was not able to outperform a simpler NL
model.

The aforementioned CNL specifications are still susceptible to behavioural limitations
that could be a potential cause for their low performance. Specifically, they do not take into
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Figure 3. ExistingCNLnesting structure for a jointmodeanddestination choicemodel (Dinget al. 2014).

account how the existence of neighbouring destinationsmight affect the allocation param-
eter to a specific destination nest. Therefore, the second limitation that the current study
will aim to address is to propose aCNL structure inwhich a jointmode anddestination alter-
native, instead of belonging to a mode nest and a single destination nest, belongs with a
non-zero probability to every destination nest, but still with a higher probability to its own
nest. Spatial proximity, measured as the geographical distance among destinations, can
be utilised as a means of understanding if and how the remaining destination nests might
impact the allocation parameters. In addition to that, however, several measures of prox-
imity can also be used, such as land use similarity, as two non-neighbouring destinations
with similar land use profiles can also share common unobserved characteristics.

Themain purpose of the study is to present a framework to capture the unobserved cor-
relations in the context of spatial choices in a computationally tractablemanner for contexts
where it is challenging to define the choice set. More specifically, it aims to propose a novel,
efficient and operational CNL structure for a destination and a joint mode and destination
choicemodel of shopping trips. That is achievedbyproposing anapproachbasedon spatial
similarity for parameterising the allocationparameters andby treating space as continuous,
which is a novel addition to spatial CNL models. A general term of similarity between two
destinations is being used in the current study, not limited just to geographical distance. A
flexible correlation structure is thus beingproposed able to accommodate several similarity
measures at the same time, based on different attributes of the location alternatives.

The proposed specifications are empirically tested on trips captured through smart-
phone GPS tracking and performed across the region of Yorkshire, UK. More specifically,
the purpose of the destination model is to analyse the individual behaviour for choosing
an intermediate shopping destination Sbetween a previous originO and a next destination
D, while the joint model aims to capture both the location of that intermediate shopping
destination, as well as the modes used to travel to that and to the following location.

The remainder of the paper is as follows. In the second section, the methodological
frameworksof theproposedmodel specifications are thoroughly explained,while in the fol-
lowing section, the data used in the practical application is described. In the fourth section,
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the modelling outputs and their interpretations are highlighted. Finally, in the last section
the conclusions of the study are summarised and recommendations for future research are
suggested.

2. Methodology

We start our model description by looking at the destination choice scenario alone, i.e.
without mode choice. Let us consider a situation where an individual faces a finite set of
D independent and mutually exclusive destinations with specific attributes xd for destina-
tion d in a specific journey. The utility for a destination is a latent construct comprised by
a deterministic utility Vd and a disturbance term εd . The deterministic part of the utility is a
combination of individual- and alternative-specific attributes as shown in Equation (1).

Ud = Vd + εd = f (β , xd) + εd (1)

Assumptions regarding the disturbance term can yield different specifications. In a CNL
model, we make use of a Generalised Extreme Value (GEV) distribution for the error term,
allowing us to capture flexible correlation structures between the errors. Specifically, an
alternative can now belong to multiple nests, and the unconditional choice probability for
alternative d is given by a sum over all S nests, each time using the product of the proba-
bility of choosing an alternative within nest s and the conditional probability of choosing
alternative dwithin nest s as shown in Equation (2). The choice probability of nest s and the
choice probability of alternative d conditional on choosing nest s are shown in Equations (3)
and (4) (Train 2009):

P (d) =
S∑

s=1

P (s) P (d | s) (2)

P (s) = (�j∈As(αsj eVj)
1
λs )λs

�S
k=1(�j∈Ak (αkj eVj)

1
λk )λk

(3)

P (d | s) = (αsd eVd)
1
λs

�j∈As(αsj eVj)
1
λs

(4)

where As is the set of alternatives in nest s, P (d) is the unconditional choice probabil-
ity of alternative d, P (s) is the probability of choosing nest s, P (d | s) is the conditional
probability of choosing destination d in nest s, λs is the structure parameter for nest s,
and αsd is the allocation parameter of alternative d for nest s. We have that 0 < λs ≤ 1∀s,
0 ≤ αsd ≤ 1∀d, s, and ∑S

s=1 αsd = 1∀d.
We seek to allow differential patterns of substitution between destination alternatives.

The ‘traditional’ way of doing this would be to specify a PCL model, such as the one pro-
posed in Sener, Pendyala, and Bhat (2011), which uses one nest for each possible pair of
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alternatives, making themodel computationally challengingwith evenmoderate numbers
of alternatives (see Figure 1). In our proposed CNL specification for the destination choice
model, we instead define as many nests as there are destinations, such that S = D and as
a result the number of nests just grows linearly with the number of alternatives. The key
question now relates to the specification of the allocation parameters in a way that would
allow us to capture correlation betweenmore than two alternatives at a time, as potentially
all J alternatives have a non-zero allocation to a given nest, adding flexibility over the PCL
model. Rather than freely estimating theseparameters, or fixing them to a specific value,we
define the allocation parameters to be a function of a range of C spatial similarity measures
among the destinations, such as the euclidean distance, the difference between land-use
attributes etc., here denoted as a range of symmetrical similarity matrices Dc. By parame-
terising the allocation parameters as a function of observed characteristics, we are further
able to put a structure on the correlation that drives the model, linking it to observed facts
about the alternatives.

A similarity matrix Dc contains cells, rsd capturing the similarity between destinations
that now corresponds to nests s (rows) and all the other destinations d (columns). The diag-
onal elements denote the similarities of destinations with their own nest, labelled here as
the home nest. The allocation is thus a function of a range of similarity factors along with
their estimated parameters with each destination alternative belonging to every nest with
a non-zero probability, captured by the estimated αsd ∈ A, where A is the matrix of alloca-
tionparameters Figure 4. In order to achieve that, theproduct of rcsd ∈ Dc and the respective
γc parameter was normalised using a logit transformation as defined in Equation (5).

αsd = e�C
c=1γcr

c
sd

�j∈D e�C
c=1γcr

c
sj

(5)

where the additional γc parameter captures the impact of similarity factor c from its respec-
tive similarity matrix Dc. If all γc = 0, each alternative falls into each nest with the same
proportion.

A simplified example is presented in the following where a matrix of straight distances
Ddist among five destinations is computed, where the rdistsd are measured in km. The dis-
tance matrix Ddist is then multiplied by the γdist parameter. Assuming that γdist = −1, the
logit transformation of the product yields thematrixA of the allocation probabilities αsd. In
A, the columns represent the destination alternatives d, while the rows represent the nests
s. The sum of each column is equal to 1.0 and the diagonal elements have the highest αsd

per column. Furthermore, the most isolated destination, namely alternative 3, which has
a mean distance of 4 km from the remaining destinations, has the highest diagonal ele-
ment, α3,3, in A. In contrast, alternative 5 has the lowest mean distance from the remaining
destinations of 2.1 km and α5,5 is the lowest diagonal element in A.

Ddistγdist =

⎛
⎜⎜⎜⎜⎝

0 2 6 3 0.5
2 0 7 5 2
6 7 0 2 5
3 5 2 0 3
0.5 2 5 3 0

⎞
⎟⎟⎟⎟⎠

γdist
logit−−−→
trans.
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Figure 4. Proposed CNL nesting structure for destination choice model.

A =

⎛
⎜⎜⎜⎜⎝

0.5574 0.1059 0.0022 0.0401 0.3373
0.0754 0.7823 0.0008 0.0054 0.0753
0.0014 0.0007 0.8730 0.1090 0.0037
0.0277 0.0053 0.1181 0.8054 0.0277
0.3381 0.1059 0.0059 0.0401 0.5561

⎞
⎟⎟⎟⎟⎠

The role of γdist is to dictate what percentage of the alternative will be allocated to the
home nest and what percentage to the neighbouring ones. In the example above, we can
expect that destinations located closer to the home nest will be more correlated, therefore
we should expect γdist < 0. If γdist = 0 , the alternatives would be equally allocated across
all nests. Finally if γdist > 0, the alternatives would be allocated with a higher probability
to the nests that are located at the largest distance, which is not behaviourally sensible.
In order to guarantee their negative sign and avoid the latter case, the γdist parameters
can be specified using a negative exponential transform, as γdist = −eγ ∗

dist . The aforemen-
tioned framework can be expanded with the addition of further similarity matrices with
respective estimable parameters that can be negative, as the example above, or positive
depending on whether the corresponding matrix is capturing dissimilarity/distance (the
larger the distance the higher the dissimilarity) or similarity.

Although the above specification on its own might be sufficient enough to capture
continuous spatial correlation among alternatives in the destination choice model, the
joint mode and destination model would require further adjustments to simultaneously
capture correlations among all choice dimensions. In that context, each alternative repre-
sents a joint choice of a destination d and a mode m. To adapt the previously described
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Figure 5. Proposed CNL nesting structure for the joint choice model.

formulation in that joint choice context, the nesting structure is defined as depicted in
Figure 5 including nests for the destination as well as the mode choice component. Each
jointmode-destination alternative is allocated into all of the destination nests, as previously
described, and into one mode nest. The new combined allocation parameters still need to
add up to 1.0, such that

∑S
s=1 α

joint
sd + α

joint
mode = 1∀d . This is achieved by scaling down the

distance-based allocation parameters to each destination nest (see Equation (5)), with

α
joint
sd = α

joint
dest αsd (6)

and

α
joint
mode = 1 − α

joint
dest (7)

We only require the additional constraint that 0 ≤ α
joint
dest ≤ 1 , which can be achieved via a

logistic transform, thus estimating α
joint∗
dest and using the transform

α
joint
dest = eα

joint∗
dest

eα
joint∗
dest + 1

(8)

In the case of a joint mode-destination model, the gammac parameters can be speci-
fied as mode-specific in order to capture the impact of a similarity measure for a specific
mode. That would for example capture how similar an individual perceives a destination
alternative with others when travelling there with a specific mode.

We now turn to the specification of the utility functions themselves. In order to account
for shopping destination attraction and to combine that with mode preferences, the spec-
ification used in Kristoffersson, Daly, and Algers (2018) based on the size variable specifi-
cation in Daly (1982) was utilised. According to this, the systematic utility Vmd for mode
m and destination d, presented in Equation (9) (linear-in-the-parameters in that case), has
three components: a component capturing the sensitivities related to the level of ser-
vice (LOS) variables depending on the mode and destination, a component capturing the
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destination’s quality, and a component capturing the destination’s attraction.

Vmd =
∑
l∈L

blxlmd +
∑
q∈Q

bqyqd + φlog(Sd) (9)

The first component includes mode- and destination-specific variables that best describe
the trip to destination d with mode m, such as travel time and cost for motorised modes
and distance for active travel, as well as ASCs capturing inherent preferences for specific
modes/destinations and sociodemographic interactions. With this, xlmd is the lth LOS vari-
able for mode m and destination d. The second component captures the impact (positive
or negative) that certain characteristics could have on the utility of a specific destination,
such as available parking space for car users, where yqd is the qth quality variable for
destination d.

