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Abstract

A novel first-passage probability stochastic incremental dynam-
ics analysis (SIDA) methodology tailored for hysteretic fractional or-
der structural systems under a fully non-stationary seismic excita-
tion vector consistently designated with contemporary aseismic codes
provisions (e.g., Eurocode 8) is developed. Specifically, the vector
of the imposed seismic excitations is characterized by evolutionary
power spectra that stochastically align with aseismic codes elastic
response acceleration spectra, defined for specified modal damping
ratios and scaled ground accelerations. Leveraging the concepts of
stochastic averaging and statistical linearization, the approximative
non-stationary response displacement joint probability density func-
tion (PDF) is derived, retaining the particularly coveted attribute
of computational efficacy. Subsequently, the coupling with the sur-
vival probability model allows for the efficient determination of the
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response first-passage time probability density surfaces and the sur-
vival probability surfaces across various limit-state rules and scalable
intensity measures. The first-passage time probability serves as a ro-
bust engineering demand parameter, effectively monitoring structural
behaviour by considering both intensity and timing information, while
inherently aligned with pertinent limit-state requirements. Notably,
the associated low computational cost and the ability to handle a wide
range of complex nonlinear/hysteretic structural behaviours, coupled
with its compliance with modern aseismic codes, underscore its poten-
tial for applications in the fields of structural and earthquake engineer-
ing. A nonlinear system endowed with fractional derivative elements
is used to exemplify the method’s reliability. The accuracy of the pro-
posed method is validated in a Monte Carlo-based context, conducting
nonlinear response time-history analyses with an extensive ensemble
of accelerograms compatible with Eurocode 8 response acceleration
spectra.

Keywords: Nonlinear stochastic structural dynamics; Fractional order
structures; First-passage problem; Aseismic codes; Stochastic averaging;
Performance-based earthquake engineering

1 Introduction

In the discipline of structural engineering, encountering the phenomenon of
hysteresis is a common occurrence. This fact brings to the fore the critical
importance of accurately representing structural systems by thoroughly con-
sidering the underlying nonlinear mechanisms governing their behaviour (e.g.,
[1, 2]). Since in structural applications the dynamic loading to which hys-
teretic systems are subjected is often random in nature, a proper quantitative
treatment of the induced uncertainties becomes a fundamental prerequisite
for any aspiring research effort aiming to the assessment of related systems
performance (e.g., [3, 4, 5, 6]). Notably, integer order derivative models have
predominantly been used to represent systems servicing ordinary structural
modelling needs, however, the continually increasing demands for more so-
phisticated modelling dictate a paradigm shift towards more versatile and
advanced mathematical tools, such as fractional calculus [7, 8]. In this set-
ting, several fractional calculus approaches with different attributes can be
found in the literature (e.g., [9, 10, 11, 12]). Allowing for an enhanced in-
corporation of memory effects and long-range dependencies in the system



behaviour, fractional derivative operators have a broad range of engineering
applications, spanning from solid mechanics (e.g., [13, 14]) to mechanical
engineering (e.g., [15, 16]). This memory-persistent feature is particularly
relevant in modelling complex systems with non-local and hereditary charac-
teristics, such as those encountered in the structural engineering field (e.g.,
(17, 18]). Hence, a multitude of research endeavours focusing on seismic
isolation (e.g., [19, 20, 21, 22, 23]), vibration control (e.g., [24]) and energy
harvesting applications (e.g., [25, 26]) is added to the arsenal of methods and
techniques that demonstrate the efficacy of fractional calculus-based models
in the field (e.g., [27, 28, 29, 30, 31, 32]). In this setting, the problem of
performance determination of systems comprising terms of fractional order
under random excitations represents a sustained challenge in the area of con-
temporary stochastic structural dynamics.

The emerging concept of Performance-Based Engineering (PBE) enables
more tailored and targeted structural designs that prioritise specific per-
formance objectives rather than rigidly adhering to conventional building
codes and specifications, while considering the innate randomness character-
ising the induced hazards (e.g., earthquake, wind, tsunami, fire, etc.) (e.g.,
33, 34]). Incremental Dynamic Analysis (IDA) is a common tool within PBE
which establishes the relationship between usually employed seismic inten-
sity measures (IMs) such as spectral acceleration or peak ground acceleration,
with structural responses known as engineering demand parameters (EDPs)
(e.g., peak story drift, inter-story drift ratio, etc.) (e.g., [35]). Also, inher-
ent in the philosophy of the PBE is the fragility analysis which involves the
determination of the probability of exceedance of specified limit-state rules
(LSs) for various values of the IMs. The resulting IDA curves represent the
functional relation between IMs and EDPs, providing critical understand-
ings around the structural behaviour, whereas the generated fragility curves
serve pertinent reliability needs offering valuable insights into the seismic
resilience and vulnerability of structures. However, performing multi-record
IDA within a fully stochastic framework which necessitates assessing higher-
order statistical quantities surrounding the selected EDP, such as the Prob-
ability Density Function (PDF), demands a resource-intensive Monte Carlo
Simulation (MCS) approach (e.g., [36]). This process entails generating a
particularly large number of IDA curves to ensure a robust statistical charac-
terisation of the EDP. Consequently, conducting successive reliability assess-
ment based on fragility analysis is anticipated to further escalate the already
burdensome computational cost, rendering the process even prohibitive for



large scale complex systems.

