
This is a repository copy of Neuromorphic overparameterisation and few-shot learning in
multilayer physical neural networks.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/216654/

Version: Published Version

Article:

Stenning, K.D. orcid.org/0000-0003-0955-3640, Gartside, J.C. orcid.org/0000-0002-7044-
7399, Manneschi, L. et al. (10 more authors) (2024) Neuromorphic overparameterisation
and few-shot learning in multilayer physical neural networks. Nature Communications, 15.
7377. ISSN 2041-1723

https://doi.org/10.1038/s41467-024-50633-1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Article https://doi.org/10.1038/s41467-024-50633-1

Neuromorphic overparameterisation and
few-shot learning in multilayer physical
neural networks

Kilian D. Stenning 1,2 , Jack C. Gartside 1,2,9, Luca Manneschi3,9,

Christopher T. S. Cheung1, Tony Chen1, Alex Vanstone 1, Jake Love4,

Holly Holder 1, Francesco Caravelli 5, Hidekazu Kurebayashi 6,7,8,

Karin Everschor-Sitte 4, Eleni Vasilaki 3 & Will R. Branford 1,2

Physical neuromorphic computing, exploiting the complex dynamics of phy-

sical systems, has seen rapid advancements in sophistication and perfor-

mance. Physical reservoir computing, a subset of neuromorphic computing,

faces limitations due to its reliance on single systems. This constrains output

dimensionality and dynamic range, limiting performance to a narrow range of

tasks. Here, we engineer a suite of nanomagnetic array physical reservoirs and

interconnect them in parallel and series to create a multilayer neural network

architecture. The output of one reservoir is recorded, scaled and virtually fed

as input to the next reservoir. This networked approach increases output

dimensionality, internal dynamics and computational performance. We

demonstrate that a physical neuromorphic system can achieve an over-

parameterised state, facilitating meta-learning on small training sets and

yielding strong performance across a wide range of tasks. Our approach’s

efficacy is further demonstrated through few-shot learning, where the system

rapidly adapts to new tasks.

In artificial intelligence (AI) and machine learning, the performance of

models often scales with their size and the number of trainable para-

meters. Empirical evidence supports the advantages of over-

parameterised regimes1,2, where models, despite having a large

number of parameters, avoid overfitting, generalise effectively and

learn efficiently from a limited number of training examples.

Physical neuromorphic computing aims to offload processing

for machine learning problems to the complex dynamics of physical

systems3–15. Physical computing architectures range from imple-

mentations of feed-forward neural networks15,16 with tuneable inter-

nal weights, to reservoir computing, where complex internal system

dynamics are leveraged for computation8. Neuromorphic schemes

stand to benefit from the advantages of operating in an over-

parameterised regime. A primary use-case of neuromorphic systems

is in edge-computing17 where a remotely situated device locally

performs AI-like tasks. For example, an exoplanet rover vehicle per-

forming object classification can operate more efficiently by pro-

cessing data on-site rather than transmitting large datasets to cloud-

servers7. Here, acquiring large datasets and transmitting them to

cloud servers for processing is often inefficient, making the ability to

compute well and adapt to new tasks with small training sets a

desirable function.

Received: 29 August 2023

Accepted: 17 July 2024

Check for updates

1Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom. 2London Centre for Nanotechnology, Imperial College London, London

SW7 2AZ, United Kingdom. 3University of Sheffield, Sheffield S10 2TN, United Kingdom. 4Faculty of Physics and Center for Nanointegration Duisburg-Essen

(CENIDE), University of Duisburg-Essen, 47057 Duisburg, Germany. 5Theoretical Division (T4), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
6LondonCentre for Nanotechnology, University College London, LondonWC1H0AH, United Kingdom. 7Department of Electronic and Electrical Engineering,

University College London, London WC1H 0AH, United Kingdom. 8WPI Advanced Institute for Materials Research, Tohoku University, Sendai, Japan. 9These

authors contributed equally: Jack C. Gartside, Luca Manneschi. e-mail: k.stenning18@imperial.ac.uk

Nature Communications | (2024) 15:7377 1

12
3
4
5
6
78

9
0
()
:,
;

12
3
4
5
6
7
8
9
0
()
:,
;

http://orcid.org/0000-0003-0955-3640
http://orcid.org/0000-0003-0955-3640
http://orcid.org/0000-0003-0955-3640
http://orcid.org/0000-0003-0955-3640
http://orcid.org/0000-0003-0955-3640
http://orcid.org/0000-0002-7044-7399
http://orcid.org/0000-0002-7044-7399
http://orcid.org/0000-0002-7044-7399
http://orcid.org/0000-0002-7044-7399
http://orcid.org/0000-0002-7044-7399
http://orcid.org/0000-0003-0554-1781
http://orcid.org/0000-0003-0554-1781
http://orcid.org/0000-0003-0554-1781
http://orcid.org/0000-0003-0554-1781
http://orcid.org/0000-0003-0554-1781
http://orcid.org/0000-0002-2102-3880
http://orcid.org/0000-0002-2102-3880
http://orcid.org/0000-0002-2102-3880
http://orcid.org/0000-0002-2102-3880
http://orcid.org/0000-0002-2102-3880
http://orcid.org/0000-0001-7964-3030
http://orcid.org/0000-0001-7964-3030
http://orcid.org/0000-0001-7964-3030
http://orcid.org/0000-0001-7964-3030
http://orcid.org/0000-0001-7964-3030
http://orcid.org/0000-0002-2021-1556
http://orcid.org/0000-0002-2021-1556
http://orcid.org/0000-0002-2021-1556
http://orcid.org/0000-0002-2021-1556
http://orcid.org/0000-0002-2021-1556
http://orcid.org/0000-0001-8767-6633
http://orcid.org/0000-0001-8767-6633
http://orcid.org/0000-0001-8767-6633
http://orcid.org/0000-0001-8767-6633
http://orcid.org/0000-0001-8767-6633
http://orcid.org/0000-0003-3705-7070
http://orcid.org/0000-0003-3705-7070
http://orcid.org/0000-0003-3705-7070
http://orcid.org/0000-0003-3705-7070
http://orcid.org/0000-0003-3705-7070
http://orcid.org/0000-0002-4821-4097
http://orcid.org/0000-0002-4821-4097
http://orcid.org/0000-0002-4821-4097
http://orcid.org/0000-0002-4821-4097
http://orcid.org/0000-0002-4821-4097
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50633-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50633-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50633-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50633-1&domain=pdf
mailto:k.stenning18@imperial.ac.uk

In physical reservoir computing, the internal dynamicsof a system

are not trained. Instead, only a set of weights to be applied to the

readout layer are trained, reducing training costs when compared to

neural network architectures. Typically, only a single physical system is

employed with a fixed set of internal dynamics, resulting in a lack of

versatility and overly specialised computation, which is fixed at the

fabrication stage. In contrast, the brain possesses a rich set of internal

dynamics, incorporating multiple memory timescales to efficiently

process temporal data18. To mimic this, research on software-based

reservoirs has shown that combiningmultiple reservoirs with differing

internal dynamics in parallel and series network architectures sig-

nificantly improves performance19–26. Parallel networks have been

physically implemented8,27,28, however they lack inter-node con-

nectivity for transferring information between physical systems—lim-

iting performance. Translating series-connected networks (often

termed hierarchical or deep) to physical systems is nontrivial and so-

far unrealised due to the large number of possible inter-layer config-

urations and interconnect complexity.

Here, we present solutions to key problems in the physical

reservoir computing field: we fabricate three physical nanomagnetic

reservoirs with high output dimensionality and show how increasing

the complexity of system dynamics can improve computational

properties (Nanomagnetic reservoirs, Fig. 1). We then develop and

demonstrate a methodology to interconnect arbitrary reservoirs into

networks. We demonstrate the computational benefits of the net-

worked architecture and compare performance to software. Reservoir

outputs are experimentally measured with network interconnections

made virtually and outputs combined offline during training (Multi-

layer physical neural network, Fig. 2). We explore the over-

parameterised regime, made possible through the networking

approach, where the number of network output channels far exceeds

the size of the training set. The physical networks architectures do not

overfit, show enhanced computational performance and are capable

of fast learning with limited data. This approach is applicable to all

physical systems and methods to achieve overparameterisation in an

arbitrary system are discussed (Overparameterisation, Fig. 3). We

demonstrate the power of operating in an overparameterised regime

by implementing a few-shot learning task using model-agnostic meta-

learning29–31. The physical network is able to rapidly adapt to new tasks

with a small number of training data points (Learning in the over-

parameterised regime, Fig. 4).

Whilst we use nanomagnetic reservoirs to demonstrate the ben-

efits of networking andoverparameterisation, themethodology canbe

applied to any physical system. Additionally, we discuss the scalability

of our nanomagnetic computing scheme and calculate the theoretical

power consumption of a device. The scheme described here lifts the

WM

PW

MS

PW

fSEM

MS

a bSEM c

WM

dSEM e

H
a

p
p

(m
T

) Spectral evolution

23

18

Spectral evolution

50

30

WPMWSM

Mackey Glass

Future Prediction t+7j

Spectral evolution
42

g h

Predicted
True
Residual

i
noitciderp erutuFscirteM

Y = cos(2t)sin(3t)

NL only

Best reservoir: PW

k

d
P

/d
H

(a
rb

.
u

n
it
s
)

d
P

/d
H

(a
rb

.
u

n
it
s
)

d
P

/d
H

(a
rb

.
u

n
it
s
)

d
P

/d
H

(a
rb

.
u

n
it
s
)

H
a
p

p
(m

T
)

H
a

p
p

(m
T

)

H
a

p
p

(m
T

)

+Happ

-Happ

Fig. 1 | Nanomagnetic reservoirs. a, b Square macrospin-only artificial spin ice

(MS). c, d Width-modified square artificial spin-vortex ice (WM). e, f Disorderded

pinwheel artificial spin-vortex ice (PW). Bars vary from fully disconnected to par-

tially connected. a, c, e Scanning electron micrographs (SEM). All scale bars cor-

respond to 1μm. b, d, f Ferromagnetic resonance spectroscopy (FMR) spectral

evolution from a sinusoidal field-series input. Scale bar represents amplitude of

FMR signal dP/dH (arb. units). g Reservoir computing schematic. Data are applied

via magnetic field loops (+Happ then −Happ), which leads to collective switching

dynamics in the array. FMR output spectra measured at −Happ is used as

computational output. h Memory-capacity (MC) and nonlinearity (NL) of the

reservoirs. Variations in sample design produce a diverse set of metrics. i Mean-

squared error (MSE)when predicting future values of theMackey-Glass time-series.

Highmemory-capacity and low nonlinearity (WM) gives best performance. Shading

is the standarddeviation of the predictionof 10 feature selection trials. jAttempted

predictions of t+7 of the Mackey-Glass equation. No single reservoir performs well.

k Transforming a sine-wave to cos(2t)sin(3t). PW has 31.6 × lower MSE than MS.

Shading represents the residual of the prediction.

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 2

limitations of low-dimensionality and single physical systems from

neuromorphic computing, moving towards a next-generation of ver-

satile computational networks that harness the synergistic strengths of

multiple physical systems. All data and code are publicly available32.

