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The visual perception of individuals is thought to be mediated by a network of regions in the occipitotemporal cortex that supports
specialized processing of faces, bodies, and actions. In comparison, we know relatively little about the neural mechanisms that
support the perception of multiple individuals and the interactions between them. The present study sought to elucidate the visual
processing of social interactions by identifying which regions of the social perception network represent interpersonal synchrony. In
an fMRI study with 32 human participants (26 female, 6 male), we used multivoxel pattern analysis to investigate whether activity in
face-selective, body-selective, and interaction-sensitive regions across the social perception network supports the decoding of
synchronous versus asynchronous head-nodding and head-shaking. Several regions were found to support significant decoding
of synchrony/asynchrony, including extrastriate body area (EBA), face-selective and interaction-sensitive mid/posterior right
superior temporal sulcus, and occipital face area. We also saw robust cross-classification across actions in the EBA, suggestive of
movement-invariant representations of synchrony/asynchrony. Exploratory whole-brain analyses also identified a region of the right
fusiform cortex that responded more strongly to synchronous than to asynchronous motion. Critically, perceiving interpersonal
synchrony/asynchrony requires the simultaneous extraction and integration of dynamic information from more than one person.
Hence, the representation of synchrony/asynchrony cannot be attributed to augmented or additive processing of individual actors.
Our findings therefore provide important new evidence that social interactions recruit dedicated visual processing within the social
perception network that extends beyond that engaged by the faces and bodies of the constituent individuals.
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Significance Statement

The presence of interpersonal synchrony is a critical cue when appraising the nature and content of social interactions from
third-person perspectives. However, little is known about its representation within the human visual system. Here, we use
fMRI to reveal distributed representations of interpersonal synchrony/asynchrony in several regions of the social perception
network, notably extrastriate body area and superior temporal sulcus. There is growing speculation that the perception of
social interactions engages specialized visual processing beyond that recruited by the faces and bodies of the constituent
individuals. Critically, perceiving interpersonal synchrony requires the simultaneous extraction and integration of dynamic
information frommore than one person. These results therefore provide key new evidence of dedicated multiactor processing
within the social perception network.

Introduction
The visual perception of individuals has been an active area of
research for many years. This research tradition has revealed
dedicated neural substrates for the visual processing of faces
(Haxby et al., 2000; Duchaine and Yovel, 2015), bodies (Peelen

and Downing, 2007), and actions (Blake and Shiffrar, 2007).
In comparison, we know relatively little about the neural mech-
anisms that support the perception of multiple individuals and
the interactions between them. Over the last decade, however,
studies using functional magnetic resonance imaging (fMRI)
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have consistently implicated two regions of the social perception
network in the visual processing of social interactions.

Initial findings suggest that the extrastriate body area (EBA;
Abassi and Papeo, 2020, 2022) and posterior superior temporal
sulcus (pSTS; Kujala et al., 2012) show greater activation when
participants view static images of face-to-face dyads, than when
they view images of back-to-back dyads. Similar findings have
been observed with dynamic stimuli; for example, authors have
described stronger responses in EBA (Bellot et al., 2021;
Landsiedel et al., 2022) and pSTS (Centelles et al., 2011; Isik
et al., 2017; Walbrin et al., 2018; Bellot et al., 2021; Landsiedel
et al., 2022) when participants view interacting dyads (i.e., two
actors shown facing each other, performing contingent, related
actions) than noninteracting dyads (i.e., two actors shown non-
facing and performing unrelated actions).

Neural representations in EBA and pSTS may encode infor-
mation about the nature and content of social interactions. For
example, stronger univariate responses are seen in both EBA
and pSTS when participants view static images of semantically
incongruous interactions, than when viewing images of congru-
ous interactions (Quadflieg et al., 2015). Having employed multi-
voxel pattern analysis (MVPA), Walbrin and Koldewyn (2019)
found that a classifier trained on pSTS and EBA responses was
able to discriminate different types of social interaction (arguing
vs celebrating vs laughing). The portion of pSTS sensitive to
social interactions also discriminates different types of interac-
tions between moving abstract shapes (Isik et al., 2017;
Walbrin et al., 2018). For example, Isik et al. (2017) found that
a classifier trained on responses in pSTS was able to discriminate
animations depicting helping versus hindering actions.

The present study sought to further elucidate the visual pro-
cessing of social interactions by identifying which regions of
the social perception network represent interpersonal synchrony.
Interpersonal synchrony refers to the temporospatial alignment
of movements between interacting individuals that often occurs
automatically, effortlessly, and unintentionally (Marsh et al.,
2009; Hoehl et al., 2021). Perceived synchrony strongly
influences our interpretation of dynamic social scenes. For exam-
ple, dyads moving in synchrony are more likely to be perceived as
a social unit than those moving asynchronously (Lakens, 2010;
Lakens and Stel, 2011), and synchrony affords attributions of
rapport (Miles et al., 2009; Lakens and Stel, 2011) and affiliation
(Latif et al., 2014). At present, however, little is known about the
neural representation of interpersonal synchrony within the
visual system (Cracco et al., 2022).

We used MVPA to investigate whether activity in face-selective,
body-selective, and interaction-sensitive regions across the social
perception network supports the decoding of synchronous versus
asynchronous head movements. We manipulated the presence of
interpersonal synchrony between the actors while holding the basic
dyadic arrangement (i.e., face-to-face) constant. We predicted that
responses in EBA andpSTS, which have been consistently implicated
in the visual processing of social interactions (Centelles et al., 2011;
Kujala et al., 2012; Isik et al., 2017; Walbrin et al., 2018; Walbrin
and Koldewyn, 2019; Abassi and Papeo, 2020, 2022; Bellot et al.,
2021), would be sensitive to interpersonal synchrony.