The final component in Equation (9) is considered independent from the rest of the util-
ity function and aims to capture the attraction or the ‘size’ of a destination irrespective of
the LOS variables to that place or the decision maker’s socio-demographic characteristics.
The log-size parameter φ is usually fixed to 1.0 assuming that utilities and subsequently
the choice probabilities are not affected by the zoning discretisation that usually forms
the destination alternatives. Kristoffersson, Daly, and Algers (2018), however, showed that
allowing the φ to be freely estimated can result in estimated values different than 1.0, lead-
ing to a behavioural interpretation on the formation of destination alternatives. Specifically,
if φ < 1, the model captures significant correlation among the utilities of the elemental
alternatives within each aggregate destination alternative. Therefore, in that sense the φ

has a similar role as the nesting parameter λ (Kristoffersson, Daly, and Algers 2018). Finally,
in addition to capturingunobserved correlations among the alternativeswith theproposed
CNL structure, observed correlations can also be captured with the inclusion of attraction
attributes of neighbouring destinations in the size variable of destination d.

The size variable Sd is a composite measure of the size of destination d and bl , bq and φ

are the respective parameters to be estimated. The composite sizemeasure Sd is defined as:

Sd = a1d +
∑
z>1

exp(γz)azd (10)

where a1d is the attraction attribute used as a base with a γ parameter normalised to 1.0,
azd are the additional attraction attributes of destination d relative to the base attribute,
and γz are the parameters to be estimated capturing the effect of those attributes on the
attraction of the target destination. The γz parameters are constrained to be positive by
using an exponential transform.

3. Data

3.1. Background

The data used in the current studywas collected as part of the research project ‘DECISIONS’
carried out by the Choice Modelling Centre at the University of Leeds, between November
2016 and March 2017. The project aimed at observing individual decisions over a range
of in-home and out-of-home activities with an emphasis on travel over a 2-week period. A
detaileddescriptionof the survey is presented inCalastri, Crastes dit Sourd, andHess (2020).
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Figure 6. User interface of smartphone application used for the trip diary (Calastri et al., 2020).

The tripswere captured throughGPS trackingusing a smartphoneapplication at a high spa-
tial and temporal resolution. The chosenmodeandpurposeof the tripwereprovidedby the
participants at the end of each trip Figure 6. Important socio-demographic informationwas
captured from an additional household survey, giving the advantage of combining high
resolutionmobility datawith participant characteristics, such as income, car ownership etc.

3.2. Initial data processing

The empirical analysis in the present paper focuses on shopping trips and the study area
was defined as the region of Yorkshire. Only residents of the city of Leeds were selected,
assuming they will have a similar knowledge of their surrounding shopping destinations
(Thill 1992). The purpose of the analysis is to understand where the individuals are more
likely to go for shopping with respect to the previous and the following activity locations.
The locationsof thepreviousoriginOand the followingdestinationDwere considered fixed
and themodelling analysis focused on the intermediate shopping destination S. Therefore,
from the initial dataset, the shopping trips and their following trips were chosen for the
subsequent analysis. The final dataset used in the analysis contained 1,541 shopping trips
and an equal number of following trips performed by 270 unique individuals.

The shopping and their following trips were combined to create trip chains, which
formed the basis of the analysis performed.Most trip chains, 66%, were from the originO to
the intermediate shoppingdestination S and then to the followingdestinationD, whichwill
be referred to asO-S-D trip chain. The remaining trip chains, 34%, were from the originO to
S and then back toO, which will be referred to asO-S-O trip chains. Shopping trips included
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three subcategories of shopping, namely grocery (82%), clothes (12.7%), and other types of
shopping (5.3%), mainly for durables. The vast majority of following trips were trips going
home (61.5%), while there was a small percentage of 9.3% of a consecutive shopping trip
to a different shopping destination. The alternativemodes of transport included car, public
transport (PT) – as a combination of bus and rail – and walking.

The first step in the analysis involved the identification of home and work locations per
individual, which were not reported initially. The nature of the GPS dataset requires a dif-
ferent way of analysis compared to a traditional dataset, where the destinations are usually
defined at the traffic analysis zone (TAZ) level. In the currentGPSdataset, the destinations of
each trip are represented by a unique pair of latitude/longitude coordinates. Consequently,
the identification of unique activity locations included the clustering of all destinations per
individual using Hierarchical Agglomerative Clustering (HAC) with a 200 metres distance
threshold. HAC was chosen as it does not require knowledge or a priori assumptions about
the number of clusters. The distance threshold was chosen in order to group together in
the same cluster points that have a small average straight distance difference among them
(100metres approximately). In total, 6,361 unique clusterswere created. Following the clus-
tering analysis, the enumeration of all trip purposes for the tagged trips per cluster was
performed. At this point, potential home and work locations were identified as the clus-
ters with the majority of ‘home’ and ‘work’ trips, respectively. In the rare cases where more
than one cluster per individual had the same number of home/work trips, home/work loca-
tions were assigned to the clusters where the individual spends most of her time during
night/early morning (22:00–06:00) and during working hours (09:00–17:00), respectively.
The geographical boundary of those clusters was then identified at the Middle Super Out-
put Area (MSOA), Lower Super Output Area (LSOA), and local authority level using the 2011
Census boundaries.1

3.3. Definition of general shopping areas

In order to take advantage of the high spatial resolution provided by the GPS data, we
decided not to limit our analysis to the usual UK geographical boundaries, such as Mid-
dle layer Super Output Areas (MSOA) zones. For that reason, the destination alternatives
were defined by clustering the observed elemental shopping destinations. HACwas imple-
mented with a 800metres distance threshold between the shopping trip destinations. The
centroids were defined as the mean of the latitude/longitude coordinates of the points in
each cluster and were then used to replace the original destination points of each shop-
ping trip belonging to the cluster. Therefore, the main goal was to choose an appropriate
distance threshold that would result in a small average distance difference between the
original destination points of a cluster and its centroid. Because of that and after trying
different distance thresholds between 500m–1,000m, a 800m distance threshold was
selected resulting in small average distance differences of around 4–5 minutes of walking
(assuming a 5 km/h average walking speed). A 400m buffer was defined around each clus-
ter centroid, as a final step of creating the aggregate shopping destinations used in the
analysis.

In the case of overlapping buffers, especially in Leeds city centre, the polygons within
them were deterministically assigned to their closest cluster centroid (cf. Figure 7). This
approach was used to ensure that each elemental shopping destination (in the form of
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Figure 7. Allocation of retail polygons located within overlapping shopping clusters.

polygons/individual stores) would belong to a single aggregate alternative (in the form
of the shopping areas defined). A deterministic allocation was performed in the current
study, but future research could explore the option of performing a weighted allocation of
overlapped polygons on their neighbouring clusters, weighted by the distance from them.
The current deterministic allocation resulted in the creation of 176 general shopping areas
around the region of Yorkshire, capturing 76% of the retail polygons, as defined in Open-
SteetMaps (OSM), locatedwithin the Local Authority of Leeds. It is safe to say that shopping
locations exist in other places within the study area, not captured by that process, mainly
in areas further away from the city of Leeds. For the purpose of this study, however, it is
assumed that those shopping locations have not been considered by the individuals in the
sample or that the individuals are not aware of them, hence they have not been included
in the subsequent analysis (Thill 1992).

Shopping clusters were also grouped with regard to their location relative to Leeds city
centre. In total, 9 general areas were defined, namely Leeds city centre, North-East-South-
West Leeds andNorth-East-South-West Yorkshire as shown in Figure 8. The number of trips
permode combination and general area are presented in Table 1. Most clusters are located
around the city of Leeds, while Leeds city centre attracts the vast majority of trips with a
preference for more sustainablemodes. The remaining areas around Leeds attract a similar
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Figure 8. General area of shopping destinations in the study area.

number of trips, while from the remaining region of Yorkshire, West Yorkshire, which is the
area surrounding the city of Leeds, attracts the highest number of trips. Trips in the rest of
theYorkshire region (North–East–South) are far less frequent, andmostly performedby car.

3.4. Data enrichment

Additional steps towards data enrichment were necessary to add further information that
was important for the specification of a behavioural model. Initially, the dataset contained
only the self-reported travel times/distances for the chosen modes, however, the values of
the unchosen mode alternatives were also required. For that reason, the Bing maps route
API2 was used in order to obtain the travel times and distances for all the modes (car,
bus/rail, walk) and for the trips starting from each initial origin to each shopping cluster
and from each shopping cluster to each following destination. For consistency reasons,
the travel times/distances of the chosen mode alternatives were recalculated as well, an
approachalso followed inCalastri et al. (2018). The total numberof queriespassed to theAPI
was 1,627,296 (1,541 trips× 176 shopping destinations× 3 modes× 2 for the current and
the subsequent trip). After that stage, deterministic mode availability was assigned based
on logical checks of the results obtained from the API, such as cases of PT trips where the
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Table 1. Chosen mode and general locations.

C-C C-PT C-W PT-C PT-PT PT-W W-C W-PT W-W Total
General location (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

Leeds city centre 17 (1.1) – 6 (0.4) – 28 (1.8) 24 (1.6) 16 (1.0) 59 (3.8) 173 (11.2) 323 (21.0)
Leeds north 120 (7.8) – 3 (0.3) – 5 (0.3) 4 (0.3) 7 (0.5) 1 (0.07) 123 (8.0) 264 (17.1)
Leeds east 181 (11.7) – 12 (0.8) – 4 (0.3) 3 (0.2) 6 (0.4) – 20 (1.3) 226 (14.7)
Leeds south 159 (10.3) – 2 (0.1) 1 (0.07) 4 (0.3) 1 (0.07) 4 (0.3) 1 (0.07) 24 (1.6) 196 (12.7)
Leeds west 197 (12.8) – – – 4 (0.3) 2 (0.1) 5 (0.3) 4 (0.3) 66 (4.3) 278 (18.0)
Yorkshire north 28 (1.8) – 3 (0.2) – 1 (0.07) – 1 (0.07) 1 (0.07) 8 (0.5) 42 (2.7)
Yorkshire east 5 (0.3) – – – – – – – – 5 (0.3)
Yorkshire south 27 (1.8) – 1 (0.07) – – – 4 (0.3) – 2 (0.1) 34 (2.2)
Yorkshire west 149 (9.7) 1 (0.07) 4 (0.3) 2 (0.1) – 1 (0.07) 2 (0.1) – 17 (1.1) 176 (11.4)
Total 880 (57.1) 1 (0.07) 32 (2.1) 3 (0.2) 46 (3.0) 35 (2.3) 45 (2.9) 66 (4.3) 433 (28.1) 1541 (100)

C: Car, PT: Public Transport, W: Walk.
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API returned only walking segments, or in specific cases where car was the chosen mode
and the participant had to return it back home. For that latter case, special attention was
given to the stated size of the party that participated in the trip in order to understand
whether the participant of the survey was the actual driver. As such, if the individual was
the only person in a car trip, then she was assigned as the car driver and all the remaining
modes would become unavailable only in the case where the following trip was to return
back home. For other trip purposes for the following trip, it is assumed that the individual is
free to consider all the available modes. On the contrary, if there were more than 1 people
participating in a car trip, thenwe could not safely assume that the individual was the driver
and all the modes would remain available for the following trip, as well.