Results
Nanomagnetic reservoirs
The physical reservoirs used here are nanomagnetic arrays that have

both nonlinearity (NL) and fading memory (i.e., a temporal response

that depends on both current and previous inputs)5,33. Each array

comprises many individual nanomagnetic elements, each with its own

magnetisation ‘state’.When applying an external input, the elements in

an array may switch magnetisation state. The switching process

depends on the external input, the current state of an element, and the

states of neighbouring elements throughdipolar coupling,which gives

rise to collective switching and high-frequency dynamics, which we

utilise for computation. Here, we drive switching with external mag-

netic fields. The array state is read by measuring the absorption of

injected microwaves (i.e., measuring resonance) using ferromagnetic

resonance spectroscopy (FMR), producing a spectra that is highly

correlated with the collective state of the array5,34–36.

Figure 1 shows scanning electron micrographs (Fig. 1a, c, e) and

FMR spectral evolution of three nanomagnetic reservoirs (labelled

macrospin (MS), width-modifed (WM)5 and pinwheel (PW), see Sup-

plementary Note 1 for details) when subject to a sinusoidal field-input

(Fig. 1b, d, f). A schematic of the computing scheme is shown in Fig. 1g).

The three arrays are designed to produce different and history-

dependent responses to explore the effects of networking systemwith

distinct dynamics. MS is a square lattice with bars only supporting

macrospinmagnetisation states.WM is awidth-modified square lattice

capable of hosting both macrospin and vortex spin textures. PW is a

disordered pinwheel lattice with structural diversity throughout the

sample. A detailed discussion of the design is provided in Supple-

mentary Note 1. The high readout dimensionality of FMR is key to

achieving both strong performance and overparameterisation. Other

techniques for readout exist, such as magnetoresistance37, albeit at a

lower output dimensionality. During training, weights are applied to

recorded data offline via ridge-regression, which transforms the FMR

f R1: MS R1: PWR1: WM

Step

Input

O
u

tp
u

t

Physical Neural Network (PNN)

O
u

tp
u

tInput

…

Parallel (+)

O
u

tp
u

t

Input

1

2

1 2

1 2

2 3

1 2 3

a

b

dc

Frequency (GHz)

Corr NL

Best Single PNN

Single 2 Series 3 SeriesParallel PNN

ih NARMA NARMA + Future predictionj

k

Step

g

Software ESN

Future prediction

Metrics

Interconnection metrics

NARMA + Future prediction (t+9)

Per-Channel Metrics

Predicted True Residual

d
P

/d
H

(a
rb

.
u

n
it
s
)

e

M
C

N
2

N
L

N
2

Corrin NLin

l

Series (→)

Fig. 2 | Multilayer physical neural networks with complex nodes. Schematics of

a parallel (+) networks, b series (→) networks and c physical neural networks (PNN).

Network nodes are recurrent, non-linear nanomagnetic reservoirs with high output

dimensionality. In parallel networks, input is fed to multiple nodes independently.

In series, the output of one node is virtually fed as input to the next. PNN networks

combine series networks in parallel. All interconnections are made virtually, as

opposed to physical interconnection. The response of every node is combined

offline to create the output of a network. dWMFMR amplitudes at maximum (dark

blue) andminimum (light blue) input fields. e Frequency-channel signal correlation

(Corr) to previous time steps andnonlinearity (NL). Thesemetrics are used to guide

which frequency channel is used as input for the next node in a series network.

f Relationship between first reservoir node output metrics, correlation (Corrin) and

nonlinearity (NLin), used for interconnections and measured second reservoir

metrics, memory-capacity (MCR2) and nonlinearity (NLR2), when the second

reservoir (R2) isWM. Lines represent linear fits. Highermetric scores are correlated

with higher-scoring reservoir output channels. g Memory capacity (MC) and non-

linearity (NL) of selected single (circles), parallel (triangles) and series networks

(squares for series length 2, diamonds for series length 3). Networks have a broad

enhancement of metrics versus single arrays. PNN's can take any metric combina-

tion. MSE profiles for h Mackey-Glass future prediction, i NARMA transformation

and j future prediction of NARMA-7 processed Mackey-Glass for the best single

(WM), parallel (MS+WM+PW), 2 series (MS→WM), 3 series (MS→WM→PW) and PNN.

Also shown is the performance of a software echo-state network with 100 nodes.

MSE profiles are significantly flattened for the PNN. Shading is the standard

deviation of the prediction of 10 feature selection trials or 10 echo-state networks.

k, l Example predictions for t+9 of the NARMA—7 processed Mackey-Glass signal.

Shading represents the residual of the prediction.

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 3

spectra to a 1D time series with the aim of closely matching the target

waveform (see Methods for further details).

We assess reservoir performance via the mean-squared error

(MSE) between the target and the reservoir prediction as well as two

metrics:memory-capacity (MC) andNL.MCmeasures the ability of the

current state to recall previous inputs38, which arises from history-

dependent state evolution. NL measures how well past inputs can be

linearly mapped to the current state38, and can arise from a number of

physical system dynamics. In this work, these dynamics include reso-

nant frequencies shifts from changing microstates and input field and

the shape of FMR peaks. Metric calculations are further described in

theMethods section, Task Selection, and SupplementaryNote 2. These

metrics allow a coarse mapping between physical and computational

properties, enabling comparisonofdifferent systems. Figure 1h) shows

the NL and MC metrics. Our array designs produce a diverse set of

metrics, ideal for exploring the computational benefits of networking

later in this work.

Throughout this work, we focus on two input time-series: a sine-

wave and the chaotic Mackey-Glass time-series39 (described in

the Methods section, Task Selection). These datasets are chosen as

they are compatible with 1D global field-input and can be used to

devise a number of computational tasks with varying requirements.

We employ short training datasets (200 data points) to reflect

real-world applications with strict limitations on data collection time

and energy.

We wish to evaluate the best possible computation from our

readout. To do so, we employ a feature algorithm selecting the best

performing combination of readout features (i.e., frequency channels)

and discarding noisy or highly correlated features, which do not

improve computation (see Methods for details).

Figure 1i shows theMSE of each reservoir when predicting various

future values (x-axis) of the Mackey-Glass time-series. These tasks

require highmemory capacity, as attaining a good prediction requires

knowledge of previous inputs, with WM and PW outperforming MS

due to their richer internal switching dynamics (Supplementary

Note 1). All arrays exhibit performance breakdown at longer future

steps, evidenced by the periodicMSE profiles in Fig. 1i). This is clear for

the t+7 task taken from the high-MSE region (Fig. 1j), wherepredictions

do not resemble the target. At later future steps, prediction quality

improves due to the quasi-periodicity of the Mackey-Glass equation

(t+11 is similar to t).

This breakdown in performance is common in single physical

systems and software reservoirs, which often do not possess the range

of dynamic timescales (e.g., retaining enough information about pre-

vious inputs) to accurately predict future steps and provide a true

prediction where performance gradually decreases when predicting

further into the future20,26,40.

Figure 1k shows the performance when transforming a sine-wave

to cos(2t)sin(3t). The disordered PW array achieves up to

31.6× improvement for transformation tasks with no additional energy

gfe
desiretemaraprevOgnittifrevOdesiretemaraprednU

Under

Param.
Overfitting

001 = htgneL niarT05 = htgneL niarT

Future prediction accuracy (Mackey-Glass, t+7) for 3-series architecture

dcba

Over

Param.

Under

Param.
Overfitting

Over

Param.

Single

2 Series

Parallel

PNN

3 Series

Predicted
True
Residual

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r
(

(M
S

E
U

P
)/

(M
S

E
O

P
))

U
P

MSETr – 1.06 × 10-2 MSETe – 4.34 × 10-2 MSETr – 2.67 × 10-23 MSETe – 1.86 × 101 MSETr – 4.72 × 10-22 MSETe – 2.18 × 10-2

Im
p

ro
v
e

m
e

n
t

F
a

c
to

r
(

(M
S

E
)/

(M
S

E
O

P
))

Average future prediction accuracy (Mackey-Glass, t+1,3,5,7,9,11) vs # of output parameters

Fig. 3 | Neuromorphic overparameterisation. Train and test MSE for selected

architectures when predicting future values of the Mackey-Glass equation when

varying the number of output parameters P (i.e., FMR output channels) for training

set lengths of a 50 and c 100. MSE is the mean of 50 random combinations of

outputs across 6 different prediction tasks (Mackey-Glass, t+1, 3, 5, 7, 9, 11). Shading

is the standard error of the MSE over 50 trials of randomly selecting features.

b, d Improvement factors (min(MSEUP) / min(MSEOP)) when moving from

underparameterised (UP) regime to overparameterised (OP) regime. Each network

shows three regimes: an underparameterised regime when the number of para-

meters is small, an overfitting regime where the number of parameters is near the

size of the training set and an overparameterised regime when the number of

parameters exceeds the size of the training set. Example train and test predictions

for 3 series architecture in the underparameterised regime (e), overfitting regime

(f) and overparameterised regime (g).

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 4

cost, highlighting the significance of system geometry and design.

Performance for a history-dependent non-linear transform task (non-

linear autoregressive moving average, NARMA, transform41) and fur-

ther sine-transformations are shown in Supplementary Note 3. NARMA

transforms display similar periodic profiles. For sine-transformations,

no one array performs the best at all tasks, further highlighting the lack

of versatility of single physical systems.

Multilayer physical neural network
To overcome the limitations of single physical systems, we now

interconnect individual reservoirs to form networks, where each

reservoir acts as a complex node with memory, NL, and high output

dimensionality (as opposed to traditional neural network nodes,which

have no memory and only 1 output dimension).

We begin by making parallel and 1D series networks. In parallel

networks, inputs and readout for each array are performed indepen-

dently and combined offline (Fig. 2a). In series networks, the output

from one node is used as input to the next (Fig. 2b). In this work,

interconnections are made virtually, as opposed to real-time

interconnection. We experimentally record all data from the first node

and select one output channel to be used as input to the next node.

After scaling to an appropriate field range, this time-series is then

passed to the next node and its response is recorded. The full readout

from both layers is then combined offline during training and predic-

tion. We trial 49 total architectures (4 parallel and 36 2-series and 9

3-series networks with different configurations of arrays interconnec-

tions). Full details of each architecture can be found in the supple-

mentary information. We combine the outputs of every series/parallel

architecture offline to create a network that is analogous to a physical

neural network (PNN) (Fig. 2c).

As each node has ~200 readout channels, the optimisation time

required to evaluate all interconnections is not practically feasible.