The back-and-forth twisting pattern observed even in a single-record IDA
indicates multiple points satisfaction of the very same limit-state rule which
signals the entrance of a structure into a specific limit/damage state. The
relevant literature acknowledges the admission of hardening issues, leading
to structural resurrection in extreme cases and phenomena like period elon-
gation. However, the complexity of the mathematical entity of IDA curve is
clearly intertwined with scaling as well as timing ambiguity [37]. The herein
work is motivated by the desire to tackle both time and scaling peculiarities
within a fully probabilistic framework consistently aligned with PBE speci-
fications, studying the problem through the first-passage lens. The selected
EDP of the first-excursion time constitutes an excellent response-related vari-
able which performs structural monitoring considering intensity, as well as
timing information. In addition, it is naturally coupled with limit state
requirements, liberating the potential researcher from interpreting complex
twisting patterns behaviour as conforming or non-conforming with a par-
ticular performance level. In this context, developing a first-passage time
probability stochastic incremental dynamics analysis (SIDA) methodology
for systems comprising terms of fractional order and exhibiting hysteretic
behaviour becomes pertinent. The raised need should not be confronted
solely as a theoretical curiosity, since such needs may reasonably arise in
scenarios of real engineering interest involving combined systems like magne-
torheological dampers and isolators with structures which exhibit hysteretic
behaviour (e.g., [38]).

In passing, the herein proposed approach can be roughly construed as an
extension of the work in [37] to account for hysteretic fractional order struc-
tures subjected to fully non-stationary aseismic code-compliant stochastic
excitations, extending in that manner the range of the generated volume of
information leading to an enhanced exploitation of particular method at-
tributes. In the remainder of this paper, Sections 2.1 to 2.4 provide an
overview of the mathematical foundations underpinning the developed frame-
work. Section 2.5 offers relevant insights into the intriguing attributes and
practical applications of the proposed method. Following this, Section 3
demonstrates the application of the framework through an illustrative exam-
ple involving a hysteretic structural system comprising fractional derivative
elements subjected to Eurocode 8 elastic design spectra. The accuracy of the
proposed technique is assessed by juxtaposing the derived results with per-
tinent MCS data following nonlinear response time-history analysis (RHA).
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Finally, Section 4 summarises the main conclusions drawn from the herein
study.

2 Mathematical formulation

This section exemplifies the mathematical details involved in the develop-
ment of the proposed efficient first-excursion PDF-based SIDA methodology.
Particular attention has been given on elucidating the various simplifications
and assumptions made in the light of numerical efficiency. To ensure the
coherency in presenting the theoretical background material without sacrific-
ing the readability of the manuscript, a brief introduction including only the
salient concepts associated with the generation of response spectrum com-
patible stochastic processes is given in Appendix A, whereas the imposed
Eurocode 8 elastic design spectra are shown in the following Appendix B.

2.1 Nonlinear structural system comprising fractional
derivative elements
The equation governing the dynamics of a quiescent single-degree-of-freedom

(SDOF) nonlinear system with fractional derivative elements and base-excited
by a non-stationary stochastic seismic acceleration process, is given by

B(t) + BDGx(t) + g(t, 2, @) = Z(1). (1)

In Eq. (1), z denotes the system response displacement and a dot over a
variable represents differentiation with respect to time ¢. Dg,(-) accounts for
the Caputo fractional derivative operator of order o € (0, 1), defined as

1 tog(r

Dir(t) = r(1— a)/(J (t —( T))“ dr, )
where T'(:) is the Gamma function. Further, § denotes a damping coef-
ficient which is equal to 2(owi™®, with wy denoting the natural frequency
of the associated linear oscillator and (, the corresponding damping ratio.
Finally, g(¢,z,) is a nonlinear function which may also describe the hys-
teretic behaviour of the system whereas ,(t) stands for a non-stationary
stochastic seismic excitation process. The latter is described by an evo-
lutionary power spectrum (EPS) G(w, (o,t;aj), compatible with a target
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pseudo-acceleration response spectrum S(w, (p;a;), with a; denoting the
scaled images of the seismic excitation intensity. In the ensuing analysis
and without sacrificing generality and coherence, the technique proposed in
[39] is applied to generate the excitation EPS G(w,(p,t;a;) in alignment
with S(w, (o; az). A concise presentation of the fundamental concepts is pro-
vided in Appendix A. It is noted that various techniques have been proposed
over the years for deriving power spectra compatible with a given elastic re-
sponse spectrum typically found in the provisions of modern seismic codes
(e.g., Eurocode 8, Chinese GB 50011-2001); some indicative references in-
clude [40, 39, 41, 42, 43, 44, 45, 46, 47].

2.2 Determination of the equivalent linear system fol-
lowing a statistical linearization and stochastic av-
eraging approach

Next, aiming at determining the non-stationary response amplitude proba-
bility density function (PDF) of the SDOF system in Eq. (1), a linearization
treatment of the system is adopted. Specifically, this consists in employing
the standard statistical linearization methodology [48], in conjunction with
a stochastic averaging treatment [49].

