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Urinary metabolite model to predict the
dying process in lung cancer patients

Check for updates

Séamus Coyle 1,2 , Elinor Chapman 3, David M. Hughes 4, James Baker 3, Rachael Slater 3,

Andrew S. Davison 5,6, Brendan P. Norman 6, Ivayla Roberts 3,7, Amara C. Nwosu 8,9,10,

James A. Gallagher6, Lakshminarayan R. Ranganath 5,7, Mark T. Boyd 1,3, Catriona R. Mayland 10,11,

Douglas B. Kell 7,12, Stephen Mason 10, John Ellershaw 10,13 & Chris Probert 3

Abstract

Background Accurately recognizing that a personmay be dying is central to improving their

experience of care at the end-of-life. However, predicting dying is frequently inaccurate and

often occurs only hours or a few days before death.

Methods We performed urinary metabolomics analysis on patients with lung cancer to

create a metabolite model to predict dying over the last 30 days of life.

Results Here we show a model, using only 7 metabolites, has excellent accuracy in the

Training cohort n = 112 (AUC = 0·85, 0·85, 0·88 and 0·86 on days 5, 10, 20 and 30) and

Validation cohortn = 49 (AUC = 0·86, 0·83, 0·90, 0·86ondays5, 10, 20and30). These results

are more accurate than existing validated prognostic tools, and uniquely give accurate

predictions over a range of time points in the last 30 days of life. Additionally, we present

changes in 125 metabolites during the final four weeks of life, with the majority exhibiting

statistically significant changes within the last week before death.

Conclusions These metabolites identified offer insights into previously undocumented

pathways involved in or affected by the dying process. They not only imply cancer’s

influence on the body but also illustrate the dying process. Given the similar dying trajectory

observed in individuals with cancer, our findings likely apply to other cancer types.

Prognostic tests, based on the metabolites we identified, could aid clinicians in the early

recognition of people whomay be dying and thereby influence clinical practice and improve

the care of dying patients.

Accurately recognizing that a person may be dying and in the last weeks or
days of life is central to improving peoples’ experience of care. It enables
families, medical teams and health-care providers to plan and provide the
best care possible. However, physicians’ predictions of dying are frequently
inaccurate and overoptimistic1. The 2019 United Kingdom National Audit
of Care at the End of Life in hospitals found the recognition of the dyingwas

challenging.When dyingwas recognized, 20%of people diedwithin 8 h; the
median time to death was 36 h; and importantly 50% of patients lacked the
capacity to be directly involved in any decision-making2.

Predicting when a patient with advanced cancer is likely to die is a
challenge and currently no diagnostic test is available. Globally, there were
19·3million new cancer cases and almost 10million cancer deaths in 2020;
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Plain Language Summary

Recognizing when someone is nearing the

end of life is important for providing better

care, but it is often hard to predict accurately.

In our study, we analyzed urine samples from

lungcancerpatients todevelopamethod that

can predict when a person is in their last

30 days of life. We identified 7 key chemicals

in the urine that helped us predict death with

high accuracy. This method worked better

than current tools and provided reliable

predictions throughout the last month of life.

We also found changes in many other

chemicals in the final weeks. These findings

could help doctors identify when a patient is

dying earlier, leading to better care at the end

of life.
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lung cancer had the highest mortality, responsible for 1·8million deaths3.
Accurate prognostic information at the end of life is essential to co-ordinate
and manage care in response to need, whilst avoiding burdensome and
unnecessary interventions. Several validated prognostic tools aim to predict
the survival of patients with advanced cancer4. A recent comparison of five
validated prognostic tools showed the best model, PiPs-B (based on clinical
observations and blood results), was as accurate as expert multidisciplinary
clinician judgement5. However, existing models only consider a binary
outcome of death from a particular time point e.g. 30 days. An objective
model estimating risk of death over a range of timeperiods including the last
days of life is needed.

We do not knowhowpeople die from cancer. In the last 2 weeks of life,
there is evidence for deranged respiratory and renal function variables6,
although few patients have evidence of organ failure. Pulmonary embolus
and infection are thought to be the major causes of death based on post-
mortem studies7,8. However, it is unusual for people with cancer to die
suddenly as anticipated from a pulmonary embolus. About a third of
patients with advanced cancer admitted to specialist palliative care units
have a femoral deep vein thrombosis. Therefore, thromboembolism is
considered a manifestation of advanced disease, rather than a cause of
premature death9. There is also a difference between the physiological
deterioration leading to death in the acutely unwell patient compared to
people dying from cancer; there is no evidence of sepsis in those with
cancer6. This suggests cancerpatients generally donot die fromorgan failure
and in those that diewith an infection or pulmonary embolus diewith them,
rather than from these events.

A systematic review of biomarkers associated with dying identified
common themes in cancer patients, irrespective of the type of malignancy:
systemic inflammation, haematological changes, cachexia, hepatic dys-
function, renal dysfunction, and electrolyte changes10. Given the common
features shared in patients dying from cancer, a “dying process” has been
proposed10 but the biochemical pathways involved have not yet been
described.

We hypothesized a dying process is associated withmetabolic changes.
Here, we developed a model to predict dying based on urinary metabolites:
training and validation data are presented. Some of the metabolites are
known to be involved in particular pathways and the relevant pathways are
described and discussed.

Materials and methods
Study design
Urine samples from patients with lung cancer towards the end of life were
prospectively collected. Untargeted urine metabolomic studies were con-
ducted using liquid chromatography quadrupole time of flight mass spec-
trometry (LC-QTOF-MS) to identify metabolites in the urine. To identify
the metabolites that change in the last weeks of life, we applied two
approaches; ANOVA and volcano plot analysis. To predict the last days of
life, a Cox proportional hazards model with a lasso penalty was developed
and used. The predictionmodel was validated on a separate cohort that was
collected and analyzed after the initial (“Training”) cohort. This validation
cohort was also analyzed in a different laboratory using an Orbitrap mass
spectrometer. Further KEGG Pathway Analysis was performed, using the
statistically significant metabolites identified for the last 2 weeks and last
3 days of life. To identify the pathways affected during the dying process, we
then summarized and collated findings from the Volcano plot analysis,
ANOVAanalysesandKEGGpathwayanalysis to identify pathways affected
during the dying process.

