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Abstract: This study aims to improve the accuracy of bathymetry predicted by gravity-geologic
method (GGM) using the optimal machine learning model selected from machine learning techniques.
In this study, several machine learning techniques were utilized to determine the optimal model from
the performance of depth and gravity anomalies. In addition, a tuning density contrast calculated
from satellite altimetry-derived free-air gravity anomalies (FAGAs) was applied to estimate enhanced
bathymetry. By comparison with shipborne depth, the accuracy of the bathymetry estimated by using
satellite altimetry-derived FAGAs and machine learning was evaluated. The findings reveal that the
bathymetry predicted by the optimal machine learning using the Gaussian process regression and the
GGM with a tuning density contrast can enhance the accuracy of 82.64 m, showing an improvement
of 67.40% in the RMSE at shipborne depth measurements. Although the tuning density is larger
than 1.67 g/cm3, bathymetry using satellite altimetry-derived FAGAs and machine learning can be
effectively improved with higher accuracy.

Keywords: optimal machine learning; gravity anomalies; density contrast; east sea

1. Introduction

Because bathymetry is crucial in understanding the Earth’s shape, seafloor evolution,
marine resource exploration, marine navigation, and marine environment monitoring,
relevant research is continuously being conducted to estimate accurate bathymetry as
technology advances. Several satellite radar altimeters have provided accurate sea surface
topography by measuring the distance between the satellite and the sea surface.

The sea surface topography derived from the distance measurements of the satellite
radar altimeters between the satellite and the sea surface can be recovered to global marine
altimetry-derived gravity anomalies, which have a more uniform and denser coverage
than the ship tracks. The three main satellite altimetry-derived geophysical parameters,
such as marine geoid, marine gravity anomalies, and bathymetry, are correlated with the
undulations of the crustal density variations under the seafloor [1]. Satellite altimetry-
derived free-air gravity anomalies (FAGAs) are critical in generating accurate bathymetry
maps by filling large gaps between the bathymetry data on the shipborne tracks using the
topographic effects in the off-tracks in the ocean [2,3].

Several studies about bathymetry predictions using the gravity-geologic method
(GGM) from the satellite altimetry-derived FAGAs and the density contrast between sea-
water and the ocean bedrock were carried out. Roman (1999) [4] adapted GGM to estimate
bedrock elevation beneath unconsolidated materials for bathymetric determinations in
the Barents Sea and the waters around Greenland. Checkpoints with the GGM and the
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downward continuation method were applied to generate enhanced bathymetry using
a density contrast of 10.25 g/cm3 in the Ulleung basin in the East Sea [2]. Kim and Lee
(2015) [5] computed bathymetric change before and after the 2011 Tohoku Earthquake
using a density contrast of 17.04 g/cm3 in the Japan Trench. An improved bathymetry
model in the Gulf of Guinea was estimated using an optimal density contrast of 8.0 g/cm3

determined by the GGM [6]. They compared the accuracy of the inversion bathymetry
with the new optimal density contrast, which is computed by considering the seafloor
topography in each of the three subregions.

Satellite-derived bathymetry predictions in shallow waters using GGM were made
on the western coast of Korea. The enhanced bathymetry predictions in shallow waters
around coastal areas in western Korea were implemented by combining shipborne multi-
beam data, satellite altimetry-derived FAGAs, and airborne bathymetric LiDAR data [7].
The satellite-derived bathymetry estimated by combining multi-beam depth and airborne
bathymetric LiDAR was remarkably enhanced in shallow waters in comparison with
bathymetry predicted by only multi-beam depth data.

Several studies adopted various machine learning-based regression models to estimate
seafloor topography, confirming that machine learning-based regression models effectively
estimate bathymetry [8–14]. Alevizos (2020) used hyperspectral imaging and machine
learning to estimate shallow-depth bathymetry and proved its accuracy using ground
truth data [8]. Tonion et al. (2020) [9] demonstrated that support vector machines (SVMs)
and random forests (RFs) effectively estimate bathymetry at shallow depths. On the other
hand, Surisetty et al. (2021) [10] estimated the bathymetry using an ensemble model.
Although these study areas differ, these studies are significant because they all estimated
the bathymetry using machine learning-based methods. Nevertheless, because different
machine learning methods were applied, there is a limitation in that it is impossible to
know which method is optimal for estimating bathymetry.

To address this limitation, further studies comparing various machine-learning meth-
ods in bathymetry estimation [11–14] were conducted and recommended. For instance,
Eugenio et al. (2022) [11] verified through Root Mean Square Error (RMSE) and coefficient
of determination (R2) that the performance of subspace K-Nearest Neighbor (KNN) and
bagged trees is superior to other machine learning methods in estimating bathymetry.
Ashphaq et al. (2022) [12] also demonstrated that the Gaussian process regression (GPR)
method is superior to other machine learning methods through RMSE, Mean Absolute
Error (MAE), and coefficient of determination. Zhou et al. (2023) [13] also compared the
performance of each machine learning model through RMSE, MAE, error distribution, and
coefficient of determination. Lastly, Cheng et al. (2023) [14] differentiated the bathymetry
estimation performance of each machine learning-based regression model using RMSE
and MAE.

The implications of these prior studies are significant. First, the appropriate regression
model for estimating bathymetry varies for each region due to regional characteristics.
For example, in this study area of Eugenio et al. (2022) [11], bagged tree is the most
optimal learning model, but in this study area of Ashphaq et al. (2022) [12], the GPR
method is the most appropriate learning model. Therefore, it is necessary to find an optimal
learning model according to this study area and to apply the learning model. Second,
RMSE, MAE, and coefficient of determination are used to find an optimal learning model.
Therefore, considering previous studies, it can be inferred that the approach to finding the
optimal learning model using RMSE, MAE, mean square error (MSE), and coefficient of
determination is reasonable.