Considering that the system in Eq. (1) is lightly damped, it can be as-
sumed that its response follows a pseudo-harmonic behaviour [49], described
by

(t) = A(t) cos (w (A(t)) £ +9(t)) , (3)

where A(t) = A and ¢(t) = 1 represent the system response amplitude
and phase, respectively, whilst w (A(t)) accounts for the equivalent natural
frequency of the system. Considering that the processes A(t) and 1(t) are
slowly varying with respect to time, it can be further assumed that they are
both constant over one cycle of oscillation roberts1986stochastic. Further,
manipulating Eq. (3), the latter two processes are given by [50]

A2(1) = 22(1) + (j(%)Q (4)

and

Y(t) = —w(A)t — arctan <x(t> , (5)



respectively. In order to facilitate the treatment of the fractional derivative
term in Eq. (1), the term

h0<t7$7D&t$ax) :BD&tQT(t) +g(t,$,ﬂf) —ﬁoﬂf(t) (6)
is introduced into the SDOF system [51, 52]. Eq. (1) is then recast into
@(t) + Bow(t) + ho(t, , Dg,x, &) = i4(t), (7)

where 5y = 2(owy denotes a damping coefficient. Applying the statistical lin-
earization methodology, the system in Eq. (7) is approximated by an equiv-
alent linear one

E(t) + (Bo + B(A)) £(t) + w?(A)x(t) = Fy(t), (8)

where $(A) and w(A) represent the amplitude-dependent equivalent linear
damping and frequency elements, respectively. The next step of the lineariza-
tion process consists in minimising the difference formed between Egs. (7)

and (8). Specifically, employing a mean-square minimization of the difference
leads to [52]

B(4) = = + o + B ) sin (), o)
where | o

S(A) = —;/0 g(Acos ¢, —Aw(A) sin @) sin ¢ d¢ (10)

with ¢(t) = w(A)t + ¢, and

9 F(A) N am

WH(A) = T f(4) cos (2) (11)

with 1 on
F(A) = ;/0 g(Acos ¢, —Aw(A) sin @) cos ¢ do. (12)

To further simplify the derivation of the non-stationary response amplitude
PDF, the amplitude-dependent equivalent linear elements in Egs. (9) and
(11) are subsequently approximated by equivalent time-dependent ones [52,
27]. To this aim, the time-varying mean values for the equivalent linear
elements are determined by taking expectations on Eqs. (9) and (11). This
leads to

Balt) = [ BLAM(ALD) dA (13)
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and -
W2 () = /O G A)p(A, 1) dA, (14)

where p(A,t) represents the non-stationary response amplitude PDF. Con-
sidering next Eqs. (13) and (14), Eq. (8) is written as

E(t) + (Bo + Beq(t)) & (t) + wey (t)a(t) = g (t), (15)

which represents the time-dependent linear system equivalent to the system
in Eq. (8).

It is readily seen that p(A,t) is required for the calculation of the time-
varying linear elements fe,(t) and w? (t) in Egs. (13) and (14). This is
attained by employing a stochastic averaging treatment. Specifically, the
stochastic differential equation governing the slowly varying response am-
plitude process is constructed and the associated Fokker-Planck equation is
formulated [49, 52]

p(4, t)}

(WBQ( ) CO? )
2w2 (1) A

€q

— 5B+ Buglt)) A+

w? (1) 0A

a (Weq( ) COv )
a4 ( D) p(4, t)) }
(16)

A solution to Eq. (16) for the particular case of linear SDOF systems with
fractional derivative elements subject to non-stationary excitation has been
proposed in [52], namely

0 {WG (weq(t)v Co t; ajf,) Op(A,t)
7T

w4
where
J =wd tsin <O;7T) (18)

and c(t) is a time-dependent coefficient to be determined [27, 53]. A closed
form expression for the latter is derived by substituting Eq. (17) into Eq. (16)



and manipulating. This leads to the first-order nonlinear ordinary differential
equation

G (wug(elt)) Go a3
Ale®)

which can be readily solved by applying any suitable numerical scheme, such
as the 4th order Runge-Kutta method. Thus, Egs. (17) to (19), and Egs. (13)
and (14) define a set of equations used for determining the response ampli-
tude PDF and the equivalent linear elements corresponding to the nonlinear
system in Eq. (1). In passing, it is noted that the time-dependent func-
tion ¢(t) is also used to compute the non-stationary response variance of the
SDOF system, which is approximated by [52]

&(t) = = [Bo + Beg(c(t)] (t) + Jm (19)

Elz?] = J¢(t). (20)

2.3 Non-stationary transition and joint response am-
plitude PDF determination

A closed-form expression for the non-stationary transition response ampli-
tude PDF has been recently proposed in [53] for SDOF nonlinear systems
with fractional derivative elements. In this regard, considering the target
system in Eq. (1) one gets

J Ay AZ + h2(t1,t2)> (JAQh(tl,t2)>
Ao, ta|Aq,ty) = exp | —J 1 , (21
p( 2 2| 1 1) C(tl,t2> p < 2C(t1,t2) 0 C(tl,tz) ( )

where ¢(ty,t5) and h(ty,ty) represent a set of unknown time-dependent func-
tions, and Iy(-) denotes the modified Bessel function of the first kind of zero
order [54]. Following closely the presentation in [53], the time-dependent
functions c(t1,t2) and h(ty, t5) are determined by solving the differential equa-
tions

de(ty, o) G (weq(tl’ t2), Go, b2 a;)
de(tr, 1) _ = 22
dt, + (ﬁO + ﬂeq(tl? t2)) C(tl’ t2) mJ w(gq(tla t2) ’ ( )
and dh(t t ) 1
# + B (Bo + Beg(tr, t2)) h(tr, t2) = 0, (23)

9



where 3., and wgq are the time-dependent equivalent elements in Egs. (13)

and (14), respectively, and G (weq(tl,tz),go,tg;az) is the EPS compatible
with the target pseudo-acceleration response spectrum.

Finally, adopting a Markovian response assumption for the amplitude
process, and also considering the initial condition p(Asg,t2|As,t1) = (A —
Ay), with §(+) denoting the Dirac delta function, in conjunction with Eqgs. (17)
and (21), it was proved in [53] that the joint response amplitude PDF is given

by

p(Aq,t1; A, ty) =

J2A A <JA2h(t1,t2)>
c(t)c(ty, ta) O\ clty, ts)

% exp At + Afe(ty, ta) + Pty ha)e(t) |
2C(t17 t2)

(24)

The interested reader may resort to [53, 55, 56] for a detailed derivation of
the joint response amplitude PDF in Eq. (24).