Setting and participants
The studywas conducted at eight sites (hospitals and hospices) in theNorth
West of England (UK) from June 1st 2016 to March 31st 2020. Ethical
approval was provided by NorthWales (West) Research Ethics Committee
(REC reference 15/WA/0464). Patients with incurable lung cancer (locally
ormetastatic) were recruited prospectively with their informed consent and
urine samples were collected up to three times a week11. We approached

every adultwith advanced lung cancerwho the treating team thoughtwould
not be distressed discussing the study, could understand and communicate
in English and had capacity to provide informed consent.Written informed
consent was obtained. Urine samples were not collected at set times during
the day and it was not a 24 h collection. Patients who were often frail, could
not always supply a sample at a set time.The list ofmedications a patientwas
on for the previous 24 h was recorded for each sample. Each sample was
retrospectively assigned a day before death when this was known. In order
not to bias the results, only one sample per patient, the one closest to death,
was included for analysis. In metabolomics studies, analyzing only one
sample per subject, especially in large datasets with variable numbers of
samples from different subjects like ours, is aimed at ensuring that the data
accurately reflects the biological variation of interest, while minimizing
biases that can arise from unequal sampling and non-independence of
observations. The Validation cohort was recruited after the initial Training
cohort and analyzed over 2 years after the Training cohort.

Urine collection, storage and preparation
Randomurine samples were collected twice perweek fromparticipants into
universal (20mL) and glass (5mL) containers. An anonymized record of
medication administered in the previous 24 h was recorded. Samples were
stored on site at -20 °C before subsequently being transferred to the Uni-
versity of Liverpool for further storage at -80 °C. Individual patient samples
were thawed at room temperature, vortexed and supernatants separated
into four replicate aliquots in individual 96-well plates (Waters, UK) which
were stored at -80 °C until analysis by one of four different methods; two
different chromatography conditions in negative and positive ionization
polarity. Pooled quality control sampleswere created following the protocol
described by Norman et al.12. For each sample group (time before death), a
separate representative pool was created by pooling an equal volume of each
individual urine sample for quality control purposes. An overall pool was
also created by pooling equal proportions of the above grouppools. Analysis
of individual and pooled samples was performed following dilution of 1:3
urine:deionised water (DIRECT-Q 3UV Millipore water purification
system)12.

LC-QTOF-MS method
Untargeted urine metabolomic studies were performed using liquid chro-
matography quadrupole time of flight mass spectrometry (LC-QTOF-
MS)12. In brief, analysis was performed on an Agilent 1290 Infinity LC
coupled to an Agilent 6550 QTOF-MS equipped with a dual AJS electro-
spray ionization source (Agilent, UK).

Liquid chromatography conditions. Liquid chromatography (LC)
methods were run in positive and negative polarity. LC method 1:
employed an Atlantis dC18 column (3 × 100mm, 3 µm, Waters, UK)
maintained at 60 °Cwithflow rate at 0.4 mL/min.Mobile phaseswere (A)
water and (B) methanol both containing 5 mmol/L ammonium formate
and 0·1 % formic acid. The elution gradient started at 5 % B at 0 to 1 min
increasing linearly to 100 % by 12 min, held at 100 % B until 14 min,
returning to 95 % A for 5 min. LC method 2: used a BEH amide column
(3 × 150 mm, 1·7 µm, Waters, UK) maintained at 40 °C with flow rate at
0·6 mL/min. Mobile phases were (A) water and (B) acetonitrile both
containing 0.1 % formic acid. The elution gradient started at 99 % B,
decreasing linearly to 30% from 1 – 12 min, held at 30%B until 12·6 min,
returning to 99 % B for 3·4 min. Sample injection volume was 1 µL for
both LC methods. The sampling needle was washed with a solution of
water:methanol:isopropanol (45:45:10 v/v) between injections.

Mass spectrometry conditions. The mass spectrometer was tuned and
calibrated according to protocols recommended by the manufacturer.
Acquisition was performed in 2GHzmode andmass range 50–1700. The
capillary voltage was 4000 V and fragmentor voltage 380 V. The deso-
lvation gas temperature was 200 °Cwithflow rate at 15 L/min. The sheath
gas temperature was 300 °C with flow rate at 12 L/min. The nebulizer
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pressure was 40 psig and nozzle voltage 1000 V ( ± for positive and
negative ionization modes). The acquisition rate was 3 spectra/second.
The reference mass solution was continually infused at a flow rate of
0·5 mL/min by a separate isocratic pump for constant mass correction.
Each analytical run commenced with 20 injections of the overall pooled
sample for system equilibration. The order of individual samples was
randomized computationally and pooled samples were interspersed
throughout the analytical sequence, every 10th injection. Injections of
each sample group pool and the overall pooled sample were also placed at
the start (post-equilibration) and end of each analytical sequence12.

Data pre-processing and quality control. All data were acquired using
the MassHunter suite (Agilent build 6.0) with quality checks being per-
formed byQualitative Analysis (build 07.00).Mass accuracy was checked
using extracted ion chromatograms of reference masses: the resulting
accuracy was ±5 ppm during the run. Additionally, chromatographic
reproducibility was checked by overlaying binary pump pressure curves
across each analytical sequence. Data was filtered based upon the pooled
QC samples, with compounds being retained if observed in 100 % of
replicate injections for at least one pool and with peak area coefficient of
variation (CV) < 25 % across all replicate injections for each pool13.

