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Analysis of multi‑wave solitary 
solutions of (2+1)‑dimensional 
coupled system 
of Boiti–Leon–Pempinelli
Sidra Ghazanfar 1, Nauman Ahmed 1,6, Muhammad Sajid Iqbal 2,3, Syed Mansoor Ali 4, 
Ali Akgül 5,10,11, Shah Muhammad 7, Mubasher Ali 8 & Murad Khan Hassani 9*

This work examines the (2+1)‑dimensional Boiti–Leon–Pempinelli model, which finds its use in 
hydrodynamics. This model explains how water waves vary over time in hydrodynamics. We provide 
new explicit solutions to the generalized (2+1)‑dimensional Boiti–Leon–Pempinelli equation by applying 
the Sardar sub‑equation technique. This method is shown to be a reliable and practical tool for solving 
nonlinear wave equations. Furthermore, different types of solitary wave solutions are constructed: 
w‑shaped, breather waved, chirped, dark, bright, kink, unique, periodic, and more. The results obtained 
with the variable coefficient Boiti–Leon–Pempinelli equation are stable and different from previous 
methods. As compared to their constant‑coefficient counterparts, the variable‑coefficient models are 
more general here. In the current work, the problem is solved using the Sardar Sub‑problem Technique 
to produce distinct soliton solutions with parameters. Plotting these graphs of the solutions will help 
you better comprehend the model. The outcomes demonstrate how well the method works to solve 
nonlinear partial differential equations, which are common in mathematical physics.With the help of this 
method, we may examine a variety of solutions from significant physical perspectives.

Keywords Solitons, Sardar sub-equation technique, Exact wave structures

In the past few decades, the research of traveling wave solutions explored by researchers has gained considerable 
attention. It includes the solutions of non-linear partial differential equations (NPDEs) which play a key role in 
the study of non-linear physical phenomena arising in many fields of engineering and sciences i.e., mathematical 
 physics1, technical  arena2, plasma  physics3, ocean  engineering4, tsunami  waves5, etc. NPDEs have great potential 
for applications in various fields, therefore, these equations have the advantage of getting the special attention of 
researchers to find their analytical and numerical solutions. In recent times, many researchers in mathematics and 
physics have established various methods of constructing and analyzing exact traveling wave solutions of different 
non-linear problems such as Hirota’s bilinear transformation  method6–8, the extended Exp-expansion  method9, 
the new extended direct algebraic  method10, the variational iteration  method11, the semi-inverse variational 
 principle12, the generalized Kudryashov  technique13, the sine-Gordon  method14, the Cole-Hopf transformation 
 method15, the Adomian decomposition  method16, the traveling wave  scheme17, A special kind of distributive 
 product18, the B ̈acklund transformation  method19.

Solitons are the fascinating aspect of nonlinear physical events. The solitonic concept is accessible due to 
ethical balance and nonlinearity of concentration. Many scholars have conducted studies on solitary wave solu-
tions as mentioned above.
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Recently, an effective method has been introduced, called the Sardar sub-equation technique (SSET)20. Our 
primary emphasis is developing various wave soliton solutions, such as bright, singular, dark-bright, kink, dark, 
w-shaped, chirped, breather wave, and periodic wave solitons. The method under consideration is more univer-
sal than the others listed above. Similarly, these findings help us recognize the dynamic performance of various 
physical configurations. Furthermore, these results are positive, unique, and precise, and they may help illuminate 
particular non-linear natural phenomena in non-linear mathematical models.

This work has a few obvious limitations, such as the that it is usually only appropriate for a specific class of 
nonlinear PDEs,it might not be able to solve more complex equations, it might struggle with highly nonlinear 
terms,the solution it does provide may take particular forms, it frequently yields solutions under specific condi-
tions, it frequently calls for the use of symbolic computational tools, it can be difficult to incorporate initial and 
boundary conditions into this method, the solutions it produces sometimes be non-trivial, and there may be 
easier solutions available.