Materials and Methods
Participants
Thirty-three healthy right-handed adults aged 18–50 participated in the
study. Our sample size was based on similar fMRI studies within the
field (Abassi and Papeo, 2022). Participants reported normal or
corrected-to-normal vision. One participant was excluded because of an

incomplete dataset. The final sample consisted of 32 participants (26
female, 6 male) with a mean age of 27.66 years (SD=6.93; range, 18–43).
The study was approved by the relevant ethics committees of Birkbeck,
University of London, andUniversity College London. All participants pro-
vided written informed consent.

Stimuli
The video stimuli featured a pair of avatar heads (one male, one female)
that moved synchronously or asynchronously relative to each other.
Each three-dimensional model head was generated and rendered in
Poser Pro 11.2 (Bondware). The two heads were shown in profile view fac-
ing each other (Fig. 1b). For each model, we created a sequence of
40 images showing the head progressively moving forward and back
(“nodding”) and a sequence of 40 images showing the head progressively
rotating from left to right (“shaking”). The images were used to create two
types of synchronous videos featuring 0° (in-phase synchrony) and 180°
(antiphase synchrony) relative-phase offsets and two types of asynchro-
nous videos featuring 90° and 270° relative-phase offsets (Fig. 1a).

The order of the images for the head on the left was always the same,
whereas the starting point in the sequence of images for the head on the
right was modified to create the different phase offset conditions. For
the 0° phase offset, the movement of the two heads was mirrored.
For the 180° phase offset, the position of the heads was at opposite points
of the movement cycle (e.g., in the nodding stimuli, one head would move
forwards while the other moved backward). For the 90° phase offset, the

Figure 1. a, The relative-phase relationships between Face 1 and Face 2 in synchronous
stimulus videos (0° and 180° phase offset) and asynchronous stimulus videos (90° and 270°
phase offset). b, Illustration of nodding and shaking movements in the stimulus videos. c, An
example trial of the main experiment (stimulus images and text are magnified for illustration
purposes). After viewing each video, participants responded with a yes/no button press to the
question “in sync?” or “out of sync?”. ITI, intertrial interval.
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right head led the left head by a quarter of a cycle, and for the 270° phase
offset, the right head led the left head by three quarters of a cycle.

Videos of nodding and shaking movements were compiled using
MATLAB (version R2019b). To avoid movement cycle time locking to
the TRof theMRI scanner, wemade two sets of videoswith different frame
rates (28 fps and 32 fps). All videos were 4 s long. The 28 fps videos
depicted 2.8 cycles, and the 32 fps videos depicted 3.2 cycles. Two versions
of each stimulus were produced, one with the female head on the left and
one with the female head on the right. In total, there were 32 video stimuli:
twomovement types (nodding, shaking) x four phase offsets (0°, 180°, 90°,
270°) x two frame rates (28 fps, 32 fps) x twomodel configurations (female
left, female right).

MRI data acquisition
Participants were scanned using a 3.0 Tesla Siemens Prisma MRI scanner
with a 32-channel head coil. Scanning took place at the Birkbeck-UCL
Centre for Neuroimaging. We acquired whole-brain T1-weighted ana-
tomic scans using MPRAGE (1.0 mm isotropic; 208 sagittal interleaved
slices; PAT, factor 2; PAT mode, GRAPPA; TR, 2,300 ms; TE, 2.98 ms;
flip angle, 9°; matrix, 256 × 256; FOV, 256 mm). For the functional runs,
we acquired T2*-weighted functional scans using EPI (3.0 mm isotropic;
PAT, factor 2; PAT mode, GRAPPA; 34 ascending sequential slices; TR,
2,000 ms; TE, 30 ms; flip angle, 78°; matrix, 64× 64; FOV, 192 mm).
Slices were positioned at an oblique angle to include the temporal, occip-
ital, and frontal lobes and as much of the parietal lobe as possible.

Experimental design and statistical analysis
Design of the main experiment. The experimental runs presented

videos of pairs of heads moving synchronously or asynchronously in
an event-related design. The experiment was presented using the
Psychophysics Toolbox v3.0 (Brainard, 1997; Pelli, 1997) in MATLAB
(version 2014a) and was projected to a screen (1,920 × 1,200 pixels,
28.8 × 18 cm, 60 Hz) at the back of the scanner bore, which the partici-
pants viewed through a mirror attached to the head coil. Participants
viewed the screen from a distance of approximately 55 cm (±3 cm)
and were instructed to keep their gaze focused on the central fixation
cross for the duration of the experiment.

There were 32 trials in each run. Each video stimulus was presented
once per run without repetition. Each trial began with a stimulus video
(4 s), followed by a fixation screen with a jittered duration of between
0.5 and 1.5 s (averaging 1 s; Fig. 1c). Participants then viewed a response
screen with the question “in sync?” or “out of sync?” and had 1.5 s to
respond “yes” or “no” using buttons on a handheld button box. The
response screen was followed by a jittered intertrial interval of between
2 and 6 s (averaging 4 s) featuring a fixation screen. A fixation cross
was present in the center of the display at all times except during the
response screen. The stimuli were presented in a random order. The pair-
ing of the stimuli with the two versions of the task question (in/out of
sync) was pseudorandomized. The randomization was constrained
such that the 28 fps and 32 fps versions of each stimulus appeared
with a different question. At the end of the run, participants received
feedback on their task performance (proportion correct). To familiarize
them with the experimental task, participants first performed a practice
run in which they received feedback (correct/incorrect) after each trial.
Participants completed eight runs of the experiment lasting∼6 min each.