Seeking a more efficient solution, we explore how the output-channel

characteristics fromone node affect theMCandNL of the next node in

a series network. Figure 2d, e show the per-channel NL and correlation

(Corr) to previous inputs values for WM (see Methods for calculation

details). Certain frequency channels are highly correlated with pre-

vious inputs (e.g., 7.9—8.1 GHz), whereas others are highly non-linear

a) Future prediction (t+5)

MSE = 0.0176

Future prediction (t+14)

MSE = 0.0155

NARMA 7 on Future Prediction (t+14)

MSE = 0.0155

Prediction components

b)

c)

d) e) f)

F
e
w

-S
h
o
t

T
ra

in
L

e
n

g
th

Few-Shot Prediction: Rapid Adaptability
Predicted True Residual

Few-shot

Training data

Few-Shot Signal Transformation: Sparse Data Initial prediction Few-shot update 2

Few-shot update 9

Few-shot update 500

Y

PNN prediction - Few shot train length = 15

Single array (update 500)

Few shot train length = 15

F
e
w

-S
h
o
t

T
ra

in
L

e
n

g
th

True

PNN prediction - Few shot train length = 50

PNN signal transformation MSE PNN signal transformation variance

Y
Y

 c
o

m
p

o
n

e
n

ts

Fig. 4 | Few-shot learning. a System predictions (black lines) in the over-

parameterised regime when rapidly adapting to 50 training data-points (grey cir-

cles) at the beginning of the series. The PNN is able to rapidly learn the task and

shows strong performance on the test data set (target points in red). Shading is the

residual between true and predicted values. b Sine-transformations with sparse

training data. The system is asked to learn five different frequency components of a

time-varying function (dashed black line). Here, the PNN is shown just 15 sparsely

separated training data points (grey circles). As the system is updated (coloured

plots), the PNN prediction steadily improves. c Two example frequency compo-

nents of the targets in b, which the PNN learns. d, e Average error, <MSE>, and

variance of the error, <σ2
MSE>, computed over 500 signal transformation tasks as

the train length and updates vary. The system shows good generalisation across all

tasks, as shown by the low variance. f Few-shot signal transformation using a single

array after 500 updates. The single array fails completely.

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 5

(e.g., 7 GHz). By feeding the output of one channel as input to the next

nodewe can evaluate howoutput characteristics affect the next node’s

MC and NL. Figure 2f shows this relationship when the second node is

WM (other architectures shown in Supplementary Note 4). Corrin and

NLin refer to the correlation and NL of the first node output channel.

MCN2 and NLN2 are the MC and NL of the second node. Points are

colour-coded depending on which array acts as the first node (con-

sistent with previous Figures). Both MCN2 and NLN2 follow an

approximately linear relationship. A linear relationship is also

observed when comparing correlations to specific previous inputs

(Supplementary Note 5). As such, one may tailor the overall network

metrics by selecting output channels with certain characteristics. This

interconnection control goes beyond conventional reservoir com-

puting where interconnections are made at random20, allowing con-

trolled design of network properties.

Fig. 2g shows theMC andNL of selected single, parallel, and series

sub-networks. Parallel network NL and MC (triangular markers) lie

between the NL and MC from the constituent reservoirs. MC does not

increase in parallel as no information is directly transferred between

network nodes. Series networks (square and diamond symbols for

series network depth of 2 and 3, respectively) show memory and NL

improvements above any single reservoir. The MS→PW→WM network

(purple diamond) has both highmemory andNL. PNN’s can be devised

to possess any metric combination as it comprises all sub-networks.

The ordering of arrays in series networks is important, with memory

enhancement only observed when networks are sequenced from low

(first) to high (last) memory (e.g., MS→WM has a larger memory

capacity than WM→MS), a phenomenon also seen in software

reservoirs20 and human brains18. To date, there has been an open

question as to whether physical reservoirs are analogous to software

echo-state networks. These results suggest that the two are compar-

able, and that methods used to improve software echo-state networks

can be transferred to physical reservoir computing.

We now evaluate the performance of these networks using the

feature selection methodology20,42 described in the Methods section,

Learning Algorithms. Figure 2h–j compares the MSE for the best con-

figuration of each network architecture when predicting future values

of the Mackey-Glass equation (h), performing a NARMA transform (i)

and combining NARMA transform and prediction (j) (additional

architectures and tasks are shown in Supplementary Note 6). Parallel

arrays (brown lines) do not show significant MSE reductions for these

tasks as there is no information transfer and memory increase in this

architecture. 2 and 3 series networks show significant decreases inMSE

for all tasks, which improve as the series network is extended. The PNN

outperforms other architectures across all future time step prediction

tasks (Fig. 2h, j) with significant MSE vs t flattening, demonstrating

higher-quality prediction. This is particularly evident when predicting t

+9 of the NARMA-transformed Mackey-Glass equation (Fig. 2k, l) and

when reconstructing the Mackey-Glass attractor (Supplementary

Note 7). For NARMA transform (Fig. 2h), both the PNN and three-series

network show a linearMSE vs t profile, indicative of reaching optimum

performance. Additionally, thePNNperformswell across ahost of non-

linear signal transformation tasks (Supplementary Note 6), out-

performing other network architectures at 9/20 tasks.

A strength of the PNN is the increased readout dimensionality.

The results in Fig. 2h–j) use 40—100outputs for the single, parallel, and

series networks and ~ 13,500 outputs for the PNN. This number of

outputs is far greater than the size of the training set, placing the PNN

in the overparameterised regime (discussed later). In Supplementary

Note 8, we constrain the PNN to have a similar number of outputs to

the other architectures and find performance is similar to that of a

three-series network. As a comparison, the grey dashed line in h–j)

represents the average performance of an 50 randomly initialised 100-

node echo state networks (ESN) (further software comparison pro-

vided in Supplementary Note 9). We find that single arrays are well

matched to ESNs with ~20 nodes, and PNNs are well matched to ESNs

with 500 nodes. Additionally, we initialise three ESNs with similar

characteristics to nanomagnetic arrays and interconnect them. Inter-

connected ESNs, whilst functionally different, also display improve-

ments during interconnection, highlighting both the general nature of

the technique, and strengthening the analogy between physical

reservoirs and software echo-state networks.

Overparameterisation
We now explore the computational benefits of reaching an over-

parameterised regime, where the number of network outputs exceeds

the size of the training dataset. To reach overparameterisation there

are three key parameters: the size of the length of the training dataset,

the number of output parameters, which here refers the number of

FMR channels, used during the training phase, and the effective

dimensionality of the readout. The last point is critical, as the number

of parameters can be arbitrarily increased by increasing the measure-

ment resolution or repeating measurements but doing so results in

increasingly correlated outputs, which have no impact during training.

Here, we showhowengineering a rich readout response canbe used to

reach overparameterisation in physical systems.

Figure 3a, c shows the train and test MSE for the best networks

from each architecture (equivalent to Fig. 2) when varying the number

of output parameters for training set lengths of a) 50 and c) 100.

Figure 3b, d shows the improvement factors (min(MSEUP)/

min(MSEOP)) when comparing the MSEs between the under-

parameterised (UP) and overparameterised (OP) regime. All archi-

tecturesbeyond single systemsshow improvementswhenoperating in

the overparameterised regime. Here, MSE is an average of over 6

prediction tasks (Mackey-Glass, t+1,3,5,7,9,11) and 50 random trials of

adding parameters (see Methods for details).

For each network and training length, we see three regimes with

example predictions for each regime shown in Fig. 3e–g) for the

3 series architecture: When the number of output parameters is less

than the training length, the system is underparameterised and train

and test MSE decrease as the number of parameters increases

(Fig. 3e)). This is where the majority of neuromorphic schemes oper-

ate. When the number of output parameters is close to the length of

the training set, the networks enter an overfitting regime where MSE

follows a ‘U-trend’ and performance deteriorates with increasing

number of outputs. Here, there are multiple solutions during training

and the network is able toperfectlyfit the target, leading to vanishingly

small training errors. However, the fitted weights are arbitrary and

when presented with unseen data, produce predictions with no

resemblance to the target (Fig. 3f). Surprisingly, this trend does not

continue as the the number of outputs increases. Instead, the test

performance substantially improves. Here, the network enters an

overparameterised regime and overcomes overfitting1,2,43,44. Instead of

memorising the training data, the network can generalise and learn the

underlying behaviour of the task, resulting in improved test perfor-

mance (Fig. 3g). Crucially, for some networks, the overparameterised

MSE is lower than the underparameterisedMSE. This phenomenon has

been observed in software deep learning (sometimes referred to as a

double-descent phenomena43,44), but not physical computing systems.

The extent to which MSE recovers depends on the effective

dimensionality of the readout and train length. For single reservoirs,

the limited internal dynamics produce a highly correlated set of out-

puts. Whilst MSE reduces in the overparameterised regime, the net-

work is unable to fully overcome the effects of overfitting resulting in

high overparameterised MSE and improvement factors below 1. The

networking approach increases the effective dimensionality of the

readout. In parallel networks this is achieved by having distinct nodes

with different dynamic responses. In series networks, nodes receive

unique inputs that produce different dynamic regimes. For short

training lengths (Fig. 3a, b), the enhanced output dimensionality

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 6

produces a beneficial overparameterised regime with improved MSE.

Improvements increase as the network size increases, and even series

networks with one node type can achieve a beneficial over-

parameterised regime (Supplementary Note 10). For longer train

lengths (Fig. 3c, d), only the PNN reaches a beneficial over-

parameterised regime due to the increased effective readout dimen-

sionality required to overcome overfitting. Task also plays a role, with

more challenging prediction tasks demanding higher effective readout

dimensionality to reach a beneficial overparameterised regime (Sup-

plementary Note 10). Interestingly, the PNN architecture shows sig-

natures of triple descent (Ntrain = 50, P ~ 150 and Ntrain = 100, P ~ 600)

where a peak in MSE is observed in the overparameterised regime, a

sign of superabundant overparameterisation45. Here we use linear

regression to train networks weights. When using gradient-descent, a

similar trend is observed showing the results are robust to different

training methods (Supplementary Note 11).

These results can be applied to any arbitrary system to improve

computation and reach an overparameterised state. To produce a

diverse set of outputs, both physical system and readout should be

designed in tandem. Readout improvements can be obtained by

increasingmeasurement resolution, fabricatingmultiple electrodes, or

reading at different external biases (e.g., here, we measure FMR at the

input field, inducing field-dependent resonant shifts). Moving away

from homogeneous systems will produce a greater breadth of internal

dynamics, improving performance and enabling a useful over-

parameterised regime. Examples include introducing structural varia-

tion throughout the system (as with the PW array here) or biasing

physically separated regions.

The networking approach is an effective method of improving

readout dimensionality. Combining distinct systems isbeneficial as the

breadth of dynamics is likely to be higher, but networking the same

physical system can produce overparameterisation. Enriched dynam-

ics and increased effective readout dimensionality can be achieved by

operating the physical system in different dynamic regimes, for

example, by changing external conditions to access different

dynamics46. Alternatively, by varying the input sequence, either

through a randommask (a common technique known as virtual nodes)

or by feeding the output of one node as input to another, a diverse

parallel / series network can be created. Even in the limit of a single

physical system with one readout per time step, overparameterisation

can be achieved through a combination of parallel and series net-

working, provided that the internal dynamics are rich enough.

Learning in the overparameterised regime
We now showcase the computational advantages of physical

neural networks operating in the overparameterised regime. The

high dimensionality and complexity of the network readout per-

mits rapid learning with a limited number of data-points1,2,31,43,44.

This characteristic is a particularly desirable feature for any

neuromorphic computing system as it allows rapid adaptation to

changing tasks/environments in remote applications where col-

lecting long training datasets carries a high cost. To demonstrate

this, we show a challenging fast few-shot learning adaptation for

previously unseen tasks using a model-agnostic meta learning

approach29,31.