In this work, the following coupled system of (2+1)-Dimensional Boiti–Leon–Pempinelli (BLP)  equations21 
has been taken into consideration.

which was initially introduced by Boiti et al.22. Many mathematicians studied this system and developed precise 
explicit solutions using various methods. The Boiti–Leon–Pempinelli equation has drawn a lot of attention 
from researchers in the past ten years since it is used to explain the wave propagation of incompressible fluids 
in plasma physics, fluid dynamics, ocean engineering, astrophysics, and aerodynamics.More relevant material 
can also be studied  in23–30.

Wazwaz and Mehanna’s precise traveling wave system suggestions of the system (1). System (1)’s lump-type 
solutions, Lie point symmetries, and some precise answers to some other algebraic equations with new optical, 
lump wave, breather, periodic, and other multi-wave solutions can also be found with some additional precise 
solutions to the Eq. (1). There are some novel traveling wave system solutions of (1) that are provided in this 
article. Some other novel exact traveling wave solutions were presented  in31–34.

It is a crucial system for describing how the horizontal velocity component of waves in an infinitely narrow 
channel with constant depth changes over time. The horizontal velocity and height of the water wave are related 
to the velocity components U(x, y, t) and V(x, y, t), respectively. Eq. (1) is a member of a group of equations 
that explain how water waves move through channels with a constant depth. The Sinh-Gordon equation can 
be generalized as the (2+1)-Dimensional equation in Eq. (1), and it can be transformed into the (anti)-Burgers 
equations, for example, in Mu et al.35, the model was taken into account using Hamiltonians, the Bäcklund 
transform, Lax Pair, and the Painlevé integrability.

More related research work can also be studied in this regard e.g.,36–41.
The terms “horizontal velocity” and “height” relate to two essential characteristics that characterize the motion 

of water waves. The pace at which individual water particles move horizontally during the propagation of a wave 
is known as the horizontal wave velocity. The motion of the water particles in a wave is either elliptical or circular. 
This motion in the direction of wave propagation is composed of the horizontal velocity. It shows the rate at which 
the wave is propagating laterally. Both the vertical and horizontal components of the particle motion affect the 
wave’s real speed. While, the vertical distance between a water wave’s highest point, the crest, and its lowest point, 
the trough, determines the height of the wave. An indicator of a water wave’s energy is its height. Greater heights 
and energy are carried by larger waves. The amplitude of the wave, or the maximum displacement of the water 
particles from their undisturbed position, is correlated with the wave’s height. The wave’s energy is determined 
by its amplitude. To comprehend and forecast wave behavior, a water wave’s height and horizontal velocity work 
together. Wind speed, water depth, and the distance at which the wind has blown are some variables that affect 
them. An understanding of these factors is essential in disciplines like marine science, coastal engineering, and 
oceanography. This work is novel in itself that has not been done before. We can take this work so far till we are 
able to present these specific solitons/solutions in the form of physical interpretations.

The soliton-type solutions provided in this paper are beneficial for those who are physically related to it. These 
solutions can be applied in a variety of situations. Regarding its all-purpose applications, nevertheless, a few of 
these solutions can be useful to all physicists working in the field of soliton solutions for PDEs. Even though we 
have offered many solutions. Furthermore, since we have found the exact solutions in the absence of auxiliary 
data, there are infinitely many solutions. Since we haven’t connected the problem to any initial or boundary 
conditions, the physicist must determine which solution best fits the available information.

Problem statement
Using SSET, the following traveling wave transformation is used to create strong and authentic solitons of the 
BLP system

Here c is the real constant to be determined. Applying Eq. (2) in Eq. (1) to get the following form of ODE (ordi-
nary differential equation) of the given system

(1)
Uyt =(U2

− Ux)xy + 2Vxxx ,

Vt =Vxx + 2U Vx ,

(2)U(x, y, t) = U(η), V(x, y, t) = V(η), where η = x + y − ct.

(3)
− cU

′′
= (U2

− U
′)′′ + 2V

′′′
,

− cV
′
= V

′′
+ 2UV

′
,
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By integrating and assembling the above system, we can write the following equation as

This will lead us to the exact solutions of the given BLP system. Moreover, some general insights or constraints 
of the equations which are worth mentioning here are its boundary conditions, nature of the equation and, its 
stability analysis.