Car travel cost was computed using the UK’s official Transport Appraisal Guidance (WEB-
Tag) specifications for fuel and operating costs (Department for Transport 2014). Parking
cost was also calculated for trips with destinations in central areas/high streets across the
region of Yorkshire based on information on hourly or fixed parking costs provided by the
respective Local Authorities. For PT, an average distance-based fare was used for bus and
rail and a total PT cost was calculated per trip based on the distance of the leg performed
by bus or rail. A discount was also applied for trips made by season ticket holders.

3.5. Locational variables

Characteristics of the shopping clusters and their respective surrounding areas were also
defined. Parking and retail store areas in a buffer zone of 400m around the shopping clus-
ter centroidswere calculated using data extracted fromOSM. The population of those areas
(LSOA level) was extracted from the Office of National Statistics (ONS). Average residential
price statistics for the LSOAs in Yorkshire, during the years 2016–2017, were acquired from
the ONS, and their average was computed around shopping and home locations. Based
on this, a variable was defined to analyse whether the immediate environment around
the home location will have an influence on the behaviour of the individual, e.g. whether
people living in richer areas are willing to go shopping in poorer areas or vice versa.

Shopping store variability among the elemental shopping destinations within an aggre-
gate destination alternative was captured using Shannon’s entropy (Hd) Equation (11)
(Shannon 1948; Whittaker 1949), measuring the percentage of the area covered by a spe-
cific store type t ∈ T inside a shopping destination d from a total number of N different
store types. Shannon’s entropy has beenwidely used to quantify land-use variabilitymostly
in studies related to walkability (Brown et al. 2009; Mavoa et al. 2018) and urban sprawl
(Effat and Elshobaki 2015). In the current study, it is used to examine whether an increased
variability in store types adds to the attraction of a shopping destination, since that would
enable the completion of more shopping activities within the same trip. All of the afore-
mentioned locational variables were calculated as a weighted average of the respective
values of the geographical zones that are overlapped by the 400m buffer zones from each
shopping centroid.

Hd = −
∑T

t=1 (pt ln (pt))

lnN
(11)

The locations of the most popular retailers per shopping type in the UK market (Kantar
world panel 2020; Retail Economics 2020; Rhodes 2018) were also identified across the
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study area and a binary dummy variable was created for each based on whether they are
located within a 400m buffer radius around a shopping centroid.

In order to capture agglomeration effects and the impact of neighbouring shopping
destinations on the attraction of a target shopping destination, the same information
on the aforementioned locational variables was extracted for additional buffers between
400–1,000m, 1,000–2,000m and 2,000–5,000m from each cluster centroid, similar to the
study of Kristoffersson, Daly, and Algers (2018).

Information extracted from OSMwas also used to inform alternative availability in addi-
tion to the previously described API-based approach, but without having as a profound
effect. More specifically, the type of the elemental shopping polygonswithin the aggregate
destination alternatives was examined in order to identify destinations not offering a spe-
cific type of shopping activity, i.e. groceries, clothes or other. We have identified a limited
number of cases mostly in rural areas with more specific types of shopping stores. Those
destinations with missing shopping polygons for specific shopping types, were defined as
not available for the respective shopping trips. In contrast, we did not observe such cases
in more central urban areas, which typically offer a higher mix of shopping activities.

3.6. Direction of travel

The effect of the location of the intermediate shopping destination S, in relation to the
straight distance between O and D, was also captured by calculating the angles between
OS−OD and SD−OD. The a priori assumption is that, all else held equal, shopping destina-
tions that require a significant deviation from the straight OD path would be less favoured
compared to others. For that purpose, a dummy variable was defined, only for O-S-D trip
chains, capturing the impact on utility of a shopping destination located with an angular
deviation greater than 90o from either O or D.

3.7. Store type similarity

Among the different factors capturing similarity between destinations, it was also decided
to capture the similarity based on the store type profiles of each. The main motivation for
that was the study of Cottineau and Arcaute (2020), who applied a cosine similarity metric
in order to cluster geographical boundaries based on their industrial profiles. In the current
study, we employ a similar metric in order to find the similarity among destinations based
on the shares of land use areas per type of store as described in OSM. Cosine similarity is
mostly used in text clustering and it is defined as in Equation (12).

CSdj =
∑T

t=1 (dtjt)√∑T
t=1 d

2
t

√∑T
t=1 j

2
t

(12)

where dt and jt are vectors containing the shares per store type t for destinations d, j ∈ D.
An example is presentedbelowamong three hypothetical destinations and their respective
shares for five unique store types. The calculation of cosine similarity leads to a symmetrical
DxD matrix and for that specific example we can correctly capture that destination a has
more similar store type profile with destination c than destination b (Table 2).
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Table 2. Example of store type similarity among three destinations (cosine similarity).

Store types Dest a Dest b Dest c

Type a 0.1 0.3 0.15
Type b 0.4 0.2 0.35
Type c 0.15 0.1 0.1
Type d 0.3 0.2 0.25
Type e 0.05 0.2 0.15

Similarity matrix Dest a Dest b Dest c

Dest a 1 0.779 0.965
Dest b 0.779 1 0.892
Dest c 0.965 0.892 1

4. Results

In this section, we first present the results for the destination choicemodel followed by the
mode-destination model, before looking at the calculation of elasticity measures from the
model.

4.1. Destinationmodel outputs

Initially, five models were estimated for destination choice, namely a base MNL, two NL
models, a PCL model and finally a model based on the proposed CNL nesting structure.
The models were estimated using a choice set of 176 destination alternatives. An EC spec-
ification could not be estimated due to computational reasons and the large number of
alternatives in the choice set. TheNL-dest-1 specification refers to a nesting structure with 9
nests according to the area of the destination, defined as Leeds city centre, north-east-south-
west Leeds and north-east-south-west Yorkshire (see Figure 8). The NL-dest-2 specification
presents a finer segmentation of the destination alternatives into 24 nests according to
the administrative area or the city the destinations belong to Figure 9. A further segmen-
tation with an even higher resolution, such as based on the MSOA zones, would have
resulted in having a nesting structure with many degenerate nests, i.e. nests with just a
single alternative, hence it was not attempted. A PCL specification, PCL-dest, having every
pair of alternatives in a separate nest was also estimated with a nesting structure of 15,400
nests ( n!

r!(n−r)! = 176!
2!(176−2)! ), in total. The allocation parameters are parameterised based on

the straight distances from the destination nests, similar to the proposed nesting structure
described in Section 2. Finally, CNL-dest follows the proposed cross-nested structure with
176 nests (as many as the number of destination alternatives in the choice set), thus pre-
senting amore efficient specification compared to thepreviously describedPCLmodelwith
15,400 nests. The allocation parameters in this model were parameterised in a similar way
as in the PCL-destmodel -to provide a propermeans of comparison- having a single generic
γ multiplier based on the straight distances from the destination nests.

The fit statistics3 of those specifications as well as the estimated nesting parameters are
presented in Table 3. Both NL models resulted in structural parameters (λ) that were out-
side the theoretically acceptable range (i.e. above 1), meaning that the utilised NL nesting
structures were not able to capture any meaningful correlation among the alternatives.
Only the first NL model outperforms the MNL model according a likelihood ratio test, but
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Figure 9. Segmentation of destination alternatives based on their administrative area.

the model is of course itself rejected given the findings for λ. That result provides sup-
port to our initial hypothesis that segmenting space into discrete areas/nests, even inmore
finer segmentations as in NL-dest-2, is not an efficient approach for capturing unobserved
correlation among destinations. In contrast, both the PCL-dest and CNL-dest-1 were able
to accomplish that with estimated λ equal to 0.4502 and 0.8222 (significantly different
than 1.0), respectively. Both specifications were also able to provide significant improve-
ments in terms of model fit compared to the MNL model with −3.212 and −5.976 LL
units for 2 additional parameters, respectively. A log-likelihood ratio test (LR-test) can be
performed to assess the statistical superiority between a more generalised and a more
constrained model. According to that definition, both PCL-dest and CNL-dest-1 are more
generalised specifications of the more constrainedMNL-dest-basemodel, hence an LR-test
can be performed for each of them with respect to eh MNL model. An LR-test is defined as
LR − test = −2 ∗ (LLgeneral − LLbase) and a p-value is derived for the resulting LR-test from
a chi-square distribution. The values for the LR-tests for PCL-dest and CNL-dest-1 are 6.424
and 11.952 leading to p-values of 0.0403 and 0.0025, respectively,meaning that thosemod-
els provide statistically significant improvements over the base MNL model at least at the
95% confidence level for PCL-dest and at least at the 99% confidence level for CNL-dest-
1. The CNL-dest-1model also outperformed the equivalent PCL specification of PCL-dest in
terms ofmodel fit. An approach different to LR-test had to be employed in that case in order
to statistically compare two non-nested models. The Ben-Akiva & Swait test (Ben-Akiva
and Swait 1986) is such a test, which allowed us to conclude that CNL-dest-1 is statistically
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Table 3. Fit statistics and nesting parameters of destination choice models.

Fit statistics MNL-dest-base NL-dest-1 NL-dest-2 PCL-dest CNL-dest CNL-dest-2

Log-likelihood (0) −7,961.332
Log-likelihood (model) −3,166.947 −3,163.624 −3,165.307 −3,163.735 −3,160.971 −3,134.54
Adjusted ρ2 0.5972 0.5975 0.5973 0.5973 0.5977 0.6006
AIC 6,413.89 6,409.25 6,412.61 6,411.47 6,405.94 6,359.09
BIC 6,627.5 6,628.2 6,631.56 6,635.76 6,630.23 6,599.4
Number of parameters 40 41 41 42 42 45
Number of individuals 270
Number of observations 1,541
Nesting parameters λ Estimates (Rob. t-ratio w.r.t. 1.0)
λgeneric – 1.1267 (1.92) 1.0848 (1.53) 0.4502 (−2.55) 0.8222 (−3.99) 0.5766 (−9.12)
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superior to PCL-dest with a p-value = 0.0060. At the same time PCL-dest required a longer
estimation time by a factor of 10 compared to CNL-dest-1.

