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Abstract
In three dimensions, dipole–dipole interactions which alter atomic level shifts and sponta-
neous decay rates only persist over distances comparable to the wavelength of the emitted 
light. In this paper we show that it is possible to significantly extend the range of these 
interactions with the help of a partially transparent asymmetric mirror interface. Suppose 
two two-level atoms are placed on opposite sides of the interface, each at the position of 
the mirror image of the other. In this case, their emitted light interferes almost exactly as it 
would when the atoms are right next to each other. Hence their dipole–dipole interaction 
assumes an additional maximum, even when the actual distance of the atoms is several 
orders of magnitude larger than the transition wavelength. Although the resulting ultra-
long-range interactions are in general relatively weak, we expect them to find applications 
in quantum technology, like non-invasive quantum sensing.

Keywords Quantum optics · Quantum photonics · Quantum sensing · Master equations · 
Spontaneous photon emission

1 Introduction

Scully and Drühl (1982) proposed a double-slit experiment in which the slits are two two-
level atoms. As illustrated in Fig. 1a, the atoms are kept at a constant distance, are continu-
ously driven by laser light and emit photons at a constant rate. When their distance is com-
parable to the wavelength of the emitted light, an interference pattern forms on a far-away 
screen. Averaged over many photons, this pattern very closely resembles the interference 
pattern of classical double-slit experiments. It only disappears when information about the 
origin of each photon becomes available (Eichmann 1993). As in classical two-slit interfer-
ence experiments, the distance between the intensity minima and maxima depends on the 
distance between the atoms (Schön and Beige 2001).
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When this two-atom double-slit experiment was first performed by Eichmann (1993), 
it raised many questions, like, how can spontaneously emitted photons interfere (Beige 
et al. 2002). A closer look at the experiment shows that it is best to think of the atoms 
as continuously radiating dipole antennae (Beige 2016). Both atoms constantly transfer 
energy into the surrounding free radiation field which only manifests itself as “indi-
vidual photons" upon detection (Hegerfeldt 1993; Stokes 2012). When an individual 
photon is registered on a photographic plate, it contains in general energy from both 
atoms. Depending on the direction of emission, radiation either interferes constructively 
or destructively, thereby resulting in a spatial dependence of the intensity of the emitted 
light. Moreover, interference effects result in a spatial dependence of first and second 
order photon correlations (Beige and Hegerfeldt 1998; Masson 2020; Wolf 2020). By 
now, the interference of light from distant atoms is relatively well understood and has 
already found applications in distributed quantum computing (Barrett and Kok 2005; 
Lim et al. 2005; Duan and Monroe 2010; Hensen 2015; Stephenson 2020), in designing 
mirrors with unusual properties (Moreno-Cardoner et al. 2021), and in quantum sensing 
(Lyons 2023).

Different from the classical case, interference in the two-atom double-slit experiment 
depends on the internal state of the slits, since different entangled atomic states radiate 
light in different preferred directions (Wiegner et  al. 2011; Araneda 2018; Richter et  al. 
2023). Suppose two atoms are right next to each other and share a single energy quantum. 
If the atoms in Fig. 1a are in their maximally-entangled symmetric state, all of the emitted 
light interferes constructively. The atomic coupling to the free radiation field is collectively 
enhanced and a photon is emitted at twice the usual rate. However, if the atoms are in 
their anti-symmetric state, their efforts to transfer energy into the free radiation field cancel 
each other out. The spontaneous decay rate of the antisymmetric state therefore tends to 
zero. At finite distances between the atoms which are of the order of the wavelength of the 
emitted light, similar alterations of spontaneous decay rates occur. These are synonymous 
with Dicke sub- and superrandiance (Dicke 1954) and indicate the presence of atomic 

Fig. 1  a Schematic view of the two-atom double-slit experiment by Eichmann (1993). The emitted light 
interferes either constructively or destructively when arriving at a far away-screen. Which one applies 
depends only on the collective state of the atoms, their distance and the direction of propagation of the 
emitted light. As first pointed out by Dicke (1954), for relatively small distances between the atoms, the 
interference results in dipole–dipole interactions: spontaneous decay rates change (sub- and superradiance) 
and atomic level shifts occur. b Schematic view of two atoms on opposite sides of a partially transparent 
asymmetric mirror which is smooth on one side but rough on the other. Such a mirror can be realised by 
placing tiny metallic islands (represented by yellow semicircles) onto a glass surface, while leaving small 
gaps between them. If the mirror interface is smooth on the left hand side, the transmitted light coming 
from atom a and the reflected light coming from atom b interfere exactly as in Fig. 1a and an analogous 
interference pattern emerges, if a screen is placed on the left hand side of the setup. c On the right hand 
side of the mirror interface, the reflected light travels in different (essentially random) directions. Hence the 
reflected light coming from atom a and the transmitted light coming from atom b no longer travel exactly 
the same distance before arriving at the same point on a far-away screen and the interference pattern disap-
pears
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dipole–dipole interactions (Agarwal 1974; Gross and Haroche 1982; DeVoe and Brewer 
1996; Tanas and Ficek 2002). A possible approach to atomic ultralong-range interactions 
is therefore the recreation of the interference effects of the original two-atom double-slit 
experiment for large atomic distances. Taking this into account, this paper predicts mirror-
mediated, targeted ultralong-range dipole–dipole interactions which can persist over dis-
tances that are many orders of magnitude larger than the wavelength of the emitted light.

Suppose two two-level atoms, a and b, are separated by a two-sided partially transparent 
mirror, i.e. a surface with finite reflection and transmission rates ri and ti (i = a, b) (Furtak-
Wells 2018; Al Ghamdi 2023), and the position of each atom coincides with the position 
of the mirror image of the atom on the opposite side, as illustrated in Fig. 1b. Comparing 
Fig. 1a and b and viewing the atoms as radiating dipole antennae, we see that—for half of 
the emitted light—the two paths from a source to a certain point on the far-away screen are 
always of the same length. The resulting interference pattern is therefore the same as in 
the above described two-atom double-slit experiment (Scully and Drühl 1982), apart from 
a reduction in visibility. Since atomic dipole–dipole interactions are the result of interfer-
ence effects and the interference of spontaneously emitted photons is the same in Fig. 1a 
and b, the above discussion suggests an additional maximum of the dipole–dipole interac-
tion between two atoms on opposite sides of a partially transparent mirror. As we shall 
see below, the strength of this ultralong-range interaction does not depend on the actual 
distance of the atoms but on the distance between atom a and the mirror image of atom b.