Functional localizers. We used a standard localizer for face- and body-
selective regions—described in detail by Pitcher et al. (2011)—with permis-
sion from the authors. In a blocked design, participants viewed videos of
moving faces, moving body parts (excluding the face), and moving objects,
while performing a one-back task. The 3 s videos were presented randomly
in 18 s blocks. Participants completed two runs of the 12 stimulus blocks
(4 blocks per stimulus category), presented in a pseudorandom order
that prevented the consecutive presentation of blocks featuring stimuli
from the same category. Participants also viewed three 18 s fixation blocks
situated at the start, middle, and end of each run. The duration of each run
was 276 s (4.6 min). Across both runs, participants viewed eight blocks of
faces, eight blocks of bodies, and eight blocks of objects. All participants
completed the face/body localizer after the main experiment runs.

We used a second functional localizer (Isik et al., 2017; Walbrin et al.,
2018) to identify the interaction-sensitive region of pSTS (STS-I), with
permission from the authors. In a blocked design, participants passively
viewed videos of moving point-light displays of two individuals who were
either interacting or performing independent actions. Videos of varying
lengths (between 3 and 8 s) were grouped together and presented in 16 s
blocks. Participants completed two runs consisting of 12 stimulus blocks
(6 per condition) and 3 fixation blocks situated at the start, middle, and
end of each run. The presentation of the stimulus blocks alternated
between the two stimulus categories and always began with an interac-
tions block in Run 1 and an independent actions block in Run 2. The pre-
defined stimulus groupings presented in each block were randomized
across runs. The duration of each run was 246 s (4.1 min). Across both
runs, participants viewed 12 blocks of interactions and 12 blocks of inde-
pendent actions. All participants completed the STS-I localizer after the
face/body localizer.

Data preprocessing and modeling. Functional images were prepro-
cessed and analyzed using Statistical Parametric Mapping (SPM12;
Wellcome Department of Imaging Science; www.fil.ion.ucl.ac.uk/spm)
in MATLAB (version R2021a). The first five (for the main experiment
runs) or three (for the functional localizers) EPI images in each run
served as dummy scans and were discarded before preprocessing to allow
for T1 equilibration effects. Images within each brain volume were slice-
time corrected using the middle slice as a reference and were then
realigned to correct for head movements using the first image as a refer-
ence. Functional images from the main experimental runs were not
smoothed, whereas images from the localizer runs were smoothed with
a 6 mm Gaussian kernel (full width at half maximum). The participants’
structural image in native space was coregistered to the realigned mean
functional image and was segmented into gray matter, white matter, and
cerebrospinal fluid, saving the forward and inverse deformation fields
(used for transformations to MNI space from the subject’s native space
and vice versa).

Mass univariate general linear models (GLMs) were fitted to data
from the main experiment runs, from the face/body localizer, and
from the interactions localizer separately. GLMs included a regressor
for the time course of each experimental condition and six nuisance
regressors for estimated head motion parameters. For the main experi-
ment runs, we also included the response screen as a regressor of no
interest. Regressors modeled the BOLD response following the onset of
the stimuli and were convolved with a canonical hemodynamic response
function. We used a high-pass filter cutoff of 128 s and an autoregressive
AR(1) model to account for serial correlations. The GLM analyses pro-
duced β images for each condition showing the associated signal change
across each voxel in the brain.

ROI classification analyses. Classification analyses were performed
using The Decoding Toolbox (TDT; Hebart et al., 2015) in MATLAB
(version R2021a) at the individual-subject level. In each analysis, β
images associated with two conditions of interest were used as input to
a linear support vector machine classifier (LIBSVM; Chang and Lin,
2011). For all analyses, each condition was represented by eight β images,
one from each run. We used a leave-one-out cross-validation procedure,
whereby the classifier was trained to discriminate the two conditions
based on images from seven runs, and the resulting linear discriminant
function was tested on images from the remaining run, in eight cross-
validation folds. For each ROI, we obtained the average classification
accuracy across all folds. To determine whether classification accuracy
in a given ROI was significantly greater than chance, we subjected partic-
ipant accuracies to a one-sample t test. Near identical results were
obtained using a permutation testing approach more suitable for infer-
ences of information prevalence (Stelzer et al., 2013).

In our main analysis, we tested the decoding of synchronous versus
asynchronous movement collapsing across all other stimulus character-
istics, including the type of head movement (nodding, shaking). To test
whether representations of synchrony and asynchrony generalize across
movement types, we performed a cross-classification analysis by training
the classifier to distinguish synchronous from asynchronous shaking and
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testing it on nodding, and vice versa. The cross-classification analysis fol-
lowed the same leave-one-out procedure described above. All reported
p-values are two-tailed. For each analysis, correction for multiple com-
parisons across 10 ROIs was performed using the false discovery rate
(FDR) with q= 0.05.