Figure 4a shows the system prediction when predicting (left-to-

right) the t + 5, t + 14 and NARMA-processed t + 14 Mackey-Glass

signals. The PNN is trained on just the first 50 data points of the signal,

highlighted by black circles. The PNN is able to learn the underlying

system dynamics and provide good predictions demonstrating the

power and adaptability of the overparameterised regime.We note that

the MSE’s achieved are comparable to those in Fig. 2e, g when using

feature selection with the PNN. As such, thismeta-learning can achieve

strong results with a 75% reduction in training set size (50 training data

points here vs 200 previously used).

To further showcase the computational capabilities of the PNN,

we now demonstrate few-shot learning where the seen training data

are sparsely distributed throughout the target dataset, representing,

for instance, a very low sampling rate of a physical input sensor in an

edge-computing use-case. In Fig. 4b, the system is driven by a sinu-

soidal input and asked to predict a target of the form ỹ(t)=
PNω

n

an sin(nt + θn) i.e., simultaneously predict amplitude, frequency and

phase changes—a task that requires a range of temporal dynamics in

the network, often used as a meta-learning benchmark task31. The

values an and θn are sampled randomly at the beginning of each task

fromcontinuous uniformdistributions (details in theMethods section,

Task Selection). The goal is to train the system to generalise to a set of

an and θn values, and then rapidly adapt to a new taskwith a limited set

of sparse training points.

In all previous tasks, the network is trained to produce a single

output. Here, we simultaneously adapt to five distinct functions and

sum the predictions to produce the final waveform. This increases the

task difficulty as the network must be generalised to all possible

amplitude, frequency and phase shifts, and any errors will be amplified

in the final output. To achieve this, we use a variation of the MAML

meta-learning algorithm31 applied to the frequency-channel outputs of

the network, leaving all history-dependent and non-linear computa-

tion to the intrinsic dynamics of the physical network.

Figure 4b, c shows predictions of three example tasks for the

overall target and two example sub-components from each task

respectively. The network sees just 15 data points (highlighted by grey

circles in panel b)) throughout the entire process. In Fig. 4b, the target

(dashedblack line) andpredicted values after updating the generalised

matrix a number of times are shown. At update 0, the predicted

response does not match the target waveform as expected. As the

network updates, the error between the prediction and target reduce.

Further example tasks are provided in Supplementary Note 12.

Despite the limited information and the high variability of tasks,

the network learns the underlying sinusoidal components and can

adapt to different targets with the partial information available. To

support this claim of generalisation, Fig. 4d, e show the average error

<MSE>, and variance of the error, <σ2
MSE>, respectively, calculated

over 500 different tasks for various few-shot train lengths and number

of updates.The errordecreases as thenumber of updates and available

data points is increased as expected, with strong performance

observed for as little as 10 training data points. Crucially, the variance

of the error across all tasks is low, demonstrating strong general-

isation. Finally, Fig. 4f) reports an example of prediction obtained

when meta-learning is applied on a single reservoir, which fails com-

pletely at the task.

The meta-learning approach showcases the richness of the high-

dimensional output space of the PNN architecture. The network is able

to learn the general behaviour and dynamics of the input and a set of

tasks enabling rapid adaptability. This removes the requirement for

complete retraining, making essential progress toward on-the-fly sys-

tem reconfiguration.

Discussion
We have demonstrated how interconnecting physical systems into

larger networks can improve computational performance across a

broad task set as well as enhance task-agnostic computational metrics.

We now discuss the challenges which must be addressed before the

PNN architecture can be realised at a future device level, as well as the

prospects for scaling nanomagnetic hardware.

Currently, the PNN is created offline, with the entire dataset for

each node recorded sequentially, as opposed to each data point being

passed through the entire network during each time step, i.e., node 1

receives the entire dataset, then node 2 receives the output of node 1.

Furthermore, a 48 node PNN is created with three unique physical

systems, where each physical systems state is reset once the data has

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 7

been passed through. In a future device, each data point must travel

through the PNN in real-time, requiring 48 unique physical systems

and measurement set-ups. Therefore, as PNN size increases, so does

device complexity. Additionally, outputs from all nodes in the network

are recorded and used during the learning phase which, in practice,

requires surplus measurement time and memory. Our technique has

been tested on systemswhich take 1D input. For physical systems with

>1D inputs, we expect the technique to be equally, if not more,

powerful.

Realising a device level PNN requires a reduction in the number of

nodes and the number of measured outputs without sacrificing com-

putational performance. This can be achieved by increasing the num-

ber of unique physical reservoirs thereby increasing the range of

beneficial reservoir dynamics that each node has. Furthermore, the

number of measured outputs can be optimised to only record sig-

nificantly uncorrelated outputs for each node. Optimisation of PNN

architecture, and inter-node connectivity (i.e., combining multiple

output channels as input to a particular node) will allow further

improvements.

We now assess the scalability of the nanomagnetic array-based

computing scheme presented in this work. The computing archi-

tecture can be separated into three components: input, readout and

weight multiplication. At present we use global magnetic field inputs

which are unsuitable for scaling due to the large power, long rise-time

and large spatial footprint. Ferromagnetic resonance-based readout,

whilst theoretically fast, is currently achieved with a laboratory scale

RF-source and a lock-in amplifier, resulting in slow data throughout

(~20 s for one spectra) and high energy cost (Supplementary Note 13

calculates the power, energy and time for our current scheme com-

pared to conventional processors). To improve the technological

prospects of our scheme, inputmust be delivered on-chip and readout

powers and speedsmust be reduced to be competitivewith alternative

approaches.

We now propose and benchmark potential ways to translate

nanomagnetic arrays to device level (extended analysis and discussion

is provided in Supplementary Note 13). We assume a nanomagnetic

array with dimensions of 5μm×5μm (~100 elements). By patterning

the array on top of a current-carrying microstrip, array-specific Oer-

sted fields can be generated. For a 5μm×5μm array patterned on top

of an Cu microstrip, with width w = 5μm and thickness t = 50 nm in

height. The current required to produce a 25mT Oersted field is

~200mA47 (see Supplementary Note 13 for calculation details). For Cu

resistivity of 16.8 nΩm48, the resistance is R = 0.336 Ω consuming a

minimum power P = 13.4mW. For a pulse time of 1 ns, this equates to

an energy of 13.4 pJ per input. Nanomagnet coercivity and therefore

power consumption can be reduced by fabricating thinner

nanomagnets.

Instead, we can fabricate arrays in contact with a high spin-

Hall angle material to switch macrospins via spin-orbit torque49.

This can be achieved with Ta thickness and magnetic layer

thicknesses of around 5 nm and 1–2 nm respectively49 and current

densities on the order of 1011 Am-2. Whilst reducing thickness

reduces dipolar coupling, arrays of nanomagnets remain highly

correlated at these thicknesses50,51 and will retain the collective

processing that thicker nanomagnets exhibit. For a 5 μm × 5 μm

Ta strip with 5 nm thickness, the corresponds to a current of 2.5

mA. For Ta resistivity of 131 nΩm52, RTa = 26.2 Ω and P = 0.164 mW.

Here, switching times can be as low as 250 ps53 giving input

energies of 41 fJ. Spin-orbit torques decrease linearly with

increasing ferromagnet thickness54. For 20 nm thick nanomagnets

used in this work, the current density required to switch an ele-

ment will be on the order of 10—40 × (based on micromagnetic

simulations) due to thicker elements and higher coercive fields,

giving currents in the range of 25—100 mA and powers in the

range of 16.8—269 mW. Limited spin-diffusion in ferromagnets

may further increase or even prevent switching in thicker ele-

ments. As such, for thicker nanomagnets, Oersted field switching

may be preferable.

Microwave readout can be implemented either sequentially (fre-

quency-swept RF-source) or in parallel (multiple channels simulta-

neously) depending on the technique. For sequential readout out (as

implemented in this work), we can utilise spin-torque FMR which

converts magnetisation resonance to DC voltage. Assuming micro-

wave powers in the range of 1—10 mW, the generated voltage at

resonance is on the order 1—10μVwhich can be amplifiedwith a CMOS

lownoise high gain amplifier. Readout timeper channel is theoretically

limited to the time taken to reach steady precession (~ 14 ns55). As the

generated voltage is DC, spectral information is lost, hence each

channel must be recorded sequentially, giving a measurement time of

~ 2.6μs and energy of 2.8 nJ (SupplementaryNote 13), dominating over

the input speeds. Alternatively, we can pass mixed frequency RF-

signals through a device patterned on a co-planar waveguide and

detect the microwave absorption, for example via an RF noise source.

Here, the readout power is higher (150 mW) but speed and energy are

reduced (14 ns and 2.1 nJ respectively, Supplementary Note 13). The

output signal can, for example, be sent to multiple spin-torque oscil-

lators tuned to different frequencies serving as RF-diodes55,56 allowing

parallel detection of multiple channels at ~ ns timescales. Weight

multiplication can be achieved by passing output signals tomemristor

cross-bar arrays which routinely operate with nW—μW powers57. As

such, the power consumption, energy and time required to performan

operation of our proposed device is on the order of 1—160mW,

1.5–2800 ns, and 2.1–2.9 nJ depending on the input and readout

method used. At the lower end, this is within the power range for

battery-less operation using energy harvesting technology58,59. For

PNNs, nodes are measured sequentially hence the total operating

power remains unchanged, and time and energy scale linearly with the

number of nodes. Simultaneous measurement of physical nodes

would increase power and reduce time. Supplementary Note 13 pro-

vides further comparison to CMOS hardware by calculating the num-

ber of FLOPs to update an echo-state network (the closest software

analogue to nanomagnetic hardware). Our calculations indicate that,

for large echo-state networks, the proposed devices have potential to

operate at lower energy costs that conventional hardware.

To conclude, herewemitigate the limitations of physical reservoir

computing by engineering networks of physical reservoirs with dis-

tinct properties. We have engineered multiple nanomagnetic reser-

voirs with varying internal dynamics, evaluating their computational

metrics and performance across a broad benchmark taskset. Our

results highlight the computational performance gained from enri-

ched state spaces, applicable across a broad range of neuromorphic

systems. PW outperforms MS by up to 31.6× , demonstrating careful

design of system geometry and dynamics is critical, with computa-

tional benefits available via physical system design optimisation.

We then constructed a physical neural network from a suite of

distinct physical systems where interconnections between reservoirs

are made virtually and outputs are combined offline, overcoming the

fundamental limitation of the memory/NL tradeoff that roadblocks

neuromorphic progress. We demonstrate that methods used to

improve computational performance in software echo-state networks

can be transferred to physical reservoir computing systems. The

modular, reconfigurable physical neural network architecture enables

strong performance at a broader range of tasks and allows the

implementation of modern machine learning approaches such as

meta-learning. The high dimensionality enabled by the physical neural

network architecture allows us to demonstrate the benefits of oper-

ating physical neuromorphic computing in an overparameterised

regime to accomplish few-shot learning tasks with just a handful of

distinct physical systems. Currently, network interconnections are

made virtually. We expect the same performance improvements to be

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 8

achieved with the next-generation of our scheme with real-time phy-

sical interconnections. Networks of complex nodes described here are

largely unexplored, as such many open questions remain. Exploration

of different network architectures from both a computational and

device architecture perspective is crucial for optimising performance

and for device fabrication where increasing the number of nodes and

interconnections comes at a cost.