In addition to straight distances, an attempt was also made to capture similarities based
on routed distances. The routed distances were obtained using the same API (Bing maps)
for themodeof car and for theoff-peakperiod inorder to avoidhavinghistorical congestion
affecting our results. The routednetwork distanceswere tested on the allocation parameter
specificationof the simpler destination choicemodel. The results obtainedwere similar, but
slightly worse than the CNL-dest-1model with straight distances (LL= −3, 262.1 compared
to LL= −3, 260.9). That on itself could also be a finding suggesting that straight distances
influence more the individuals’ perceived similarity. In fact, it could be said that individu-
als might have a more abstract perception of topological similarities as also described in
Kazagli, Bierlaire, and Flötteröd (2005) and Manley (2016).

Despite capturing significant unobserved spatial correlation, the CNL-dest-1 specifica-
tion did not outperform the base MNL model in terms of BIC as shown in Table 3 (6,630.23
compared to 6,627.5). That prompted us to expand the proposed cross-nested structure
of CNL-dest-1 in order to include additional similarity measures in the formulation of the
allocation parameter as described in Section 2. That led to the specification of CNL-dest-
2 where allocation to nests is now based on the difference of retail areas, the difference
of parking areas and the land use profile similarity between destinations (as described in
Section3.7), in addition to the straight distances,whichwere already included inCNL-dest-1.
Therefore, CNL-dest-2 provides amore generalised specification of CNL-dest-1. The fit statis-
tics of that specification are depicted in the same table alongside the rest of the models
previously described Table 3. That model outperforms CNL-dest-1 by 26.431 LL units for 3
additional parameters (LR-test= 52.862, p-value = 0), while also being able to capture a
higher degree of spatial correlation among alternatives with the inclusion of the additional
similarity measures in the allocation parameter specification. It also manages to outper-
form the base MNL model by 32.407 LL units for 5 additional parameters (LR-test= 64.814,
p-value = 0) and more importantly to achieve a significantly better BIC statistic (6,599.4)
contrary to themore constrained CNL-dest-2 specification. A validation test was performed
for CNL-dest-2 estimating the same specification on 70% of the unique individuals in the
dataset and their respective plans and applying the estimates of that model on a holdout
sample of the remaining 30% of individuals. The evaluation of that validation test was per-
formed on the basis of the average choice probability of correct prediction. According to
that, the 70% training set led to a 0.192 average probability of correct prediction, while the
30% validation set resulted in a slight drop of 0.187 – such a drop is expected and does not
suggest overfitting.

Detailed estimated parameters for theMNL-dest-base, PCL-dest, CNL-dest and CNL-dest-2
are depicted in Table 4. Robust t-ratios are also reported in the same table capturing the
panel effect from repeated observations of the same person (Daly and Hess 2010). The two
NL specifications arenot presented as they resulted innotbehaviourally accurate estimated
nesting parameters. The destination choice model presented is conditional on the choice
of mode, therefore level-of-service attributes relevant to the chosen mode are used in the
utility functions. Socio-demographic variables were included in the model and interacted
with the LOS variables as shifts from their base level. In general, the estimated parameters
were behaviourally reasonable with the expected signs. The ASCswere defined using desti-
nation 1 as the base alternative, which represents the most central shoppingmall of Leeds,
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Table 4. Modelling outputs of the estimated destination choice models.

Estimate (Rob. t-ratio w.r.t. 0)

Parameter MNL-dest-base PCL-dest CNL-dest CNL-dest-2

Locational constants (base: dest 1)
ASC rest Leeds city centre −1.3588 (−8.57) −1.2590 (−8.07) −1.1110 (−7.16) −1.2327 (−7.95)
ASC rest Leeds city centre shift for
PT-PT

−0.6774 (−1.70) −0.6860 (−1.79) −0.5367 (−1.54) −0.6656 (−1.80)

ASC rest Leeds city centre shift for
PT-walk

1.0888 (1.92) 1.0099 (1.86) 0.8957 (1.86) 0.9720 (1.83)

ASC Leeds −0.5484 (−4.51) −0.5707 (−4.77) −0.4782 (−4.32) −0.3281 (−2.86)
ASC Leeds shift for
PT-PT/PT-walking/walking-PT

−2.9533 (−7.80) −2.7605 (−7.29) −2.6413 (−7.15) −2.7368 (−7.95)

ASC Leeds shift for walk-walk −2.1704 (−6.76) −2.0020 (−6.38) −1.8334 (−6.15) −2.0063 (−7.26)
ASC Yorkshire shift for PT-PT/PT-
walking/walking-walking

−4.1652 (−5.78) −3.9960 (−6.04) −3.8267 (−6.24) −3.9521 (−6.82)

LOS variables
Travel time for first trip (base) −0.1059 (−5.35) −0.0967 (−4.98) −0.0924 (−5.24) −0.0818 (−4.91)
Travel time shift for clothes shop-
ping

0.0451 (4.41) 0.0391 (4.05) 0.0396 (4.42) 0.0343 (3.96)

Travel time shift for O-S-O trip
chains

0.0229 (2.69) 0.0206 (2.64) 0.0201 (2.76) 0.0195 (2.89)

Travel time shift for HWH tours −0.0291 (−2.49) −0.0250 (−2.31) −0.0237 (−2.41) −0.0260 (−2.76)
Travel time shift for pm
peak/night/ weekend evening

−0.0173 (−2.36) −0.0137 (−2.06) −0.0142 (−2.31) −0.0136 (−2.41)

Travel time shift for
morning/weekend night

−0.0905 (−3.78) −0.0833 (−3.51) −0.0786 (−3.74) −0.0788 (−3.45)

Travel time shift for grouping
size>1

0.0134 (1.76) 0.0121 (1.75) 0.0111 (1.73) 0.0093 (1.65)

Travel time multiplier for car/PT
IVT/PT first access/PT last egress

1.0000 (–) 1.0000 (–) 1.0000 (–) 1.0000 (–)

Travel time multiplier for follow-
ing trip

1.2118 (16.26) 1.2141 (15.84) 1.2121 (15.88) 1.2331 (14.70)

Travel time – Shopping duration
elasticity

−0.3497 (−8.58) −0.3519 (−8.27) −0.3315 (−8.43) −0.3274 (−7.99)

Box-cox lambda for car travel
time

1.0653 (19.37) 1.0743 (19.24) 1.1069 (19.91) 1.1062 (19.29)

Box-cox lambda for PT travel
time

0.7424 (10.14) 0.7525 (9.77) 0.7696 (10.67) 0.8033 (10.99)

Travel walking distance for first
trip (base)

−1.3522 (−6.59) −1.2926 (−6.52) −1.1904 (−6.73) −1.2059 (−6.83)

Travel walking distance shift for
O-S-O trip chains

0.2790 (1.83) 0.2691 (1.83) 0.2505 (1.96) 0.2514 (1.96)

Travel walking distance shift for
am peak

−0.8699 (−2.31) −0.8274 (−2.23) −0.7496 (−2.36) −0.8400 (−2.43)

Travel walking dis-
tance shift for pm
peak/night/morning/weekend
morning/weekend evening

−0.3740 (−2.49) −0.3661 (−2.53) −0.3111 (−2.45) −0.3307 (−2.51)

Travel walking distance multi-
plier for following trip

1.2404 (11.50) 1.2402 (11.39) 1.2467 (11.33) 1.2227 (12.02)

Box-cox lambda for travel walk-
ing distance

0.7933 (11.63) 0.7884 (11.53) 0.8246 (12.28) 0.7795 (11.66)

Travel walking distance – Shop-
ping duration elasticity

−0.2185 (−4.72) −0.2168 (−4.59) −0.2110 (−4.72) −0.2164 (−4.87)

Travel cost −0.4015 (−3.20) −0.3855 (−3.12) −0.3900 (−3.33) −0.4231 (−3.70)
Box-cox lambda for travel cost 0.6596 (7.91) 0.6394 (7.72) 0.6636 (8.32) 0.6545 (8.99)
Travel cost – Personal income
elasticity

−0.6106 (−3.16) −0.5882 (−3.10) −0.5864 (−3.22) −0.5308 (−3.19)

Direction of travel
Presence of angle>90o between
O-S and O-D

−0.2687 (−2.14) −0.2483 (−2.16) −0.2279 (−2.01) −0.2141 (−1.92)

(continued)
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Table 4. Continued.

Estimate (Rob. t-ratio w.r.t. 0)

Parameter MNL-dest-base PCL-dest CNL-dest CNL-dest-2

Locational variables
Living in rich areas-shopping in
poor areas

−0.7531 (−2.74) −0.6475 (−2.69) −0.6316 (−2.61) −0.6254 (−2.64)

Parking areas (400m buffer)) 0.1112 (4.00) 0.0986 (3.79) 0.1002 (3.96) 0.0637 (2.58)
Box-cox lambda for parking
areas (400m buffer)

0.4531 (6.50) 0.4608 (6.40) 0.4547 (6.35) 0.4750 (4.30)

Major clothes shopping retailers
(400m buffer)

1.3338 (6.13) 1.3060 (6.39) 1.1264 (5.52) 1.2170 (6.01)

Major grocery retailers (400m
buffer)

0.4952 (5.05) 0.4334 (4.89) 0.4506 (5.19) 0.4246 (4.96)

Major durables retailers (400m
buffer)

2.1515 (2.66) 2.0406 (2.73) 1.9668 (2.48) 2.2425 (3.08)

Size variables
Natural logarithmmultiplier φ 0.5102 (7.05) 0.4586 (6.64) 0.4817 (6.45) 0.4453 (6.58)
Population (400m buffer) (base) 1.0000 (–) 1.0000 (–) 1.0000 (–) 1.0000 (–)
Retail areas for clothes (400m
buffer) (log.)

0.8813 (1.52) 0.6959 (1.23) 0.8487 (1.49) 0.8151 (1.38)

Retail areas for groceries (400m
buffer) (log.)

1.7314 (3.53) 1.7256 (3.53) 1.5094 (2.80) 1.8036 (3.58)

Retail areas for durables (400m
buffer) (log.)