Feature extraction. Targeted feature extraction was performed on each
dataset based on matching of metabolite chemical features against an in-
house compound library accurate mass and retention time (AMRT)
database that included a broad range of metabolites involved in inter-
mediary metabolism. This was previously generated from analysis of the
IROA Technology MS compound library of standards by each LC
method described above, combined with the same QTOF analytical
parameters used in this study12 (databases publicly available: https://doi.
org/10.6084/m9.figshare.c.4378235.v2). In addition to accuratemass and
retention time, tandemmass spectrometry (MS/MS) was also used in the
confirmation of metabolite identity (i.e. level 1 identification) as per
Sumner et al.14. Compound identification of unknownmetabolites in our
model was attempted by matching of our acquired MS/MS spectra
against the spectral libraries METLIN15 (Agilent METLIN metabolite
PCDL accurate mass library (build 07.00)), METLIN online16, MoNA17

and also using SIRIUS software (version 5.6.3) tools including theHMDB
database, SIRIUS molecular formula identification and CSI:FingerID
fingerprint prediction.

Data-dependent tandemmass spectrometry (MS/MS) was performed
for metabolite identification by analysis of the pooled samples with highest
abundance of compounds of interest. Accurate mass precursor ion targets
were [M+H]+ and [M−H]−. Multiple fixed collision energies were
applied (10–40 eV) with acquisition rates 6 spectra/second in MS1 and
4 spectra/second in MS/MS.

Cross-laboratory validation
Sample preparation. Urine samples were extracted with methanol
protein crush by adding 75 µL of water and 75 µL of methanol to 50 µL of
urine. Diluted samples were centrifuged at 4500 rpm for 20 min at 4 °C
and 150 µL of supernatant was transferred in 96-well plate for analysis.

LC Orbitrap mass spectrometer data acquisition. Untargeted LC
Orbitrap MS data was acquired using ThermoFisher Scientific Vanquish
UHPLC system coupled to ThermoFisher Scientific ID-X Tribrid mass
spectrometer (ThermoFisher Scientific, UK) following published
guidelines13,18–22. LC method used the same column, conditions and sol-
vents as described in the previous section. The LC gradient was also
replicated to match the initial study. In difference to the original method
and in adherence to laboratory guidelines the sample injection volume
was set to 2 µL and the needle wash solution was composed of water:-
methanol:isopropanol:acetonitrile (1:1:1:1 v/v).

Full-scanMSdatawas acquired in theOrbitrapmass analyser in them/
z range 66.7–1,000 with a mass resolution of 120,000 Full Width Half

Maximum (FWHM) at m/z = 200, a chromatographic peak width of 4 s
(FWHM), Normalized AGC target (%) = 50 and maximum injection
time = 100ms. Source and ion transfer parameters applied were as follows:
Sheath flow rate (arbitrary units) = 40, auxiliary gas flow rate (arbitrary
units) = 8, sweep gas flow rate (arbitrary units) = 1, spray voltage = 3.5 kV
(positive) and -3.0 kV (negative), capillary temperature (°C) = 275, S-lens
RF level (%) = 45, auxiliary gas heater temperature (°C) 320, source
position =M2.

Data-dependent MS/MS data acquisition was performed on group
pooled samples at the end of the analytical batch. Data was acquired in the
Orbitrap mass analyser with a mass resolution of 60,000 Full Width Half
Maximum(FWHM)atm/z = 200 for themaster scan and30,000FWHMat
m/z 200 for MS/MS, both with a chromatographic peak width to 4 s
(FWHM), Normalized AGC target (%) = 50, maximum injection time =
54ms, cycle time (sec) = 0.6, isolation window = 1.5m/z, stepped HCD=
20, 40 and 60, AGC target Standard, intensity threshold = 2 × 104, exclude
isotopes = on and dynamic exclusion = 6.0 s. Additionally, the method
included Targeted Mass and Targeted Mass Exclusion steps with 10 ppm
tolerance for both low and high limits. For both steps the AcquireX option
was turned on.

TheThermoFisher ScientificAcquireXdeep scanacquisitionworkflow
was employed on samples pooled by analysed group i.e., patients in the last
month before death and patients within 3months of death. AcquireX
parameters were kept to default values except for Inclusion List Peak
Window Extension which was set to 10 s and Exclusion Duration was also
set to 10 s. AcquireX workflow enables a more complete acquisition of
unique features in samples by using automated and iterative data dependent
MS/MSacquisition.This is achievedbyusing automatically updated run-to-
run inclusion and exclusion lists. In this study the use of AcquireX allowed
us to acquire anMS2 spectra for 95%and 70%of the retained features in ESI
+ and ESI- respectively.

Data processing and quality control. Raw instrument data in.RAW file
format were exported to ThermoFisher Scientific Compound Discoverer
3.3 (CD3.3) for deconvolution, alignment and annotation23. Compound
identification was performed against ThermoFisher Scientific mzCloud
spectral library with a score >70% (MSI 2) or against in-house spectral
library with a score >75% (MSI 1) and full match on the proposed
molecular formula from CD 3.3. For all data acquired, annotation and
identification criteria were according to Sumner et al.14. Compounds used
in the predictive model were matched based on identification and when
not available as in the case of unknownmetabolites, m/z, RT andMS/MS
similarity were used.

Statistics and reproducibility
The sample size was initially determined by a feasibility study. The sample
size required was calculated using a multivariate statistical method called
probabilistic principal component analysis via the R package MetSizeR,
designed specifically for metabolomics experiments based on nuclear
magnetic resonance and mass spectrometry. For CoxLASSO modelling,
missing values were replaced by one-half of theminimum positive value for
each variable, data were normalized by probabilistic quotient normalization
(PQN), autoscaled and glog transformed. Volcano and ANOVA analysis
were performed using MetaboAnalyst24, missing values were replaced by
one-fifth of the minimum positive value for each variable. Data were nor-
malized by median log10 transformed and auto-scaled. Unequal variance
was assumed.Volcanoplotsmeasureddifferences in compoundabundance:
fold change (FC > 2, FC <−2) and p < 0·05 (false discovery rate [FDR]
adjusted) were considered statistically significant. Analysis of Variance
(ANOVA) investigated differences in metabolite abundance in the last
weeks of life compared to samples >12 weeks from death. Graphs were
generated using ggplot on R Studio version 1.4.171725. Although multiple
samples were collected from patients, only the final sample was included in
the analysis to satisfy the modelling assumption of independence of
observations.
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Prediction modelling
PROBAST guidelines for reporting prediction models were followed26. A
Cox proportional hazards model with lasso penalty to derive a prediction
model was used for assessing the last days of life in our cohort27. This
approach is similar to the standard Cox model but shrinks parameter
estimates towards zero, reducing over-fitting due to the large number of
potential metabolites to consider as possible predictors of death. Adminis-
trative censoring was applied if the individual was still alive 30 days after
their sample was supplied.