Our method of interconnecting network layers via assessing

output-channel/feature metrics allows tailoring of the network

metrics, bypassing costly iterative approaches. The approach is

broadly-applicable across physical neuromorphic schemes. If the

required MC and NL for a given task are known, metric programming

allows rapid configuration of an appropriate network. If the required

MC and NL are not known or the task depends on more than these

metrics, metric programming can be used to search the MC, NL phase

space for pockets of high performance. The introduction of a trainable

inter-layer parameter opens vast possibilities in implementing hard-

ware neural networks with reservoirs serving as nodes and inter-layer

connections serving as weights60.

Methods
The Methods section is organised as follows: experimental methods

includes the fabrication of samples, measurement of FMR response

and the details of implementing reservoir computing and inter-

connecting arrays. Following this we discuss the tasks chosen and how

they are evaluated in Task selection. Learning algorithms then pro-

vides a detailed description of the learning algorithms used in

this work.

Experimental methods
Nanofabrication. Artificial spin reservoirs are fabricated via the

electron-beam lithography liftoff method on a Raith eLine systemwith

PMMA resist. 25 nm Ni81Fe19 (permalloy) is thermally evaporated and

capped with 5 nm Al2O3. For WM, a staircase subset of bars are

increased in width to reduce its coercive field relative to the thin

subset, allowing independent subset reversal via global field. For PW, a

variation in widths are fabricated across the sample by varying the

electron-beam lithographydose.Within a 100μm× 100μmwrite-field,

the bar dimensions remain constant. The flip-chip FMRmeasurements

requiremm-scalenanostructure arrays. Each sample has dimensionsof

roughly ~3 × 2 mm2. As such, the distribution of nanofabrication

imperfections termed quenched disorder is of greatermagnitude here

than typically observed in studies on smaller artificial spin systems,

typically employing 10–100 micron-scale arrays. The chief con-

sequence of this is that the Gaussian spread of coercive fields is over a

fewmT for each bar subset. Smaller artificial spin reservoir arrays have

narrower coercive field distributions, with the only consequence being

that optimal applied field ranges for reservoir computation input will

be scaled across a corresponding narrower field range, not an issue for

typical 0.1mT or better field resolution of modern magnet systems.

Magnetic force microscopy measurement. Magnetic force micro-

graphs are produced on a Dimension 3100 using commercially avail-

able normal-moment MFM tips.

Ferromagnetic resonance measurement. Ferromagnetic resonance

spectra are measured using a NanOsc Instruments cryoFMR in a

Quantum Design Physical Properties Measurement System. Broad-

band FMR measurements are carried out on large area samples

(~3 × 2mm2) mounted flip-chip style on a coplanar waveguide. The

waveguide is connected to a microwave generator, coupling RF mag-

netic fields to the sample. The output fromwaveguide is rectified using

an RF-diode detector. Measurements are done in fixed in-plane field

while the RF frequency is swept in 20MHz steps. The DC field are then

modulated at 490Hz with a 0.48mT RMS field and the diode voltage

response measured via lock-in. The experimental spectra show the

derivative output of the microwave signal as a function of field and

frequency. The normalised differential spectra are displayed as false-

colour images with symmetric log colour scale.

Data input and readout. Reservoir computing schemes consist of three

layers: an input layer, a hidden reservoir layer and an output layer cor-

responding to globally applied fields, the nanomagnetic reservoir and

the FMR response, respectively. For all tasks, the inputs are linearly

mapped to a field range spanning 35–42mT for MS, 18–23.5mT for WM

and30–50mT for PW,with themappedfield value corresponding to the

maximum field of a minor loop applied to the system. In other words,

for a single data point, we apply a field at +Happ then −Happ. After each

minor loop, the FMR response is measured at the applied field −Happ

between 8 and 12.5GHz, 5 and 10.5GHz, and 5–10.5GHz in 20MHz steps

for MS, WM, and PW, respectively. The FMR output is smoothed in

frequencyby applying a low-passfilter to reduce noise. Eliminating noise

improves computational performance5. For each input data-point of the

external signal s(t), we measure ≈300 distinct frequency channels and

take each channel as an output. This process is repeated for the entire

dataset with training and prediction performed offline.

Interconnecting arrays. When interconnecting arrays, we first input

the original Mackey-Glass or sinusoidal input into the first array via the

input and readout method previously described. We then analyse the

memory and NL of each individual frequency output channel (descri-

bed later). A particular frequency channel of interest is converted to an

appropriate field range. The resulting field sequence is then applied to

the next array via the computing scheme previously described. This

process is then repeated for the next array in the network. The outputs

from every network layer are concatenated for learning.

Task selection
Throughout thismanuscript, we focus on temporally driven regression

tasks that requirememory andNL. Considering a sequence of T inputs

sð1Þ, sð2Þ, . . . , sðTÞ½ �, the physical system response is a series of obser-

vations oð1Þ,oð2Þ, . . . ,oðTÞ½ � across time. These observations can be

gathered from a single reservoir configuration, as in Fig. 1, or can be a

collection of activities from multiple reservoirs, in parallel or inter-

connected, as in Fig. 2. In other words, the response of the system o(t)

at time t is the concatenation of the outputs of the different reservoirs

used in the architecture considered. The tasks faced can be divided

into five categories:

Sine transformation tasks. The system is driven by a sinusoidal peri-

odic input sðtÞ= sinðtÞ and asked to predict different transformations,

such as ~yðtÞ= ðj sinðt=2Þj, sinð2tÞ, sinð3tÞ,sin2
ðtÞ,sin3

ðtÞ, cosðtÞ, cosð2tÞ,

cosð3tÞ,sawðtÞ,sawð2tÞ, . . .Þ. The inputs [s(t), s(t + δt), …] are chosen to

have 30 data points per period of the sinusoidal wave, thus with

δt = 2π/30. The total dataset size is 250 data points. If the target is

symmetric with respect to the input, the task only requires NL. If the

target is asymmetric, then both NL and memory are required.

Mackey-glass forecasting. The Mackey-Glass time-delay differential

equation takes the form ds
dt

=β sτ
1 + snτ
� λs and is evaluated numerically

with β =0.2, n = 10 and τ = 17. Given s(t) as external varying input, the

desired outputs are ~yðtÞ=
�

sðt + δtÞ,sðt +2δtÞ, . . . ,sðt +MδtÞ
�

, corre-

sponding to the future of the driving signal at M different times. We

use 22 data points per period of the external signal for a total of 250

data points. This task predominantly requiresmemory as constructing

future steps requires knowledgeof the previous behaviour of the input

signal.

Non-linear auto-regressive moving average tasks. Non-linear auto-

regressive moving average (NARMA) is a typical benchmark used by

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 9

the reservoir computing community. The definition of the x-th desired

output is ~yxðtÞ=NARMA sðt0Þjx
� �

=Asðt0 � 1Þ+Bsðt0 � 1Þ
Px

n= 1 sðt
0�

nÞ+Csðt0 � 1Þsðt0 � xÞ+D, where the constants are set to A = 0.3,

B =0.01, C = 2, D =0.1. The input signal sðt0Þ is the Mackey-Glass signal,

where the variable t0 is introduced to account for a possible temporal

shift of the input. For t0 = t, ~yxðtÞ is the application of NARMA on the

Mackey-Glass signal at the current time t, while for t0 = t + 10δt, ~yxðtÞ is

the result of NARMA on the input signal delayed by ten time steps in

the future. The index x can instead vary between one, defining a task

with a single temporal dependency, and fifteen, for a problem that

requiresmemory of fifteen inputs. Varying x and t0, we candefine a rich

variety of tasks with different computational complexity.

Evaluations of MC and NL. Memory capacity and NL are metrics fre-

quently used for the characterisation of the properties of a physical

device. While these metrics do not constitute tasks in the common

terminology, we include them in this section for simplicity of expla-

nation. Indeed, we use the same trainingmethodology tomeasureMC

and NL as in the other tasks faced. We evaluate these metrics with the

Mackey-Glass time-delay differential equation as input. This gives

results that are correlated to conventional MC and NL scores, with

some small convolution of the input signal—negligible for our pur-

poses of relatively assessing artificial spin reservoirs and designing

network interconnections.

For MC the desired outputs are ~yðtÞ=
�

sðt � δtÞ,sðt�

2δtÞ, . . . ,sðt � kδtÞ
�

, corresponding to the previous inputs of the

driving signal at different times. To avoid effects from the periodicity

of the input signal, we set k = 8. TheR2 value of the predicted and target

values is evaluated for each value of δt where a high R2 value means a

good linear fit and high memory and a low R2 value means a poor fit a

low memory. The final MC value is the sum of R2 across all output

elements.

For NL, the weights are optimised to map the delayed inputs
�

sðtÞ,sðt � δtÞ, :::,sðt � kδtÞ
�

to the device response o(t), where k = 7.

For each output, the R2 value of the predicted and target values is

evaluated. NL for a single output is given by 1−R2, i.e., a good linear fit

gives a high R2 and lowNL and a bad linear fit gives low R2 and high NL.

NL is averaged over all selected features.

Memory capacity and NL can be calculated using a singlemultiple

frequency channels. For the single-channel analysis, we perform the

same calculations but using just a single FMR channel.

Frequency decomposition, a few-shot learning task. The network

is driven by a sinusoidal input s(t) and needs to reconstruct a

decomposition of a temporal varying signal in the form of ~yðtÞ =
PNω

n an sinðnt +θnÞ, whereNω = 5. The values of an and θn are randomly

sampled at the beginning of each task from uniform distributions. In

particular, an ∈ [− 1.2 1.2] and θn ∈ [0 π/n]. The output layer is com-

posed of Nω nodes, and the system is asked to predict a target
~yðtÞ= a1sinðt + θ1Þ,a2sinð2t +θ2Þ, . . . ,a5sinð5t +θ5Þ

� �

after observing

the values of ~yðtÞ over K data points, i.e., time steps. The value of K

adopted for the examples of Fig. 4b, c is fifteen, but the network

reports good performance even with K = 10 (Fig. 4d, e). To face this

challenging task, we use the PNN in the overparameterised regime and

a meta-learning algorithm to quickly adapt the readout connectivity.

Details of the meta-learning approach are given below in the Meta-

learning section of the Methods.

Learning algorithms
The type of learning algorithm we use to select features and train the

networks varies throughout themanuscript. For comparisons between

different systems (Fig. 12), training is accomplished through a features

selection algorithm (discussed below) and optimisation of the readout

weights Wo. When exploring the effects of overparameterisation, we

randomly select features and then optimiseWo for those features. We

call x(t) the representation at which the readout weights operate, and

we define the output of the system as y(t) = Wox(t). The vector x(t)

simply contains a subset of features of o(t) defined via the feature

selection algorithm or randomly picked as in the dimensional

study on overparameterisation. In this setting, optimisation of Wo is

achieved with linear or ridge-regression, which minimises the error

function E =
P

t jj~yðtÞ �WoxðtÞjj
2 + λjjWojj

2.