0.9916 (1.14) 0.7713 (0.89) 0.8795 (1.04) 0.6938 (0.83)

Shopping store variability when
following

3.4918 (4.91) 3.4386 (4.77) 3.4427 (4.84) 3.4827 (4.92)

trip purpose is shopping (1000–2000m buffer) (log.)
Nesting parameters λ
λgeneric – 0.4502 (−2.55a) 0.8222 (−3.99a) 0.5766 (−9.12a)
Distance multipliers γ

γdist – −0.4022 (−4.40b) −1.3552 (−3.90b) −0.3174 (−4.93b)
γparking areas – – – −0.1611 (−4.93b)
γretail areas – – – −0.0844 (−3.17b)
γstore type – – – 1.5317 (2.74b)
aRobust t-ratio w.r.t. 1.0
bThe robust standard error was calculated using the delta method (Daly, Hess, and de Jong 2012).

and constants for the remaining alternatives were specified based on the 9 general areas of
the alternatives, as described in Section 3.3. The remaining destinations in the city centre
are less likely to be chosen compared to destination 1 (base alternative), while destinations
in the remaining study area are even less favourable, especially for modes other than car.
All of the specified level-of-service parameters of the chosenmode were statistically signif-
icant validating our approach of explaining destination choice conditional on the choice of
mode. The LOS variables of travel time, travel distance and travel cost were specified using
a Box-Cox transform as xλ−1

λ in order to capture possible non-linear sensitivities. As a result,
statistically significant non-linearities were found for PT time, walking distance and travel
cost suggesting that individual sensitivities are decreasing as those variables are increas-
ing. On the other hand, only linear sensitivities were found for car time. Decreasing travel
time and walking distance sensitivities were found as the shopping duration increases,
while decreasing cost sensitivities were found as personal income increases. Finally, travel
time for motorised modes and walking distance sensitivities were slightly higher for the
following trip relative to the first shopping trip.

Individuals living in richer areas are less willing to go shopping in poorer areas with very
low residential prices with a similar finding also presented in Pellegrini, Fotheringham, and
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Lin (1997). A Box-Cox transformation was used to capture the preference for parking areas,
specifically for trips using car for both legs, uncovering positive but decreasing sensitivi-
ties. The presence ofmajor retail attractions per shopping category (clothes, grocery, other)
significantly increases the likelihood of visiting the shopping destination for trips of the
respective shopping category. The estimated multiplier φ of the logarithm of the compos-
ite size variable is significantly lower than 1.0 in all of the models presented. According to
Kristoffersson,Daly, andAlgers (2018), thismeans that there is significant unobserved corre-
lation among the elemental alternatives within the aggregate shopping destinations used
in the choice set. This also gives a behaviouralmeaning to the clustering approach that was
utilised in order to form the aggregate alternatives, described in Section 3.3. An increased
cumulative retail floor area of grocery, clothes and durable stores in a destination acts as
a more significant attractor for trips of the respective shopping category than population
that was used as the base size variable. Furthermore, an increased store type variability in
neighbouring destinations in medium distances (1000–2000m) will add to the attraction
of the shopping destination, when the subsequent trip is also for shopping.

With regard to the direction of travel, shopping destinations located in places where
the angular deviation between OS and OD is greater than (90◦) are less likely to be cho-
sen compared to others, conforming to our initial assumptions. The same dummy variable
measuring the impact of an angle above (90◦) between SD and OD was still negative, but
not statistically significant, hence was not included in the specifications reported here.
Finally, regarding the estimated distance multipliers, CNL-dest-1 results in γdist = −1.3552
conformingwith our initial assumption of increased correlation among closer destinations,
which decreases with distance. The PCL-dest specification resulted in a much lower esti-
mated distance multiplier of γdist = −0.4022 (rob. t-rat = −4.40) meaning there is a more
even allocation to the neighbouring nests. For the CNL-dest-2, all four specified γ multiplier
parameters are statistically significant, but a comparison between them is not as straight-
forward due to scale differences among the four similarity matrices used. Their signs,
however, offer a behavioural interpretation. More specifically, the signs of the γ multipliers
for straight distances, retail area and parking area differences are negative meaning that
destinations with smaller differences will bemore correlated with each other. Similarly, the
sign of the γ multiplier for store type similarity is positive meaning that destinations with
more similar land use profile (i.e. a cosine similarity closer to 1.0) will be more correlated,
hence they will lead to higher allocation probabilities.

4.2. Jointmode and destinationmodel outputs

For the more complex joint mode and destination model, results from the previously
described destination model and from simpler mode choice models, conditional on des-
tination, were used as a guideline during the specification search. In that model, the mode
and destination choices are assumed to happen at the same time. In total, the choice set
of that model includes 1,584 joint destination and mode alternatives (176 destinations
× 3 modes for the shopping trip × 3 modes for the following trip). A range of different
specifications is presented in the following, namely a base MNL model, two NL models
utilising an MoD and DoM nesting structure (see Figure 2), respectively, a base CNL (see
Figure 3) and finally two CNL specifications based on the proposed nesting structure, one
capturing correlation based on straight distances and one based on four different similarity
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measures similar to the simpler destination choice model previously described. The PCL
specification presented in Section 4.1 was not possible to be extended to the more com-
plex mode-destination context due to the prohibitive computational cost. In Table 5, the
fit statistics of the different specifications are presented, while in Table 6 the respective
estimated parameters are reported.

For the NL-joint-MoD specification, the alternatives were allocated into 9 nests accord-
ing to themodal combinations for the shopping and the following trip and a generic λmode

was specified assuming the same level of correlation across all nests. Similarly, for the NL-
joint-DoM specification, 176 nests were specified, one for each shopping destination, with
a generic λdest for each. Regarding the CNL models, the first specification, CNL-joint-base,
is based on the specification of Ding et al. (2014). Alternatives that use a single mode for
both legs are allocated simultaneously into a destination nest and a singlemodenest, while
alternatives that use different modes across the two legs (e.g. car-walk) fall into a destina-
tion nest and two mode nests for different-mode alternatives. We attempted to estimate
allocation parameters for this model, but this resulted in numerical issues. An alternative
was thus allocated evenly to all the nests it belongs to, meaning a 50–50 split into a des-
tination and a mode nest for single mode alternatives, and an even three-way split into a
destination and two mode nests for alternatives using two separate modes.

The last two CNL models based on the proposed nesting structure, CNL-joint-proposed-
1 and CNL-joint-proposed-2, follow the proposed nesting structure with alternatives using
the samemode for both legs being allocated to a total of 177 nests (176destinationnests+1
mode nest), and alternatives combining different modes being allocated to 178 nests (176
destination nests+2 mode nests). In both cases, a generic λdest is assumed for the desti-
nation nests, in addition to three mode-specific λ for car, PT and walk. For the proposed
specifications, the allocation parameters were specified as follows.

• α
joint
dest,samemode was used to scale down the destination αsd of same mode alternatives,

as α
joint
dest,samemodeαsd (defined in Equation (6)). The allocation parameters of same mode

alternatives were computed as α
joint
dest,samemode = e

α
joint∗
dest,samemode

( e
α
joint∗
dest,samemode+1)

for the destination

nest, while for the mode nest the allocation parameter was 1 − α
joint
dest,samemode.

• α
joint
dest,diff. mode was used to scale down the destination αsd of alternatives with different

mode combinations, as α
joint
dest,diff. modeαsd (defined in Equation (6)). The allocation param-

eters of those alternatives were computed as α
joint
dest,diff. mode = e

α
joint∗
dest,diff. mode

( e
α
joint∗
dest,diff. mode+2)

for the

destination nest, while an equal allocation was assumed for the two mode nests, which
was computed as (1 − α

joint
dest,diff. mode)/2.

The nesting parameters in both of the NL models were not statistically different from
1.0, meaning that those nesting structures were not able to uncover any significant unob-
servedcorrelationamong thealternatives, in eithermodeordestination choicedimensions,
and those models effectively collapse to the base MNL. The CNL-joint-basemodel presents
significant improvements in model fit compared to the MNL-joint-base, with 9.75 LL units
for 4 additional parameters. It is also able to capture unobserved correlations along the
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Table 5. Fit statistics and nesting parameters of joint mode and destination choice models.

Fit statistics MNL-joint-base NL-joint-MoD NL-joint-DoM CNL-joint-base CNL-joint-proposed-1 CNL-joint-proposed-2

Log-likelihood (0) −11,045.05
Log-likelihood (model) −4,093.78 −4,093.339 −4,093.699 −4,084.03 −4,067.899 −4038.06
Adjusted ρ2 0.6238 0.6238 0.6238 0.6244 0.6254 0.6276
AIC 8,309.56 8,310.68 8,311.4 8,298.06 8,275.8 8,226.13
BIC 8,635.31 8,641.77 8,642.49 8,645.17 8,649.61 8,626.64
Number of parameters 61 62 62 65 70 75
Number of individuals 270
Number of observations 1,541

Nesting parameters λ Estimates (Rob. t−ratio w.r.t. 1.0)

λgeneric − 0.9491 (−0.86) 1.0267 (0.34) − −
λdest − − − 0.9601 (−0.23) 0.5094 (−6.80) 0.5481 (−10.82)
λC − − − 0.8614 (−2.90) 0.7968 (−2.36) 0.5749 (−3.03)
λPT − − − 0.5143 (−1.75) 0.7708 (1.62) 0.9220 (−0.32)
λW − − − 1.2488 (2.93) 1.2474 (2.26) 1.4246 (2.91)
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Table 6. Modelling outputs of the proposed CNL joint mode and destination choice model.

Estimate (Rob. t-ratio w.r.t. 0)

Parameter MNL-joint-base CNL-joint-base CNL-joint-proposed-1 CNL-joint-proposed-2

Households with car ownership (base: car-car/dest 1)
ASC dest 1 shift Car-PT/Car-
Walk

−1.8422 (−2.76) −1.8596 (−2.61) −1.4908 (−2.42) −1.2722 (−2.29)

ASC dest 1 shift PT-PT 1.4351 (3.76) 1.1193 (3.14) 0.9859 (2.55) 1.0248 (3.49)
ASC dest 1 shift Walk-PT 2.2307 (6.61) 2.0996 (6.07) 1.8277 (5.85) 1.6414 (5.97)
ASC dest 1 shift Walk-Walk 2.9396 (8.43) 3.1739 (8.27) 2.8060 (8.41) 2.5098 (7.91)
ASC rest Leeds city centre −2.4229 (−6.66) −2.2915 (−5.89) −1.6733 (−4.86) −1.4655 (−5.08)
ASC rest Leeds city centre
shift for PT-Car/Walking-Car

1.5158 (3.07) 1.1726 (2.24) 0.7783 (1.71) 0.5991 (1.42)

ASC rest Leeds city centre
shift for PT-PT/PT-Walking

2.0782 (4.24) 1.9045 (3.78) 1.4308 (3.00) 1.2791 (3.47)

ASC rest Leeds city centre
shift for Walk-PT

2.9640 (6.17) 2.7177 (5.01) 2.2688 (4.67) 1.8215 (4.73)

ASC rest Leeds city centre
shift for Walk-Walk

4.2020 (8.69) 4.1345 (7.50) 3.1404 (6.76) 2.7683 (6.59)

ASC Leeds −0.6204 (−5.51) −0.5659 (−5.33) −0.4705 (−4.01) −0.3523 (−3.52)
ASC Leeds shift for
Car-PT/Car-Walk