Whole-brain searchlight classification analysis. We performed an
exploratory whole-brain searchlight classification analysis to identify
potential regions outside of our ROIs that discriminate between synchro-
nous and asynchronous motion. For each participant, β values associated
with synchronous and asynchronous motion were extracted from
6-mm-radius spheres centered on each voxel within a mask of their brain
obtained from the GLM and were used as input to the classifier. The
cross-validation procedure was the same as in our ROI analysis. For
each participant, we obtained a brain map with classification accuracy
at each voxel. Brain maps were normalized to standard MNI space using
the forward deformation fields obtained during the segmentation proce-
dure and were smoothed with a 3 mm Gaussian kernel (full width at half
maximum) to account for anatomical variability across subjects. For the
group-level analysis, brain maps were subjected to a one-sample t test to
identify voxels with classification accuracies that were significantly
greater than chance. The resulting t-contrast image was thresholded at
p < 0.001 at the voxel level and corrected for multiple comparisons using
FWE at p < 0.05 at the cluster level. We report the coordinates of peak
voxels in MNI space and anatomical labels based on the automated
anatomical labeling (AAL) atlas (Rolls et al., 2020).

Whole-brain univariate analyses. For these analyses only, images
from the main experiment runs were normalized to standard MNI space
and smoothed with a 6 mm Gaussian kernel (full width at half maxi-
mum) to account for anatomical variability across subjects. The normal-
ized and smoothed images were subjected to mass univariate GLMs, and
we defined the contrasts synchronous > asynchronous and asynchronous
> synchronous. For group-level analysis, the contrast images were sub-
jected to one-sample t tests. The resulting t-contrast images were thre-
sholded at p< 0.001 at the voxel level and corrected for multiple
comparisons using FWE at p < 0.05 at the cluster level. We report clusters
with two or more voxels, coordinates of peak voxels in MNI space, and
anatomical labels based on the AAL atlas (Rolls et al., 2020).

Definition of functional ROIs
Subject-specific functional ROIs were defined using a group-constrained
subject-specific method (Fedorenko et al., 2010; Julian et al., 2012), in
which group-level parcels are used to constrain functionally localized
ROIs in individual subjects. This method has the benefit of reducing
experimenter bias in the definition of ROIs while allowing for anatomical
variability in ROI locations across participants. Group-level parcels of

face-selective and body-selective regions were derived in a study by
Julian et al. (2012), who used the same face/body localizer as the present
study and were downloaded from http://web.mit.edu/bcs/nklab/GSS.
shtml. There was no available group-level parcel for the interaction-
sensitive STS region (STS-I), so we derived the parcel from a group anal-
ysis of interaction localizer data from our own participant sample. To
conduct a group-level analysis for the contrast interactions > indepen-
dent actions, we first normalized all scans to the standard MNI template
and repeated the GLM analysis for each subject. First-level t-contrast
images were then subjected to a second-level one-sample t test. A parcel
including the right posterior and mid-STS was created from the contin-
uous significant voxels around the peak voxel in the resulting
second-level t-map, thresholded at p < 0.001 uncorrected.

All group-level parcels in standard MNI space were transformed to
the native space of each subject using the inverse deformation fields
obtained during the segmentation procedure. The images were resliced
to the same resolution as the functional images and trimmed to remove
any voxels that were not present in the participant’s brain mask obtained
from the relevant GLM analysis.

Using the data from the face/body localizer, we defined face-selective
ROIs by intersecting t-contrast images for faces > objects with group-
level parcels of the left and right FFA, OFA, and STS face region
(STS-F). We defined body-selective ROIs by intersecting t-contrast
images for bodies > objects with parcels of the left and right EBA.
From the interactions localizer data, we defined the interaction-sensitive
STS ROI (STS-I) by intersecting t-contrast images for interactions >
independent actions with the group-level STS-I parcel.

For each subject, ROIs were defined as the most active 30% of voxels
within each group parcel. ROIs with fewer than 30 voxels were discarded.
Face-selective ROIs included the rFFA (28 participants; mean vox., 55.07;
range, 41–67), the rOFA (26 participants; mean vox., 44.73; range, 33–60),
the rSTS-F (all participants; mean vox., 165.38; range, 129–208), and the
lSTS-F (all participants; mean vox., 55.17; range, 43–70). The lFFA and
lOFA could not be localized with at least 30 voxels in the majority of par-
ticipants and were therefore excluded from the analysis. Body-selective
ROIs included rEBA (all participants; mean vox., 146.81; range, 115–
185) and lEBA (all participants; mean vox., 136.13; range, 108–171).
The STS-I was localized in all participants and had an average size of
78.63 voxels (range, 45–102). The STS ROIs covered the posterior part
of the STS, extending to the mid-STS in some participants. Due to a large
number of overlapping voxels (M= 35.59, SD=15.17; range, 7–63)
between the STS-I and the larger rSTS-F ROI, wemade an additional face-
selective rSTS ROI that excluded all voxels that overlapped with the
STS-I. This rSTS-F* ROI had an average size of 129.78 voxels (range,
98–178). The location of the various ROIs in an example participant is
illustrated in Figure 2.

Figure 2. Location of ROIs in one example participant. RH, right hemisphere; LH, left hemisphere.
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Definition of nonsocial comparison ROIs
The primary focus of our classification analyses was the social perception
network. However, we also examined the distributed responses seen in
two nonsocial comparison ROIs: V1 and the middle temporal area
(MT). V1 was selected as a control region. Given that the low-level
features of our synchronous and asynchronous stimuli were closely
matched, we reasoned that the distributed responses seen in V1 would
be unlikely to support synchrony/asynchrony classification (Caplovitz
et al., 2008). At the outset, we had no strong expectation about the ability
of MT responses to support the decoding of synchrony/asynchrony.
However, MT is known to play a key role in visual motion processing
(Born and Bradley, 2005; Kolster et al., 2010) and has been implicated
in perceptual grouping based on motion cues (Ferber et al., 2003).
Moreover, there is some suggestion that MT is sensitive to visual features
of dyadic interactions (Quadflieg et al., 2015; Landsiedel et al., 2022).