For the simulations where we show the adaptability of the system

with a limited amount of data (results of Fig. 4 and of Section Learning

in the overparameterised regime), we used gradient-descent optimi-

sation techniques, particularly Adam61, to minimise the mean-squared

error between prediction and target. All codes and data for the

learning algorithms are available online (see code availability state-

ment for details).

Feature selection. The dimensionality of an observation o(t) can vary

depending on the architecture considered, spanning from ≈ 250

dimensionswhenusing a single arrays to ≈14,000 for the PNNof Fig. 2.

The high readout dimensionality allows better separability of input

data, however, high-dimensional spaces constitute a challenge due to

overfitting issues. As such, learning over a high-dimensional features’

space with few data points constitutes a challenge and opportunity for

physically defined reservoirs. For this reason, we design a feature-

selection methodology to avoid overfitting and to exploit the com-

putational abilities of architectures with varying complexity (Fig. 5,

Algorithms 1, 2). Themethodology adopted can be at first described as

a 10 cross-validation (inner validation loop) of a 10 cross-validation

approach (outer validation loop), where the outer cross-validation is

used to accurately evaluate the performance and the inner loop is used

to perform feature-selection (Fig. 6). For each split, feature selection is

accomplished by discarding highly correlated features and through an

evolutionary algorithm. The independent parts of this methodology

are known, but the overall procedure is unique and can give accurate

performancemeasurements for our situation, wherewe have a suite of

systems with varying dimensionality to compare over limited data.

Algorithm 1. Hyperparameter selection

for each split in outer loop i do

for each split in inner loop j do

for each θ ∈ Θ, λ ∈ Λ do

Find optimal weights: W�o = argminWo
E TrijjWo,θ, λ
n o

Compute error on the test set EfT 0ijjW
�
o,θ,λg

end for

Select optimal hyperparameters as θ
�
i , λ
�
i = argminθ2Θ, λ2Λ

P10
j = 1

EfT 0ijjW
�
o,θ, λg

end for

Find the corresponding boolean vector θ
�
i ! f

ðiÞ

end for

Algorithm 2. Evolutionary Algorithm

for for each split in outer loop i do

Initialise parents Fp = fðnÞ
� �

= f
ðiÞ

repeat

Apply crossover and mutations to generate children Fc
for each split in inner loop j do

for each f ∈ Fc do

Find optimal weights: W�o = argminWo
E TrijjWo, f , λ

�
i

n o

end for

end for

Select new Fp as the f
0
with minimal

P10
j = 1E T

0
ijjW

�
o, f , λ

�
i

n o

until best performance on V i

end for

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 10

We now describe the feature selection methodology in detail.

Considering the response of a system across time o(t), the feature

selection algorithm aims to select a subset of features x(t) that will be

used for training and evaluation.We canconsider feature selection as a

boolean operation over the o(t) feature space, where a value of one

(zero) corresponds to the considered featurebeingused (neglected). If

m is the dimensionality of o(t), the number of possible ways to define

x(t) is 2m
−1. As a consequence, the feature selection algorithm can also

lead to overfitting. Therefore, wemust implement an additional cross-

validation step to ensure the performance of the selected feature is

general across the entire dataset.

Considering a specific split of the outer validation loop (Fig. 6),

where we select a validation set V i and a test set T i (comprising of the

10% of the data each, i.e., 25 data points), we perform 10 cross-

validations on the remaining data to optimise hyperparameter

values through grid-search. In this inner validation loop, each split

corresponds to a test set T
0
ij (comprising again of the 10% of the

remaining data, without V i and T i), where changing jmeans to select a

different test-split in the inner loop based on the i-th original split of

the outer validation (Fig. 6). The remaining data, highlighted in green

in Fig. 6, are used for training to optimise the readout weights and

minimise the error function E through ridge-regression as previously

described.

At this stage, we perform a grid-search methodology on hyper-

parameters θ and λ which control directly and indirectly the number

of features being adopted for training (Algorithm 1). The hyper-

parameter θ acts as a threshold on the correlation matrix of the

features. Simply, if the correlation among two features exceeds the

specific value of θ considered, one of these two features is removed

for training (and testing). The idea behind this method is to discard

features that are highly correlated, since they would contribute in a

similar way to the output. This emphasises diversity in the reservoir

response. The hyperparameter λ is the penalty term in ridge-

regression. Higher values of λ lead to a stronger penalisation on

the magnitude of the readout weights. As such, λ can help prevent

overfitting and controls indirectly the number of features being

adopted. We should use a high value of λ if the model is more prone

to overfitting the training dataset, a case that occurs when the

number of features adopted is high. Calling E T
0
ijjW

�
o,θ,λ

n o

the error

computed on the test set T
0
ij with weights W�o optimised on the

corresponding training data (W�o = argminWo
E TrijjWo,θ,λ
n o

in Algo-

rithm 1 and with hyperparameter values θ and λ, respectively, we

select the values of the hyperparameters that correspond to the

minimum average error over the test sets in the inner validation loop.

Otherwise stated, we select the optimal θ*
i and λ*i for the i-th split in

the outer loop from the test average error in the inner 10 cross-

validation as θ
�
i ,λ
�
i = argminθ2Θ, λ2Λ

P10
j = 1E T

0
ijjW

�
o,θ,λ

n o

. This metho-

dology permits to find θ
*
i and λ

*
i that are not strongly dependent on

the split considered, whilemaintaining the parts of the dataset Vi and

T i unused during training and hyperparameter selection. The sets Θ

and Λ correspond to the values explored in the grid-search. In our

case, Θ = {1, 0.999, 0.99, 0.98, 0.97, …} and

Λ = {1e − 4, 1e − 3, 1e − 2, 5e − 2, 1e − 1}. Repeating this procedure for

each split of the outer loop, we found the optimal θ
*
i and λ

*
i , for

i = 1, …, 10. This concludes the hyperparameter selection algorithm

described in Algorithm 1. Selection of the hyperparameters θ*
i permit

to find subsets of features based on correlation measures. However,

promoting diversity of reservoir measures does not necessarily cor-

respond to the highest performance achievable. Thus, we adopted an

Fig. 6 | Data splitting during training. Schematic of the data splits for the inner and outer validation loops.

s(t)

s(t)

o(t)

x(t)

W0

y(t) ỹ(t)

Fig. 5 | Schematic of offline learning. Input data is applied to the physical system producing a set of o(t) features. Feature selection reduces the size of o(t) to a new set of

x(t) features. We then apply ridge regression to obtain a set of weights Wo to obtain the transformation/prediction y(t) =Wox(t).

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 11

evolutionary algorithm to better explore the space of possible

combination of measurements (Algorithm 2).

It is necessary now to notice how a value of θ
*
i corresponds to am-

dimensional boolean vector f (i), whose j-th dimension is zero if its j-th

feature f ðiÞj is correlated more than θ*
i with at least one other output.

For each split i in theouter loop,we adopted anevolutionary algorithm

that operates over the m-dimensional boolean space of feature-selec-

tion, where each individual corresponds to a specific vector f. At each

evolutionary step, we perform operations of crossover and mutation

over a set of Np parents Fp =
�

f ðnÞ
�

n= 1,...,Np
. For each split i of the outer

loop and at the first evolutionary step, we initialised the parents of the

algorithm to f(i). We defined a crossover operation among two indivi-

duals f(i) and f(j) as f =CrossOver
�

f ðiÞ,fðjÞ
�

where the k-th dimensionof

the new vector f is randomly equal to f
ðiÞ
k

or f
ð jÞ
k

with the same prob-

ability. A mutation operation of a specific f(i) is defined as

f =Mutationðf ðiÞÞ by simply applying the operator not to each dimen-

sion of f(i) with a predefined probability pm. The application of

crossovers andmutations permits the definition of a set of Nc children

Fc = f ðnÞ
� �

n= 1,...,Nc
fromwhichwe select theNpmodels with the highest

performance over the test sets of the inner loop as parents for the

next iteration. Otherwise stated, we selected the Fp vectors corre-

sponding to the lowest values of the average error as

Fp = argminNp
f2Fc

P10
j = 1EfT

0
ijjW

�
o,f ,λ

�
i g where argminNp selects the Np

arguments of the corresponding function with minimal values.

We notice how a step of the evolutionary approach aims to

minimise an error estimated in the same fashion as in the algo-

rithm of Algorithm 1, but this time searching for the best per-

forming set Fp, rather then the best performing couple of

hyperparameter values λ�i and θ�i .

Finally, we stop the evolutionary algorithm at the iteration

instance where the average performance of Fp over Vi is at minimum

and selected themodel f
�
i with the lowest error onV i. The utilisationof

a separate set Vi for the stop-learning condition is necessary to avoid

overfitting of the training data. Indeed, it is possible to notice how the

performance on Vi would improve for the first iterations of the evo-

lutionary algorithm and then become worse. This concludes the evo-

lutionary algorithm in Algorithm 2. At last, the overall performance of

themodel is computed as the sumof themean-squared errors over the

outer validation loop as E =
P10

i= 1EfT ijW
�
o,f
�
i ,λ
�
i g. Summarising, we can

think the overall methodology as an optimisation of relevant hyper-

parameters followed by a fine-tuning of the set of features used

through an evolutionary algorithm. The final performance and its

measure of variation reported in the paper are computed as average

and standard deviation over ten repetitions of the evolutionary algo-

rithm, respectively.

Evaluating overparameterisation. To explore the effects of over-

parameterisation it is necessary to vary the number of network para-

meters (i.e., number of FMR channels). This is achieved as follows:

first, a set of tasks is prepared for which the MSE will be evaluated.

Here, we analyse performance when predicting future values of the

Mackey-Glass equation. We average MSE when predicting t + 1, t + 3,

t + 5, t + 7, t + 9 and t + 11. Next, we vary the number of parameters. To

do so, we randomly shuffle a sequence of integers from 0 to N,

where N is the total number of output channels for a given network

e.g., N = (328, 34, 273…). From this, we select the first P points of

the sequence, giving a list of indexes referring to which channels to

include in that sequence. For those channels, we perform a 5 cross-

validation of different train and test splits and use linear regression

to evaluate the train and test MSE for a given task and set of outputs.

P is increased in steps ofN/500 for single, parallel, and series networks

and steps of N/5000 for the PNN. For a given task, we repeat this

process for 50 random shuffles to ensure we are sampling a

broad range of output combinations for each network. The displayed

MSEs are the average and standard error of these 50 trials over

all tasks.