Since light coming from atom a and light coming from atom b travels the same distance 
before arriving at the the same point on the screen, it only depends on the initial state of 
the atoms whether the resulting interference is constructive or destructive. Consequently, 
as we shall see below, certain collective atomic states decay more rapidly, while the decay 
of other collective atomic states gets delayed. This effect manifests itself in an alteration of 
the spontaneous decay rates of the atoms. For symmetric mirrors, which reflect light such 
that the angle of incidence always equals the angle of reflection, it can be shown that the 
predicted mirror-mediated atomic interactions scale as r∗

a
tb + t∗

a
rb . Unfortunately, we know 

from classical optics that symmetric mirrors only conserve the energy of any incoming 
wave packets when (Furtak-Wells 2018; Al Ghamdi 2023)

This means, symmetric mirrors cannot alter the spontaneous decay rates of atoms on oppo-
site sides of a partially transparent interface. Generating remote dipole–dipole interactions 
therefore requires the presence of an asymmetric mirror.

One way of realising an asymmetric mirror is to vary the surface roughness on both 
sides of the interface, as illustrated in Fig. 1b and c. For simplicity, we assume in the fol-
lowing that the partially transparent mirror is smooth on one side but uneven on the other. 
Such a mirror is obtained, for example, after placing tiny metallic droplets onto a glass 
surface with some space (tiny holes) between them. On the side of the glass, the surface 
of the metal is smooth and light is reflected as it would be in case of a symmetric mir-
ror (cf.  Fig.  1b), while the droplets on the other side reflect light essentially in random 
directions (cf. Fig. 1c). Light arriving at the holes, however, travels through without chang-
ing direction, as long as the metal islands and the holes are much smaller than the opti-
cal wavelength and relatively evenly distributed. When comparing Fig. 1b and c, we see 
that the situation is very different in both cases. Now, light which is emitted into the same 
direction travels a different distance when coming from atom a and when coming from 
atom b. As a result, all light emitted to the right side contributes equally to the spontaneous 

(1)|ri|2 + |ti|2 = 1, r∗
a
tb + t∗

a
rb = 0.
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decay rates of the atoms. As we shall see below, the predicted interaction therefore scales 
as t∗

a
rb in this case which is in general non-zero.

Deriving the quantum optical master equations for the experimental setup in Fig.  1, 
while assuming that the actual distance of the atoms is relatively large, shows that their 
spontaneous decay rates are formally the same as in the case of two nearby atoms with 
free space dipole–dipole interactions as long as atom a is close to the mirror image of 
atom b. However, the actual distance of the atoms can now be several order of magnitude 
larger than the wavelength of the emitted light. This is not surprising, since dipole–dipole 
interactions (Agarwal 1974; Gross and Haroche 1982; DeVoe and Brewer 1996; Tanas and 
Ficek 2002) are mediated by photons and photons can travel relatively large distances one 
the timescale of the fluorescence lifetimes. For example, the effective length of a sponta-
neously emitted photon from a single trapped ion in free space easily exceeds one meter 
which makes an interaction range of mirror-mediated dipole–dipole interactions of the 
order of several millimeters plausible. As mentioned already above, the main obstacle to 
generating ultralong-range atomic interactions is our ability to control the interference of 
the emitted light without also having to control its direction of propagation.

Atomic dipole–dipole interactions have already been studied in different environ-
ments but so far they have always been relatively short-range (Klimov and Letokhov 
1998a, b). The only exception are atoms which couple to the common field mode inside 
an optical cavity (Welte et  al. 2018). Theoretical and experimental studies usually con-
sider atom-mirror interactions (Drexhage 1970; Worthing et al. 1999; Eschner 2001; Hoi 
2015), interactions between atoms on the same side of an interface (Palacino 2017; Sinha 
et al. 2018; Zhou et al. 2018), atoms separated by negative index metamaterials and other 
thin films (Pendry 2000; Andrew and Barnes 2000, 2004; Kästel and Fleischauer 2005; 
Biehs et al. 2016; Biehs and Agarwal 2017; Deshmukh 2018; Newman 2018; Karaniko-
los 2020) and atoms near one-dimensional nanofibers and wave guides (Gonzalez-Tudela 
2011; Le Kien and Rauschenbeutel 2014; Hung 2016; Solano 2017). Although the mirror-
mediated atomic interactions which we predict in this paper are weaker than the stand-
ard dipole–dipole interactions of nearby atoms, they are expected to find applications, for 
example, in non-invasive quantum sensing based on fluorescence lifetime measurements.

2  Results

2.1  Local atom–field interactions

In free space, the complex electric field observable E(r) at position r can be written as a 
superposition of local contributions Es�(r) of travelling waves with polarisations � = 1, 2 
and directions of propagation s,

Here S denotes the set of all three-dimensional unit vectors and the operator Es�(r) cre-
ates local photons with wave vectors k = ks , normalised polarisation vectors es� with 
es1 ⋅ es2 = es� ⋅ s = 0 , and bosonic creation operators a†

k�
 . Using this notation, Es�(r) can be 

written as (Bennett et al. 2016)

(2)E(r) =
∑
�=1,2

∫
S

dsEs�(r).



Mirror‑mediated ultralong‑range atomic dipole–dipole…

1 3

Page 5 of 18  1287 

Suppose �0F⟩ and UF(t, 0) denote the vacuum state and the time evolution operator of the 
free field Hamiltonian HF , respectively. Then

since a local field excitation with a well defined direction of propagation s simply travels at 
the speed of light c in a straight line away from its source (Southall 2021; Hodgson 2022). 
If created at an initial time t = 0 at position r , it will be found at position r + sct at some 
later time t.