Another limitation of the above-mentioned studies [8–14] is that their target areas
are shallow (within 100 m). Therefore, there are limitations in estimating bathymetry at
deep depths using methods for estimating bathymetry at shallow depths. Hence, studies
applying machine learning to deep-depth bathymetry were conducted [15–17]. Annan
et al. (2022) [15] estimated the bathymetry using Convolution Neural Network (CNN),
where CNN was utilized to merge these three gravity signals, which are gravity anomalies,
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vertical gravity anomaly gradient, and vertical deflections, to enhance the bathymetry of the
Gulf of Guinea. Li et al. (2023) [17] used a fully connected deep neural network (FC-DNN)
to estimate bathymetry of the South China Sea. They used it to synthesize gravity anomaly
(GA), vertical gravity gradient anomaly (VGG), and deflection of vertical (DOV). Their
study was based on control points and checkpoints as a verification method, but this method
is not suitable for the current study because it differs from the regression this study intends
to perform. However, both studies [15,16] did not compare performance among other
machine learning methods they used, so it is not clear whether the machine learning model
is the optimal model they used. In Kim et al. (2023) [17], the performances of machine
learning models in deep water were compared, showing the progress of bathymetry
estimation research compared to other research about shallow water [8–14] and deep
water [15,16]. Consequently, this study intended to apply the machine learning models
presented in previous studies to a pilot area, analyze their performances, and estimate the
bathymetry using the optimal model.

In summary, this study has similarities and advances from previous studies. The
similarity to previous studies is that the optimal artificial intelligence (AI) model for
bathymetry estimation in the target area is unknown; therefore, the optimal model must be
selected through RMSE, MSE, MAE, and coefficient of determination. On the other hand,
since most of the previous studies were conducted at shallow depths, there is a gap in
the feasibility of applying machine learning to deep-water bathymetry estimation. In this
respect, the novelty of this study is that machine learning models are applied to deep-depth
bathymetry estimation, and their effectiveness is proven.

This study estimated bathymetry around the Yamato basin in the East Sea using the
optimal machine learning model and the gravity-geologic method (GGM) with a tuning
density contrast. To improve the accuracy of the estimated bathymetry, the optimal machine
learning model with the best performance was selected by assessing the shipborne depth
and gravity anomalies predicted from various machine learning models. Additionally,
a tuning density contrast determined using downward continuation of gravity anomalies
was applied to effectively predict bathymetry. We evaluated the accuracy of bathymetry in
this study area in comparison with shipborne bathymetry as well as the global bathymetry,
such as the Earth topographical database 1 (ETOPO1) [18].

2. Materials and Methods
2.1. Data Set

The East Sea comprises three sub-basins, which are a mature back-arc basin behind
Japan island arcs in the northwestern Pacific, in Figure 1. In comparison with the Japan
basin, which is a deep (>3000 m) and large back-arc basin located in the northeastern part
of the East Sea, the Yamato basin is a relatively shallow (<3000 m) back-arc basin, similarly
to the Ulleung basin [19]. This study area (136.7◦–139.7◦ E, 38.9◦–41.4◦ N) selected is the
red box in the location map in Figure 1. The bathymetry as a background from ETOPO1 is
also depicted in Figure 1. The spatial resolution and accuracy of ETOPO1 are 1 arc-minute
and 10 m, respectively [18]. The water depth in the Yamato basin in the East Sea is less than
3000 m.

Figure 2a portrays the ETOPO1 bathymetry with superimposed 108,056 shipborne
measurements (including depth and gravity anomalies) locations provided by the National
Centers for Environmental Information (NCEI) and the National Oceanic and Atmospheric
Administration (NOAA). About 72,045 control points and 36,011 checkpoints accounting
for the 108,056 NCEI shipborne measurements were selected to determine a tuning density
contrast by checkpoint using GGM. The depths from ETOPO1 in this study area ranged
from −3755.4 to 0.0 m, as illustrated in the background in Figure 2a. The 1 arc-minute
satellite altimetry-derived FAGAs [20] obtained from Scripps Institution of Oceanography
(SIO), University of California, San Diego, used to improve bathymetry in this study
area are presented in Figure 2b. The spatial resolution and accuracy of satellite altimetry-
derived FAGAs are 1 arc-minute and 2 mGal (1 mGal = 1 × 10−5 m/s2) [20]. Attributes
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(AR, AM, ASD, and AU) listed for subsequent maps represent amplitude range (minimum
and maximum values), amplitude mean, amplitude standard deviation, and amplitude
unit, respectively.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Location map. The red box represents this study area (136.7°–139.7° E, 38.9°–41.4° N). 

Figure 2a portrays the ETOPO1 bathymetry with superimposed 108,056 shipborne 
measurements (including depth and gravity anomalies) locations provided by the Na-
tional Centers for Environmental Information (NCEI) and the National Oceanic and At-
mospheric Administration (NOAA). About 72,045 control points and 36,011 checkpoints 
accounting for the 108,056 NCEI shipborne measurements were selected to determine a 
tuning density contrast by checkpoint using GGM. The depths from ETOPO1 in this study 
area ranged from −3755.4 to 0.0 m, as illustrated in the background in Figure 2a. The 1 arc-
minute satellite altimetry-derived FAGAs [20] obtained from Scripps Institution of Ocean-
ography (SIO), University of California, San Diego, used to improve bathymetry in this 
study area are presented in Figure 2b. The spatial resolution and accuracy of satellite al-
timetry-derived FAGAs are 1 arc-minute and 2 mGal (1 mGal = 1 × 10−5 m/sec2) [20]. At-
tributes (AR, AM, ASD, and AU) listed for subsequent maps represent amplitude range 
(minimum and maximum values), amplitude mean, amplitude standard deviation, and 
amplitude unit, respectively. 