Meta-learning
Algorithm 3. Meta-learning through MAML

Sample a batch of tasks from pðT Þ

for each task i do

Sample K datapoints of device responses Di = . . . , ð~yðtkÞ,
�

oðtkÞÞ, . . .g, k = 1, …, K

for number of inner loop steps n= 1, . . . , ~n do

y(tk) = f(o(tk)∣αi(n), Wo)

αiðn + 1Þ=αiðnÞ � η1∇αiðnÞ
ET i

DijαiðnÞ,Wo

� �

Sample Q datapoints of devices response D
0
i = f. . . , ð~yðtqÞ,

oðtqÞÞ, . . .g, q = 1, …, Q for the meta-update

end for

Perform the meta-update

Wo Wo � η2∇Wo

P

i ET i
D
0
ijαið~nÞ,Wo

� �

αð0Þ αð0Þ � η2∇αð0Þ

P

iET i
D
0
ijαið~nÞ,Wo

� �

end for

The goal of meta-learning is optimise an initial state for the net-

work such that when a new task with limited data points is presented,

the network can be quickly updated to give strong performance. A

schematic of the meta-learning algorithm is presented in Fig. 7 and

pseudo-code shown in Algorithm 3.

Let us consider a family of M tasks T = fT 1,T 2, . . . ,T Mg. Each task

is composed of a dataset and a cost function ET i
. A meta-learning

algorithm is trained on a subset of T and asked to quickly adapt

and generalise on a new test subset of T . Otherwise stated, the aim

of meta-learning is to find an initial set of parameters W(0) that

permits learning of an unseen task T i by updating the model over a

small number of data points from T i. To achieve this, we use a var-

iation of the MAML algorithm, which is now summarised. For a given

task T i, the initial set of trainable parameters W(0) are updated

via gradient descent over a batch of data points Di = f. . . ,ðoj,~yjÞ, . . .g,

where oj and ~yj are the inputs and targets for the j-th data point

respectively

WiðnÞ=Wiðn� 1Þ � η1∇Wiðn�1Þ
ET i

DijWiðn� 1Þ
� �

ð1Þ

where η1 is the learning rate adopted. Eq.(1) is repeated iteratively

for n=0, . . . ,~n, where ~n are the number of updates performed in

each task. We notice how the subscripts i on the parameters W are

introduced because the latter become task-specific after updating, while

they all start from the same values W(0) at the beginning of a task.

MAML optimises the parameters W(0) (i.e., the parameters used at the

start of a task, before any gradient descent) through theminimisation of

cost functions sampled from T and computed over the updated

parameters Wð~nÞ i.e., the performance of a set of W(0) is evaluated

based on the resultingWð~nÞ after gradient descent. Mathematically, the

aim is to find the optimal W(0) that minimises the meta-learning

objective E

E =
X

T

ET i
ðD0ijWið~nÞÞ ð2Þ

Wð0Þ Wð0Þ � η2∇Wð0Þ

X

i

ET i
D
0
ijWið~nÞ

� �

ð3Þ

where the apex0 is adopted to differentiate the data points used for the

meta-update from the inner loop of Eq. (1), and η2 is the learning rate for

the meta-update. Gradients of E need to be computed with respect to

W(0), and this results in the optimisation of the recursive Eq.(1) and the

computation of higher-order derivatives. In our case, we use the first-

order approximation of the algorithm31. After themeta-learning process,

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 12

the system is asked to learn an unseen task T j updating W(0) through

the iteration of Eq.(1) computed on a small subset of data of Dj .

In contrast to previous works, we adopted this learning frame-

work on the response of a physical system. The optimisation occurs

exclusively at the readout level, leaving the computation of non-linear

transformations and temporal dependencies to the physical network.

The outcome of our application of meta-learning, depends on the

richness of the dynamics of the nanomagnetic arrays. In this case, the

readout connectivitymatrix is not task-specific as in previous sections,

we use the same W(0) for different tasks.

We decompose the parameters of the system W into two sets

of parameters {Wo, α} to exploit few-shot learning on the readout

from the PNN. The output of the system is defined as

y(t) = f(o(t)∣α, Wo), where the function f is linear and follows

f ðoðtÞjα,WoÞ=α○ WooðtÞ
� �

where ○ stands for element by element

multiplication. The inclusion of parameters α as scaling factors for the

weights has previously been used in62, albeit in the context of weight

normalisation. Here, we train the parameters α and Wo with different

timescales of the learning process, disentangling their contribution

in the inner (task-specific updates, Eq.(1)) and outer loops (computa-

tion of the meta-learning objective of Eq.(2)) of the MAML

algorithm. Specifically, the α parameters are updated for each task

following

αiðn + 1Þ=αiðnÞ � η1∇αiðnÞ
ET i

DijαiðnÞ,Wo

� �

forn= 1, . . . , ~n ð4Þ

while the parameters Wo are optimised through the meta-learning

objective via

Wo Wo � η2

P

j

ET j
ðDj jαjð~nÞÞ ð5Þ

In this way, training of the parameters Wo is accomplished after

appropriate, task-dependent scaling of the output activities. A pseudo-

code of the algorithm is reported in Fig. 7.

Echo state network comparison. The Echo-state network of Fig. 2g–i

is a software model defined through

xðt + δtÞ= ð1� δt=τÞxðtÞ+ δt=τ f
�

WinsðtÞ+WesnxðtÞ
�

ð6Þ

where x is the reservoir state, s is the input,Wesn andWin are fixed and

random connectivity matrices defined following standard

methodologies63 and τ is a scaling factor. In particular, the eigenvalues of

the associated, linearised dynamical system are rescaled to be inside the

unit circle of the imaginary plane. Training occurs on the readout level

of the system. Echo-state networks and their spiking analogous liquid-

state machines64 are the theoretical prototypes of the reservoir

computing paradigm. Their performance can thus constitute an

informative reference for the physically defined networks. We highlight

two differences when making this comparison: first, the ESN is defined

in simulations and it is consequently not affected by noise; second, the

physically defined network has a feed-forward topology, where the

memory of the system lies in the intrinsic dynamics of each complex

node and the connectivity is not random but tuned thanks to the

designed methodology.

For the results of Fig. 2, we evaluate the performance of a

100-node ESN. For each value of the dimensionality explored,

we repeated the optimisation process ten times resampling the ran-

dom Win and Wesn. The black dots in Fig. 2 report the average per-

formance across these repetitions as the number of nodes varies. The

black line reflects a polynomial fit of such results for illustrative pur-

poses, while the grey area reflects the dispersionof the distributions of

the results.

Multilayer perceptron comparison. The multilayer perceptron

(MLP) comparison in the supplementary information is defined as

follows. We have an MLP with four layers: an input layer, two

hidden layers interconnected with a ReLu activation function and

an output layer. We vary the size of the hidden layers from 1 to

500. Standard MLP’s do not have any recurrent connections and

therefore do not hold information about previous states, hence

predictiveperformance is poor.We add falsememorybyproviding the

network with the previous Tseq data points as input i.e.,
~sðtÞ=

�

sðtÞ,sðt � 1Þ, . . . ,sðt � T seq + 1Þ
�

. We vary Tseq from 1 to 10 where

Tseq = 1 corresponds to a standard MLP only seeing the current input

data point. Learning of MLP weights is performed using gradient

descent, specifically Adam61.

Data availability
The experimental data used in this study is available at Github and

Zenodo32 under accession codes https://github.com/StenningK/

NeuroOverParam.git and https://doi.org/10.5281/zenodo.12721639.

Code availability
The code developed in this study is available at Github and

Zenodo32 under accession codes https://github.com/StenningK/

NeuroOverParam.git and https://doi.org/10.5281/zenodo.12721639.

s(t)

H
a
p

p
(m

T
)

o(t)

α1w1

Fig. 7 | Schematic of the few-shot learning task. The input signal is applied to the multilayer neural network, and the observations are recorded. The system is then

trained to learn a subset of frequency decomposition with minimal training data.

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 13

https://github.com/StenningK/NeuroOverParam.git
https://github.com/StenningK/NeuroOverParam.git
https://doi.org/10.5281/zenodo.12721639
https://github.com/StenningK/NeuroOverParam.git
https://github.com/StenningK/NeuroOverParam.git
https://doi.org/10.5281/zenodo.12721639

References
1. Zou, D., Cao, Y., Zhou, D. & Gu, Q. Gradient descent optimizes over-

parameterized deep relu networks. Mach. Learn. 109, 467–492
(2020).

2. Zou, D. & Gu, Q. An improved analysis of training over-
parameterized deep neural networks. Adv. Neural Inf. Process. Syst.
32 https://arxiv.org/abs/1906.04688 (2019).

3. Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neu-
romorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

4. Mizrahi, A. et al. Neural-like computing with populations of super-
paramagnetic basis functions. Nat. Commun. 9, 1–11 (2018).

5. Gartside, J. C. et al. Reconfigurable training and reservoir com-
puting in an artificial spin-vortex ice via spin-wave fingerprinting.
Nat. Nanotechnol. 17, 460–469 (2022).

6. Allwood, D. A. et al. A perspective on physical reservoir com-
puting with nanomagnetic devices. Appl. Phys. Lett. 122,
040501 (2023).

7. Schuman, C. D. et al. Opportunities for neuromorphic computing
algorithms and applications. Nat. Comput. Sci. 2, 10–19 (2022).

8. Tanaka,G. et al. Recent advances in physical reservoir computing: a
review. Neural Netw. 115, 100–123 (2019).

9. Nakajima, K. Physical reservoir computing-an introductory per-
spective. Jpn. J. Appl. Phys. 59, 060501 (2020).

10. Milano, G. et al. In materia reservoir computing with a fully mem-
ristive architecture based on self-organizing nanowire networks.
Nat. Mater. 21, 1–8 (2021).

11. Chumak, A. et al. Roadmapon spin-wavecomputing concepts. IEEE
Trans. Quantum Eng., 58 (2021).

12. Papp, Á., Porod, W. & Csaba, G. Nanoscale neural network using
non-linear spin-wave interference. Nat. Commun. 12, 1–8 (2021).

13. Cucchi, M., Abreu, S., Ciccone, G., Brunner, D. & Kleemann, H.
Hands-on reservoir computing: a tutorial for practical imple-
mentation. Neuromorph. Compu. Eng. 2, 032002 (2022).

14. Vidamour, I. et al. Reconfigurable reservoir computing in a mag-
netic metamaterial. Commun. Phys. 6, 230 (2023).

15. Wright, L. G. et al. Deep physical neural networks trained with
backpropagation. Nature 601, 549–555 (2022).

16. Torrejon, J. et al. Neuromorphic computing with nanoscale spin-
tronic oscillators. Nature 547, 428–431 (2017).

17. Cao, K., Liu, Y., Meng, G. & Sun, Q. An overview on edge computing
research. IEEE Access 8, 85714–85728 (2020).

18. Hasson, U., Chen, J. & Honey, C. J. Hierarchical process memory:
memory as an integral component of information processing.
Trends Cogn. Sci. 19, 304–313 (2015).

19. Jaeger, H. Discovering multiscale dynamical features with hier-
archical echo state networks. Deutsche Nationalbibliothek (2007).

20. Manneschi, L. et al. Exploiting multiple timescales in hierarchical
echo state networks. Front. Appl. Math. Stat. 6, 76 (2021).

21. Moon, J., Wu, Y. & Lu, W. D. Hierarchical architectures in reservoir
computing systems. Neuromorph. Comput. Eng. 1, 014006 (2021).

22. Gallicchio, C., Micheli, A. & Pedrelli, L. Deep reservoir computing: a
critical experimental analysis. Neurocomputing 268, 87–99 (2017).

23. Gallicchio, C. & Micheli, A. Echo state property of deep reservoir
computing networks. Cogn. Comput. 9, 337–350 (2017).