Next we assume that a partially transparent asymmetric metasurface is placed in the 
x = 0 plane, as illustrated in Fig. 1b and c. Suppose this mirror is obtained by placing a 
thin metallic film with tiny holes which are much smaller than the wavelength of the emit-
ted light onto a glass surface. In this case, the local field excitations which meet the gaps 
are transmitted and evolve exactly as they would in free space (i.e. as in Eq. 4). However, 
light which does not meet a hole, is reflected and evolves such that

if it has been created at the position rb of atom b at t = 0 and if the mirror surface is smooth 
on the left. The tilde indicates that a minus sign has been added to the x component of 
the respective vector, thereby ensuring for example that electric field vectors are always 
orthogonal to their direction of propagation. Similarly, for a metasurface which is rough on 
the right, Eq. (4) changes into

for reflected light originating from atom a at position ra at t = 0 . Here S(s) and Ra(s, t) 
denote the direction of propagation and the position of the respective (s, �) field excitation 
at time t. The exact values of these two variables do not need to be known. All we take into 
account in the following is that the surface roughness stops transmitted and reflected light 
from interfering efficiently on the right hand side of the mirror interface. The only assump-
tion we make in the Methods section for simplicity is that the S(s) vectors cover the right 
hand side of the x = 0 plane relatively evenly.

In the following, we denote the electron charge and the complex dipole moment of atom 
i with ground state �1⟩i and excited state �2⟩i by e and D(i)

12
 , respectively. Then, within the 

dipole and the rotating wave approximation, the interaction Hamiltonian between the atoms 
and the surrounding free radiation field can be written as (Agarwal 1974; Gross and Haro-
che 1982; DeVoe and Brewer 1996; Tanas and Ficek 2002)

with �−
i
= �1⟩ii⟨2� denoting the lowering operator of atom i. In Methods, we analyse the 

dynamics generated by this Hamiltonian using second order perturbation theory. As we 
shall see below, as long as we know how the atomic operators �−

i
 and the local electric field 

observable Es�(ri) evolve in the absence of atom–field interactions, the dynamics of the two 
two-level atoms in Fig. 1 can be analysed in a relatively straightforward way.

(3)Es�(r) = −i∫
∞

0

dk k2
(

ℏck

16�3�

)1∕2

e−ik⋅r a
†

k�
es�.

(4)UF(t, 0)Es�(r) �0F⟩ = Es�(r + sct) �0F⟩,

(5)UF(t, 0)Es𝜆(rb) �0F⟩ = Es̃𝜆(r̃b + s̃ct) �0F⟩,

(6)UF(t, 0)Es�(ra) �0F⟩ = ES(s)�(Ra(s, t)) �0F⟩

(7)HAF = e
∑
i=a,b

D
(i)

12
�−
i
⋅ E(ri) + H.c.
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2.2  Dynamics of atomic states

Quantum optical master equations describe the dynamics of atomic density matrices �A(t) on 
a coarse grained time scale Δt which is much larger than their inverse transition frequency 
1∕�0 but also much smaller than their atomic lifetime 1∕Γfree (Hegerfeldt 1993; Stokes 2012). 
To derive the master equations for the experimental setup in Fig. 1, we assume in the follow-
ing that the free radiation field is initially in its vacuum state �0F⟩ , evolve atoms and field for a 
time Δt with their Hamiltonian H in Eq. (17) and follow these dynamics with a measurement 
as to whether or not a photon has been emitted. Proceeding as described in Methods, one can 
then show that the time derivative of the atomic density matrix �A equals

to a very good approximation. The reset operator L(�A) and the non-Hermitian Hamil-
tonian Hcond in this equation can be used to analyse the dynamics of the two two-level 
atoms in a time interval (0,Δt) under the condition of a photon emission and no emission, 
respectively.

2.3  Dicke sub‑ and superradiance

Taking into account that some of the light that has been emitted by each atom travels to the 
opposite side of the mirror interface where it interferes with the reflected light originating 
from the atom on the opposite side, one can show that the operators L(�A) and Hcond in Eq. (8) 
can be written as

The constants Γ(ij)

mir
 in these equations depend on the properties of the atoms and on the 

average reflection and transmission rates ti and ri of the mirror interface. In the follow-
ing, we assume that these do not depend on the angle of incidence and the frequency of 
the incoming light. Such a dependence would alter the strength of the predicted interac-
tions but we expect that our results remain valid also in the more general case, at least 
qualitatively.

Here we are especially interested in the case where the distance between atom a the mirror 
image of atom b, i.e.  the difference between ra = (xa, ya, za) and r̃b = (−xb, yb, zb) , is rela-
tively small. For simplicity, let us assume that ya = yb and za = zb such that the relative effec-
tive distance 𝜉 = k0‖ra − r̃b‖ equals k0(xa + xb) . Using this notation and considering real mir-
ror transmission and reflection rates for simplicity, one can show that

(8)�̇�A = −
i

�

(
Hcond𝜌A − 𝜌AH

†

cond

)
+ L(𝜌A)

(9)

L(�A) =
∑
i,j=a,b

Re

(
Γ
(ij)

mir

)
�−
i
�A�

+
j
,

Hcond = HA −
iℏ

2

∑
i,j=a,b

Γ
(ij)

mir
�+
j
�−
i
.