A penalty parameter (lambda) was imposed to determine the amount
of smoothing chosen when 10-fold cross-validation was performed. The
valueof lambda that gaveminimummeancross-validated errorwasused for
both the prediction model and internal validation.

The model was internally validated using bootstrap resampling
methods with 1000 bootstrap samples. The penalty parameter was fixed
from the original Cox lasso model to fit to the whole dataset, and then, for
each bootstrap sample, a Cox lasso model was fitted and time-dependent
area under the curve was calculated. Model calibration was assessed with
each bootstrap sample by comparing the observed and expected survival
probabilities, splitting the predicted risks into 3 groups (denoted low,
medium and high risk of dying). The Validation cohort was externally
validated. Calibration was performed at 10, 20 and 30 days. Kaplan–Meier
curves were used to visually inspect the survival probabilities based on
30 day predicted risk. Log-rank tests were used to statistically compare the
survival curves. Analysis was performed in R Studio version 1.4.1717 and
used the packages “glmnet”, “survival”, and “hdnom”

25.

Pathway analysis
The pathway analysis was undertaken using MetaboAnalyst version 5·024

and combines pathway enrichment analysis with pathway topology
analysis to identify the most relevant pathways involved with the con-
ditions under study. Metabolites that showed a statistically significant
difference between groups were collated into relevant human KEGG
physiological pathways to visualise which were altered towards dying.
Metabolites were matched using the publicly available HMDB, PUB-
CHEM and KEGG databases.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Patients
We prospectively collected multiple samples of urine from patients with
lung cancer. To decrease confounding factors this study only recruited lung
cancer patients. TNM staging data were not collected in this study as these
are used at cancer diagnosis to predict 5 year survival and guide clinician
treatment. We aimed to collect samples from inpatients 2–3 times a week.
This was possible with a small number of patients. For the majority of
patients, the collection of repeated samples in the last weeks of life was
incredibly difficult to achieve.Wewere dependent onnurses andhealth care
assistants to remember in their busy schedules to collect a sample or for
research nurses to be on site—which may have only been twice a week for
half a day. Patients towards the end of life were very frail, for some theymay
have only urinated once or twice a day and could not supply a sample at a set
time. In addition, some patients when they deteriorated were unable to
supply a sampleunless theywere catheterised.This allmeant that despite the
intention to collect repeated samples over time, this was not always possible
for the majority of patients. Only 3 patient samples analysed were on some
form of chemotherapy (afatinib, pembrolizumab and exemethasane) and
none of these samples were in the last 6 weeks of life. There were two
independent cohorts; 112 patients in the Training cohort and 49 patients in
the Validation cohort (Table 1). Our analysis was in four parts, (i) reporting
metabolites that change in the last weeks of life, (ii) developing a training
model to predict death, (iii) validating the model in a separate cohort of

patients and (iv) identifying biochemical pathways affected in the last weeks
of life.

Metabolites that change in the last weeks
Ourfirst aimwas to investigatewhethermetabolites change in the lastweeks
of life. Using the Training cohort (n = 112) we applied two approaches;
ANOVA and volcano plot analysis. ANOVA is beneficial for comparing
means across multiple groups and understanding sources of variability,
while volcano plot analysis is valuable for visualizing and prioritizing fea-
tures in high throughput datasets. ANOVA analysis identified 93 metabo-
lites that varied in abundance. The abundance of 87 (94%) metabolites
differed significantly in the last week of life (week 1) compared to week 2,
week 3, week 4, week 4+ (weeks 4–11) or week 12+ (see summary in
Supplementary Data File 1 and box-plots in Supplementary Figs. 1–10 in
the Supplementary Information). Volcano plot analysis identified 85

Table 1 | Clinical characteristics of the patients in the training
cohort and the validation cohort included in this study

Patients Training cohort Validation cohort

Absolute
number /
112 (%)

Absolute number
/ 49 (%)

Sex

Female: Male 45 (40): 67 (60) 27 (55): 22 (45)

Diagnosis

NSCLCa (Adenocarcinoma) 35 (31) 2 (4)

NSCLCa (Squamous) 27 (24) 1 (2)

NSCLCa (Unspecified) - 18 (37)

SCLCb 22 (20) 11 (22)

Mesothelioma 3 (3) 2 (4)

Radiological Diagnosisc 25 (22) 15 (31)

Age (years)

Median (range) 71 (47-89) 71 (48–94)

40–49 4 (4) 1 (2)

50–59 14 (13) 4 (8)

60–69 32 (29) 14 (29)

70–79 41 (37) 19 (39)

80–90 21 (19) 10 (20)

>90 - 1 (2)

Ethnicity

Mixed—White & Black African 1 (1) -

White—British 111 (99) 49 (100)

Current Smoker status

Ex-smoker 19 (17) 5 (10)

Current 28 (25) 13 (27)

Never 65 (58) 29 (59)

Unknown - 2 (4)

Time of urine sample in relationship to

death (weeks/month before death)

Samples

analyzed

Week 1 26 (23) 13 (27)

Week 2 18 (16) 8 (16)

Week 3 12 (11) 5 (10)

Week 4 2 (2) 5 (10)

Month 2–3 13 (12) 1 (2)

Month >3 41 (37) 17 (35)

aNSCLC Non-small cell lung cancer, bSCLC Small cell lung cancer; cBased on Multidisciplinary

Team discussion.
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metabolites with a greater than 2-fold change between different time
intervals; the last 4 weeks of life (0–4 weeks), last 2 weeks (0−2 weeks), last
5 days (0–5 days) and last 3 days (0–3 days) (see Supplementary Data
File 2 and 3). Some metabolite changes were especially large in the last
3 days, for example, creatine 15-fold and sarcosine 17-fold. In total, we
identified 125metabolites that changed using ANOVA and or volcano plot
analyses; 53 metabolites were identified by both approaches. A table of the
molecularmass and retention times (RT) for theUnknownmetabolites is in
Supplementary Table 1.