24. Gallicchio, C., Micheli, A. & Pedrelli, L. Design of deep echo state
networks. Neural Netw. 108, 33–47 (2018).

25. Ma, Q., Shen, L. & Cottrell, G. W. Deepr-esn: a deep projection-
encoding echo-state network. Inf. Sci. 511, 152–171 (2020).

26. Goldmann, M., Köster, F., Lüdge, K. & Yanchuk, S. Deep time-delay
reservoir computing: dynamics and memory capacity. Chaos 30,
093124 (2020).

27. Van der Sande, G., Brunner, D. & Soriano, M. C. Advances in pho-
tonic reservoir computing. Nanophotonics 6, 561–576 (2017).

28. Liang, X. et al. Rotating neurons for all-analog implementation of
cyclic reservoir computing. Nat. Commun. 13, 1–11 (2022).

29. Wang, Y., Yao, Q., Kwok, J. T. & Ni, L. M. Generalizing from a few
examples: a survey on few-shot learning. ACMComput. Surv. (csur)

53, 1–34 (2020).
30. Vanschoren, J. Meta-learning. In: Automated machine learning:

methods, systems, challenges, 35–61 (2019).
31. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for

fast adaptation of deep networks. In: International conference on

machine learning, 1126–1135 (PMLR, 2017).
32. Stenning, K. D. et al. Neuromorphic overparameterisation, gen-

eralisation and few-shot learning in multilayer physical neural net-
works. https://doi.org/10.5281/zenodo.12721639 (2024).

33. Jensen, J. H. & Tufte, G. Reservoir computing in artificial
spin ice. In: Artificial Life Conference Proceedings, 376–383
(MIT Press, 2020).

34. Vanstone, A. et al. Spectral fingerprinting: microstate readout via
remanence ferromagnetic resonance in artificial spin ice.N. J. Phys.
24, 043017 (2022).

35. Jungfleisch, M. et al. Dynamic response of an artificial square spin
ice. Phys. Rev. B 93, 100401 (2016).

36. Kaffash, M. T., Lendinez, S. & Jungfleisch, M. B. Nanomagnonics
with artificial spin ice. Phys. Lett. A 402, 127364 (2021).

37. Hu, W. et al. Distinguishing artificial spin ice states using magne-
toresistance effect for neuromorphic computing.Nat. Commun. 14,
2562 (2023).

38. Love, J. et al. Spatial analysis of physical reservoir computers. Phys.
Rev. Appl. 20, 044057 (2023).

39. Mackey, M. C. & Glass, L. Oscillation and chaos in physiological
control systems. Science 197, 287–289 (1977).

40. Gallicchio, C. & Micheli, A. Why layering in recurrent neural net-
works? A DeepESN survey. In: 2018 International Joint Conference

on Neural Networks (IJCNN), 1–8 (IEEE, 2018).
41. Jaeger, H. Adaptive nonlinear system identification with echo state

networks. Adv. Neural Inf. Process. Syst. 15 (2002).
42. Manneschi, L., Lin, A. C. & Vasilaki, E. Sparce: improved learning of

reservoir computing systems through sparse representations. In:
IEEE Trans. Neural Netw. Learn. Syst. 34, 2 (2021).

43. Belkin, M., Hsu, D., Ma, S. & Mandal, S. Reconciling modern
machine-learningpractice and theclassical bias–variance trade-off.
Proc. Natl Acad. Sci. 116, 15849–15854 (2019).

44. Nakkiran, P. et al. Deep double descent: where bigger models and
more data hurt. J. Stat. Mech.: Theory Exp. 2021, 124003 (2021).

45. Adlam, B. & Pennington, J. The neural tangent kernel in high
dimensions: triple descent and a multi-scale theory of general-
ization. In: International Conference on Machine Learning, 74–84
(PMLR, 2020).

46. Lee, O. et al. Task-adaptive physical reservoir computing. Nat.
Mater. 23, 79–87 (2024).

47. Kiermaier, J., Breitkreutz, S., Csaba, G., Schmitt-Landsiedel, D. &
Becherer, M. Electrical input structures for nanomagnetic logic
devices. J. Appl. Phys. 111, 07E341 (2012).

48. Matula, R. A. Electrical resistivity of copper, gold, palladium, and
silver. J. Phys. Chem. Ref. Data 8, 1147–1298 (1979).

49. Fukami, S., Anekawa, T., Zhang, C. & Ohno, H. A spin–orbit torque
switching scheme with collinear magnetic easy axis and current
configuration. Nat. Nanotechnol. 11, 621–625 (2016).

50. Farhan, A. et al. Direct observation of thermal relaxation in artificial
spin ice. Phys. Rev. Lett. 111, 057204 (2013).

51. Kapaklis, V. et al. Thermal fluctuations in artificial spin ice. Nat.
Nanotechnol. 9, 514–519 (2014).

52. Milošević, N. D., Vuković, G., Pavičić, D. & Maglić, K. Thermal
properties of tantalum between 300 and 2300 k. Int. J. Thermo-

phys. 20, 1129–1136 (1999).
53. Bhowmik, D., You, L. & Salahuddin, S. Spin hall effect clocking of

nanomagnetic logic without a magnetic field. Nat. Nanotechnol. 9,
59–63 (2014).

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 14

https://arxiv.org/abs/1906.04688
https://doi.org/10.5281/zenodo.12721639

54. Manchon, A. et al. Current-induced spin-orbit torques in ferro-
magnetic and antiferromagnetic systems. Rev. Mod. Phys. 91,
035004 (2019).

55. Ross, A. et al. Multilayer spintronic neural networks with radio-
frequency connections. Nat. Nanotechnol. 18, 1273–1280 (2023).

56. Leroux, N. et al. Convolutional neural networks with radio-
frequency spintronic nano-devices. Neuromorph. Comput. Eng. 2,
034002 (2022).

57. Wang, K. et al. A pure 2h-mos2 nanosheet-based memristor
with low power consumption and linear multilevel storage for
artificial synapse emulator. Adv. Electron. Mater. 6, 1901342
(2020).

58. Shaikh, F. K. & Zeadally, S. Energy harvesting in wireless sensor
networks: a comprehensive review.Renew. Sustain. Energy Rev. 55,
1041–1054 (2016).

59. Jebali, F. et al. Powering ai at the edge: a robust, memristor-based
binarized neural network with near-memory computing and min-
iaturized solar cell. Nat. Commun. 15, 741 (2024).

60. Manneschi, L. et al. Optimising network interactions throughdevice
agnostic models. arXiv https://arxiv.org/abs/2401.07387 (2024).

61. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization.
arXiv https://arxiv.org/abs/1412.6980 (2014).

62. Salimans, T. & Kingma, D. P. Weight normalization: a simple repar-
ameterization to accelerate training of deep neural networks. 29,
https://arxiv.org/abs/1602.07868 (2016).

63. Lukoševičius, M. A practical guide to applying echo state networks.
In: Neural Networks: Tricks of the Trade: Second Edition

659–686 (2012).
64. Maass, W. Liquid state machines: motivation, theory, and applica-

tions. In: Computability in context, 275–296 (2011).

Acknowledgements
K.D.S. was supported by The Eric and Wendy Schmidt Fellowship Pro-
gram and the Engineering and Physical Sciences Research Council
(Grant no. EP/W524335/1). This work was supported by the EPRSC grant
EP/X015661/1 to W.R.B. and H.K. J.C.G. was supported by the Royal
Academy of Engineering under the Research Fellowship programme
and the EPSRC ECR International Collaboration Grant ‘Three-Dimen-
sional Multilayer Nanomagnetic Arrays for Neuromorphic Low-Energy
Magnonic Processing’ EP/Y003276/1. A.V. was supported by the EPSRC
Centre for Doctoral Training in Advanced Characterisation of Materials
(Grant no. EP/L015277/1) and EPSRC grant EP/X015661/1. K.E.S.
acknowledges funding from the German Research Foundation (Project
no. 320163632) and from the Emergent AI Centre funded by the Carl-
Zeiss-Stiftung. C.C. and T.C. performed the work as part of their Physics
MSci project at Imperial College London. H.H. was supported by an
EPSRC Doctoral Prize Fellowship EP/W524323/1. Analysis was per-
formed on the Imperial College London Research Computing Service
(https://doi.org/10.14469/hpc/2232). The authors would like to thank
David Mack for excellent laboratory management. The authors thank
Matthew O.A. Ellis for the insightful and inspiring discussions regarding
optimisation.

Author contributions
K.D.S. and J.C.G. conceived the work and directed the project
throughout. K.D.S. drafted the manuscript with contributions from all
authors in the editing and revision stages. K.D.S. and L.M. implemented

the computation schemes. L.M. developed the cross-validation training
approach for reducing overfitting on shorter training datasets. L.M.
developed the feature selection methodology for selecting optimal
features frommany reservoirs in the multilayer physical neural network
architecture. L.M. designed and implemented the meta-learning
scheme. K.D.S. designed and implemented the method of inter-
connecting networks. C.C. and T.C. aided in analysis of reservoir
metrics. K.D.S., J.C.G., and A.V. performed FMR measurements. J.C.G.
and H.H. performed M.F.M. measurements. J.C.G. and K.D.S. fabricated
the samples. J.C.G. and A.V. performed CAD design of the structures.
J.C.G. performed scanning electron microscopy measurements. J.L.
contributed task-agnostic metric analysis code. F.C. helped with con-
ceiving the work, analyzing computing results, and providing critical
feedback. E.V. provided oversight on computational architecture
design. K.E.S., E.V., and H.K. provided critical feedback. W.R.B. oversaw
the project and provided critical feedback.

Competing interests
Authors patent applicant. Inventors (in no specific order): K.D.S., J.C.G.,
A.V., H.H., W.R.B. Application number: PCT/GB2022/052501. Applica-
tion filed. Patent filed in the UK through Imperial College London. The
patent covers the method of programming deep networks. The
remaining authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-024-50633-1.

Correspondence and requests for materials should be addressed to
Kilian D. Stenning.

Peer review information Nature Communications thanks the anon-
ymous reviewer(s) for their contribution to thepeer reviewof thiswork. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-50633-1

Nature Communications | (2024) 15:7377 15

https://arxiv.org/abs/2401.07387
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1602.07868
https://doi.org/10.14469/hpc/2232
https://doi.org/10.1038/s41467-024-50633-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Neuromorphic overparameterisation and few-shot learning in multilayer physical neural networks
	Results
	Nanomagnetic reservoirs
	Multilayer physical neural network
	Overparameterisation
	Learning in the overparameterised regime

	Discussion
	Methods
	Experimental methods
	Nanofabrication
	Magnetic force microscopy measurement
	Ferromagnetic resonance measurement
	Data input and readout
	Interconnecting arrays

	Task selection
	Sine transformation tasks
	Mackey-glass forecasting
	Non-linear auto-regressive moving average tasks
	Evaluations of MC and NL
	Frequency decomposition, a few-shot learning task

	Learning algorithms
	Feature selection
	Evaluating overparameterisation
	Meta-learning
	Echo state network comparison
	Multilayer perceptron comparison

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information