Mathematical details of Sardar sub‑equation technique
This thorough and straightforward method is used by many experts to discover solitons and other wave solu-
tions to the given issue. This technique can provide precise responses for a class of NPDEs. The given system of 
equations can be included by following the procedures below.

Step I: Considering the NPDE as follows

where P = P(x, t) is the unknown function, O is a polynomial of P(x, t) and its derivatives with respect to x and 
t. Now applying the traveling wave transformation

where α , and β are the unknown constants to be determined later.
Using the above transformation, Eq. (5) is converted to the following ODE (ordinary differential equation),

where Q is the function of �(η) and its derivatives and its superscripts designate ordinary derivatives w.r.t η
Step II: Solution of Eq. (7) is then formulated as

where cn(0 ≤ n ≤ N) are real constants and M(η) satisfies the ODE of the following form

Here µ and ν are real constants and Eq. (9) presents the following solutions:

• If ν > 0 and µ = 0 , then 

 where 

• If ν < 0 and µ = 0 , then 

 where 

• If ν < 0 and µ =
ν
2

4
 , then 

(4)U
′′

− 2U
3
− 3cU

2
− c

2
U = 0.

(5)O(P, Pt , Px , Pxx , Ptt , Pxt , Pxxx , . . .) = 0,

(6)P(x, t) = P(η), η = αx + βt,

(7)Q(� ,� ′
,� ′′

,� ′′′
, . . .) = 0,

(8)�(η) =

N∑

n=0

cn M
n(η), cn �= 0,

(9)M
′(η) =

√

µ + νM(η)2 + M(η)4.

(10)
M±

1 = ±
√

−pqν sechpq(
√

ν η),

M±
2 = ±

√
pqν cschpq(

√
ν η),

sechpq(η) =
2

peη + qe−η
, cschpq(η) =

2

peη − qe−η
.

(11)
M±

3 = ±
√

−pqν secpq(
√

−ν η),

M±
4 = ±

√

−pqν cscpq(
√

−ν η),

secpq(η) =
2

peιη + qe−ιη
, cscpq(η) =

2

peιη − qe−ιη
.
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 where 

• If ν > 0 and µ =
ν
2

4
 , then 

 where 

The above listed functions are the generalized forms of trigonometric and hyperbolic functions with parameters 
p and q. If we take the values of p and q to be 1, then the above functions become known functions.

Step III: By balancing the capital, we can determine the number N. Using this value of N, we get an algebraic 
equation in the shape of Mn(η) by substituting Eq. (8) into Eq. (7), which we balance by setting the powers of 
M

n(η), n = (0, 1, 2, . . .) to zero, resulting in a set of algebraic equations.
Step IV: This system of equations provides the necessary inputs and the precise answer to the provided 

equation.

Execution of the technique
The traveling wave solution to the Boiti–Leon–Pempinelli System is created in this part using SSET. Using 
homogeneous balance principle, we balance the equations U ′′ and U3 to get the value of N and found to be 1.

Equation (8) is reduced by the equilibrium formula into

where a0 and a1 are the constants to determine. Substituting Eq. (14), Eq. (4) into Eq. (9) to get a polynomial 
in the form of Tn(η) . Equating the powers of Tn(η), (n = 0, 1, 2, 3) to zero to get the algebraic equations in the 
form of a0, a1, ν and µ.

Where

 The system of equations is as

We discovered the following results by analyzing the above system of equations

(12)

M±
5 = ±

√

−ν

2
tanhpq(

√

−ν

2
η),

M±
6 = ±

√

−ν

2
cothpq(

√

−ν

2
η),

M±
7 = ±

√

−ν

2

(

tanhpq(
√

−2ν η) ± ι
√
pq sechpq(

√
−2ν η)

)

,

M±
8 = ±

√

−ν

2

(

cothpq(
√

−2ν η) ±
√
pq cschpq(

√
−2ν η)

)

,

M±
9 = ±

√

−ν

8

(

tanhpq(

√

−ν

8
η) + cothpq(

√

−ν

8
η)

)

,

tanhpq(η) =
peη − qe−η

peη + qe−η
, cothpq(η) =

peη + qe−η

peη − qe−η
.