2.4 Hysteretic system limit-state rule first-passage time
density surfaces and survival SIDA probability sur-
faces determination

In this section, the first-passage problem pertaining to the target system in
Eq. (1) is considered. In this regard, the probability of first-passage is defined
as the probability that the response amplitude A(t) crosses a pre-set barrier
B corresponding to a limit state, for the first time over the time interval [0, T7.
Hence, the survival probability Pp(T’, A(t); a;) of the system is defined as the
probability that the response amplitude stays below the pre-set limit state
over [0,7]. Next, the time interval [0, 7] is discretised into a subset of time

intervals as [57, 53]
N

[0, 7] = lti1. til, (25)

i=1
with tg = 0 and ty = T. The step of the time interval discretisation (e.g.,

[58]) is taken equal to t; = t;_1 + (T, (t;—1), with £ € (0, 1] and T,,(t) = wijzt)

denoting the time-dependent equivalent natural period.

Further, exploiting the slow variation of the response amplitude A(t)
(see related discussion in Section 2.2), it is assumed that A(t) and thus
Pp(T, A(t); a;) remain constant within each of the intervals defined in Eq. (25).

10



The survival probability of the target system in Eq. (1) is approximated over
the sub-intervals [¢t;_1,%;], ¢ =1,--- | N, by [57, 53]

N

Py(T, A(t);a) = [ (1 - P, (26)

=1

where P; accounts for the first excursion probability of the response ampli-
tude within [t;_q,;], given that no previous crossing of the limit state B
has occurred for ¢t < ¢;_;. Further, taking into account the Markovian prop-
erty for the response amplitude as well as the mathematical definition of
the conditional probability, the calculation of the first excursion probability
P,i=1,2,..., N, simplifies to [57, 53]

_ Prob{(A(t;) = B) N (A(ti-1) < B)} _ Qi-14

P, 2
‘ PTOb{A(ti_l) < B} Hi—l ( 7)
with 5
Qi1 Z/ dAi/ p(Ai1, ti1; Aiy ty) dA;y (28)
B 0
and 5
H; :/0 p(Ai_1,tio1) dA;1. (29)

Clearly, the calculation of the survival probability in Eq. (26) relies on the
computation of the integrals in Eqgs. (28) and (29) which, in turn, depends
on computing the joint response amplitude PDF in Eq. (24). This is done
in two steps. First, considering that the time-dependent equivalent elements
Weq(t) and Se,(t) (see Egs. (13) and (14)) are slowly varying in time and thus
constant over each sub-interval [¢t;_1,t;] (i = 1,2,..., N) prompts the use of
the theory of locally stationary processes (e.g., [59, 60]). In this context, the
differential equations Eqs. (22) and (23) are solved over [t;_1, ;] leading to

G (weq(tiq), Cos ti1; af,)

w? (ti-1)

C(ti_l,ti> =Jm T; (30>

and

h(ti_1,t;) = Ai—l\/l — (Bo + Beg(ti-1)), (31)

11



respectively, with 7, = ¢; — ¢;,_;. Then, employing elements of the theory of
Bessel functions [54], Eq. (24) is recast into

J?A;,_1A; JA; 1 Air;
P b Aot =G ey =) P (\/c(til)ci(t) (1- @)2) (32)

X oxp <_JA§c(ti_1) + A?_lc(t,-)2> |
QC(ti_l)C(ti) (1 — T?)

where (i)

9 Clli—1

rt = S = B+ b)) ) (33)
Finally, substituting Eq. (32) into Eq. (28) while also taking into account
Egs. (30) and (31), yields

M
Qi 1= Do+ 3. Dy, (34)
m=1
where
JB2 JB2
— (172 e At
Do =1 mexp( 2c<ti><1—7~$>>[ exp( 2c<ti_1><1—r%>>] )
and 2m J2m2
Dy, = : Lo (36)

(c(tim)e(t:)™ (1 —r2)"" I, (2k)°
The term L,, in Eq. (36) is defined as
JB?
L= 47 (1= )" et ) b)) J 22 T (m+ 1 2)

X [r(m +1) =T (m 1, zc(ti_;])j(gf— r?)ﬂ ’

>2m+2

(37)
where I'(21,22) = [ s* 'e *ds is the upper incomplete Gamma function
[54]. In a similar manner, substituting Eq. (21) into Eq. (29) and manipu-

lating leads to
JB?
Hi,=1- — . 38
e (50 (39

12



Hence, considering Egs. (34) and (38), the first excursion probability for the
interval [t;_1,%;] (i = 1,2,...,N) is computed by Eq. (27), which is then
used to calculate the survival probability of the target system by employing
Eq. (26). In this setting, the first-passage time PDF is obtained by

dPg (T, A(t); aZ)
- dr '
A detailed derivation of Egs. (27) to (39) can be found in [61, 55, 57, 53].

ps (T, A(t);a}) = (39)

2.5 Definition of limit-state rules and mechanisation
of the proposed methodology

The existing body of literature employs limit-state rules, often defined in re-
lation to overall system inelastic deformation or maximum inter-story drift,
as seen in previous studies (e.g., [62, 63]). However, in the current study, a
distinctive perspective is adopted by examining the problem through the lens
of the first-passage analysis (e.g., [64, 37, 65]). This is achieved by selecting
the response limit-state first-excursion time as the EDP. Given the alterna-
tive nature of the chosen EDP, the proposed PDF-based SIDA methodology
establishes a functional relationship between IMs and EDPs, in conjunction
with LSs. At this point, it should be recalled that the standard IDA tech-
nique is concerned with the estimation of the relation between IMs and EDPs
whereas it requires an additional careful handling of the coupling with the
LSs for interpreting potential conformity with a particular performance level.
In Table 1, a potential mapping between performance requirements and sys-
tem limit-states, expressed in terms of inter-story drift for a typical structure
is provided.