−2.9758 (−8.72) −3.2035 (−6.89) −2.7244 (−8.23) −2.3347 (−8.17)

ASC Leeds shift for
PT-Car/Walk-Car/PT-
PT/Walking-PT

−1.1104 (−4.39) −1.2301 (−3.70) −1.0093 (−3.50) −0.8741 (−3.71)

ASC Leeds shift for PT-Walk −1.6197 (−3.44) −1.9888 (−3.79) −1.6952 (−3.54) −1.4901 (−3.81)
ASC Leeds shift for
Walk-Walk

0.9279 (2.98) 0.8061 (2.51) 0.4094 (1.32) 0.4076 (1.52)

ASC Yorkshire shift
for Car-PT/Car-
Walk/PT−PT/PT−Walking/
Walking−PT

−2.2500 (−5.78) −2.2803 (−5.26) −1.8428 (−5.40) −1.7213 (−5.23)

ASC Yorkshire shift for PT-
Car/Walk-Car

−1.3606 (−2.74) −1.3601 (−2.52) −1.1141 (−2.90) −1.0384 (−2.77)

Shifts for households with no car ownership
Car-PT/Car-walking/
Walking-PT/Walk-Walk

2.5480 (7.34) 2.5133 (6.63) 2.1796 (6.83) 1.9561 (7.13)

PT-PT 4.2311 (10.13) 4.4191 (8.81) 3.7996 (8.77) 3.3477 (9.22)
PT-Walk 3.3736 (6.53) 3.2976 (5.80) 2.8590 (5.97) 2.5592 (5.97)
Shifts for central areas outside Leeds city centre
PT-Car/Walk-Car 1.3175 (1.81) 1.3133 (1.83) 0.9176 (1.72) 0.8656 (1.74)
Walking-PT/Walk-Walk 2.5745 (4.06) 2.5341 (3.66) 2.0684 (4.04) 1.8098 (2.90)
Shifts for individuals with season ticket ownership
Walk-Walk −0.6076 (−1.86) −0.6580 (−1.87) −0.5831 (−1.87) −0.5055 (−1.82)
Shifts for trips with more than 1 passenger
PT first/shopping trip −1.8713 (−5.54) −1.7142 (−4.68) −1.3942 (−4.71) −1.2114 (−4.45)
PT following trip −0.9034 (−2.54) −0.8292 (−2.28) −0.8418 (−2.62) −0.7759 (−2.67)
Walk first/shopping trip −0.7367 (−3.19) −0.7595 (−3.36) −0.6472 (−3.19) −0.5293 (−2.89)
Walk following trip −0.4232 (−1.72) −0.4830 (−1.90) −0.4592 (−2.06) −0.4537 (−2.32)
Shifts for students
Walk-Walk 1.0321 (2.82) 1.0412 (2.63) 0.8619 (2.39) 0.7782 (2.48)
Shifts for married individuals
Walk-Walk −0.7109 (−2.66) −0.7525 (−2.61) −0.7207 (−2.76) −0.6658 (−2.83)
Shifts for individuals living in 3-member households
Walk-Walk 0.6768 (1.84) 0.7520 (1.92) 0.7202 (1.97) 0.6972 (2.18)
LOS variables
Travel time forfirst trip (base) −0.0844 (−5.61) −0.0682 (−5.14) −0.0624 (−4.44) −0.0596 (−5.26)
Travel time shift for clothes
shopping

0.0355 (3.89) 0.0312 (3.85) 0.0281 (3.54) 0.0232 (3.68)

Travel time shift for O-S-O
trip chains

0.0127 (2.08) 0.0114 (2.03) 0.0103 (2.14) 0.0107 (2.46)

Travel time shift for HWH
tours

−0.0417 (−4.33) −0.0369 (−4.19) −0.0321 (−3.70) −0.0312 (−4.31)

(continued).
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Table 6. Continued.

Estimate (Rob. t-ratio w.r.t. 0)

Parameter MNL-joint-base CNL-joint-base CNL-joint-proposed-1 CNL-joint-proposed-2

Travel time shift for pm
peak/night/weekend
evening

−0.0088 (−1.56) −0.0080 (−1.58) −0.0076 (−1.70) −0.0060 (−1.55)

Travel time shift for morn-
ing/weekend night

−0.0408 (−2.45) −0.0343 (−2.25) −0.0294 (−2.26) −0.0298 (−2.33)

Travel time multiplier for
car/PT IVT/PT first access/PT
last egress

1.0000 (–) 1.0000 (–) 1.0000 (–) 1.0000 (–)

Travel time multiplier for
remaining PT OVT

0.4378 (2.32) 0.4196 (1.95) 0.4655 (2.38) 0.5160 (2.56)

Travel time multiplier for fol-
lowing trip

1.2585 (15.13) 1.2692 (14.49) 1.2522 (14.50) 1.2525 (14.34)

Travel time–Shoppingdura-
tion elasticity

−0.3238 (−9.97) −0.3537 (−9.48) −0.3358 (−9.15) −0.3188 (−9.14)

Box-cox lambda for car
travel time

1.0568 (19.71) 1.0949 (19.84) 1.1047 (20.66) 1.1009 (19.78)

Box-cox lambda for PT travel
time

0.8272 (−12.83) 0.8586 (13.11) 0.8659 (12.94) 0.8609 (12.69)

Travel walking distance for
first trip (base)

−1.5993 (−12.83) −1.6909 (−12.21) −1.5943 (−11.75) −1.4220 (−11.39)

Travel walking distance shift
for O-S-O trip chains

0.2138 (1.91) 0.1693 (1.49) 0.1167 (1.09) 0.1001 (1.02)

Travel walking distancemul-
tiplier for following trip

1.2634 (13.03) 1.2935 (12.52) 1.3240 (11.89) 1.3482 (11.62)

Box-cox lambda for travel
walking distance

0.7956 (15.22) 0.8137 (15.11) 0.8128 (15.23) 0.8320 (13.17)

Travel walking distance –
Shopping duration elasticity

−0.1425 (−4.24) −0.1369 (−4.11) −0.1202 (−3.74) −0.1135 (−3.10)

Travel cost −0.5578 (−7.55) −0.5682 (−7.57) −0.5138 (−6.95) −0.4818 (−8.03)
Box-cox lambda for travel
cost

0.5870 (10.18) 0.5598 (9.90) 0.5536 (9.74) 0.5353 (8.84)

Travel cost – Personal
income elasticity

−0.3000 (−2.85) −0.2988 (−2.93) −0.2872 (−2.86) −0.2678 (−2.92)

Direction of travel
Presence of
angle>90o between
O-S and O-D

−0.2438 (−2.04) −0.2551 (−2.15) −0.2451 (−2.37) −0.1914 (−1.99)

Locational variables
Living in richareas-shopping
in poor areas

−0.7828 (−2.86) −0.7622 (−2.89) −0.6460 (−2.76) −0.6346 (−2.75)

Parking areas (400m buffer) 0.0951 (3.73) 0.0889 (3.70) 0.0697 (3.40) 0.0434 (2.42)
Box-cox lambda for parking
areas (400m buffer)

0.4540 (5.83) 0.4473 (5.78) 0.4576 (5.31) 0.2965 (2.22)

Major clothes shopping
retailers (400m buffer)

1.3317 (6.08) 1.3813 (6.43) 1.1858 (6.04) 1.1387 (6.31)

Major grocery retailers
(400m buffer)

0.4860 (4.90) 0.4385 (4.49) 0.3661 (3.57) 0.3656 (4.28)

Major durables retailers
(400m buffer)

2.0975 (2.61) 2.0353 (2.66) 1.7233 (2.37) 2.0297 (3.21)

Size variables
Natural logarithm
multiplier φ

0.6186 (7.63) 0.5809 (7.73 0.5451 (5.41) 0.5498 (7.04)

Population (400m buffer)
(base)

1.0000 (–) 1.0000 (–) 1.0000 (–) 1.0000 (–)

Retail areas for clothes
(400m buffer) (log.)

0.6162 (1.24) 0.5841 (1.13) 0.4293 (0.85) 0.5025 (1.03)

Retail areas for groceries
(400m buffer) (log.)

1.1082 (2.62) 1.2994 (2.95) 1.1443 (2.35) 0.9252 (2.21)

(continued).
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Table 6. Continued.

Estimate (Rob. t-ratio w.r.t. 0)

Parameter MNL-joint-base CNL-joint-base CNL-joint-proposed-1 CNL-joint-proposed-2

Retail areas for durables
(400m buffer) (log.)

0.5206 (0.71) 0.5535 (0.76) 0.3303 (0.49) −0.0862 (−0.12)

Retail areas for groceries
when following trip purpose
is shopping (1000−2000m
buffer) (log.)

−0.8087 (−0.94) −0.6591 (−0.76) −0.3967 (−0.48) −1.2999 (−1.47)

Shopping store variability
when following trip purpose
is shopping (1000−2000m
buffer) (log.)

2.2519 (1.89) 2.3729 (2.00) 2.2730 (1.88) 2.3282 (2.43)

Nesting parameters λ
λdest – 0.9601 (−0.23a) 0.5094 (−6.80a) 0.5481 (−10.82a)
λC – 0.8614 (−2.90a) 0.7968 (−2.36a) 0.5749 (−3.04a)
λPT – 0.5143 (−1.75a) 0.7708 (−1.62a) 0.9220 (−0.32a)
λW – 1.2488 (2.93a) 1.2474 (2.26a) 1.4246 (2.91a)
Distance multipliers γ

γ C
dist – – −1.2279 (−6.48b) −0.4282 (−3.85b)

γ PT
dist – – −0.8388 (−4.16b) −0.5181 (−3.06b)

γW
dist – – −2.3426 (−7.73b) −0.3233 (−2.15b)

Retail area multipliers γ

γW
retail area – – – −0.1574 (−4.39b)

Parking area multipliers γ

γ C
parking area – – – −0.4533 (−11.37b)

Store type multipliers γ

γ C
store type – – – 1.4590 (8.15b)

γ PT
store type – – – 1.6680 (2.52b)

γW
store type – – – 5.275 (10.52b)

Allocation parameters α
Dest. allocation
for same mode
combosαjoint∗

dest,samemode(log.)

– – −0.3765 (−0.50) 2.1350 (2.03)

Dest. allocation
for diff. mode
combosαjoint∗

dest,diff .mode(log.)