(13)

M±
10 = ±

√

ν

2
tanpq(

√

ν

2
η),

M±
11 = ±

√

ν

2
cotpq(

√

ν

2
η),

M±
12 = ±

√

ν

2

(

tanpq(
√
2ν η) ±

√
pq secpq(

√
2ν η)

)

,

M±
13 = ±

√

ν

2

(

cotpq(
√
2ν η) ±

√
pq cscpq(

√
2ν η)

)

,

M±
14 = ±

√

ν

8

(

tanpq(

√

ν

8
η) + cotpq(

√

ν

8
η)

)

,

tanpq(η) = −ι
peιη − qe−ιη

peιη + qe−ιη
, cotpq(η) = ι

peιη + qe−ιη

peιη − qe−ιη
.

(14)U = a0 + a1T(η),

(15)T
′(η) =

√

ξ + uM(η)2 + M(η)4.

(16)

T
3

: 2 a1 − 2 a1
3

= 0,

T
2

: − 6 a0a1
2
− 3 ca1

2
= 0,

T
1

: − 2 c
2
a1 − 6 a0

2
a1 − 6 ca0a1 + a1u = 0,

T
0

: − 2 a0
3
− 2 c

2
a0 − 3 ca0

2
= 0.
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Using these values in Eqs. (9),(14) and (17) along with Eq. (2), we summarized the results for functions U along 
with their corresponding V as follows: 

1. If u > 0 and ξ = 0 , then 

 In summary, the constraints of the above equations include:

• u > 0 and ξ = 0 (parameter u must be a positive real number).
• pq < 0 to ensure the square root term is real for U1,V1 and, V2 and, pq > 0 to ensure the square root 

term is real for U2.

2. If u < 0 , and ξ = 0 , then 

 In summary, the constraints of the above equations are:

• u < 0 and ξ = 0 (parameter u must be a negative real number).
• pq > 0 to ensure the square root term is real for all U3,U4,V3 and V4.
• cospq(

√
−u η) �= 0 (to avoid division by zero in the denominator of V3).

3. If u < 0 and ξ =
u
2

4
 , then 

(17)a0 =

−1

2
c, a1 = −1.

(18)

U1 =
−c

2
±

√

−pqu sechpq
(√

uη
)

,

U2 =
−c

2
±

√
pqu cschpq

(√
uη

)

,

(19)
V1 =

c ± √−pqu
(

−12
(

coshpq
(√

uη
))2 − 3 c2 ± √−pqu coshpq

(√
uη

)

+ c − pqu
)

48
(

coshpq
(√

uη
))3

,

V2 =
−c

48
−

√
pqu cschpq

(√
uη

)

(

−12 + 3 c2 −
√
pqu cschpq

(√
uη

)

+ c ± pqu
(

cschpq
(√

uη
))2

)

.

(20)

U3 =
−c

2
±

√

−pqu secpq
(√

−uη
)

,

U4 =
−c

2
±

√

−pqu cscpq
(√

−uη
)

,

(21)

V3 =
c ± √−pqu

(

−12
(

cospq
(√

−uη
))2 − 3 c2 ± √−pqu cospq

(√
−uη

)

+ c − pqu
)

48
(

cospq
(√

−uη
))3

,

V4 =
c

48
±

√

−pqu cscpq
(√

−uη
)

(

−12 − 3 c2 ±
√

−pqu cscpq
(√

−uη
)

+ c − pqu
(

cscpq
(√

−uη
))2

)

.

(22)

U5 =
−1

2
±

√

−u

2
tanhpq

(

√

−u

2
η

)

,

U6 =
−1

2
±

√

−u

2
cothpq

(

√

−u

2
η

)

,

U7 =
−c

2
±

√

−u

2
±

(

tanhpq

(√
−2 uη

)

± ι
√
pq sechpq

(√
−2 uη

))

,
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 In summary, the constraints of the above equations are given below:

• u < 0 and ξ =
u
2

4
 (parameter u must be a negative real number).