Table 1. Performance requirements and limit states.

Limit states Limit-state barrier B
Impaired function 4.0 x 1072
Life safety 5.0 x 1072
Onset of collapse 6.5 x 1072

13



The mechanisation of the proposed response first-passage PDF-based

stochastic IDA methodology comprises the following steps:

1. Derive a compatible excitation EPS G(w, (o, t; a}) with a given pseudo-
acceleration response spectrum for a scaled picture of the peak ground
acceleration a; by following the approach in Appendix A; see [39] for
more details.

2. Following the stochastic averaging and linearization treatment pre-
sented in Section 2.2, solve numerically Eq. (19) to compute ¢(t), while
also considering the time-dependent equivalent elements in Eqs. (13)
and (14). Then, compute the response amplitude PDF p(A,t) by em-
ploying Eqgs. (17) and (18).

3. Define a barrier B and following Section 2.4 determine the first-passage
time PDF for the associated limit state. Subsequently, evaluate the
survival probability and first-passage time PDF by Eqs. (26) and (39),
respectively.

4. Repeat steps 1-3 for the scaled images of the peak ground acceleration
a, to define the survival SIDA probability surfaces and the response
first-passage time probability density surfaces considering the various
limit states.

2.6 Discussion on aspects of the proposed methodol-
ogy

This section provides an exploration of several key aspects, encompassing the
advantages, limitations and potential practical applications of the proposed
framework. In comparison to the state-of-the-art methodologies available in
the literature, the proposed first-passage PDF-based SIDA methodology for
hysteretic fractional order structural systems bears several significant and
intriguing features which are summarised in the following: (i) it accommo-
dates nonlinear structural systems exhibiting hysteretic behaviour; (ii) the
methodology addresses complex and more sophisticated modelling require-
ments resorting to fractional calculus concepts. This element makes it par-
ticularly appealing especially considering the particular volume of current
research efforts in the ever-changing and interdisciplinary field of engineering
mechanics which employ such modelling concepts (e.g., [13, 14, 15, 16, 17, 18,
20, 23, 19, 27, 28, 24, 29]); (iii) the ground motion is represented as a vector
of aseismic code-compliant fully non-stationary stochastic processes, rather

14



than a set of scaled earthquake records (e.g., Multi-record IDA), eliminating
the potential bias in selecting and scaling specific ground motion records.
This is particularly pertinent given the ongoing controversy in the literature
regarding this issue (e.g., [66]); (iv) the methodology significantly reduces
the bias introduced by the selection of a limited number of seismic motion
records, typically around seven (e.g., [2]); (v) the methodology is built on
the provision of higher order statistics, around the selected EDP, rather than
relying solely on mean and standard deviation estimates, as is currently the
norm in the literature; (vi) it addresses timing as well as intensity pecu-
liarities, employing an innovative limit-state first-passage time as an EDP,
curing in that manner the necessity to deal with intricate and convoluted pat-
terns of IDA curves related with typically employed EDPs (e,g, inter-story
drifts); (vii) the proposed framework is considerably less computationally
demanding compared to nonlinear response history analysis (RHA) for com-
patible ground motion records. Certainly, employing a conventional brute
force implementation of the IDA methodology for determining higher order
EDP statistics within a Monte-Carlo based context can pose significant com-
putational challenges, rendering the process even prohibitive for large scale
complex systems; (viii) the methodology provides with the response first-
passage time probability density surfaces instead of the conventional IDA
curves found in a number of pertinent studies in the field. Notably, the
generated surfaces encompass information on both timing and excitation in-
tensity. Moreover, the presented survival SIDA probability surfaces cater for
a higher volume of information as compared with their counterpart in PBE
analysis, namely that of fragility curves. It is noteworthy that an intersection
over a survival probability surface along the seismic acceleration axis leads to
a form which bears high resemblance with the standard definition of fragility
curves, as is typically encountered in the literature. Interestingly, an intersec-
tion along the time axis provides with the time-evolving survival probability
for a particular excitation level. These observations confirm that the two gen-
erated types of surfaces could serve practical needs, operating complementary
to well-established concepts as the ones mentioned above, thus attracting a
particular interest in the structural field; (ix) it provides with stochastically
derived time-varying forced vibrational system properties thus offering a solid
basis for interpreting the dynamic character of the system. Note that this
significant operation cannot be determined following typical nonlinear RHA;
(x) it employs an innovative EDP, which inherently couples IM, EDP, and
LS attributes. Notably, this contrasts with the standard IDA technique,
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which typically requires additional handling of the subsequent coupling with
LSs for interpreting potential conformity with a specific performance level.
The herein work represents a pioneering effort within the engineering realm,
addressing a critical and emerging gap between advanced stochastic engi-
neering dynamics and contemporary design code provisions in conceptual
agreement with PBE content. This study aims to reconcile the complexity of
sophisticated modelling requirements incorporating concepts from fractional
calculus, code-compliant non-stationary excitations, and structural nonlin-
earities with the practical frameworks used in current structural design and
analysis standards. By bridging these advanced theoretical approaches with
established engineering practices, the developed methodology seeks to en-
hance the applicability of modern engineering solutions for current and fu-
ture structural related needs. Relevant remarks should be included regarding
the expected levels of accuracy for the developed method, since it incorpo-
rates various techniques for efficiency, each with potential limitations. The
integration of stochastic averaging and statistical linearization methodolo-
gies could potentially undermine accuracy in cases of highly nonlinear and
low-performance structures. Lastly, the method imposes no restrictions on
the excitation process, except for the Gaussian assumption.