– – 1.7945 (2.85) 3.6312 (4.98)

aRobust t-ratio w.r.t. 1.0
bThe robust standard error was calculated using the delta method (Daly, Hess, and de Jong 2012).

mode dimension for car and PT (although not statistical significant at the 90% confidence
level), but not for walk. Using that specification, however, it was not possible to capture
any unobserved correlation along the destination dimension, since the estimated λdest is
not statistically different than 1.0. Therefore, using this specification would lead to the con-
clusion that correlation exists only along the mode dimension for car and PT (again not
statistical significant at the 95%confidence level), andnot along thedestinationdimension.
That assumption, however, is rejected if we look at the CNL-joint-proposed-1 and CNL-joint-
proposed-2models. Both specifications resulted in significantmodel fit improvements over
the base MNL model with 25.881 and 55.72 LL units for 9 and 14 additional parameters,
respectively. Furthermore, the CNL-joint-proposed-2model was the only specification out-
performing theMNL-joint-basemodel in terms of BIC, with a statistic of 8,626.64 as opposed
to 8,635.31. More importantly, however, the proposed specifications were able to cap-
ture significant unobserved correlation along the destination dimension, in addition to car
mode dimension. The presence of correlation along the PT mode dimension was more
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clearly rejected especially in the CNL-joint-proposed-2 model, while again no correlation
was captured for walk. Furthermore, the estimated λdest in both cases is smaller than λcar,
indicating a higher correlation in the destination nests than in car nests. The additional sim-
ilarity factors in the specification of the allocation parameters led the CNL-joint-proposed-2
to outperform the CNL-joint-proposed-1 by a significant margin (29.839 LL units) for 5 addi-
tional parameters. A validation test was also performed for CNL-joint-proposed-2 similarly
to the test performed for CNL-dest-2 described in Section 4.1. Results from that test indicate
a reasonable level of stability with the training and validation set leading to an average
probability of correct prediction of 0.188 and 0.179, respectively.

The ASCs for the joint model were specified in a similar notion as for the destination
choice model, but this time the alternative dest 1/car-car was used as the base for the
remaining 1583 alternatives, which were grouped according to their general area and their
mode combination. The estimated parameters have the expected signs, withmode combi-
nations not including car beingmore preferred for shopping destinations in the city centre
of Leeds, where more sustainable modes are increasingly promoted. The opposite is true,
however, for locations in the rest of Leeds, such as suburban stores, and in the rest of the
Yorkshire region, where car combinations are more favourable. Nonetheless, destinations
in local high streets that are further away from Leeds city centre, are still less likely to be
performed by car possibly due to car restriction measures and limited parking availabil-
ity. Individuals living in households with no car ownership are less likely to use car-car
combinations, while shopping trips including more than 1 passenger are more likely to be
performed by car, at least for one of the two legs again probably due to its convenience.
Out of all PT-related travel time components, the remaining out-of-vehicle time sensitiv-
ity was found to be significantly lower than the base travel time sensitivity (car travel time
for first/shopping trips), while the remaining PT travel time components were found to be
equal to the base travel time sensitivity, hence theirmultiplierswere fixed to 1.0. Finally, the
estimated income elasticity to cost is similar to the empirical evidence suggested by pre-
vious studies regarding non-work trips in the UK (Batley et al. 2019; Sanko et al. 2014). The
behavioural interpretation for the remaining level-of-serviceparameters and formost of the
estimated size variables is similar to thedestination choicemodel previously described. This
time, however, the cumulative floor area of grocery stores in neighbouring destinations at
medium distances (1,000–2,000m) also adds to the attraction of the shopping destination,
when the following trip is again for shopping, albeit at a lower rate than the grocery store
area in the immediate neighbourhood of the shopping destination (400m buffer).

In CNL-joint-proposed-1 and CNL-joint-proposed-2, the γ multipliers were parameterised
by mode, which allows for a more detailed analysis of the impact of each similarity mea-
sure among destinations on the allocation of each alternative to the destination nests. In
the CNL-joint-proposed-1model, the distancemultipliers for a car-car alternativewere spec-
ified as γ C−C

dist = −(γ C
dist × γ C

dist) = −e2γ
C∗
dist . In a similar notion, the distance multipliers for a

PT-walk alternative were specified as γ PT−W
dist = −(γ PT

dist × γW
dist) = −[(−eγ PT∗

dist ) × (−eγW∗
dist )].

It is assumed that combinations such as car-PT and PT-car will have the same γ . In the
CNL-joint-proposed-2model, the γ multipliers were parameterised for all of the threemode
alternatives, but only the statistically significant ones were kept in the final specification
reported here. They were specified in a similar way as in the CNL-joint-proposed-1 with the
only exception of the γ multipliers for store type similarity, which were defined as strictly

positive, e.g. as γ C−C
store type = −(γ C

store type × γ C
store type) = e2γ

C∗
store type .
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Regarding the detailed γ estimates of CNL-joint-proposed-1, combinations of mecha-
nised modes, i.e. car and PT, lead to less negative γ , with the lowest one being for PT-PT
trips. That means that individuals travelling by PT for both trip legs will perceive the tar-
get destination to be more similar with its neighbouring destinations. On the other hand,
mode combinations that include walking on either of the two trip legs have a more nega-
tive γ with the largest onebeing forwalk-walk trips. Thatmeans that individualswalking for
both trip legswill perceive their target shopping destinations as amore isolated alternative
compared to its neighbouring destinations. Regarding the estimated allocation parame-
ters, same-mode alternatives will belong with a larger allocation probability to their mode
nest, while the opposite is true for different mode alternatives. A similar analysis for CNL-
joint-proposed-2 shows that higher allocation probabilities are estimated for destination
nests relative to mode nests compared to CNL-joint-proposed-1. Furthermore, higher allo-
cation probabilities are also expected for destinations with more similar store type profiles
with the target alternative relative to the rest.

4.3. Demand elasticity analysis

In order to illustrate the importance of accounting for correlation among all destinations in
a spatial choice model, either a simple destination or a joint mode and destination choice
model, a demand elasticity analysis is performed in both of those cases and presented
below.

4.3.1. Destination elasticities
The demand elasticity analysis for the destination choice model has been performed for
MNL-dest-base, PCL-dest and the two proposed specifications, CNL-dest and the more flexi-
ble CNL-dest-2. The two NLmodels, namely NL-dest-1 and NL-dest-2, have not been consid-
ered, since they collapse to the base MNL. The forecasting scenario involved the increase
of car travel cost for destination 47, a suburban shopping centre at the outskirts of Leeds,
by 1%. The individual level elasticities and cross-elasticities for a specific participant, who
initially chose that shopping destination, are presented in Table 7 and are calculated as
log demandafter

demandbase
/(log(1.01)). The cross-elasticities for 3 specific destinations are examined,

where destination 71 is the closest alternative to destination 47 in the choice set at a dis-
tance of 0.99 km, alternative 34 is located at a distance of 7.88 km and finally alternative
131 is located at a distance of 28.31 km from the target alternative. Looking at the elas-
ticities obtained from MNL-dest-base, the impact of the IIA principle is clearly visible as it
results in a proportionate demand increase across the other three destinations regardless
of how far away from the target destination they are located. The PCL-dest, also, resulted

Table 7. Individual level demand elasticities for forecasting scenario 1.

Destination alternatives

Model Dest 47 Dest 71 Dest 34 Dest 131

Distance (km) 0.00 0.99 7.88 28.31
MNL-dest-base −0.082 0.084 0.084 0.084
PCL-dest −0.083 0.079 0.079 0.079
CNL-dest −0.082 0.112 0.081 0.081
CNL-dest-2 −0.077 0.229 0.209 0.125
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Figure 10. Demand cross-elasticities of CNL-dest model for each destination alternative based on their
distance from the target alternative for forecasting scenario 1.

in an almost proportionate demand increase for the remaining three destinations due to
the small estimated distance multiplier. The proposed specifications, CNL-dest and CNL-
dest-2, however, present more realistic results with the distance between the alternatives
now having a more profound impact on the cross-elasticities, as the closer destination,
alternative 71, is showing a higher demand increase as a result of the demand decrease
of its neighbouring alternative. It is also evident from the same Table that both the MNL-
dest-base and PCL-destmodels will significantly underestimate the change in demand of a
destination located closer in favour of alternatives that are located at a greater distance. It is
worthnoting that theCNL-destmodel predicts a 42%higher demandelasticity for the closer
destination relative to the PCL-dest model (0.112 and 0.079, respectively). Adding further
factors in the allocation parameter (land use similarities) in CNL-dest-2 increases the esti-
mated demand elasticity to the closer destination even further (0.229). A depiction of the
decrease of the estimated cross-elasticities fromCNL-destwith the increase of distance from
the target alternative for the current forecasting scenario is presented in Figure 10, where
there is a steep decline until a distance of about 7 km from destination 47, after which they
stabilise at around 0.08. On the contrary, for CNL-dest-2 the elasticities are decreasing at a
smaller rate as depicted in Figure 11(a), which seem to stabilise after 20 km at around 0.125.

4.3.2. Joint mode and destination elasticities
For the joint mode and destination choice model, a second forecasting example is pre-
sented, where car travel cost is increased by one unit for destination 47 again. The demand
elasticities and cross-elasticities for the different mode combinations and for different
destinations are examined at the individual level –for the same person as before– for
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Figure 11. Demand cross-elasticities of CNL-dest-2model for each destination alternative based on dif-
ferent similarity factors with the target alternative for forecasting scenario 1. (a) Straight distance. (b)
Retail area difference. (c) Parking area difference and (d) Land use profile similarity.

MNL-joint-base, CNL-joint-base CNL-joint-proposed-1 and CNL-joint-proposed-2 and outlined
in Table 8. Similarly to the elasticity analysis for the destination choice model, the two NL
models, namely NL-joint-MoD and NL-joint-DoM, are not presented, since they both col-
lapse to MNL-joint-base. That person chooses car-car initially to travel to destination 47
and to her following activity and PT is not available to her for the first trip. PT is also not
available for both trips (shopping/following trips) for destination 71. As in the elasticity
analysis for the destination choice model, the impact of the IIA principle is clearly evident
in the demand elasticities of the MNL-joint-base model. The CNL-joint-base model results
in a higher demand increase for alternative mode combinations in the same destination
and those cross-elasticities are stable across the alternatives regardless of their distance
from the target destination. Nonetheless, different conclusions can be drawn by examining
the CNL-joint-proposed, where higher cross-elasticities for the same mode combination of
car-car for different destinations are estimated. Therefore, CNL-joint-base overestimates the
shift to alternativemodecombinations for the samedestination,whileCNL-joint-proposed-1
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Table 8. Individual level demand elasticities for forecasting scenario 2.