Probabilistic masks of V1 andMT derived byWang et al. (2015) were
downloaded from https://scholar.princeton.edu/napl/resources. Our V1
andMTmasks were bilateral, and the V1mask included ventral and dor-
sal subregions. Masks were transformed into each subject’s native space
in the same way as the functional ROIs (see above). Individual-subject
V1 ROIs were defined as the 200 voxels with the highest probabilities.
MT ROIs were defined as the 100 voxels with the highest probabilities.

Data and code accessibility
β images obtained from the GLMs, task accuracy scores, and MATLAB
analysis scripts are available via the Open Science Framework (https://
osf.io/s6phj/?view_only=ad89001d587b4cfda4a3b286ce023332).

Results
Behavioural task accuracy
Participants correctly identified the stimuli as synchronous or
asynchronous on 89.59% of trials on average (SD= 9.63; range,
65.23–99.61). There were no differences in accuracy between syn-
chronous (M=91.04%, SD=9.36) and asynchronous stimulus tri-
als (M=88.13%, SD=12.84; t(31) = 1.418, p= 0.166). Accuracy was
slightly higher for shaking (M=90.82%, SD= 8.20) comparedwith
nodding stimuli (M=88.35%, SD=11.71; t(31) = 2.265, p=0.031).

ROI analyses
We found above-chance decoding of synchronous versus asyn-
chronous movement in bilateral EBA, in rOFA, in face-selective
and interaction-sensitive regions of rSTS (STS-F, STS-F*, STS-I),
and in MT (Fig. 3; Table 1). The same patterns were obtained
using an alternative permutation testing approach (Stelzer
et al., 2013), except that the lSTS-F region was found to contain
significant information after FDR correction for multiple com-
parisons. Classification accuracies were significantly lower in
the V1 comparison region compared with lEBA (t(31) = 3.143,
p= 0.004), rEBA (t(31) = 2.755, p= 0.010), and MT (t(31) = 3.040,
p= 0.005). The difference between accuracies in V1 and
rSTS-F* did not survive FDR correction (t(31) = 2.111, p= 0.043),
and no other differences were significant (all ps > 0.07). There
were no significant pairwise differences in classification accuracy
between regions that showed significant decoding of synchronous
versus asynchronous movement (all ps > 0.12).

In general, the decoding of interpersonal synchrony was high in
the MT comparison region, and decoding accuracy did not differ
significantly betweenMT and the ROIs thought to be part of a dis-
tinctive social perception network (all ps > 0.06). One potential
reason for such high decoding of interpersonal synchrony in
MT is that, across participants, this ROI contained several voxels
that overlapped with EBA (lEBA overlap: M=22.03, SD=8.97;
range, 3–35 voxels; rEBA overlap: M= 28.66, SD=14.92; range,
5–58 voxels). When overlapping voxels were excluded from each
ROI, the decoding of interpersonal synchrony remained high in

EBA (lEBA: M=58.20%, t(31) = 3.824, p<0.001; rEBA:M=60.74%,
t(31) = 5.016, p<0.001). In contrast, decoding in MT dropped sub-
stantially to 53.52%, and was no longer significantly different from
chance (t(31) = 1.579, p=0.125).

It is possible that chance levels of decoding seen in MT follow-
ing the removal of the overlapping EBA voxels reflect the relatively
small number of residual MT voxels. With overlapping voxels
removed, on average, MT size was reduced by ∼50% to 49.31 vox-
els (range, 25–83). For comparison, lEBA size was reduced by
∼16% to 114.09 voxels (range, 92–154), and rEBA size was
reduced by ∼20% to 118.16 voxels (range, 73–162). However,
we note that classification accuracy remained significantly above
chance in rEBA (M=56.45, t(31) = 3.029, p= 0.005) and in lEBA
(M=56.45, t(31) = 3.083, p=0.004) when the size of these ROIs
was constrained to the 50 most body-selective voxels.

Generalization across movement type
Where regions showed above-chance classification in the forego-
ing analyses, we also examined whether representations of inter-
personal synchrony generalize across nodding and shaking
movement using cross-classification (Fig. 4). We found significant
above-chance cross-classification of synchronous versus asynchro-
nous movement across both directions (generalizing from nod-
ding to shaking and from shaking to nodding) in lEBA (N→S:
M=55.47%, t(31) = 3.016, p=0.005; S→N: M=57.42%, t(31) = 3.724,
p=0.001) and rEBA (N→S: M=57.23%, t(31) = 4.016, p<0.001;
S→N: M= 55.47%, t(31) = 2.634, p= 0.013). Generalization from

Table 1. Mean classification accuracies for decoding of synchronous versus
asynchronous movement and one-sample t test results

ROI Mean accuracy (%) Df t-value p-value

lEBA 59.18 31 3.681 0.001
rEBA 58.40 31 3.876 0.001
rFFA 52.90 27 1.223 0.232
rOFA 55.29 25 2.553 0.017
lSTS-F 55.42 29 2.120 0.043
rSTS-F 56.05 31 3.350 0.002
rSTS-F* 58.01 31 4.067 <0.001
rSTS-I 55.47 31 2.763 0.010
V1 51.95 31 0.961 0.344
MT 59.57 31 4.198 <0.001

Those p-values in bold survived FDR correction.