 
Figure 2. (a) The ETOPO1 bathymetry with superimposed shipborne track locations by the NCEI 
and (b) satellite altimetry-derived FAGAs in this study area. 

Figure 1. Location map. The red box represents this study area (136.7◦–139.7◦ E, 38.9◦–41.4◦ N).

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Location map. The red box represents this study area (136.7°–139.7° E, 38.9°–41.4° N). 

Figure 2a portrays the ETOPO1 bathymetry with superimposed 108,056 shipborne 
measurements (including depth and gravity anomalies) locations provided by the Na-
tional Centers for Environmental Information (NCEI) and the National Oceanic and At-
mospheric Administration (NOAA). About 72,045 control points and 36,011 checkpoints 
accounting for the 108,056 NCEI shipborne measurements were selected to determine a 
tuning density contrast by checkpoint using GGM. The depths from ETOPO1 in this study 
area ranged from −3755.4 to 0.0 m, as illustrated in the background in Figure 2a. The 1 arc-
minute satellite altimetry-derived FAGAs [20] obtained from Scripps Institution of Ocean-
ography (SIO), University of California, San Diego, used to improve bathymetry in this 
study area are presented in Figure 2b. The spatial resolution and accuracy of satellite al-
timetry-derived FAGAs are 1 arc-minute and 2 mGal (1 mGal = 1 × 10−5 m/sec2) [20]. At-
tributes (AR, AM, ASD, and AU) listed for subsequent maps represent amplitude range 
(minimum and maximum values), amplitude mean, amplitude standard deviation, and 
amplitude unit, respectively. 

 
Figure 2. (a) The ETOPO1 bathymetry with superimposed shipborne track locations by the NCEI 
and (b) satellite altimetry-derived FAGAs in this study area. 
Figure 2. (a) The ETOPO1 bathymetry with superimposed shipborne track locations by the NCEI
and (b) satellite altimetry-derived FAGAs in this study area.

2.2. Methodology
2.2.1. Depth and Gravity Anomalies Predictions Using Optimal Machine Learning

This study compared the performances of machine learning methods to estimate
seafloor topography and bathymetry by applying machine learning to shipborne depth
and gravity anomalies.

Machine learning models suitable for estimating bathymetry are highlighted in pre-
vious research. Representative examples are artificial neural networks (ANNs), SVM, RF,
and GPR. ANN is an artificial neural network constructed using multiple perceptrons.
Depending on its structure, such as CNN [15], FC-DNN [16], and recurrent neural network
(RNN) [21], it can be used to estimate bathymetry in various ways. SVM is a non-parametric
method and is based on supervised classification [22]. This was developed to classify two
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different classes on a hyperplane with the maximum margin between the two classes [23].
Therefore, the kernel that expresses the phenomenon on the hyperplane is vital to the
SVM [9]. RF was developed as a kind of decision tree [24]. Representative RF models
are the bagging tree [25] and the boosting tree [26]. The ensemble model overcomes the
limitations of each method by combining bagging trees and boosting trees [27]. Ensemble
models have excellent performance in bathymetry estimation [17]. Lastly, GPR is quite
similar to SVM. Such as SVM, GPR is a supervised classification and can perform differently
depending on the kernel type [12].

In estimating bathymetry, because various machine-learning models produce vari-
ous results, it is necessary to select and use the machine-learning model with the best
performance. Since it has already been proven in previous studies that RMSE, MAE, and
coefficient of determination indicate the superiority of the model [11–14,17], adopting the
optimal model using RMSE, MAE, MSE, and coefficient of determination is recommended
for this study as well. The formulas for RMSE, MAE, MSE, and coefficient of determination
are as follows:

RMSE =

√
∑n

i=1(xi − yi)
2

n
(1)

MAE =
1
n∑n

i=1|xi − yi| (2)

MSE =
1
n∑n

i=1(xi − yi)
2 (3)

R2 = 1 − MSE(predicted)
MSE(observed)

(4)

where xi is the predicted value; yi is the observed value; n is the number of observed points.
GPR is a nonlinear supervised classification-based regression model [12] and has

various characteristics. First, GPR is based on a Gaussian probability distribution [28].
When there is only one variable, the Gaussian probability distribution function (PDF) is
equal to Equation (5), and when there are two or more variables, such as in this study, the
D-dimensional multivariate distribution model is equal to Equation (6) [29].

PX(x) =
1√
2πσ

exp

(
− (x − µ)2

2σ2

)
(5)

N(x|µ, Σ) =
1

(2π)
D/2|Σ|1/2

exp
[
−1

2
x − µ⊺Σ−1(x − µ)

]
, (6)

where X is a random variable and x is the real argument. X is usually represented by
PX(x) ∼ N

(
µ, σ2) [28]. D is the number of the dimensionality, µ = E[x] ∈ RD is the

mean vector, and Σ = cov[x] is the D × D covariance matrix [28]. The Σ is a symmetric
matrix storing the pairwise covariance of all jointly modeled random variables, with
Σij = cov

(
yi, yj

)
as its (i, j) element [28]. Here, Σij = cov

(
yi, yj

)
represents the kernel.

Using this, the exponential kernel function can be expressed as Equation (7) [30].

kexp
(
xi, xj

)
= s2exp

(
− r

l

)
, (7)

where s and l are again the scale factor and length scale hyperparameter. r is the Euclidean
distance between xi and xj.