(10)

Γ
(ab)

mir
=

3

8
t
a
r
b
Γfree

[
D̂

(a)

12
⋅ D̂

(b)

12

(
1

i𝜉
+

1

𝜉2
−

1

i𝜉3

)
−
(
D̂

(a)

12
⋅ x̂

)(
D̂

(b)

12
⋅ x̂

)(
1

i𝜉
+

3

𝜉2
−

3

i𝜉3

)]
ei𝜉

−
3

16
t
a
r
b
Γfree

[
D̂

(a)

12
⋅ D̂

(b)

12

(
1

i𝜉
−

2

i𝜉3

)
+
(
D̂

(a)

12
⋅ x̂

)(
D̂

(b)

12
⋅ x̂

)(
1

i𝜉
+

6

i𝜉3

)]
,
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while Γ(aa)

mir
= Γ

(bb)

mir
= Γfree and Γ(ba)

mir
= Γ

(ab)∗

mir
 . Here Γfree denotes the single-atom free space 

decay rate and D̂(i)
12 and x̂ are unit vectors which point in the direction of the (real) dipole 

moment vector D(i)
12

 and of the positive x axis, respectively.
As we shall see below, the real part Re(Γ(ab)

mir
) of the complex rate in Eq.  (10) results 

in corrections to the spontaneous decay rate of certain symmetric atomic state, while its 
imaginary part Δmir = Im(Γ

(ab)

mir
) describes level shifts. Figure 2 shows both frequencies for 

different orientations of the atomic dipole moments and for different effective relative dis-
tances � between atom a and the mirror image of atom b. The rate Γ(ab)

mir
 is only non-zero 

when � is comparable to the wavelength of the emitted light, however, the actual distance 
of the atoms can be much larger. In the absence of a mirror interface, the reflection rate 
rb = 0 and Γ(ab)

mir
 tends to zero, as one would expect. Formally, Eq. (8) is exactly the same 

as the master equations of two atoms experiencing Dicke sub- and superradiance (Agarwal 
1974; Gross and Haroche 1982; DeVoe and Brewer 1996; Tanas and Ficek 2002). The 
only difference is the overall factor 3

8
tarb in Eq. (10). In addition, there are some additional 

imaginary terms in the third and fourth line of this equation.

3  Discussion

3.1  Alterations of atomic level shifts and spontaneous decay rates

Having a closer look at the conditional Hamiltonian Hcond in Eq. (9), we see that it contains 
a Hermitian and a non-Hermitian contribution. The Hermitian contribution contains the 
atom Hamiltonian HA and terms proportional to Δmir = Im(Γ

(ab)

mir
) . These describe the free 

dynamics of the atoms as well as interaction-induced level shifts. As one can see when 
comparing Eq. (10) with the equations in Refs. Dicke (1954), Agarwal (1974), DeVoe and 

Fig. 2  a The imaginary part Δ
mir

= Im(Γ
(ab)

mir
) which is responsible for the level shifts of certain collective 

atomic states as a function of the relative effective distance � between atom a and the mirror image of atom 
b for different orientations of the atomic dipole moment vectors D(a)

12
 and D(b)

12
 for t

a
r
b
= 0.5 . For simplicity, 

we assume here that D(a)

12
= D

(b)

12
= D

12
 and that D

12
 is a real vector, while x̂ is a unit vector pointing in the 

direction of the positive x axis. When |D̂
12
⋅ x̂| = 1 , both atomic dipole moments are orthogonal to the mir-

ror surface in the x = 0 plane. As one would expect, the mirror mediated interactions between the atoms are 
relatively weak in this case. These assume their maximum, when D

12
 is parallel to the mirror surface and 

|D̂
12
⋅ x̂| = 0 . b The real part of Γ(ab)

mir
 in Eq. (10) which represents changes to the spontaneous decay rates as 

a function of � and for different values of |D̂
12
⋅ x̂|
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Brewer (1996), Gross and Haroche (1982), Tanas and Ficek (2002), the level shifts in the 
first two lines of Eq.  (10) are essentially the same as the level shifts in the presence of 
free-space dipole–dipole interactions between two two-level atoms at positions ra and r̃b . 
The only difference is the above mentioned overall factor, which occurs since not all emit-
ted light contributes to the generation of the interaction. In addition there are some addi-
tional level shifts in the last two lines of Eq. (10). However, as illustrated in Fig. 2a, these 
do not significantly alter the general dependence of the level shifts on the relative effec-
tive distance � of the two atoms. For example, when � tends to zero, Δmir tends to infinity 
due to the above quantum optical model treating the atoms as point particles. Because of 
these similarities, we refer to the mirror-mediated interaction which we predict here as a 
dipole–dipole interaction.

The remaining terms in the conditional Hamiltonian Hcond in Eq. (9) describe the damp-
ing of population in excited atomic states. By diagonalising Hcond we find that the spon-
taneous decay rate of the state �22⟩ of the two two-level atoms with both atoms in their 
excited state equals 2Γfree , as usual. However, collective atomic states which share only one 
excitation now have the spontaneous decay rates

As we can see from Eq. (10) and Fig. 2b, up to an overall factor, the differences between Γ± 
and Γfree are what they would be in the presence of a free-space dipole–dipole interaction 
between two atoms at positions ra and r̃b (Dicke 1954; Agarwal 1974; Gross and Haroche 
1982; DeVoe and Brewer 1996; Tanas and Ficek 2002). As shown in Sect. 3.2, the atomic 
states with well-defined spontaneous decay rates are the same as for dipole-interacting 
atoms, namely the double-excited state �22⟩ and the single-excited symmetric and antisym-
metric states �±⟩ = (�12⟩ ± �21⟩)∕

√
2.

Changes to spontaneous decay rates can be detected, for example, with the help of 
fluorescence lifetime measurements. Moreover, when the atoms are driven by a common 
laser field, we expect their higher order photon correlation functions (Beige and Hegerfeldt 
1998; Masson 2020; Wolf 2020) to change and an interference pattern to emerge, if the 
spontaneously emitted photons are collected on a far-away screen, as illustrated in Fig. 1b. 
As described in Methods, the only assumptions regarding the distance of the two two-level 
atoms made in the derivation of the above equations are: 

1. The actual distance between the atoms and between an atom and the mirror interface 
should be relatively large. This applies when k0|xa − xb| ≫ 1.

2. The actual distance between the two atoms in Fig. 1b and c should not be so large that 
the time it takes light to travel from one atom to the other becomes comparable to the 
lifetime of excited atomic states.