Figure 3. Mean classification accuracies for decoding of synchronous versus asynchronous
movement in body-selective ROIs (green), face-selective ROIs (purple), an interaction-sensitive
ROI (yellow), and nonsocial comparison ROIs (gray). Error bars show standard error. The
asterisks indicate above-chance accuracy after FDR correction for 10 comparisons: *p≤ 0.05;
**p≤ 0.01, ***p≤ 0.001. The horizontal lines above the bars indicate significant pairwise
differences between each comparison ROI and all other ROIs.
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nodding to shaking (only) was found in MT (M= 55.27%,
t(31) = 3.044, p= 0.005). Cross-classification accuracies, either
from nodding to shaking or shaking to nodding, did not survive
FDR correction in other ROIs (N→S: all Ms < 55%, all ps > 0.03;
S→N: all Ms < 55%, all ps > 0.03). For completeness, we also
conducted a two-way cross-classification analysis testing both
directions (N→S, S→N) simultaneously (Fig. 4). This analysis
revealed significant above-chance cross-classification (all
ts > 2.4, all ps < 0.02) in all ROIs except for rSTS-F and rSTS-I
(both ts < 2.1, both ps > 0.05).

Univariate analyses
To compare univariate responses to synchronous and asynchro-
nous movement, for each ROI and each participant we calculated
the mean β value across all voxels included in the ROI, separately
for synchronous and asynchronous stimuli (Fig. 5). We found
significantly greater responses to asynchronous stimuli compared
with synchronous stimuli in rEBA (t(31) = 3.197, p=0.003) and
lSTS-F (t(29) = 3.088, p=0.004). Comparisons in other ROIs did
not survive FDR correction (all ps > 0.02).

The functional characteristics of the EBA ROIs
The EBA is thought to show little or no face selectivity (Peelen
and Downing, 2007). The ability of EBA to decode synchronous
versus asynchronous head motion might therefore strike some
readers as counterintuitive. With this in mind, we sought to
confirm that our functionally defined EBA ROIs behaved as
expected during the functional localizer procedure. During this
procedure, participants viewed dynamic faces, bodies, and
objects. Univariate contrasts were used to define face-selective
(faces > objects) and body-selective (bodies > objects) regions.
To examine whether our EBA ROIs showed unexpected face
selectivity, we extracted β values for faces and objects in rEBA
and lEBA and calculated the mean β value across all voxels
included in each ROI, separately for faces and objects.
Responses to faces and objects were similar in rEBA (Mfaces =
2.346, Mobjects = 2.481, t(31) = 1.069, p=0.293) and significantly
greater for objects in lEBA (Mfaces = 1.596, Mobjects = 1.854, t(31) =
2.749, p=0.010). This pattern indicates that our functionally
defined EBA ROIs behaved as expected; that is, the EBA ROIs
showed no selectivity for faces per se.

Exploratory whole-brain analyses
Whole-brain searchlight analysis identified multiple voxel clusters
that supported the above-chance classification of synchrony versus

asynchrony (Table 2; Fig. 6). The analysis revealed two large clus-
ters with peak voxels in left (630 voxels) and right (1,401 voxels)
precentral gyrus. The peak voxel of a third large cluster (717 vox-
els) was undefined by AAL but the largest contributing AAL
region was the right supramarginal gyrus. Further clusters were
identified with peak voxels in the left middle temporal gyrus
(464 voxels), right precuneus (79 voxels), right angular gyrus (51
voxels), and left superior occipital gyrus (49 voxels). As expected,
there was broad agreement between the results of the ROI and
searchlight analyses; that is, those visual areas that supported sign-
ificant levels of decoding in the ROI analyses were also identified
by the searchlight analysis (Fig. 7).

We also performed whole-brain univariate analyses to test for
regions showing greater responses to synchronous than asyn-
chronous motion, and vice versa (Fig. 8).

The contrast synchronous > asynchronous revealed a small
cluster with a peak in the right fusiform gyrus (k= 7, x= 30, y =
−40, z=−13, t= 7.020, p < 0.001). The contrast asynchronous >
synchronous revealed three clusters with peaks in the left supple-
mentary motor area (k= 65, x=−3, y = 17, z= 44, t= 8.874, p <
0.001) and left precentral gyrus (k= 7, x=−40, y = 2, z= 39, t=
6.591, p < 0.001) and within the right frontal lobe (peak region
undefined; k= 6, x= 32, y=−1, z= 46, t= 6.601, p < 0.001).

It is possible that the activation in the right fusiform cortex
seen for the contrast synchronous > asynchronous is attributable
to rFFA. Note, however, that this univariate effect was not seen in
the functionally defined FFA ROIs (Fig. 5). To further interrogate

Figure 4. Mean cross-classification accuracies for decoding of synchronous versus asynchro-
nous movement with generalization from nodding to shaking, generalization from shaking
to nodding, and generalization in both directions. Error bars show standard error. The
asterisks indicate above-chance accuracy after FDR correction for 10 comparisons: *p≤ 0.05;
**p≤ 0.01, ***p≤ 0.001.

Figure 5. Mean β values for synchronous and asynchronous movement in each ROI. Error
bars show standard error. The asterisks indicate above-chance accuracy after FDR correction for
10 comparisons: **p≤ 0.01.