• pq should be defined appropriately for the hyperbolic tangent, cotangent, secant and cosecant functions.

• The expression should be well-defined for the given values of 
√

−µ

2
η and, ξ =

u
2

4
.

4. If u > 0 and ξ =
u
2

4
 , then 

(23)

U8 =
−c

2
±

�

−u

2
±

�

cothpq

�√
−2 uη

�

±
√
pq cschpq

�√
−2 uη

��

,

U9 =
−c

2
±

√
−2u

4
±

�

tanhpq

�
√

−2u

4
η

�

+
√
pq cothpq

�
√

−2u

4
η

��

,

V5 =
c

24
±

1

2
tanhpq

�

�

−u

2
η

�



−6
√

−2u + 3 c2 ±
u

2
tanhpq

�

�

−u

2
η

�

+ c ±
√

−2u3

4

�

tanhpq

�

�

−u

2
η

��2


,

V6 =
c

24
±

1

2
cothpq

�

�

−u

2
η

�



−6
√

−2u + 3 c2 ±
u

2
cothpq

�

�

−u

2
η

�

+ c ±
√

−2u3

4

�

cothpq

�

�

−u

2
η

��2


,

V7 = −
11c

48
±

�

−u

2
tanh pq

�√
−2 uη

�

± ι
√
pqsechpq

�√
−2 uη

�

+
c2

8
±

u

4
tanhpq

�√
−2 uη

�

± ι2pq
�

sechpq

�√
−2 uη

��2

±
(−2 u)

8

3/2

tanh

�√
−2 uη

�

± ι3pq3/2
�

sechpq

�√
−2 uη

��3

,

V8 = −
11c

48
±

�

−u

2
coth pq

�√
−2 uη

�

±
√
pqcschpq

�√
−2 uη

�

+
c2

8
±

u

4
cothpq

�√
−2 uη

�

± pq
�

cschpq

�√
−2 uη

��2

±
(−2 u)

8

3/2

coth

�√
−2 uη

�

± pq3/2
�

cschpq

�√
−2 uη

��3

,

V9 = −
11c

48
±

√
−2 u

4

�

tanhpq

�
√

−2 u

4
η

�

+ cothpq

�
√

−2 u

4
η

��

+
c2

8
±

u

16
(tanhpq

�
√

−2 u

4
η

�

+ cothpq

�
√

−2 u

4
η

�

)2 ±
1

64
(−2 u)3/2

�

tanhpq

�
√

−2 u

4
η

�

+ cothpq

�
√

−2 u

4
η

��3

.

(24)

U10 =
−c

2
±

√

u

2
tanpq

(
√

u

2
η

)

,

U11 =
−c

2
±

√

u

2
cotpq

(
√

u

2
η

)

,

U12 =
−c

2
±

√

u

2

(

tanpq

(√
2u η

)

±
√
pq secpq

(√
2u η

))

,

U13 =
−c

2
±

√

−u

2

(

cotpq

(√
2u η

)

±
√
pq cscpq

(√
2u η

))

,

U14 =
−c

2
±

√
2u

4

(

tanpq

(√
2u

4
η

)

+ cotpq

(√
2u

4
η

))

,
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 In summary, the constraints of the above equations are:

• u > 0 and ξ =
u
2

4
 (parameter u must be a positive real number).

• pq should be defined appropriately for the tangent, cotangent, secant and cosecant functions.

• The expression should be well-defined for the given values of 
√

µ

2
η and, ξ =

u
2

4
.

Graphical behavior
Various types of solitons are shown below, each displaying the graphical behavior of the solution to the issue 
mentioned above.

For Case I

For Case II

For Case III

For Case IV
The parameters used to generate these figures are listed below.