3 Illustrative application

In this section, the proposed response first-passage PDF-based stochastic
IDA methodology is numerically exemplified by considering a nonlinear struc-
tural system endowed with fractional derivative elements subjected to stochas-
tic seismic excitation in alignment with specifications prescribed by contem-
porary aseismic codes. The degree of accuracy is assessed by comparisons
with pertinent results derived from nonlinear RHA for an ensemble of ac-
celerograms compatible with Eurocode 8 response acceleration spectra (see
Appendix B).

3.1 Hysteretic structural system model endowed with
fractional derivative elements

The governing equations of the bilinear hysteretic system as well as the per-
tinent expressions for the time-dependent equivalent linearised elements are
derived in C. Note that such system modelling can be reasonably found
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in a number of relevant studies in the field of earthquake engineering (e.g.,
48, 27]). The following parameter values wy = 10 rad/s, (o = 0.05, o = 0.5,
v = 0.5 and z, = 0.03 m have been used in the system modelling provided in
Egs. (55) to (62). Further, the Eurocode 8 elastic pseudo-acceleration design
spectrum S(w, (p; af]) for soil type B is selected as the baseline spectrum for
generating the input spectra G(w, o, t; aj) following the specifications and
the scheme presented in Appendix B and Appendix A, respectively. Note
that the use of the latter scheme is not binding, and alternative approaches
found in the literature for deriving power spectra compatible with design
spectra can be considered as well. Also, it is noteworthy that provisions
defined by various aseismic codes can be readily considered by the proposed
framework, rendering the current choice of Eurocode 8 non restrictive. The
non-stationary attributes of the excitation are modelled through the jéf(t)
component of Eq. (40) which corresponds to the recorded time history at El
Centro site during the SOOE (NS) component of the Imperial Valley earth-
quake on May 18, 1940 (e.g., [39, 27]). The scaled images for the induced
excitation are determined as aj = g x [0.4,0.6,0.8,1.0,1.2], while the con-
sidered limit-state rules are shown in Table 1. The proposed methodology
requires first the determination of the design spectrum compatible evolution-
ary power spectra G(w, (o, t; aZ) for the above mentioned scaled acceleration
intensities aj. Next, the methodology outlined in Section 2.1 to 2.4 enables
the efficient determination of the response first-passage time probability den-
sity surfaces as well as the survival SIDA probability surfaces for each and
every of the considered limit-state barriers B. In Fig. 1 and Fig. 2, the sur-
vival SIDA probability and first-passage time PDF surfaces of the hysteretic
fractional order system under consideration for the limit-state of “Impaired
function” are efficiently determined and compared with the corresponding
MCS data. Notably, targeted comparisons related to both the lower and up-
per excitation intensity bounds have been included as well, showcasing the
achieved degree of accuracy of the proposed methodology.
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Fig. 1. Survival SIDA probability surface estimates for the bilinear hys-
teretic fractional order system for the limit state “Impaired function”: (a)
Proposed analytical solution (3D); (b) Proposed analytical solution (2D); (c)
MCS estimates (3D); (d) MCS estimates (2D) (10,000 realisations).
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solution (2D); (¢) MCS estimates (3D); (d) MCS estimates (2D) (10,000

realisations).

Next, in Figs. (3-6), pertinent results considering the limit-states of “Life
safety” and “Onset of Collapse” are presented.
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of collapse”: (a) Proposed analytical solution (3D); (b) Proposed analytical
solution (2D); (¢) MCS estimates (3D); (d) MCS estimates (2D) (10,000

realisations).

To evaluate the attained accuracy level, comparisons with relevant data
from MCS are included in Fig. 1 to Fig. 6. More precisely, the spectral
representation method outlined in [67] is employed to create an ensemble
of 10,000 acceleration time histories, compatible with the reference seed
design spectrum corresponding to the specific scaled image of the excita-
tion aj. Subsequently, the governing equation of motion of the hysteretic
fractional order system of Eq. (1) is exposed to the above ensemble of ac-
celerograms and is numerically solved by resorting to an Ll-algorithm [19].
Notably, the limit state first-passage time probability density surfaces as
well as the survival SIDA probability surfaces are computed with minimal
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computational expense, leveraging the capabilities of the proposed stochastic
dynamics methodology detailed in Section 2. Evidently, comparisons with
MCS data demonstrate a satisfactory degree of accuracy, validating the pro-
posed technique appropriateness for related performance-based engineering
applications. The generated limit-state PDF surfaces offer a comprehensive
statistical representation of the employed EDP with respect to the excitation
intensity. In this setting, deriving other associated statistical quantities, such
as the mean and/or the mode is identified as a straightforward task. Notably,
considering the modes can lead to an establishment of a desirable one-to-one
mapping in the functional relationship between IMs and EDPs, circumvent-
ing issues related to complex non-monotonic patterns commonly observed in
conventional IDA curves. Another notable aspect of the structural behaviour
is that, for higher barriers under low levels of excitation intensity, the sur-
vival probability does not decrease to zero as it is observed for the lower
barriers. Instead, it reaches a constant non-zero value. Interestingly, this
kind of behaviour is noted on Fig. 5. For such cases the concept of the first-
passage time probability density function is meaningless (e.g., [68]) leading
the corresponding generated first-passage density surface to be defined in an
updated excitation intensity range.