Prediction model—training cohort
To focus themodel onmetabolites that best predicteddeathweused theCox
Lasso regression approach. This approach offers a powerful framework for
survival analysis by simultaneously addressing issues such as variable
selection, overfitting, multicollinearity, and interpretability, leading tomore
accurate and reliable models for predicting survival outcomes. In addition,
the Cox Lasso regression approach identifies aminimum set of features that
are most relevant for predicting survival outcomes, which can aid in
understanding the underlying biological factors associated with outcome
(death). Using this approach on our Training cohort (n = 112), we derived a
multivariablemodelpredicting the probability of survival for eachday in the
last 30 days. Themodel utilized only sevenmetabolites (Table 2), five which
increase and two that decrease towards death. The model can be used to
assign an individual a risk score indicating their probability of death within
the last 30 days. Stratifying subjects into risk groups based on model pre-
dictions and plotting their survival curves can reveal a model’s dis-
criminatory power.We therefore divided our patients up into three equally
sized groups based on their risk of death in 30 days. Kaplan–Meier survival
curves were plotted for patients classified as low, medium and high risk of
dying (see Fig. 1, log-rank test p < 0·001). This approach allows for the
visualization and comparison of survival probabilities among individuals
grouped into different risk categories based on their predicted likelihood of
deathwithin the last 30 days of life, as estimated by theCox Lasso regression
model. The Kaplan–Meier survival curves show it is possible to assign
individuals into different risk categories i.e. the differing levels of predicted
risk were reflected in the numbers of observed deaths in each group. The
group of patients with the highest predicted risk of death, did indeed have
the highest numbers of deaths. Conversely, the group with lowest predicted
probabilities experienced the fewest deaths. The Low risk group predicted
those who are unlikely to be in the last 4 weeks of life; 3% (1/37) died by day
10 and 5% (2/37) by days 20 and 30. TheHigh-risk group predicted those in
the last days of life; 59% (22/37) died by 10 days, 89% (33/37) by 20 days and
92% (34/37) by 30 days. The model had excellent Area Under the Curve
(AUC) values, which quantifies the overall accuracy of the test, for every day
in the last 30 days; for example, 0·85, 0·85, 0·88 and0·86 ondays 5, 10, 20 and
30 (see Fig. 2). We calibrated the model at days 30, 20 and 10 which was
reasonable (Supplementary Fig. 11). Calibration is the agreement between
the predicted probabilities produced by the model and the actual observed
outcomeswhich is crucial for ensuring the reliability and trustworthiness of
predictive models.

Compound identification of unknown metabolites in our model was
attempted using public spectral libraries including SIRIUS (which included
the HMDB database), Metlin, Mona and mzCloud. This approach did not
yield confident chemical structure identifications based on acquiredMS/MS
fragmentation spectra but did indicate clear molecular formula predictions
for Unknown Metabolite 5 (C6H6O2) and Unknown Metabolite 7
(C11H18N2O6). As these are the major spectral libraries in metabolomics
research, it suggests these metabolites have not been well-characterized
before. Importantly, these unknown metabolites are not medications or
medication metabolites. The spectra data for the two unknowns are inclu-
ded in Supplementary Tables 2 and 3.While Cox Lasso Regression analysis
identified seven metabolites, five of these metabolites were identified by
ANOVA analysis as being significant. ANOVA plots of five of the meta-
bolites identified from the predictionmodel analysis and compared over the
last 12 weeks of life versus >3months from death are shown in Fig. 3.

Prediction model—validation cohort
Predictive modelling relies on identifying patterns within the data that
directly relate to the outcomeof interest i.e. death. The use of techniques like
cross-validation (our validation cohort) ensures themodel is robust and can

Table 2 | Table of metabolites for the 30-day Cox lasso logistic
regression model and the corresponding Hazard Ratio

Metabolite Hazard Ratios

1 Creatine 1·66

2 Indole-3-lactic acid 1·59

3 Gluconic acid 0·75

4 Carnitine 1·18

5 Histidinyl-hydroxyproline 0·97

6 Unknown Metabolite 5a 1·05

7 Unknown Metabolite 7b 1·05

aUnknown Metabolite 5 (C6H6O2) with molecular mass 110.0368 and retention time 4.65.
bUnknown Metabolite 7 (C9H16N5O5) with molecular mass 274·1148 and retention time 3·48.

Fig. 1 | Kaplan–Meier survival curves using the model separates individuals into

High, Medium and Low risk of dying in the Training cohort. Kaplan–Meier

survival curves using the 30 day Cox lasso logistic regression model for the Training

cohort showing High, Medium and Low risk of dying. The tables show the per-

centage survival for the low, medium and high risk of dying groups at 10, 20 and

30 days. The actual numbers alive assigned for each risk category is in brackets.

There were initially 37 patients in each group.