Table 2. Results of whole-brain searchlight analysis

Hemisphere Peak voxel location

Peak voxel Cluster

MNI coordinates

Size p-valuex y z t-value

Right Precentral gyrus 42 2 47 8.3701 1,401 <0.001
Supramarginal gyrusa 33 −37 47 7.0992 717 <0.001
Precuneus 6 −55 41 4.9307 79 <0.001
Angular gyrus 42 −64 38 5.7106 51 0.001
Cuneus 15 −70 35 5.2447 33 0.011

Left Precentral gyrus −42 5 35 6.4343 630 <0.001
Middle temporal gyrus −48 −64 2 5.8787 464 <0.001
Superior occipital gyrus −21 −76 35 5.7624 49 0.001
Superior frontal gyrus,
medial

−9 62 17 5.8307 43 0.003

Left inferior parietal −33 −46 41 4.8783 26 0.032
aThe peak voxel of this cluster was in a region undefined by AAL, so the largest contributing AAL region is reported
instead.
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this possibility, we examined whether the cluster identified in the
right fusiform cortex overlapped with the rFFA parcel described
by Julian et al. (2012). We observed no overlap—the right fusi-
form cluster seen in our data was more medial than the rFFA par-
cel, adjacent to the parahippocampal gyrus.

General discussion
The present study employed MVPA to identify visual regions
that underlie the perception of interpersonal synchrony/asyn-
chrony. Several regions of the social perception network were
found to support significant decoding of synchronous versus
asynchronous head movements, including bilateral EBA, face-
selective and interaction-sensitive regions of the mid/posterior
rSTS, and rOFA. We saw robust cross-classification in lEBA
and rEBA, whereby a classifier trained to discriminate synchro-
nous versus asynchronous head-shaking could also discriminate
synchronous versus asynchronous head-nodding, and vice versa.

Exploratory univariate analyses also identified a region of the
right fusiform cortex that responded more strongly to synchro-
nous than asynchronous motion.

There is growing speculation that social interactions may
engage specialized visual processing beyond that recruited by the
faces and bodies of the constituent individuals (Quadflieg and
Koldewyn, 2017; Papeo, 2020; McMahon and Isik, 2023).
Critically, the representation of relative-phase requires the extrac-
tion and integration of dynamic information from more than one
person. Because synchrony/asynchrony is an emergent property of
the kinematics of multiple actors, its representation cannot be
attributed to augmented or additive processing of individuals.
Our findings therefore provide important new evidence of multi-
actor visual processing within the social perception network.

Contribution of EBA, pSTS, and OFA
Representations of interpersonal synchrony/asynchrony were
found in bilateral EBA and in interaction-sensitive (STS-I) and

Figure 6. Results of whole-brain searchlight analysis: a, right hemisphere; b, left hemisphere.

Figure 7. Overlap between the results of the whole-brain searchlight analysis (purple) and the group-level masks (cyan) that were used to define subject-specific ROIs for rEBA, rSTS-F, rSTS-I, and MT.
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face-selective (STS-F) regions of rSTS. Together with previous
findings (Isik et al., 2017; Walbrin et al., 2018; Walbrin and
Koldewyn, 2019; Abassi and Papeo, 2020, 2022; Bellot et al.,
2021), these results suggest that EBA and pSTS may form part
of a circuit that underlies the visual perception of social interac-
tions. Previously, STS-I has been found to be more sensitive to
social interactions than the adjacent and partially overlapping
STS-F region (Isik et al., 2017). In our study, however, significant
synchrony classification was seen in both regions.

The emerging body of evidence does not afford a straightfor-
ward account of the respective contributions of EBA and pSTS to
social interaction perception. Despite its functional selectivity for
body stimuli, EBA is thought to show little or no face selectivity
(Peelen and Downing, 2007). Thus, one possibility is that the
contribution of EBA to interaction perception is limited to the
processing of body cues. At first glance, our findings—obtained
with head and face stimuli—argue against this view. However,
the synchronous and asynchronous stimuli used here depicted
rigid head movements (nodding or shaking), rather than facial
motion per se (O’Toole et al., 2002). While our stimuli are not
canonical “body” stimuli, nor are they canonical “face” stimuli.

A second possibility is that EBA encodes spatial/temporospa-
tial dyadic features (Quadflieg et al., 2015), whereas pSTS sup-
ports further interpretative processing (Centelles et al., 2011).
This view is consistent with evidence that EBA is sensitive to
the arrangement of actors within dyads (Abassi and Papeo,
2020, 2022), as well as the congruence (Quadflieg et al., 2015)
and synchrony (current study) of dyadic interactions. Similarly,
this account would explain why STS-I—but not EBA—exhibits
sensitivity to interactive cues presented in the auditory domain
(Landsiedel and Koldewyn, 2023). Moreover, this view

potentially accords with evidence that different types of interac-
tion (e.g., helping vs hindering) between simple moving shapes
(e.g., circles and squares) can be decoded from the responses of
STS-I (Isik et al., 2017; Walbrin et al., 2018). Given that the inter-
actions depicted are between simple shapes, these results imply
that STS-I represents relatively abstract features of social interac-
tions, that is, that processing in this region is largely insensitive to
the appearance and precise kinematics of the actors. To further
interrogate the respective contributions of EBA and STS-I, it
would be useful to establish whether the responses seen in EBA
also support the classification of interactions between abstract
geometric shapes.

We observed a notable difference between EBA and STS-I in
our cross-classification analyses. Representations of synchrony/
asynchrony generalized across motion types (nodding and shak-
ing) in bilateral EBA. Interestingly, however, cross-classification
did not exceed chance in STS-I. We speculate that responses in
STS-I did not support significant cross-classification because
head-shaking and head-nodding afford different social interpre-
tations—disagreement and agreement. It is possible that the pres-
ence of synchrony affects perceived agreement and disagreement
—abstract features potentially encoded within STS-I—but does
so differently for nodding and shaking movements.