It is worth noting that the proposed method considerably reduces the
computational workload compared to nonlinear RHA within a MCS frame-
work. To provide with an indicative order of magnitude for the computational
expenses involved, using a standard laptop setup (1.9 GHz 4-Core Intel Core
i7 processor and 16 GB RAM), the proposed technique typically takes 8-10
min to generate the pertinent outcomes for a single limit-state whereas a
MCS-based estimation, utilising 10,000 time-histories, necessitates around
50 min for addressing the same needs. The low computational cost of the
proposed approach renders it potentially a promising analysis tool, partic-
ularly for preliminary stochastic reliability analyses of nonlinear fractional
order structures. It is worth mentioning that the proposed technique can be
easily adapted to accommodate requirements outlined in any current code
of practice, addressing a wide range of hazards such as ocean waves, winds,
hurricanes, tsunamis, and others.
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4 Concluding remarks

This paper proposes a response first-passage time PDF-based stochastic
incremental dynamics analysis methodology for hysteretic fractional order
structural systems subjected to a fully non-stationary seismic excitation vec-
tor consistently designated with contemporary aseismic codes provisions. Re-
sorting to stochastic averaging and statistical linearization concepts, the ap-
proximate non-stationary response displacement joint PDF is derived in a
straightforward manner, preserving computational efficacy. Following this,
the integration with the survival probability model enables the efficient de-
termination of the response first-passage time probability density surfaces
and the survival probability surfaces for a scalable intensity measure adher-
ing to different limit-state rules. It is noteworthy that the proposed method
utilises an incremental mechanisation, reminiscent to the one used in the
standard implementation of IDA. This fact not only ensures compatibility
by scaling intensity but also aligns with established practices, enhancing its
practicality for adoption in a variety of engineering scenarios. The selected
engineering demand parameter of the first-passage time, which indicates a
structure entrance into a specific limit/damage state, serves as a valuable
response variable for monitoring structural behaviour. It considers both in-
tensity and timing information while it is inherently coupled with limit-state
requirements. The methodology departs from the current literature norm,
which relies solely on mean and standard deviation estimates, by incorporat-
ing higher-order statistics around the selected EDP (e.g. PDFs). Further,
the methodology provides with the response first-passage time probability
density surfaces instead of the conventional IDA curves. In addition, the
generated survival SIDA probability surfaces provide a wealth of informa-
tion compared to their counterpart in PBE analysis, namely that of fragility
curves. Moreover, intersections on a survival probability surface yield to var-
ious outcomes of significant engineering interest and practical merit. Equally
important is the fact that the methodology addresses the growing need for
more sophisticated modelling, advocating a logical shift towards advanced
mathematical tools such as fractional calculus. Importantly, the associ-
ated low computational cost enhances the appeal and utility of the proposed
methodology for related performance-based engineering applications at least
on a preliminary design stage. The concepts involved have been numeri-
cally illustrated using a bilinear hysteretic fractional order structural system
exposed to non-stationary ground motion modelled in accordance with con-
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temporary aseismic code provisions. Lastly, a MCS-based nonlinear RHA
with a large ensemble of non-stationary accelerograms assess the accuracy of
the proposed framework.
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A Derivation of design spectrum compatible
excitation non-stationary power spectrum

Following closely [39], the non-stationary stochastic excitation #,(¢) in Eq. (1)
can be written as

ig(t) = aig (1) + o) (1), (40)
where a'if(t) is a fully non-stationary segment from a real seismic record, with
a denoting a scaling coefficient, and 9'&5 (t) accounts for a time-modulated

quasi-stationary corrective Gaussian process, with ¢(t) representing a time-
modulating function. The latter is given by [69]

2
(L), t<t
1
p(t) =1 1, t<t<ty ; (41)
exp [_5m<t — tg)] R t >t

where T, denotes the time window within which the seismic record is assumed
to be stationary. Further, to = t; + T, with t; and t5 denoting, respectively,
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the time instants when the Husid function [70] is equal to 0.05 and 0.95.
Finally, 3,, defines the decay of the modulating function.

Next, considering a quiescent linear SDOF system subject to jéf(t) and
a'é:j (t), and assuming that the corresponding response spectra are ST (w, (; a;)
and S° (w, Co; ay), respectively, an approximate relationship for the design
spectrum is given by

S(w,fo;af)) = \/@2 SR (w, Co;a§)2 + 85 (w,CO; af})Q. (42)

The scaling coefficient in Eq. (42) takes values in (0, 1] and is calculated via

. S(W,Cm&é)
a—mln{w}. (43)

Working towards determining G*° (w, (; a;), a framework based on a com-
bination of an approximate solution treatment of the first-passage time prob-
lem [71] and of an iterative scheme [72] is adopted in the following. In
this context, first, a relationship between the one-sided power spectrum
G (w, Co; a;) and the response spectrum S5 (wo, Co; a;) is established in the
form

SS(wOa §07 a;) = T]mswg \/)‘O,:ES (Wo, CO) (l;) (44)

Ao s corresponds to the Oth order stationary response spectral moment of a
linear SDOF oscillator with natural frequency wy and damping ratio (g, with
the general nth order form given by

0 °° 1
)‘n,xs (CU(), C(]a ag) = / w"

0 (W§-w)+ (2Cowow)2GS(w’ Gos ) dew. (45)

Further, 7,s is the “peak factor” defined as [71]