Fig. 2 | AUC for the 30 day model. AUC for the 30 day Cox lasso regression model

that shows the AUC value at each day for the last 30 days before death. The blue line

shows the mean and dotted line the median. The dark grey shows the confidence

interval and the light grey shows the minimum and maximum values.
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generalize well to new data, eliminating the need for a traditional control
group. We validated our model in an independent Validation cohort
(n = 49) see Table 1. Validating a model generated from a large dataset is
crucial to ensure accuracy, generalization, and reliability. It verifies the
model’s ability to accurately predict unseen data, detects overfitting, aids in
model selection, instills trust, and assesses robustness to variations or

changes in the system. The Validation cohort was recruited after the initial
Training cohort and analyzed 3 years after the Training cohort. Validation
of the samples was firstly done on the original LC-QTOF-MS and secondly
on a different LC Orbitrap in a different laboratory (cross-laboratory vali-
dation). In metabolomics, validating on a different machine is important to
ensure the robustness and reproducibility of results. It helps assess whether

Fig. 3 | Plots for each metabolite from the pre-

dictionmodel identified as significant by ANOVA

over the last 12 weeks of life versus >3 months

from death. Plots for each metabolite from the

prediction model identified as significant by

ANOVA (i.e. FDR adjusted p-value <0·05.). Each

metabolite is compared over the last 12 weeks of life

versus >3 months from death. Week 01 (n = 26), 02

(n = 18) and 03 (n = 12) on the x-axis indicates

patients’measurement in the last week, 2 weeks and

3 weeks of life; week 04+ (n = 15) indicates mea-

surements from week 4 to week 11; Week 12+

(n = 41) indicates >3 months before death. Data

were normalized by reference feature, log-

transformed and auto scaled (centered around the

mean and divided by the standard deviation of each

variable).
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the findings are consistent across different instrumentations, reducing the
risk of bias or errors specific to a single machine. This validation enhances
the reliability and generalizability of metabolomic analyses. The cross-
laboratory validation measured creatine (MS/MS)14, carnitine, gluconic
acid, indole-3-lactic acid, unknown metabolite 7 (C14H15N3O3) and
histidinyl-hydroxyproline (C11H14N4O3)matched by formula, RT andMS/
MS spectra similarity. However, unknown metabolite 5 (C6H6O2) was not
detected. The following resultswere based on thefirst validation. Thirty-one
patients were in the last month of life. Kaplan–Meier survival curves were
plotted for patients classified as low, medium and high risk of dying (see
Fig. 4, log rank test p < 0·001). The Low risk group predicted those unlikely
to be in the last 4 weeks of life; 0% (0/16) died by day 10, 12% (2/16) by days
20 and 25% (4/16) by days 30. The High-risk group predicted those in the
last days of life; 56% (9/16) died by 10 days, 87% (14/16) by 20 days and 94%
(15/16) by 30 days.Aplot of theAreaUnder theCurve (AUC) for themodel
for each day over the last 30 days was plotted (see Fig. 5). Time dependent
AUC analysis can provide valuable insights into a model, including con-
tinuous monitoring of model performance, detection of changes or

deterioration in predictive power, validation of model stability, and iden-
tification of shifts in data characteristics or phenomena beingmodelled over
different timeperiods. The30 daymodelhad excellentAUCvalues for every
day in the last 30 days; for example, 0·86, 0·83, 0·90 and 0·86 ondays 5, 10, 20
and 30. Calibration of the model at days 30, 20 and 10 was good (Supple-
mentary Fig. 11).Despitewhat canbe considered a small number of samples
in the last month of life for both the Training and Validation cohorts our
results demonstrate the robustness and reproducibility of our model.

Pathway analysis
Finally, we explored pathways affected during the dying process. The
metabolites identified from the Training dataset are compatible with a
reduction in the rate at whichmolecules are synthesized or producedwithin
biosynthetic pathways and, in the case of degradative products, increased
breakdown of pathway intermediates. The total number of metabolites
identified, the number of these identified by KEGG and the number of
metabolites used in the pathway analysis for the last 2 weeks and last 3 days
from the different LC-QTOF-MS analysis approaches is shown in Supple-
mentary Table 4. KEGG is a widely used database and resource for
understanding themolecular functions andbiological systemsof organisms,
including biochemical pathways. KEGG pathway analysis, using the sta-
tistically significant metabolites discovered for the last 2 weeks and last
3 days of life, identified several associated biochemical pathways (Supple-
mentaryTable 5). Pathways involved in the lastweeksof life are summarized
inTable 3 and in furtherdetail in SupplementaryData 4. Thesepathways are
collated from the metabolites identified as changed significantly from the
volcano plot analysis and ANOVA analysis of the Training dataset.

Discussion
Our work describes an objective model predicting dying based on urinary
metabolites and represents to the best of our knowledge, the first attempt
using a metabolomic approach to describe pathways affected during the
dying process. The model was validated on an independent cohort of
patients and found to be reproducible. Using a risk score, we were able to
categorize patients at risk of dying. A test predicting the last days of life is
important; by decreasing clinical uncertainty, it will support clinical practice
and improve the care of dying patients28, enabling families, medical teams
and health-care providers to plan and provide the best care possible.

The Cox Lasso derived model demonstrates it is possible to use urine
metabolites to predict the dying process for each day within the last 30 days
of life with good accuracy in both the Training and Validation cohorts.
Using the 7metabolites identified, themodel can assign an individual a risk
score indicating their probability of deathwithin the last 30 days. TheHigh-
risk of dying score predicted themajority of patients imminently dying. The

Fig. 4 | Kaplan–Meier survival curves using the model separates individuals into

high, medium and low risk of dying in the Validation cohort. Kaplan–Meier

survival curves using the 30 day Cox lasso logistic regression model for the Vali-

dation cohort showing High, Medium and Low risk of dying. The tables show the

percentage survival for the low, medium and high risk of dying groups at 10, 20 and

30 days. The actual numbers alive assigned for each risk category is in brackets.

There were initially 16 patients in each group.

Fig. 5 | Comparison of AUC for training and

validation cohorts. The time dependent Area

Under the ROC Curve comparing the Training and

both Validation cohorts (same laboratory and dif-

ferent laboratory) for each day in the last 30 days of

life. One validation cohort was validated on the same

LC-QTOF-MS in the same laboratory as the

Training cohort. The second validation cohort was

validated on a LC Orbitrap MS in a different

laboratory.
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Low-risk of dying score identified those not in the last 2 weeks of life and at
30 days 75% of the cohort survived. The model calibration was stable at 30,
20 and 10 days; slightly overestimating those likely to die with a High-risk
score and underestimating dying with a Low-risk score. External validation
in an independent cohort had excellent AUC values. To our knowledge, it is
the only model predicting dying across a range of time points including the
last 2 weeks, with an AUC of 0·86 and 0·83 on days 5 and 10 in the Vali-
dation cohort. Further work with increased numbers of patients and sam-
ples will calibrate our model closer to dying and potentially >30 days.