Results and discussion
The surface and contour plots of each solution using each condition stated in the technique are shown in the 
graphs above where Fig. 1 shows breather wave singular solitonic behavior of U of the given coupled system 
using the conditions in case I represented in Eq. (19), Fig. 2 shows the surface and contour plots of V like rogue 
wave (singular) solitons represented in Eq. (19) of the same case I, Fig. 3 represents the surface and contour 
plots showing w-shaped dark-bright solitons in the form of U using the condition given in case II represented 
in Eq. (21), Fig. 4 signifies the surface and contour plots representing periodic function solitons in the form of V 
represented in Eq. (21) of the same case II, Fig. 5 shows the plots as kink soliton type behavior of U of the given 
system of equations represented in Eq. (23) under conditions of case III, Fig. 6 displays the surface and contour 
plots signifying kink solitons with non-topological (bright) background in the form of V of Eq. (23) of the same 
case III, Fig. 7 represents the surface and contour plots of chirped periodic solitons of U represented in Eq. (25) 
under condition of case IV, Fig. 8 signifies the surface and contour plots representing dark-bright solitons in the 
form of V of the given system represented in Eq. (25) of the same case IV.

Physical interpretation
Discovering NPDE solutions is critical for comprehending the underlying physical processes. Solitons are impor-
tant in mathematics and physics because they keep their shape and velocity constant while propagating. The 
modulation instability of the carrier wave train requires distinguishing between topological (dark) and non-
topological (bright) solitons. Topological solitons occur when the carrier wave is unsustainable due to long-wave 
modulations, whereas non-topological solitons occur when the carrier wave is modulationally consistent.

Rogue waves, often known as freakish or killer waves, have progressed from maritime folklore to a recognized 
phenomenon. These waves, which are twice the magnitude of the surrounding waves, are unpredictable and 
frequently appear from other directions than the current wind and waves. The study of rogue waves advances 
our understanding of extraordinary phenomena in fluid dynamics.
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Conclusions
This article presents new and interesting optical soliton solutions to the (2+1)-Dimensional Coupled System of 
the BLP equations using the analytical method of SSET. Our main goal in writing this article is to assess the BLP 
system using this methodology for the first time. This is a relatively new method that yields several new soliton 
solutions for the system being studied. The method is incredibly effective and easy to use. The results are given 
as hyperbolic, rational, and trigonometric functions. As we can see, this method provides a powerful, efficient, 
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Figure 1.  Above plottings are associated to Case I function U.
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and simple tool for solving a range of nonlinear PDEs that are included in many models in the fields of natural 
science and engineering. The results may have practical applications and explain water waves in domains such 
as optics, linked circuits, elastic rods, shallow water with long wavelengths, and marine engineering. Lastly, 3D 
and contour plots of these solutions are produced using Maple. Bright, dark, periodic, chirped, breather-waved, 
singular, w-shaped, and breather-waved solitons are the results of this approach. We have investigated the forms 
and directions of the different solitons using the generated graphs.

As we all know, in the field of integrable systems, there is no general method to solve the analytical solution of 
NPDEs. The symbol calculation method based on neural networks proposed by Zhang et al. (see,42–45) open up 
a general symbolic computing path for the analytic solution of NPDEs, and lays the foundation for the universal 
method of symbolic calculation of analytical expression. The problems studied in this paper can be solved by 
using this method in future work.

This work is novel in itself. Within the framework of analytical solutions, researchers can choose our solu-
tion for numerical analysis. This methodology distinguishes itself from other ways by providing a systematic 
approach, comprehensive applicability, efficiency and brevity, the generation of many solutions, the reduction 
of equations to simpler ones, and integration with other techniques.

Graphing parameters
The graphs in this article were created using the settings listed below.

Figure 1: c = 2; u = 2.5; p = 1; q = −0.09; y = 1.

Figure 2: c = 2; u = −2.5; p = 1; q = −0.09; y = 1.

Figure 3: c = 2; u = −1.5; p = 2; q = 1; y = 2.

Figure 4: c = −5; u = 2.5; p = 1; q = −0.09; y = 5.

Figure 5: c = 2; u = 2.5; p = 0.8; q = −0.09; y = 1.

Figure 6: c = 2; u = −2.5; p = 1; q = −0.09; y = 1.

Figure 7: c = 2; u = −5.5; p = 2; q = 1; y = 2.

Figure 8: c = −5; u = 2.5; p = 1; q = 0.09; y = 5.
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