The GPR model has various advantages and disadvantages. The advantages are that
probabilistic prediction is used in data interpolation; the confidence interval is determined
according to the Gaussian model; various results can be derived depending on the kernel;
and the kernels are widely known [12]. Contrarily, the disadvantages of GPR are that the
accuracy of the prediction results varies depending on the distribution of observations, and
when there are many variables, the calculation is complicated, and efficiency is reduced [12].
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Nonetheless, the GPR model is considered since only latitude, longitude, and observed
value are the variables in this study.

2.2.2. GGM Bathymetry Predictions

This research utilized the shipborne depth and gravity anomalies predicted by the
optimal machine learning model with the best performance to estimate bathymetry by the
GGM. Figure 3 reveals this study’s flowchart on the GGM bathymetry estimation using
depth and gravity predicted from the optimal machine learning model.
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The GGM to effectively generate bathymetry was adapted in marine environments
using FAGAs and depth measurements instead of Bouguer gravity anomalies (BGAs) and
borehole measurements [2,3]. In addition, a single tuning density contrast determined by
the downward continuation method was employed to improve bathymetry in this study.

The observed gravity (gobs) is composed of the residual gravity (gshort) of a short-
wavelength part and the regional gravity (glong) of a long-wavelength part.

Firstly, for the depth
[
dML(j)

]
predicted from shipborne depth observed values [d(j)]

the optimal machine learning model was used to generate the residual gravity
[
gML

short(j)
]

in
the shorter wavelength effect from a simple Bouguer slab formula at the control points, j.

gML
short(j) = 2πG(∆ρ)

[
dML(j)− DML

]
(8)
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where G is the gravitational constant, 6.672 × 10−8 cm3/g·s2; ∆ρ is the density contrast
between seawater and the ocean bedrock (g/cm3); DML is the deepest depth at a reference
datum (m) using the optimal machine learning model at measured point j.

Secondly, the residual gravity
[
gML

short(j)
]

is eliminated from the observed gravity[
gML

obs (j)
]

predicted from shipborne gravity observed values [g(j)] using the optimal ma-
chine learning model to calculate the regional gravity gML

long(j) that represents the longer
wavelength effect at the control points of measured depth j.

gML
long(j) = gML

obs (j)− gML
short(j) (9)

Thirdly, the regional gravity gML
long(i) at the points of unmeasured depth, i can be

calculated by interpolating as a grid by minimum curvature method using the regional
gravity gML

long(j) at the control points of measured depth j. The residual gravity field

gML
short(i) for predicting the depth between the sea surface and the seafloor bedrock at the

sites of unmeasured depth i was estimated by eliminating the regional gravity using the
following equation:

gML
short(i) = gobs(i)− gML

long(i) (10)

The generated residual gravity, gML
short(i), at the points of unmeasured depth i, can be

represented as
gML

short(i) = 2πG(∆ρ)
(

d(i)− DML
)

(11)

Finally, by rearranging Equation (11), the depth of the seafloor bedrock above the
reference where the seafloor bedrock depths are unmeasured at site i can be predicted, as
shown in Equation (12) below.

d(i) =
gML

short(i)
2πG(∆ρ)

+ DML (12)

Moreover, a tuning density contrast between seawater and the ocean bedrock was
determined to predict accurate bathymetry. The downward continuation method can be
applied to select a single tuning density contrast within the trade-off diagram determined
by the GGM in this study. Upward continuation in the frequency domain from the gravity
field at z = h1 plane to z = h2 plane in the Fourier domain can be expressed as [31]:

Gh2(u, ν) = e−2πkd Gh1(u, ν) (13)

where Gh1(u, ν) and Gh2(u, ν) are the two-dimensional Fourier transform of the gravity field
at h1 and h2, respectively; u and ν are the frequencies for x and y directions, respectively;
k =

√
u2 + ν2; and d = h2 − h1.

Downward continuation of the gravity field in the Fourier transform from z = h2 to
z = h1 plane by inverting Equation (13) as:

Gh1(u, ν) = e2πkd Gh2(u, ν) (14)

The downward continued gravity field was identified in each downward continued
level from the sea surface to the ocean bottom of the deepest point by applying the Gaussian
filter in Equation (15):

G(u, ν) = F(u, ν)G(u, ν)e2πkd (15)

where G(u, ν) is the downward continued gravity field; F(u, ν) is a Gaussian filter; G(u, ν)
is the original gravity field; and d is the distance of the downward continuation.

This study determined a tuning density contrast by the downward continuation
method using satellite altimetry-derived FAGAs in the deepest ocean bedrock. The density
contrast at point i of every downward continued level can be calculated by multiplying the
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gravity ratio at the point i of each downward continued level and the sea surface level by
1.03 g/cm3 [32].

3. Results and Discussions

As explained in the methods, the RMSE, R2, MSE, and MAE in the validation set and a
test set of depth and gravity anomaly of 108,056 shipborne measurements denoted as black
dots in Figure 2a were compared to determine the optimal machine learning model in this
study. The smaller the RMSE, MSE, and MAE are, the better the performance becomes,
with higher R2 also yielding better performance. The shipborne depth and gravity anomaly
data were divided into validation and test data in the ratios of 90:10, and the model with
the best performance was selected in this research. A total of 97,250 validation data and
10,806 test data in shipborne depth and shipborne gravity anomalies were analyzed for the
90:10 ratio.

As a result of the regression performance of the depth and gravity anomaly in this
study using various machine learning methods, the exponential GPR model exhibited the
best performance from the comparative analysis of the validation and test data results for
the ratios of 90:10, as demonstrated in Tables 1 and 2. In both cases, SVM, artificial neural
networks, and boosting tree methods had poor performance. When exponential GPR was
applied to the regression of the shipborne depth, the RMSE was approximately 24.00 m,
the coefficient of determination was 1.00, and the MAE was within 7.00 m. These results
are reliable because they are similar in the validation and the test. Even in the case of the
shipborne gravity anomaly, the exponential GPR is superior to the others. In this case,
the RMSE was about 7.00 mGal, the MAE was all below 2.00 mGal, and the coefficient of
determination was above 0.90. Therefore, estimating the bathymetry using the predicted
depth and gravity anomaly from the exponential GPR in this study is essential.