The first condition allows us to ignore direct atom-atom and atom-mirror interactions 
which are relatively short-range. The second condition simplifies the modelling of light 
propagation in the presence of the mirror interface and is not very restrictive. For example, 
light can travel a 1 mm distance in less than 3.4 × 10−12 s which is much shorter than the 
typical lifetime 1∕Γfree of excited atomic states. However, when analysing atomic interac-
tions over very large distances, retardation effects need to be taken into account and the 
dynamics of the two atoms can no longer be described by a simple Markovian master equa-
tion, like the one in Eq. (8).

(11)Γ± = Γfree ± Re(Γ
(ab)

mir
).
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The main difference between the above-described mirror-mediated dipole–dipole interac-
tions and the usual dipole–dipole interactions between two atoms in free space is that the for-
mer can be felt over much longer distances. As we have shown above, mirror-mediated remote 
dipole–dipole interactions can persist over distances which are several orders of magnitude 
longer than the wavelength of the emitted light. They assume a maximum when the relative 
distance � between the position ra of atom a and the position r̃b of the mirror image of atom 
b is of the order of one. This can be the case even when the actual distance ‖ra − rb‖ of the 
atoms is several orders of magnitude larger than the wavelength of the emitted light. The inter-
action which we predict here is therefore ultralong-range and targeted.

Another requirement for the atomic interactions which we predict in this paper is the pres-
ence of an asymmetric mirror interface. As illustrated in Fig. 1, such a mirror can be realised 
with the help of a different surface roughness on both sides of the reflecting layer. If both sides 
of the mirror surface were smooth, the interaction constant Γ(ab)

mir
 in Eq. (10) would be propor-

tional to r∗
a
tb + t∗

a
rb which is zero, as we know from classical optics (Al Ghamdi 2023). For 

mirrors which are equally smooth on both sides, the interaction which we predict here there-
fore simply disappears. However, for the asymmetric mirror interface shown in Fig. 1b and c, 
the predicted atomic interaction scales as t∗

a
rb which is in general non-zero.

3.2  Predictions for fluorescence lifetime measurements

To determine the spontaneous decay rates of two atoms with ground states �1⟩i and excited 
states �2⟩i on opposite sides of a partially transparent mirror interface, we absorb all the Her-
mitian terms of the conditional Hamiltonian Hcond in Eq. (9) into the free atomic Hamiltonian 
HA . Doing so, Hcond can be written as

where the Γ± are the spontaneous decay rates of the two atoms in Eq. (11) and where the 
L± with

are atomic lowering operators. Hence the time evolution operator 
Ucond(t, 0) = exp

(
−iHcondt∕ℏ

)
 which describes the dynamics of atom a and atom b under 

the condition of no photon emission in (0, t) equals, in the interaction picture with respect 
to H0 = HA and t = 0,

with �±⟩ = (�12⟩ ± �21⟩∕
√
2 , as mentioned already in the beginning of this section.

Suppose an incoherent excitation process prepares each atom with probability p in its 
excited state, thereby creating a statistical mixture of the atomic states �11⟩ , �12⟩ , �21⟩ and �22⟩ . 
In this case, the probability P0(t) = ‖Ucond(t, 0) ��I⟩‖2 for no photon emission in (0, t) is the 
sum of three exponentials and equals (Hegerfeldt 1993; Stokes 2012)

(12)Hcond = HA −
iℏ

2

[
Γ+ L

†
+L+ + Γ− L

†
−
L−

]

(13)L± = (�−
a
± �−

b
)∕
√
2

(14)Ucond(t, 0) = �+⟩⟨+� e−Γ+t∕2 + �−⟩⟨−� e−Γ−t∕2 + �11⟩⟨11� + �22⟩⟨22� e−Γfreet.

(15)P0(t) = (1 − p)2 + (1 − p)p
(
e−Γ+t + e−Γ−t

)
+ p2 e−2Γfreet.
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For p ≪ 1 , the probability of finding both atoms in the excited state becomes negligible 
and the probability density I(t) for a photon emission at t coincides with the probability 
density w1(t) = −d∕dt P0(t) for the emission of a first photon at t. Hence,

to a very good approximation. This equation holds up to first order in p. As illustrated in 
Fig. 3, this emission rate is qualitatively different from the emission rate I0(t) of the atoms 
in the absence of dipole–dipole interactions. It is therefore possible to use fluorescence 
lifetime measurements to detect the above described changes of spontaneous decay rates 
and to obtain a signature of the remote mirror-mediated dipole–dipole interactions which 
we predict in this paper.

4  Conclusions

In this paper we derived the quantum optical master equations of two two-level atoms 
on opposite sides of a partially transparent asymmetric mirror interface by evolving 
the atoms and the free radiation field for a short time interval Δt using second order 
perturbation theory. Our approach allows us to deduce the time derivative of the 
atomic density matrix �A from the classical dynamics of light in the absence of any 
atom–field interactions. We then showed that the two atoms can experience an effec-
tive dipole–dipole interaction when atom a is close to the position of the mirror image 
of atom b and vice versa. The main result of this paper is the prediction of targeted, 
remote, mirror-mediated ultralong-range dipole–dipole interactions which are likely to 
find a wide range of applications in the design of novel photonic devices for quantum 
technology applications, like non-invasive quantum sensing with fluorescence lifetime 
measurements.