A recent comparison of five validated end-of-life prognostic tools29

showed the best model, PiPS-B (based on clinical observations and blood
results) for 14 day and 56 day prognostication, was as accurate as expert
multidisciplinary clinician judgement; the overall accuracy was 61%. The
PiPS-A model (clinical observations only) obtained a C-statistic of 0.825
(0.803–0.848) and the PiPS-B model obtained 0.837 (0.810 – 0.863).
Whilst not the same as the time-dependent AUC we calculated (which
accounts for censoring of observations) it is very similar. Our model
obtained slightly higher AUCs in both the Training and Validation
cohorts and uniquely gave accurate prediction across a range of time
points (between 1 and 30 days).

Wedonot knowhowpeopledie fromcancer.Noprior studyhas useda
metabolomics or any other–omics approach to the best of our knowledge to
investigate dying from cancer. Our work therefore is the first study
describing metabolic pathways involved or affected in the last weeks and
days of life and thus provide insights into the dying process. The pathways
identified are compatible with a reduction in the rate at whichmolecules are
synthesized or produced within biosynthetic pathways and, in the case of
degradative products, increased breakdown of pathway intermediates. The
Cox Lasso regression approach taken aids in understanding the underlying
biological factors associated with death and our model identified 7 meta-
bolites suggesting the involvement of different pathways. Creatine, which
increases nearly 15 fold in the last 3 days of life and carnitine are bothmuscle
metabolites suggesting increasing muscle damage or cancer related
cachexia. Carnitine may also indicate disrupted mitochondrial fatty acid β-
oxidation and or mitochondrial dysfunction. Gluconic acid, abundant in
plants, decreases and suggests decreased oral intake. Indole-3-lactic acid is a
metabolite of tryptophan, metabolized by two major pathways in humans,
either through kynurenine or via a series of indoles; indole derivatives are
known to have anti-inflammatory roles. Histidinyl-hydroxyproline, a likely
breakdown product of the dipeptide histidylhydroxyproline, is a metabolite
identified from the in vitro growth of osteoclasts on dentine. It results from

the breakdown of bone collagen, suggesting bone resorption pathways are
affected.

ANOVA and volcano plot analysis identified a range of additional
metabolites that change in the last weeks and days of life. Towards the end-
of-life there are changes in energy availability. Within muscle, increased
creatine and decreased creatinine levels suggest a shortage of available
phosphocreatine, likely resulting in a shortage of available high energy
phosphate (ATP). IncreasedNAD+ and disruptedmitochondrial fatty acid
β-oxidation further supports the notion of reduced energy availability.
Disrupted mitochondrial fatty acid β-oxidation is indicated by increased
urinary dicarboxylic acids. Mitochondrial dysfunction is suggested by
increased urinary carnitine (essential for fatty acid metabolism), methyl-
glutaric acid and hydroxyl-3-methyl-glutaric acid. Interestingly, multiple
inflammatory mediators are known to affect mitochondrial energy meta-
bolismandmitochondrial dynamics, in turnmitochondrial dysfunction can
promote inflammation30. We previously demonstrated an increase in
acetone, produced duringmitochondrial fatty acid β-oxidation, towards the
end of life31. In addition, changes in xanthine metabolism (increased xan-
thine and hypoxanthine) are well known to be associated with oxidative
stress.

Numerous changes suggest altered nucleic acid metabolism. Several
critical building blocks accumulate, in particular UMP essential for RNA
synthesis, as well as adenine and guanosine. In addition, purine degradation
products xanthine, and hypoxanthine increase. Collectively these suggest
depleting pools of substrates required for nucleic acid anabolism. Crucially,
this would suppress ribosomal biogenesis, impacting upon cellular capacity
for protein synthesis, and importantly cellular stress monitoring and cell
viability32. In addition, ribosome synthesis makes high demands on cellular
energy resources which appear to be low given the increase in NAD+ .
Other changesalso likely impactnucleic acidmetabolism; alterations inone-
carbonmetabolism, indicated by accumulating dihydrofolic acid, sarcosine,
and cystathionine, suggest a reduced ability to generate nucleotides forDNA
synthesis. In addition, there will be reduced capacity to deal with reactive
oxygen species through decreased production of sulfhydryl-containing
reducing agents. Altered one-carbon metabolism is highly associated with
aging33, however, the consequences of changes in theseprocesses are difficult
to predict34.

Therewas evidence ofmuscle damageor breakdownand an increase in
amino acids starting ~3 weeks before death. Interestingly, increased muscle
proteinbreakdownandeffluxof aminoacids is a fundamental response seen
in critical illness35. Numerous hormones, including their essential inter-
mediates, were altered; cortisol, epinephrine, histamine and hydro-
xytryptophan increase; dopamine and serotonin decrease. Approximately
5% of tryptophan is converted to serotonin, therefore the low serotonin
levels and increased kynurenine levels imply there is a diversion36. Cortisol
was previously shown to be increased in dying patients including a cohort of
patients with lung cancer37. In critically ill patients, increased cortisol was
shown to be related to decreased breakdown in the liver38. Both cortisol and
tryptophan metabolism are influenced by the circadian rhythm yet in the
last days of life cortisol production and tryptophan metabolism increase.
Taken together, the pathways involved or affected during dying imply the
influence of cancer on the body. Considering the similar trajectory of dying
observed in individuals with cancer39 our findings are likely applicable to
other types of cancer.