Univariate analyses of the responses seen in our ROIs revealed
that rEBA and lSTS-F responded more strongly to asynchronous
head movements than to synchronous head movements. This
result mirrors a similar finding reported by Quadflieg et al.
(2015) who observed greater activation in EBA and pSTS when
participants viewed semantically incongruent face-to-face dyads,
relative to semantically congruent dyads. Facing dyads may
engage multiactor processing within the social perception

Figure 8. a, Whole-brain univariate analyses testing for regions showing greater responses to synchronous than asynchronous motion revealed a small cluster (red) with a peak in the right
fusiform gyrus (x= 30, y=−40, z=−13). There was no overlap with the probabilistic map of rFFA (blue) that was used to define our individual FFA ROIs. b, We also identified three clusters
that responded more strongly to asynchronous than to synchronous motion with peaks in the left supplementary motor area (k= 65, x=−3, y= 17, z= 44) and left precentral gyrus (k= 7, x=
−39, y= 2, z= 38) and within the right frontal lobe (k= 6, x= 33, y=−1, z= 44).
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network irrespective of interpersonal synchrony or asynchrony
and semantic congruence or incongruence. However, asynchro-
nous and incongruent dyads may be processed less efficiently
than synchronous and incongruent dyads because they violate
perceptual expectations about the likely appearance and kine-
matics of interactions.

Synchronous movement (Lakens, 2010; Lakens and Stel,
2011) and face-to-face arrangement (Papeo, 2020) are both
thought to afford perceptual grouping whereby individual actors
are processed as a single configuration. Interestingly, face-to-face
(vs back-to-back) dyadic arrangements elicit stronger BOLD
responses in EBA (Abassi and Papeo, 2020, 2022). Here, how-
ever, we observed stronger responses in EBA when participants
viewed asynchronous (vs synchronous) movement. Studying
how these univariate effects behave when dyadic synchrony (syn-
chronous vs asynchronous movement) and arrangement
(face-to-face vs back-to-back) are subject to factorial manipula-
tion, may shed light on these somewhat contradictory results.

Significant synchrony/asynchrony classification in rOFA is
unexpected given that previous manipulations of dyadic congru-
ence (Quadflieg et al., 2015) and arrangement (Abassi and Papeo,
2020) failed to modulate neural responses in OFA. Relative to the
stimuli used in previous studies, however, our stimuli empha-
sized the head and face regions. It is thus possible that OFA con-
tributes to the perception of interpersonal synchrony by
encoding the relative facial rotation and orientation of the differ-
ent faces. This feature of our stimuli may also explain the robust
synchrony/asynchrony decoding seen in STS-F. Unlike EBA,
OFA did not support robust cross-classification.

EBA, pSTS, and OFA are key hubs within the social percep-
tion network that were identified in our study using functional
localizers. The defining feature of each region is selectivity for,
or sensitivity to, a particular type of social stimulus (e.g., bodies,
faces, dyadic interactions). Our findings indicate that these
regions contribute to the perception and representation of inter-
personal synchrony. Further work is required to elucidate the
specificity of this contribution, for example, whether the decod-
ing effects described here are also seen when participants view
synchronous and asynchronous interactions between pairs of
nonfacing actors or between people and objects.

Contribution of other areas
Significant decoding of synchrony/asynchrony in MT is consis-
tent with evidence that MT responds more strongly to videos
of dyadic interaction than to videos of people acting indepen-
dently (Landsiedel et al., 2022) and more strongly to semantically
incongruent dyads than to congruent dyads (Quadflieg et al.,
2015). Given these findings, it is conceivable that MT contributes
to the perception of dyadic interactions. However, a clear inter-
pretation of the role of MT is complicated by the spatial overlap
betweenMT and EBA (Ferri et al., 2013). In our study, the decod-
ing of synchrony/asynchrony seen in MT did not survive the
removal of overlapping EBA voxels. In contrast, the decoding
seen in EBA remained significant when overlapping MT voxels
were removed. Interpretation of these findings is further compli-
cated by the fact that the MT region in our study was defined
using a probabilistic group map approach, which, unlike a func-
tional localizer approach, does not consider individual variation
in the location of MT.

Whole-brain univariate analyses identified an area of the right
fusiform cortex that showed selectivity for synchronous dyadic
motion. Interestingly, there was no sign of this effect in the func-
tionally defined rFFA ROI, nor was there any overlap with the

probabilistic map of rFFA derived by Julian et al. (2012).
Relative to interpersonal asynchrony, interpersonal synchrony
affords grouping (Lakens, 2010; Lakens and Stel, 2011) and attri-
butions of rapport (Miles et al., 2009; Lakens and Stel, 2011). One
possibility is that this right fusiform region mediates additional
processing engaged selectively by synchronous interactions.
This exciting possibility warrants further investigation.

Conclusion
Interpersonal synchrony is a critical cue when appraising
dynamic social scenes. However, little is known about its neural
representation within the human visual system (Cracco et al.,
2022). Findings obtained with MVPA indicate that distributed
responses throughout the social perception network support cat-
egorization of synchronous versus asynchronous head move-
ments. Crucially, relative-phase is an emergent property of the
actions of multiple actors. These results therefore provide impor-
tant new evidence of multiactor visual processing within the
social perception network.
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