(16)I(t) = 2p
[
Γfree cosh

(
Re

(
Γ
(ab)

mir

)
t
)
− Re

(
Γ
(ab)

mir

)
sinh

(
Re

(
Γ
(ab)

mir

)
t
)]

e−Γfreet

Fig. 3  a Time dependence of the photon emission rate I(t) in Eq.  (16) for different initial popula-
tions p of the excited atomic state in the presence of mirror-mediated dipole–dipole interactions. Here 
Re

(
Γ
(ab)

mir

)
= 0.05Γ

free
 . b The rate I(t) differs from the emission rate I

0
(t) of the atoms in the absence of 

interactions for the same p. As one would expect in the case of a broadening of spontaneous decay rates, the 
loss of atomic excitation happens faster at relatively short times and slower at later times
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5  Methods

Our starting point for the derivation of the quantum optical master equations in Eq. (8) is the 
system Hamiltonian H which can be written as

Here HA and HF denote the free energy of the atoms and of the electromagnetic field, i.e. in 
the absence of the mirror interface. An expression for the interaction Hamiltonian HAF 
between the atoms and the local excitations of the surrounding free radiation field within 
the usual dipole approximation can be found in Eq. (7) (Agarwal 1974; Gross and Haroche 
1982; DeVoe and Brewer 1996; Tanas and Ficek 2002). As we shall see below, in addition, 
we only need to know how the atomic dipole moments and electric field observables evolve 
in the Heisenberg picture in the absence of atom–field interactions.

Suppose �A(0) is the initial density matrix of the two atoms in the Schrödinger picture, 
while the surrounding free radiation field is initially in its vacuum state. We then evolve 
the atom–field density matrix �0F⟩�A(0)⟨0F� for a time Δt with the time evolution operator 
U(Δt, 0) of the above Hamiltonian H. Subsequently performing an absorbing measurement on 
the surrounding free radiation field leads to the atomic density matrix

Here the trace over the field degrees of freedom is taken to ensure that a measurement 
on the surrounding electromagnetic field does not change the properties of the atoms, 
if its outcome is ignored. As requested by locality, the density matrices �A(Δt) and 
U(Δt, 0)�0F⟩�A(0)⟨0F�U†(Δt, 0) must have the same atomic expectation values. Next, we 
introduce the time derivative

which describes the dynamics of the atomic density �A on the coarse grained time scale Δt , 
while the free radiation field at the position of the atoms remains effectively in its vacuum 
state (Hegerfeldt 1993; Stokes 2012).

Since the time evolution operator U(Δt, 0) in Eq. (18) cannot be calculated easily analyti-
cally, we write the total Hamiltonian H of the experimental setup in Fig. 1c in the following as 
the sum of the free Hamiltonian H0 = HA + HF and the interaction HAF . As long as Δt is nei-
ther too long nor too short, as described in Results, we can analyse the dynamics of the system 
using a Dyson series expansion which implies that

to a very good approximation. Combining Eqs. (18) and (20), while only taking terms in 
zeroth order in Δt into account, leads to

(17)H = HA + HF + HAF.

(18)�A(Δt) = TrF
�
U(Δt, 0)�0F⟩�A(0)⟨0F�U†(Δt, 0)

�
.

(19)�̇�A =
1

Δt

(
𝜌A(Δt) − 𝜌A(0)

)

(20)
U(Δt, 0) = U0(Δt, 0) −

i

ℏ ∫
Δt

0

dt U0(Δt, t)HAF U0(t, 0)

−
1

ℏ2 ∫
Δt

0

dt ∫
t

0

dt� U0(Δt, t)HAF U0(t, t
�)HAF U0(t

�, 0)
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which applies in first order in Δt . To obtain the above equation, we took into account that 
HAF either creates or annihilates a photon, while H0 preserves the number of excitations in 
the free radiation field. Carefully comparing this equation with Eqs. (8) and (19), we see 
that

To further simplify the above expressions, we notice that H0 is the sum of two commuting 
Hamiltonians, namely HA and HF . Hence, U0(t, 0) = UA(t, 0)⊗ UF(t, 0) , where UA(t, 0) and 
UF(t, 0) denote the time evolution operators associated with HA and HF , respectively. In 
addition, we introduce the short hand notation

and notice that the vacuum state is invariant under UF . Hence, using Eqs. (7) and (22), one 
can show that

in zeroth order in Δt . Here L(�A) contains all the contributions of the atom–field density 
matrix which correspond to the presence of a photon at Δt in the free radiation field. It 
therefore equals the (unnormalised) density matrix of the atoms conditional on the creation 
of a photon in (0,Δt) . Analogously, the non-Hermitian Hamiltonian Hcond only contains 
contributions in which excitation has been created in (0,Δt) but is later re-absorbed by 
the atoms. Hence it describes atomic dynamics in the absence of an emission (Hegerfeldt 
1993; Stokes 2012).

5.1  The free‑space dynamics of atoms and field

Suppose ℏ�0 is the energy gap between the ground and the excited state of atom i. Then 
the atom Hamiltonian HA can be written as HA =

∑
i=a,b ℏ�0 �

+
i
�−
i
 with �+

i
= �2⟩ii⟨1� and 

�−
i
= �1⟩ii⟨2� . Hence the time-dependent dipole moment operator D(i)(t) in Eq. (23) equals

(21)

�A(Δt) =
1

ℏ2 ∫
Δt

0

dt ∫
Δt

0

dt� TrF

�
U0(Δt, t)HAF U0(t, 0) �0F⟩�A(0)⟨0F�U†

0
(t�, 0)HAF U

†

0
(Δt, t�)

�

−
1

ℏ2

Δt

∫
0

dt

t

∫
0

dt� ⟨0F�U0(Δt, t)HAF U0(t, t
�)HAF U0(t

�, 0)�0F⟩�A(0) + c.c.

+ ⟨0F�U0(Δt, 0)�0F⟩�A(0)⟨0F�U†

0
(Δt, 0)�0F⟩

(22)

L(�A) =
1

ℏ2Δt ∫
Δt

0

dt ∫
Δt

0

dt� TrF

�
U0(Δt, t)HAF U0(t, 0) �0F⟩�A⟨0F�U†

0
(t�, 0)HAF U

†

0
(Δt, t�)

�
,

Hcond = HA −
i

ℏΔt

Δt

∫
0

dt

t

∫
0

dt� ⟨0F�U0(Δt, t)HAF U0(t, t
�)HAF U0(t

�, 0)�0F⟩.