Table 1. Comparative analysis of shipborne depth prediction performance for each machine learning
model with a ratio of 90:10.

Validation Test

Model RMSE
(m) R2 MSE

(m2)
MAE
(m)

RMSE
(m) R2 MSE

(m2)
MAE
(m)

Neural
Network

Triple Layer Neural
Network 200.09 0.96 40,037.00 141.33 232.19 0.95 53,913.00 162.04

SVM

Optimization SVM 384.13 0.85 147,560.00 282.77 399.2 0.84 159,360.00 287.23
Linear SVM 506.30 0.75 256,340.00 380.85 513.73 0.74 263,910.00 382.00

Quadratic SVM 436.98 0.81 190,950.00 333.38 440.75 0.81 194,260.00 333.84
Cubic SVM 422.30 0.82 178,330.00 307.75 469.16 0.78 220,120.00 326.96

Fine Gaussian SVM 113.65 0.99 12,916.00 86.44 115.28 0.99 13,289.00 86.78
Medium Gaussian SVM 202.51 0.96 41,012.00 146.08 203.03 0.96 41,219.00 145.06
Coarse Gaussian SVM 338.01 0.89 114,250.00 255.3 339.13 0.89 115,010.00 253.56

Decision
Tree

Optimization Tree 49.28 1.00 2428.20 28.65 46.42 1.00 2154.80 27.32
Fine Tree 49.32 1.00 2432.70 28.59 46.59 1.00 2170.70 27.31

Medium Tree 56.08 1.00 3144.80 31.55 53.54 1.00 2866.20 29.85
Coarse Tree 77.33 0.99 5979.50 43.68 70.91 0.99 5028.80 39.46

GPR

Rational Quadratic GPR 23.52 1.00 552.94 8.56 25.49 1.00 649.63 9.77
Squared Exponential

GPR 57.30 1.00 3283.60 33.97 73.36 0.99 5382.10 44.43

Matern 5/2 GPR 30.30 1.00 918.35 14.30 32.45 1.00 1053.20 15.46
Exponential GPR 21.89 1.00 479.36 6.73 23.27 1.00 541.35 6.15

Ensemble
Boosting Tree 210.42 0.96 44,276.00 169.54 209.95 0.96 44,078.00 168.86
Bagging Tree 39.06 1.00 1525.70 21.97 37.85 1.00 1432.40 21.10

Optimization Tree 36.10 1.00 1366.10 21.11 35.95 1.00 1292.70 20.44
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Table 2. Comparative analysis of shipborne gravity anomaly prediction performance for each machine
learning model with ratio of 90:10.

Validation Test

Model RMSE
(mGal) R2 MSE

(mGal2)
MAE

(mGal)
RMSE
(mGal) R2 MSE

(mGal2)
MAE

(mGal)

Neural
Network

Triple Layer
Neural Network 12.53 0.66 157.06 7.11 12.57 0.68 157.96 6.92

SVM

Optimization
SVM 21.63 0.00 467.68 15.71 22.21 0.00 493.48 15.85

Linear SVM 19.78 0.16 391.35 13.63 20.47 0.15 491.10 13.79
Quadratic SVM 19.54 0.18 381.65 12.89 20.23 0.17 609.05 13.07

Cubic SVM 19.14 0.22 366.19 12.55 19.71 0.21 388.34 12.65
Fine Gaussian

SVM 10.99 0.74 120.74 3.98 11.95 0.71 142.81 4.12

Medium
Gaussian SVM 15.35 0.50 235.52 8.46 16.09 0.48 258.88 8.58

Coarse Gaussian
SVM 18.96 0.23 359.37 12.34 19.57 0.22 382.90 12.43

Decision
Tree

Optimization
Tree 7.35 0.88 54.00 1.92 9.03 0.83 81.52 1.98

Fine Tree 7.36 0.88 54.23 1.90 9.04 0.83 81.63 1.97
Medium Tree 7.64 0.88 58.42 2.21 8.30 0.86 68.90 2.18
Coarse Tree 8.65 0.84 74.79 2.95 9.15 0.83 83.70 2.86

GPR

Rational
Quadratic GPR 5.90 0.93 34.75 1.37 9.03 0.83 81.51 2.58

Squared
Exponential GPR 8.64 0.84 74.71 2.67 9.30 0.82 86.48 2.84

Matern 5/2 GPR 7.97 0.86 63.47 2.23 7.89 0.87 62.20 2.05
Exponential GPR 5.00 0.95 25.03 1.12 6.52 0.91 42.50 1.60

Ensemble
Boosting Tree 13.63 0.60 185.70 7.79 14.37 0.58 206.39 7.99
Bagging Tree 6.63 0.91 43.95 1.78 7.38 0.89 54.53 1.80
Optimization

Tree 6.61 0.91 43.68 1.71 7.31 0.89 53.37 1.71

The performance of the machine learning model using the exponential GPR can
also be measured through the residual, which is the difference between predicted and
observed values in both depth and gravity anomaly. Because the observed values are the
most probable values, observed values are regarded as true values in this study. Figure 4
illustrates the distributions of the residuals of depth and the gravity anomaly, respectively.
In addition, Figure 5 displays the histograms of the residuals of the depth and the gravity
anomaly, respectively.