An advantage of our study is that it was based on a homogenous cancer
population of lung cancers. Our Validation cohort was recruited and ana-
lyzed after the Training cohort. Our objective model is only based on seven
urinarymetabolites and it prognosticates for every daywithin the 30 days of
life with excellent AUC values. The model validated very well. To our
knowledge, it is the only model that predicts dying across a range of time
points (between 1 and 30 days). We believe it is an advantage that diet was
not controlled for. Our analysis identified 10 food related metabolites that
decreased with statistical significance in the last weeks of life. Therefore
decreased oral intake was identified as a pathway involved in dying in
Table 3. Importantly, our analysis showed a decrease in these metabolites

Table 3 | Pathways involved in the last weeks of life

Pathways involved in the last weeks of life

Energy metabolism

Disrupted mitochondrial fatty acid β-oxidation

Mitochondrial dysfunction

Decreased RNA synthesis

Decreased protein synthesis

Altered 1-carbon metabolism

Altered nucleoside (purine, pyrimidine) synthesis

Muscle loss/damage

Oxidative stress

Cell membrane breakdown / turnover

Altered hormone production

Altered amino acid metabolism

Kynurenine pathway activation

Decreased oral intake

This table is a summary of all the metabolites identified as changed significantly from the volcano

plot analysis and ANOVA analysis of the Training dataset. Further information to support this table

is in Supplementary Data File 4.
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concentration in the last weeks compared to those >3months from death,
that decreased further in the last week of life.

The structure of two metabolites in our model remain unknown
despite an extensive search against an in-house library (619 metabolites)
and public spectral libraries such as: SIRIUS, Metlin, Mona and
mzCloud. These are the major spectral libraries in metabolomics sug-
gesting these metabolites have not been well characterized before.
Importantly, medications and medication related metabolites were
excluded. For those samples, predominantly collected in months before
death, patients were admitted to hospital. The main reason a patient with
advanced cancer was admitted to hospital was for an infection and
therefore these patients would have been on IV antibiotics, pre-
dominantly Tazocin. For those patients in the last days of life, the
majority were not on antibiotics. Therefore, an increase in antibiotics
metabolites in the last days of life would not be detected. In the last days
of life, patients normal medications would have stopped due to decreased
oral intake or stopped for clinical reasons. Therefore, the metabolites of
non-symptom related medications (e.g. antihypertensives etc) would be
expected to decrease. However, certain symptoms can increase towards
the end of life. To manage these, medications would either be added or
possibly increase. In general there is a limited number of medications
used to control symptoms at the end of life e.g. morphine for pain,
midazolam for terminal agitation, glycopyronium for respiratory secre-
tions. The well characterised metabolites of these medications were not
detected in our analyses. The fact the unknown metabolites described
were present in almost all samples makes a drug artefact possibility
unlikely.

There are some limitations to our study. Our Training and Validation
cohorts were based on relatively small sample sizes40 (Training n = 112,
Validation n = 49) and the limited number of samples in the last month of
life (Training n = 58, Validation n = 31) excluded longitudinal analysis.
Ideally, a time series on a group of individuals each sampled repeatedly over
several weeks would give the best models. However, it is very difficult pre-
dicting time of death in the last weeks of life, and we do not know who is
going to die and when. We did analyse the samples of patients over time
from the few patients we had collected however statistical analyses were
consistently underpowered and we have not presented this data. Therefore,
our pragmatic approach was to sample all patients with advanced disease
regardless of perceived prognosis and use a cross-sectional approach to
identify patterns or predictors of dying. Our population was homogenous
and therefore not a broad cultural cross-section of patients. Furthermore,
two of the metabolites included in the model remained unknown despite
extensive searches against in-house andpublic spectral libraries. In addition,
it is important to note our analysiswas basedonurinemeasurements.While
convenient, as the sample collection was non-invasive, it is well understood
that urine offers a limited view for biochemical pathway analysis in com-
parison toblood.Moreover, thehazard ratios for themodel predictingdying
were derived from semi-quantitative data41 i.e., the Training and Validation
datasets relied on relative compounds intensities, not exact metabolite
concentrations.While suchmeasurementsmake possible the exploration of
relative differences within a study, exact quantitative measurements are
needed to allow for evaluation and prediction on new patients. An impor-
tant part of translating this model will be to establish concentration refer-
ence ranges for thesemetabolites in dying versus not-dying patients. Finally,
wemustnote that empirically there are different time frames of dying,which
is an added complication to predicting the last days of life. When patients
with cancer are recognized to be dying (actively dying) in a hospice setting,
they usually die over two to three days. However, some die within 24 h and
some take longer thanaweek.By recruiting greaternumbers of patientswith
lung and other solid tumours in the last weeks of life and identifying those
cohorts that die in these different ways, wemay improve the accuracy of our
model. Further work is needed to develop a widely applicable robust clin-
ical tool.

Our work describes an objective validated model predicting dying
based on urinary metabolites. It also represents the first attempt using a

metabolomic approach to describe metabolites that change before death,
thereby providing insights into biochemical pathways involved in or
affected by the dyingprocess. They implynot only the influenceof cancer on
the body but also illustrate the dying process. Considering the similar tra-
jectory of dying observed in individuals with cancer, our findings are likely
applicable to other types of cancer. We are exploring the development of a
low cost commercial point of care diagnostic test system. Accurate prog-
nostic information at the end of life is essential to co-ordinate and manage
care in response to need, whilst avoiding burdensome and unnecessary
interventions. The early recognition a person may be dying is central to all
the priorities for improving peoples’ experience of care in the last days and
hours of life. Prognostic tests, based on the metabolites identified in this
study, could aid in the early recognition of people who may be dying, and
therefore have the potential to influence clinical practice and improve the
care of dying patients substantially.

Data availability
The raw data and.csv files from the LC-QTOF-MS analyses in the paper are
uploaded on the Metabolomics Workbench database under Study ID
ST002082 and available at https://doi.org/10.21228/M8TT4442. Source data
is located in Supplementary Data 5.
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ANOVA Analysis of variance
AUC Area under the receiver operating characteristic curve
CD Compound discoverer
FC Fold change
FDR False discovery rate
FWHM Full Width Half Maximum
KEGG Kyoto Encyclopaedia of Genes and Genomes
LASSO Least absolute shrinkage and selection operator
MS Mass spectrometry
MS/MS Tandem mass spectrometry
MSI 1 Non-tandem mass spectrometry (collision energy not

applied)
m/z Mass-to-charge ratio
PQN Probabilistic quotient normalization
UHPLC Ultra-high performance liquid chromatography
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