(23)D
(i)(t) = U

†

A
(t, 0)D

(i)

12
�−
i
UA(t, 0)

(24)

(�A) =
e2

ℏ2Δt
∑

i,j=a,b
∫

Δt

0
dt ∫

Δt

0
dt′ TrF

[

D(i)(t) ⋅ UF(Δt, t)(ri) |0F⟩�A⟨0F|D(j)(t′)† ⋅ (rj)† U
†
F(Δt, t

′)
]

,

Hcond = HA − ie2
ℏΔt

∑

i,j=a,b

Δt

∫
0

dt
t

∫
0

dt′ D(j)(t)† ⋅ ⟨0F|(rj)† U
†
F(t

′, 0)D(i)(t′) ⋅ UF(t, 0)(ri) |0F⟩



Mirror‑mediated ultralong‑range atomic dipole–dipole…

1 3

Page 13 of 18  1287 

From Eq. (24) we see that the only other expression needed for the derivation of the quan-
tum optical master equations in Eq. (8) is the state UF(t, 0)Es�(r) �0F⟩ of the free radiation 
field. This state is obtained when creating a local field excitation with direction of propaga-
tion s and polarisation � at time t = 0 at position r and subsequently evolving the resulting 
state for some time t. Since Δt is much larger than the time it takes light to travel from the 
atoms to the mirror surface, light emitted at t = 0 in the direction of the mirror has either 
already been reflected or transmitted after almost all times t ∈ (0,Δt) . Neglecting very 
small times t for which light has not yet reached the mirror interface and using Eqs. (4) and 
(5), we therefore find that

for direction vectors s = (sx, sy, sz) . Here the Heavyside function Θ(sx) equals 0 for sx < 0 
and 1 otherwise. Moreover, the real reflection rates ri(s) for light travelling from atom i in 
the s direction either equal 0 or 1, depending on whether light arrives at a metallic island 
or at a gap in the mirror interface (cf. Fig. 1). The corresponding transmission rates ti(s) 
are given by ti(s) = 1 − ri(s) , since light with a well defined direction of propagation and 
source cannot be reflected and transmitted by the mirror surface. Later on, we will take 
into account that the effective reflection and transmission rates of the mirror are given by

where Sa = {s ∈ S ∶ sx < 0} and Sb = {s ∈ S ∶ sx > 0} . As previously mentioned in the 
Results section, S(s) and Ra(s, t) denote the direction of propagation and the position of a 
local electric field excitation at time t after its creation by atom a at t = 0 and after its sub-
sequent reflection on the rough side of the mirror interface.

5.2  The conditional Hamiltonian Hcond

Substituting Eq. (25) into Eq. (24), we can show that the conditional Hamiltonian Hcond can 
indeed be written as in Eq. (9), if we define the constants Γ(ij)

mir
 such that

with � (ij)
mir

(t, t�) given by

Using Eqs. (2), (3) and (26) and performing one of the k integrations, we therefore find that

(25)D
(i)(t) = e−i�0t D

(i)

12
�−
i
.

(26)

UF(t, 0)Es𝜆(ra) �0F⟩ = Θ(−sx)
�
ra(s)ES(s)𝜆(Ra(s, t)) + ta(s)Es𝜆(ra + sct)

��0F⟩ + Θ(sx)Es𝜆(ra + sct) �0F⟩,
UF(t, 0)Es𝜆(rb) �0F⟩ = Θ(sx)

�
rb(s)Es̃𝜆(r̃b + s̃ct) + tb(s)Es𝜆(rb + sct)

��0F⟩ + Θ(−sx)Es𝜆(rb + sct) �0F⟩

(27)ri =
1

2� ∫
Si

ds ri(s) and ti = 1 − ri,

(28)Γ
(ij)

mir
=

1

Δt ∫
Δt

0

dt ∫
t

0

dt�
e2c

8ℏ�3�
ei�0(t−t

�) �
(ij)

mir
(t, t�)

(29)�
(ij)

mir
(t, t�) =

16�3�

ℏc
D

(j)

12
⋅ ⟨0F�E(rj)† U†

F
(t�, 0)D

(i)

12
⋅ UF(t, 0)E(ri)�0F⟩.
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with dk = ds dk k2 . Next we introduce polar coordinates k ∈ (0,∞) , � ∈ (0, 2�) and 
� ∈ (0,�) such that

while ds = d� d� sin� . After replacing the reflections and transmission rates ri(s) and ti(s) 
by their average values ri and ti in Eq. (27), which is well justified when the metallic islands 
which form the mirror interface are much smaller then the wavelength of the emitted light, 
Eq. (30) contains the integral

with �(3)(�) denoting the third derivative of �(�) with respect to � . Hence we can now show 
that

Combining the above equations and assuming that the direction vectors S(s) cover the half-
space on the right hand side of the mirror interface evenly, we then find that

respectively. Which signs apply depends on whether i equals a or b. Moreover, introduc-
ing the notation D(i)

12
= ‖D12‖ (d(i)1 , d

(i)

2
, d

(i)

3
)T with |d(i)

1
|2 + |d(i)

2
|2 + |d(i)

3
|2 = 1 , one can 

now show that the above Γ(ii)

mir
 both equal the free-space decay rate of an atom with dipole 

moment D(i)

12
= D12,

since ri + ti = 1 . As we shall see below, this result does not mean that photons are emitted 
at their free-space rate Γfree , if initially only one of the two atoms is excited.