Nes (Ts, p) = \/2 In (2,%5 {1 — exp (—5;'52\/7r1n(2uxs))]>, (46)

with

2

(—Inp)™" and b = 4|1 — & (47)
* AO,XSAZXS

o Ts AQ@S
N 27 AO@S

s

denoting the mean zero crossing rate and the spread factor, respectively.
Setting next p = 0.5 in Eq. (46) and adopting an approximate expression
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for the Oth order stationary response spectral moment (see [71]), Eq. (44) is
recast into

— 4 wo
Ss(wo»Co;@Z) = UiswoGS(woyCo;af]) (W 4C CO) + 7753/0 GS(W,Co;CLZ) dw.
0
(48)
Subsequently, a discretisation of the frequency domain is used to approx-
imate numerically the integral in Eq. (48). Specifically, a uniform frequency
grid of N points w; = w! + (i — 0.5)Aw with w; € (W), wi) (i =1,2,...,N) is
constructed, yielding [72, 3]
Gs(wh CO? a’f]) =
0, W; < wll)

S5 (wirCoias) ) -
o (( o) - AwTi, Gs<wka<o;az>), wh < wi < wp
(49)

The ordinates of the power spectrum G (w;, (o; af]) are determined by recur-
sively applying Eq. (49) (i = 1,2,...,N).

Having G®(w, (o; a5) determined in the range (wj,wy), the spectral rep-
resentation method is applied to generate an ensemble of realisations for
estimating the jth non-stationary acceleration time-history. This is done

based on [73]

Na
iD(t) = ail (t) + o(t) Y \/4G5(@Aw, Co; @) Aw cos (iAwt + 02@> . (50)
i=1
where Q,L(j ) denotes the independent random phases which are uniformly dis-
tributed in the interval [0, 27), and N, is the total number of harmonics con-
sidered. The EPS G(w, (o, t; a}) corresponding to the non-stationary stochas-
tic excitation process Z,(t) has two components, namely

G(wa CO? l; af]) = QQGR<('U7 CO) U af}) + 90<t)2GS(w7 CO; a;)v (51>

where G®(w, (o, t; a;) is the non-separable EPS and G (w, Co; a;) is the time-
modulated separable power spectrum of the corrective term. The former can
be readily determined by various techniques [74, 75, 76]. Lastly, an iterative
scheme is utilised for improving the matching of G*°(w, (; a;) with the target
pseudo-acceleration response spectrum. That is,

2
S (w, Co; a;’)
S0 (w, G a;)2 ’

G¥H)(w, Go; a;) = G5 (w, Co; ag) (52)

28



where S*) (w, Co; @y ) denotes the mean response spectrum of the non-stationary
stochastic excitation process Z,(t) at a specific level of peak ground acceler-
ation ay in the kth iteration.

B Eurocode 8 design spectrum

The Eurocode 8 outlines the elastic pseudo-acceleration response spectrum
for linear oscillators, characterised by a damping ratio ¢ and natural period
T = 27 /w through the following expressions [77]

S+ £ @25m-1), 0<T<Tg
2.58n, Tp <T<Tc
o s 2.55n%¢, Te <T<Tp
S(T, ¢ ay) = ag X 2.55n1cTn. Tp<T<Tg '’
Sicip szm o (1= 2.577)] , Tg <T <TF
ST%ED, TP <T

(53)

10
= |—— >0.55, 54
n 5ic” (54)

where aj is the peak ground acceleration, S is a soil-dependent amplification
factor, and Tz, Te,Tp, T and Tr correspond to the soil-dependent corner
periods. For the case of soil type B: S = 1.20,T5 = 0.15,T¢ = 0.5,Tp =
2.0,Tg = 5.0,Tr = 10.

with

C Bilinear hysteretic system comprising frac-
tional derivative terms

The herein study considers an SDOF system exhibiting bilinear hysteretic
behaviour endowed with fractional derivative elements. In this regard, the
restoring force of the system in Eq. (1) is given by

g(t,x(t), &(t)) = ywez(t) + (1 = 7)wezy2(t), (55)

with 7 denoting the post-yield to pre-yield stiffness ratio and z, representing
the critical value at which yielding occurs; z accounts for a state variable
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such that
xy2(t) =@ [1— H(2(t))H (2(t) — 1) — H(—=2())H(—=2(t) = 1)],  (56)

where H(-) is the Heaviside step function.
Following the stochastic linearization and averaging treatments presented
in Section 2.2, the equivalent linear elements in Eqs (9) and (11) become

s(A(r) = L= 1w05ld) B(A)sm(“) & (67)

Aw(A) wl-e
and ' A
Wi (A1) = w? l”y + (—7310() + Bw*(A) cos (Oé;)] , (58)
respectively, where
4— x—y , A>ux,
{ A<, (59)
AN — Lgin x
Fu(AD) — { : 4 A~ Lsin(24)] A>m (60)

with cos(A) = 1 — 2%. Next, considering Eqs. (57) and (58), Eqgs. (13)
and (14) lead to fragkoulis2019non,kougioumtzoglou2022approximate

Bule(t) == o+ 2 [T o (<5 aa

c(t) 2¢(t)

4Jxywi (1 —n) (ool — = JA?
———]dA
* me(t) /:cy w(A) P 2¢(t) d

(61)

and

Hel0) =8 = (1= )k exp (5t

J o1 JA?
— -0 /xy (A — 5 sin(2A)) A exp (— 20(t)) dA] (62)

JBcos(G) o JA
c(t)/o w*(A)Aexp <_2C(t)> dA,

respectively.
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