The performances of the machine learning models considered in this study are quite
similar to those of previous studies. According to previous studies [9,11–13], GPR has
shown the best performance, followed by ensemble and decision tree at a similar level. Next,
artificial neural networks are excellent, while SVM has the worst performance [9,11–13].
Of course, the performance of these models varies depending on depth, but this is not
significant [8,13,14]. Therefore, this suggests that the models applied for shallow depth
bathymetry estimation are also effective for deep depth bathymetry estimation, making the
results derived from this study.

Unfortunately, however, the cause of the performance is unclear. Although various
studies have analyzed the performance of machine learning models [8–14], it is diffi-
cult to find in-depth cause analysis beyond general observation results. Performance
has been found to vary depending on depth [8,13,14] and may also vary depending on
the kernel used [8]. Unfortunately, this study also could not identify the cause of the
performance difference.
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The residuals of the depth predicted by using the exponential GPR were a minimum
of −1375.93 m and a maximum of 323.29 m, with an average of −0.03 m and a standard
deviation of 7.83 m. Accordingly, the distribution of the residuals of the depth in the 95%
confidence interval can range from −15.35 m to 15.35 m. Likewise, the residual of gravity
anomaly predicted using the exponential GPR was a minimum of −172.24 mGal and a
maximum of 182.20 mGal, with an average of −0.01 mGal and a standard deviation of
2.35 mGal. Accordingly, the distribution of residuals of the depth in the 95% confidence
interval can range from −4.61 mGal to 4.61 mGal.
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Figure 5 details the histograms of the residuals of depth and gravity anomalies pre-
dicted using the exponential GPR. From the histograms of the residuals of the depth and
the gravity anomalies between observed and predicted values in Figure 5, 94.95% of the
residuals of depth were distributed between −5.0 and 5.0 m, and the 95.69% of the residuals
of gravity anomalies were distributed between −1.5 and 1.5 mGal.

This research utilized the 108,056 NCEI shipborne data, including depth and gravity
anomalies, to estimate the improved bathymetry from topographic effects extracted from
FAGAs and predicted the depth and gravity anomalies using the exponential GPR.

To meet the checkpoints of the GGM, the NCEI shipborne data in this study area
were divided into 72,045 control points and 36,011 checkpoints, as detailed in Figure 2a,
respectively, to calculate satellite-derived bathymetry estimation error by the GGM. Every
third point of the 108,056 NCEI shipborne data were used as a checkpoint to evenly
distribute the control points within this study area.

The 72,045 control points were used to evaluate the stability of the GGM estimations
over a range of density contrasts by the checkpoint method with GGM in Figure 6. As
shown in Figure 6, we selected the range of acceptable density contrasts as 10.0 g/cm3

and higher from a root mean-square (RMS) difference, a rate of RMS difference, and
a correlation coefficient between the control and checkpoints by GGM estimations. At
values of 10.0 g/cm3 and larger, firstly, the correlation coefficient between the control
and checkpoints from the GGM estimates levels off at the red curve; secondly, the RMS
difference and its rate of RMS difference between the control and checkpoints are stabilized
at the blue and green curves, respectively. In this study, the acceptable range of the density
contrasts, which minimize the RMS difference from 4.59 m to 0.28 m on the blue one of
three curves in the trade-off diagram, was selected at 10.0 g/cm3 and larger in Figure 6.
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and higher) determined from GGM estimations.

The density contrasts were predicted for every level at intervals of 350 m below the sea
surface by multiplying the gravity ratio at point i of each downward continued (DWC) level
and the sea surface level by 1.03 g/cm3. The density contrast of each level was calculated
until the levels reached −3756 m, which is the deepest depth. As described in Table 3, the
gravity ratio and the predicted density contrast in every DWC level gradually increased
with the depth.
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Table 3. The density contrast at every level and gravity ratio between the sea surface and the
downward continued level in this study area.

DWC Level (m) −350 −700 −1050 −1400 −1750 −2100 −2450 −2800 −3150 −3500 −3756

Gravity ratio 1.26 1.71 2.20 2.76 3.38 4.09 4.94 6.03 7.57 10.09 13.24
Density contrast

(g/cm3) 1.30 1.76 2.27 2.84 3.48 4.21 5.09 6.21 7.80 10.40 13.63

From Table 3, 13.63 g/cm3 was selected as the predicted density contrast at the deepest
depth. The use of the simple Bouguer slab formula in Equation (12) to calculate bathymetry
is mitigated by choosing a tuning density contrast of 13.63 g/cm3 between seawater and
the ocean bedrock to improve the stability of the GGM predictions.

Because the tuning density contrast is within the acceptable range determined by the
checkpoint’s method with GGM, which is denoted as the purple box in Figure 6, the GGM
bathymetry predictions were applied to the Yamato basin using a tuning density contrast
of 13.63 g/cm3.

The 1 × 1 arc-minute bathymetry models, which are two GGM bathymetry models
(GGM 1, GGM 2), NCEI, and ETOPO1 in this study area, are represented in Figure 7.
This study generated two bathymetry models, GGM 1 and GGM 2, applied to GGM
with a tuning density contrast of 13.63 g/cm3, which was estimated by the downward
continuation method, and a density contrast of 1.67 g/cm3 between seawater (1.03 g/cm3)
and the ocean bedrock (2.70 g/cm3), respectively, using the depth and gravity anomalies
predicted with the exponential GPR model of machine learning. The NCEI gridded model
was created using the “surface” routine of Generic Mapping Tools (GMT, http://soest.
hawaii.edu/gmt/, accessed on 1 May 2024) [33].
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Table 4 synthesizes the statistical comparisons of the four bathymetry models. The
GGM 1 model in this study area showed correlation coefficients of 0.9948, 0.9962, and
0.9930 with GGM 2, NCEI, and ETOPO1 models, respectively. The GGM 2 model also had
a correlation coefficient of 0.9929 and 0.9911 with the NCEI and ETOPO1 models. From the
correlation coefficient between the four bathymetry models, GGM 1 and GGM 2 represent
a strong correlation with the NCEI gridded model. In the standard deviation in Table 4, the
GGM 1 model (940.43 m) is smaller than the three remaining bathymetry models.