The two remaining constants Γ(ab)

mir
 and Γ(ba)

mir
 in Eq. (9) can be derived analogously. Since 

we are only interested in the case where the distance of each atom from the mirror interface 
and the distance between atom a and atom b are much larger than the wavelength of the emit-
ted light, we can safely ignore terms describing direct interactions between both atoms and 
between an atom and its own mirror image. These are known to be relatively short-range. 
However, terms describing interactions between an atom and the mirror image of the atom on 

(30)

𝛾
(aa)

mir
(t, t�) =

∑
𝜆=1,2

∫ dk k e−ick(t−t
�)
[(
ta(s) Θ(−sx) + Θ(sx)

)(
D
(a)

12
⋅ es𝜆

)2
+ ra(s) Θ(−sx)

(
D
(a)

12
⋅ eS(s)𝜆

)2]

𝛾
(bb)

mir
(t, t�) =

∑
𝜆=1,2

∫ dk k e−ick(t−t
�)
[(
Θ(−sx) + tb(s) Θ(sx)

)(
D
(b)

12
⋅ es𝜆

)2
+ rb(s) Θ(sx)

(
D
(b)

12
⋅ es̃𝜆

)2]

(31)s =

⎛⎜⎜⎝

cos �

cos� sin �

sin� sin�

⎞⎟⎟⎠
, es1 =

⎛⎜⎜⎝

0

sin�

− cos�

⎞⎟⎟⎠
, es2 =

⎛⎜⎜⎝

sin�

− cos� cos�

− sin� cos �

⎞⎟⎟⎠
,

(32)∫
∞

0

dk k3 e−ick� = −
i�

c4
�(3)(�)

(33)

1

Δt ∫
Δt

0

dt ∫
t

0

dt� ei�0(t−t
�) ∫

∞

0

dk k3 e−ick(t−t
�) =

i�

c3Δt ∫
Δt

0

dt ∫
t

0

d� ei�0� �(3)(�) =
��3

0

c4
.

(34)

Γ
(ii)

mir
=

e2𝜔3

0

8𝜋2�𝜀c3

∑
𝜆=1,2

∫ ds

[
ri Θ(∓sx)

(
D

(i)

12
⋅ es̃𝜆

)2
+
(
ti Θ(∓sx) + Θ(±sx)

)(
D

(i)

12
⋅ es𝜆

)2]
,

(35)Γ
(aa)

mir
= Γ

(bb)

mir
= Γfree with Γfree =

e2�3

0
‖D12‖2

3�ℏ�c3
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the opposite side must be kept, when ra and r̃b are relatively close. Using Eqs. (2) and (29) we 
therefore find that

and � (ba)
mir

(t, t�) = �
(ab)

mir
(t, t�)∗ to a very good approximation. If the scattering operator S 

scrambles the wave vectors of light originating from atom a more or less randomly upon 
reflection, the second term in this equation becomes negligible. However, the first term in 
the above equation does not average away and is in general non-zero. For simplicity, let us 
assume that ra and rb have the same y and z coordinates. In this case

Replacing ta(s̃) and rb(s) by their average values in Eq. (27), proceeding as described in the 
previous subsection and using again Eq. (33), leads us to

The hat symbols indicate that the vectors D(i)

12
 have been normalised, the polarisation vec-

tors es� can be found in Eq. (31), and � = k0(xa + xb) with k0 = �0∕c is a relative effective 
distance. Performing the � integration and substituting u = − cos � yields

Performing the final integration, the above constant simplifies to

which coincides with Eq.  (10) in the main text. Analogously, one can show that 
Γ
(ba)

mir
= Γ

(ab)∗

mir
 . If the y and the z coordinates of the position of atom a and atom b are not the 

same, additional terms have to be taken into account in the above derivation. However, our 
physical intuition tells us that the remote interaction between atom a and atom b depends 
also in this case only on the relative effective distance � and not on the actual distance of 
the atoms.

5.3  The reset operator L(�A)

For completeness, we now also calculate the state L(�A) of the atoms in case of an emission. 
Substituting Eq. (25) into Eq. (24) and introducing the variables � = Δt − t and �� = Δt − t� 
yields

(36)

� (ab)mir (t, t
′) = 16�3�

ℏc
∑

�=1,2
∫ dsΘ(sx)

[

ta(s̃)rb(s)D
(b)
12 ⋅ ⟨0F| s̃�(r̃b + s̃ct′)† D(a)

12 ⋅  s̃�(ra + s̃ct)|0F⟩

+ ∫ ds′ Θ(−s′x) ra(s
′)tb(s)D

(b)
12 ⋅ ⟨0F|s�(rb + sct′)† D(a)

12 ⋅ S(s′)�(Ra(s′, t))|0F⟩
]

(37)eik⋅(ra−r̃b) = eik cos 𝜗(xa+xb).

(38)Γ
(ab)

mir
=

3tarbΓfree

8𝜋

∑
𝜆=1,2

∫
𝜋

𝜋∕2

d𝜗 e−i𝜉 cos 𝜗 sin𝜗∫
2𝜋

0

d𝜑
(
D̂

(a)

12
⋅ es𝜆

)(
D̂

(b)

12
⋅ es𝜆

)
.

(39)Γ
(ab)

mir
=

3tarbΓfree

16 ∫
1

0

du ei�u
[
2d

(a)

1
d
(b)

1

(
1 − u2

)
+
(
d
(a)

2
d
(b)

2
+ d

(a)

3
d
(b)

3

)(
1 + u2

)]
.

(40)
Γ
(ab)

mir
=

3tarbΓfree

16

[
3∑
i=2

d
(a)

i
d
(b)

i

(
2ei�

(
1

i�
+

1

�2
−

1

i�3

)
−

1

i�
+

2

i�3

)

−2d
(a)

1
d
(b)

1

(
2ei�

(
1

�2
−

1

i�3

)
+

1

i�
+

2

i�3

)]
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with Γ̃(ij)

mir
 given by

These constants have many similarities with the constants Γ(ij)

mir
 in Eqs. (28). The only dif-

ferences are a missing factor 2 and a different upper limit on the second time integral. Pro-
ceeding as in the previous subsection, we find that evaluating Eq. (42) now leads to time 
integrals of the form

with � = �0 − ck . Hence all the constants Γ̃(ij)

mir
 are real and Γ̃(ij)

mir
= Re

(
Γ
(ij)

mir

)
 which yields 

the reset operator L(�A) in Eq. (9).
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�−
i
�A�

+
j

(42)

Γ̃(ij)
mir =

e2
ℏ2Δt ∫

Δt

0
d� ∫

Δt

0
d�′ ei�0(�−�′) D(j)

12 ⋅ ⟨0F|(rj)U
†
F(�

′, 0) D(i)
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0

d� ∫
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0
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