Destination (density band) C-C C-PT C-W PT-C PT-PT PT-W W-C W-PT W-W

MNL-joint-base model
Dest 47 −0.122 −0.122 −0.122 – – – 0.148 0.148 0.148
Dest 71 0.148 – 0.148 – – – 0.148 – 0.148
Dest 34 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148
Dest 131 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148 0.148

CNL-joint-base model
Dest 47 −0.131 −0.148 −0.085 – – – 0.165 0.161 0.161
Dest 71 0.168 – 0.159 – – – 0.161 – 0.159
Dest 34 0.167 0.163 0.159 0.164 0.160 0.159 0.159 0.159 0.159
Dest 131 0.166 0.162 0.159 0.163 0.160 0.159 0.159 0.159 0.159

CNL-joint-proposed-1 model
Dest 47 −0.133 −0.174 −0.066 – – – 0.175 0.148 0.145
Dest 71 0.199 – 0.145 – – – 0.149 – 0.145
Dest 34 0.160 0.158 0.145 0.155 0.146 0.145 0.145 0.145 0.145
Dest 131 0.153 0.153 0.145 0.151 0.146 0.145 0.145 0.145 0.145

CNL-joint-proposed-2 model
Dest 47 −0.147 −0.123 −0.028 – – – 0.178 0.157 0.153
Dest 71 0.293 – 0.152 – – – 0.153 – 0.152
Dest 34 0.288 0.156 0.152 0.158 0.154 0.152 0.152 0.152 0.152
Dest 131 0.198 0.161 0.152 0.166 0.154 0.152 0.152 0.152 0.152

C: Car, PT: Public Transport, W: Walk.

and CNL-joint-proposed-2 suggest that individuals would be more likely to change their
destination rather than their mode and more specifically shifted to their closest destina-
tion compared to others (grey-highlighted cell). This is a key finding, and suggests that not
accounting for it could affect policy decisions. It could serve as an indication of the mode
captivity of individuals in the UK, especially for car users in this scenario.

The impact of the different similarity measures on the demand cross-elasticities across
mode combinations is presented in the following figures. First in Figure 12, a steepdecrease
of car-car cross-elasticities is illustrated up to a distance of 7 km from the target destina-
tion in the model CNL-joint-proposed-1 at a rate of -0.0129 (elasticity = 0.2425 − 0.0129 ∗
distance). After that point the rate of decrease slows down as cross-elasticities stabilise
at around 0.15 with a rate of -0.0002 (elasticity = 0.1610 − 0.0002 ∗ distance). On the
other hand, for CNL-joint-proposed-2, cross-elasticities for car-car combinations are more
evenly spread around the target destination up to threshold of around 10 km (elasticity =
0.2939 − 0.0008 ∗ distance) afterwhich they start todecline rapidly until a distanceof 40 km
(elasticity = 0.3371 − 0.0044 ∗ distance) as depicted in Figure 13 until they stabilise again
at around 0.15, similarly to CNL-joint-proposed-1.

Retail area difference does not have much influence on the cross-elasticities for car-car
mode combinations as expected Figure 14, as it only affects walk-walk combinations (see
Table 6). The impact of parking area difference on the demand cross-elasticities of car-car
mode combinations is depicted in Figure 15, where it seems to be quite important on the
first two most similar destinations with regard to parking areas with 0.3 and 0.32 cross-
elasticities, respectively. Those numbers drop in half to 0.15 before stabilising at around
0.18. Finally, the impact of store type similarity on demand cross-elasticities is depicted in
Figure 16. A simple linear regression suggests that for car-car mode combinations cross-
elasticities are increasing by 0.014 for every additional unit of store type similarity (cosine
similarity) (elasticity = 0.2776 + 0.014 ∗ store_similarity).
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Figure 12. Demand cross-elasticities of CNL-joint-proposed-1 model for each destination alternative
and permode combination based on their distance from the target alternative for forecasting scenario 1.

Figure 13. Demand cross-elasticities of CNL-joint-proposed-2 model for each destination alternative
and permode combination based on their distance from the target alternative for forecasting scenario 2.
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Figure 14. Demand cross-elasticities of CNL-joint-proposed-2 model for each destination alternative
andpermode combinationbasedon their retail areadifference fromthe target alternative for forecasting
scenario 2.

5. Conclusions

Destination choice is a topic of key interest to the travel behaviour community, and a key
issue in this context is how to capture the fact that more similar destinations (either due
to distance and/or differences with regard to land use) may be better substitutes for each
other. The current paper presented a novel correlation structure for a CNL model for desti-
nation choice, or for joint mode-destination choices. A range of different similarity factors
was utilised to capture spatial similarity and their impact ondemand cross-elasticities, start-
ing from spatial distance and thenmoving to landuse similaritymeasure amongalternative
destinations. A key contribution of the current paper is that the proposed nesting structure
allows us to capture continuous spatial correlations as a function of a range of factors, while
breaking free from restrictive nesting structures (Nested logit). Furthermore, it achieves
that without going intomuch higher computationally demanding structures, which would
require us to have a nest for each pair of alternatives (PCLmodel) andwithout resorting into
a sampling of alternatives approach to simplify the problem.

For the jointmode-destinationmodel, the proposednesting structure, basedon Tobler’s
first law of Geography, was the only specification, out of the MNL, NL and base CNL
frameworks examined, that was able to capture significant unobserved spatial correla-
tions among the destination alternatives and provided RUM-consistent λ estimates. For
the simpler destination choicemodel, the PCL specificationwas also able to capture spatial
correlations among destinations, however the proposed CNL model was able to uncover a
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Figure 15. Demand cross-elasticities of CNL-joint-proposed-2 model for each destination alternative
and per mode combination based on their parking area difference from the target alternative for
forecasting scenario 2.

much higher impact of distance in addition of being more statistically efficient and result-
ing in much lower estimation times. That allowed the proposed CNL model to be easily
extended to accommodate additional spatial similarity factors in the specification of allo-
cation probabilities. Furthermore, the study illustrated how the proposed nesting structure
can be easilymodified to be suitable for the context of a jointmode and destination, where
correlation is being captured across all choice dimensions simultaneously. Contrary to that,
it was not computationally feasible to extend the PCL model from the destination choice
application to the joint mode-destination one in the same way.

The results prove that, in general, there is a higher correlation between the error terms
of alternatives that are more similar to each other relative to all the rest. For the joint mode
and destination model, the results showed that mode also has an impact on the alloca-
tion parameters. Walking leads to higher allocation parameters for the nest of the target
destination, while mechanised modes, i.e. car and PT, result in more balanced allocation
parameters between the target and the neighbouring clusters, probably due to the flexibil-
ity thosemodes canprovide to thedecision-maker compared towalking. TheproposedCNL
model is also computationally more efficient than its PCL counterpart of Sener, Pendyala,
andBhat (2011) anddoesnot require simulation like theECmodel ofWeiss andHabib (2017)
allowing the analyst to estimate a model using the full choice set.

A deterministic approach for defining alternative availability/consideration has been
proposed in the current study. Since we are working in a spatial context, it is highly likely
that decisions are subject to latent spatial perception constraints (Bierlaire and Hurtubia
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Figure 16. Demand cross-elasticities of CNL-joint-proposed-2 model for each destination alternative
and permode combination based on their store type similarity from the target alternative for forecasting
scenario 2.

2010; Cascetta and Papola 2001; Haque and Hess 2019; Yao and Bekhor 2022). We have
experimented with defining mode-specific distance thresholds for constraining the con-
sideration choice sets, which showed only negligible differences with themodels currently
reported. A probabilistic choice set generation approach would be a better way to cap-
ture the impact of latent spatial constraints (Tsoleridis, Choudhury, and Hess 2023) and the
current proposed CNL specifications can be easily extended to allow for that. Nonethe-
less, that could be computationally prohibitive, especially in the context of the joint
mode-destination choice.

The results obtained are likely to depend to some extend on the Hierarchical Agglom-
erative Clustering (HAC) approach utilised to define the shopping areas that formed the
destination alternatives in our analysis. The distance threshold chosen (800m) was chosen
to minimise the discrepancies from the initial elemental observed destinations, however a
sensitivity test was not conducted to analyse the impact of that decision, which can be the
subject of future research. Furthermore, the deterministic approach used to allocate ele-
mental shopping polygons in overlapping clusters (described in Section 3.3) can also have
an influence on the results, albeit more profound in specific cluttered areas in city centres.
Future research can also explorewhether a probabilisticweighted allocation (e.g. weighted
by the distance to each neighbouring centroid) can affect the modelling outputs.

The joint mode-destination model showcased how the proposed CNL structure can
be extended to accommodate multiple choice dimensions. In a similar way, more choice
dimensions can be added that can be expected to be correlated with mode-destination,
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such as departure time. Having said that, however, it could have a negative computational
impact due to the increased choice set size that would probably lead us to take a sampling
of alternatives approach (refer to Guevara and Ben-Akiva 2013) or move to coarser spatial
resolutions for defining destination alternatives.

The reported specifications in the current study captured similarities amongdestinations
not only based on their spatial proximity, but also based on land use profiles, as well as
retail and parking areas thus providing a generalised empirical proof of Tobler’s first law of
Geography. It does not provide, however, an exhaustive search on all the possible factors
influencing spatial similarity, such as for example network topology, the distance of the
shopping destinations from the respective origins or even the detour from the straight line
between origins and following destinations that is required to reach each destination. Real
network distances have been examined as a more detailed similarity measure contrary to
straight distances, butwithout resulting in any significant improvements. Other continuous
measures can also be used, such as network travel times among the destinations during
different time periods, e.g. am peak, off-peak, pm peak etc. That would allow an additional
temporal dimension to be included in the analysis for the purpose of uncovering spatio-
temporal similarities among destinations. Future studies can explore the potential impact
of those factors, while also linking that to demographic characteristics and capturewhether
different individuals have a different perception of spatial correlation among destination
alternatives or whether the individuals perceive the destinations closer together or further
apart based on the time of day due to network traffic in each time period. Similar to the
store type similarity defined in the current study,Machine Learningalgorithms canalsohelp
to identify additional complex spatio-temporal similarities among destinations. Similarities
could also differ based on the context of the choice problem itself with different attributes
influencing perceived similarity in a shopping location than in a residential location choice
model.

In addition to the insights of individual behaviour, the present study offers a specifi-
cation that can be used to enhance current national travel demand models (Department
for Transport 2020). Furthermore, agent-based models or individual components of land
use-transport interactionmodels couldbeenhancedwith sucha specification tobetter cap-
ture the effect of spatial similarity in the decision-making process. That would most likely
lead to a different distribution of activities through space and hence to different dynamic
interactions among agents or between land use developments and the transport system.

Notes

1. Details can be found at https://census.ukdataservice.ac.uk/use-data/guides/boundary-data.aspx
2. Details can be found here: https://docs.microsoft.com/en-us/bingmaps/rest-services/routes/
3. The choice set formation in the current models is defined deterministically as per Sections 3.4

and 3.5. A sensitivity analysiswas performed to assess the impact of choice set formation assump-
tions on the stability of the estimated parameters. More specifically, destination alternatives
beyond the observed chosen distances per mode were defined as non-available. The reduced
choice set model resulted in similar model fit statistics and estimated parameters indicating that
the exclusion of alternatives further away have a negligible impact on the model’s performance.
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