Table 4. The statistical comparisons between bathymetry models.

Min
(m)

Max
(m)

Mean
(m)

STD
(m)

CC (Correlation Coefficient)

GGM 1 GGM 2 NCEI ETOPO1

GGM 1 −3719.90 −52.35 −2343.56 940.43 1 0.9948 0.9962 0.9930
GGM 2 −4680.51 0.00 −2359.09 959.09 0.9948 1 0.9929 0.9911
NCEI −3817.01 −34.38 −2341.42 950.38 0.9962 0.9929 1 0.9957

ETOPO1 −3755.36 0.00 −2348.39 951.82 0.9930 0.9911 0.9957 1

The differences between four bathymetry models (GGM 1, GGM 2, NCEI, and ETOPO1)
were computed. Figure 8 presents the maps of point-by-point differences between the
models, and Table 5 summarizes their statistics.

Table 5. The statistical comparison of the differences between four bathymetry models.

Min (m) Max (m) Mean (m) STD (m)

GGM 1—GGM 2 −1023.20 2482.61 15.53 99.08
GGM 1—NCEI −1434.47 1340.03 −2.14 82.68

GGM 1—ETOPO1 −1093.55 1233.28 4.84 112.56
GGM 2—NCEI −2825.84 1265.74 −17.67 114.23

GGM 2—ETOPO1 −2832.11 1124.21 −10.70 127.70
NCEI—ETOPO1 −758.07 1045.76 6.97 88.32

In terms of comparing the bathymetry differences, the difference between the GGM
1 and NCEI gridded model exhibited better results with the smallest standard deviation
of 82.68 m, as in Table 5. Figure 8a,d,e convey the large differences between GGM 1 and
GGM 2, GGM 2 and NCEI, and GGM 2 and ETOPO1 in the southern part of this study
area. These large differences were caused by the overestimated GGM 1 bathymetry and
underestimated GGM 2 bathymetry in the southern part of this study area, as reflected in
Figure 7a,b, respectively. The differences between GGM 1 and GGM 2 in the southern part
of this study area ranged from 1024.3 to 2482.6 m, as shown in Figure 8a. The differences
between GGM 2 and NCEI and GGM 2 and ETOPO1 in the southern part of this study area
ranged from −2832.1 to −1031.8 m, as illustrated in Figure 8d,e.

The histograms of depth difference values between four bathymetry models in Figure 9
indicate that about 95% of the differences between GGM 1 and NCEI were ±85.0 m.
Compared to the histogram of depth difference between GGM 1 and NCEI, the other
differences are 89.41%, 87.98%, 85.87%, 82.66%, and 89.85% for GGM1—GGM 2, GGM
1—ETOPO1, GGM2—NCEI, GGM2—ETOPO1, and NCEI—ETOPO1, respectively, in the
same range.
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Figure 9. The histograms of six differences between four bathymetry models.

The four bathymetry models were compared to validate the local depth variations
in two Profiles: Profile #1 (the east-west direction along 41◦ N) and Profile #2 (the north-
south direction along 138.5◦ E), shown as black lines in Figure 7. The results are shown in
Figure 10. The depths of the four bathymetry models in Profile #1 were strongly correlated,
with correlation coefficients between 0.9854 and 0.9997. For Profile #2, the correlation
coefficients were also very strongly correlated with correlation coefficients between 0.9923
and 0.9992.
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Table 6 summarizes the statistics of GGM 1, GGM 2, NCEI, and ETOPO1 depths along
Profiles #1 and #2. Table 7 presents the statistics of the differences between GGM 1, GGM 2,
NCEI, and ETOPO1 depths along Profiles #1 and #2. In the east-west direction along 41◦ N,
the difference between GGM 1 and NCEI had the smallest RMSE value. The difference
between NCEI and ETOPO1 had the smallest RMSE value in the north-south direction
along 138.5◦ E.

Table 6. Statistic comparisons between GGM 1, GGM 2, NCEI, and ETOPO1 bathymetry along
Profiles #1 and #2.

Min (m) Max (m) Mean (m) STD (m)

Profile #1

GGM 1 −3719.90 −1742.00 −3239.25 501.13
GGM 2 −3809.69 −1807.06 −3284.22 513.44
NCEI −3720.58 −1726.38 −3232.60 498.77

ETOPO1 −3714.17 −1747.72 −3221.00 485.69

Profile #2

GGM 1 −3672.62 −663.21 −2381.78 914.27
GGM 2 −3819.37 −691.77 −2410.15 933.96
NCEI −3671.21 −626.30 −2389.71 924.21

ETOPO1 −3755.36 −655.09 −2395.70 937.36

Table 7. Statistics of the differences between GGM 1, GGM 2, NCEI, and ETOPO1 bathymetry in
Profiles #1 and #2.

Min (m) Max (m) Mean (m) STD (m) RMSE (m)

Profile #1

GGM 1—GGM 2 −63.02 180.69 44.97 33.64 56.10
GGM 1—NCEI −111.86 29.68 −6.65 12.69 14.29

GGM 1—ETOPO1 −332.00 121.12 −18.26 82.82 84.58
GGM 2—NCEI −208.47 73.55 −51.61 38.36 64.24

GGM 2—ETOPO1 −393.22 88.34 −63.22 87.08 107.41
NCEI—ETOPO1 −335.87 118.84 −11.61 85.06 85.62

Profile #2

GGM 1—GGM 2 −79.63 191.53 28.37 42.21 50.74
GGM 1—NCEI −111.86 1135.87 7.93 102.54 102.51

GGM 1—ETOPO1 −185.84 1220.02 13.92 117.12 117.56
GGM 2—NCEI −162.04 955.38 −20.44 94.42 96.30

GGM 2—ETOPO1 −271.37 1039.53 −14.44 105.62 106.25
NCEI—ETOPO1 −182.94 168.59 6.00 45.43 45.68

GGM 2 bathymetry was overall underestimated in the east-west direction along 41◦ N,
as shown in Figure 10a. In particular, the maximum discrepancy of the differences between
GGM 2 and ETOPO1 was 393.2 m between 138.20◦ and 138.60◦ E. In Figure 10b, the
maximum difference between GGM 1 and ETOPO1 reached 1220.0 m between 41.3667◦

and 41.4000◦ N due to overestimated GGM 1 bathymetry in the north-south direction along
138.5◦ E.

In addition, the accuracy of the GGM 1 and GGM 2 bathymetry models predicted using
the exponential GPR model of machine learning and GGM was evaluated by interpolation
on the 108,056 NCEI shipborne locations, which are represented by the black dots in
Figure 2a. Table 8 specifies that the RMSE of the depth differences between GGM 1 and
NCEI is smaller than that of the depth differences between GGM 2 and NCEI. Figure 11
shows the depth differences (a) between GGM 1 and NCEI and (b) between GGM 2 and
NCEI at 108,056 shipborne depth locations. Consequently, the GGM 1 model using a
tuning density contrast of 13.63 g/cm3 in comparison with that using a density contrast of
1.67 g/cm3 shows an improvement of 67.40% in the RMSE at 108,056 shipborne locations
of the NCEI. These findings imply that the GGM 1 bathymetry model predicted using the
exponential GPR model of machine learning can generate accurate bathymetry around
the Yamato basin in the East Sea. The enhancement in accuracy of 82.64 m of GGM 1 in
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comparison with GGM 2 concludes that satellite altimetry-derived FAGAs and an optimal
machine learning model can effectively estimate accurate bathymetry.

Table 8. Statistics of depth differences on the NCEI shipborne locations between GGM 1 and NCEI
and between GGM 2 and NCEI.

Min (m) Max (m) Mean (m) STD (m) RMSE (m)

GGM 1 −1372.62 826.89 −3.39 39.82 39.96
GGM 2 −2797.37 882.02 −21.70 120.67 122.60
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Figure 12 graphs the histograms for depth difference values on the NCEI shipborne
locations and two models. The histogram for the depth differences between GGM 1 and
NCEI displays a narrower distribution of difference values, indicating that there are more
precise values around the NCEI depth values. On the other hand, the histogram for the
depth differences between GGM 2 and NCEI shows a wider spread, suggesting that the
GGM 2 bathymetry model has a higher variability than the depth values.
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From the histograms of two depth differences from the NCEI shipborne locations and
the two competing models presented in Figure 12, it can be gleaned that 91.7% of the depth
differences between GGM 1 and NCEI were below 40.0 m, whereas 59.2% of the depth
differences between GGM 2 and NCEI were less than 40.0 m. Hence, based on the small
differences between the GGM 1 model and the NCEI shipborne depths along the NCEI
shipborne locations, the GGM 1 model is considered more suitable than the GGM 2 model
for short wavelength bathymetry prediction.

4. Conclusions

Bathymetry estimation was implemented by using satellite altimetry-derived FA-
GAs and machine learning around the Yamato basin in the East Sea. The depth and
gravity anomalies predicted by optimal machine learning performance were applied to
improve bathymetry by the gravity-geologic method (GGM) and a tuning density contrast
of 13.63 g/cm3 in this study.

The tuning density of 13.63 g/cm3 can be more effectively estimated bathymetry
by stabilizing GGM estimations by the checkpoint method in the seafloor topography
with rugged terrain. The GGM bathymetry predicted by the tuning density contrast
(13.63 g/cm3) improves by 18.66 m over the GGM bathymetry estimated by the theoretical
density contrast (1.67 g/cm3) between seawater and the ocean bedrock, although the tuning
density is larger than a geologically reasonable value.

More than 90% of the depth differences between GGM 1 and NCEI on the 108,056 NCEI
shipborne locations were below 40.0 m. The results show that the GGM 1 model estimated
using a density contrast of 13.63 g/cm3 compared to the GGM 2 model estimated using
a density contrast of 1.67 g/cm3 improves by 67.40% in the RMSE at 108,056 shipborne
locations of the NCEI. These verifications suggest that bathymetry using satellite altimetry-
derived FAGAs and machine learning can be effectively improved with higher accuracy.

This study clearly outlines the potential limitations of the approach and identifies
future research areas in terms of machine learning. First, since the true values of water depth
cannot be measured, it is impossible to assert that a specific model accurately estimates
the actual terrain using only RMSE and MAE. Second, as machine learning technology
continues to advance in the future, a more accurate estimate of bathymetry can be obtained
at any time. The first limitation is difficult to overcome due to the nature of this research,
and overcoming the second limitation should be encouraged.

Therefore, future research can be conducted in the direction of overcoming the second
limitation. The first is to identify the cause of the difference in machine learning model
performance when estimating bathymetry. Once the cause is identified, a better model
can be developed or tuned in the future, enabling more accurate bathymetry estimation.
The second is to integrate various artificial intelligence techniques. For example, this
study and previous studies [9,11,13] show that SVM performs worse than the ensemble
model. However, there are cases where the performance of the SVM model has been
improved compared to that of the ensemble model through convergence with various
artificial intelligence techniques [10]. Therefore, it is expected that these future studies will
contribute to estimating more accurate bathymetry.
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