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Abstract Large uncertainties persist in modeling shallow, low clouds because of many interacting
nonlinear processes and multiple cloud‐controlling environmental factors. In addition, sharp changes in
behavior occur when environmental thresholds are met. Model studies that follow a traditional approach of
exploring the effects of factors “one‐at‐a‐time” are unable to capture interactions between factors. We simulate a
stratocumulus cloud based on the Second Dynamics and Chemistry of Marine Stratocumulus field study using a
large‐eddy simulation model coupled with a two‐moment cloud microphysics scheme. The simulations are used
to train a Gaussian process emulator, which we then use to visualize the relationships between two cloud‐
controlling factors and domain‐averaged cloud properties. Only 29 model simulations were required to train the
emulators, which then predicted cloud properties at thousands of new combinations of the two factors. Emulator
response surfaces of cloud liquid water path and cloud fraction show two behavioral regimes, one of thin and
patchy yet steady stratocumulus and one of thick, growing stratocumulus with cloud fraction near 1. Internal
variability (initial‐condition uncertainty) creates unrealistic “bumpy” response surfaces. However, we show that
the variability causing the bumpiness can be characterized in an emulator “nugget term” that is adjusted to match
the distribution of a small number of initial‐condition ensemble simulations at various points on the surface,
thereby allowing a smoother, deterministic response surface to be constructed. Accounting for variability allows
the transition between regimes, and the joint interactions of parameters, to be visualized in a more deterministic
way that has not been done before.

Plain Language Summary Modeling shallow clouds is important because these clouds have an
overall cooling effect on the planet, but the magnitude of this effect is very uncertain. Shallow cloud behaviors
are made up of many interacting processes that work at a large range of scales, and we are not able to fully
describe all these processes in large climate models. We use a machine learning technique called Gaussian
process emulation to approximate output from the high‐resolution cloud model so that we can study the cloud
behavior at a much‐reduced computational cost. By perturbing two cloud‐controlling factors, we create a set of
training data to train the emulator how to approximate the relationship between these factors and cloud
properties of interest. We produce color maps that visually describe this relationship and we show that there are
two regimes of cloud behavior. We assess the best way to account for cloud natural variability in the
approximation. Gaussian process emulation is a vital tool for cloud modeling because it allows us to inspect
whole cloud processes and the relationships between different inputs as they influence the output of interest. In
this way we can better understand cloud processes and their uncertainties.

1. Introduction
Shallow, low clouds cover a larger area of the Earth than any other cloud type, with stratocumulus clouds alone
covering one‐fifth of the surface. They increase Earth's albedo in most regions because they reflect more solar
radiation than the underlying surfaces (Wood, 2012), while having only a small effect on emission of terrestrial
radiation. Therefore, globally, they have a net cooling effect (Hartmann et al., 1992). These clouds are important
for the global radiation budget and how it changes over time in response to warming (cloud feedback: Breth-
erton, 2015; Ceppi et al., 2017; Schneider et al., 2019; Shen et al., 2022) and changes in aerosols (radiative
forcing: Bellouin et al., 2020; Douglas & L'Ecuyer, 2020; Malavelle et al., 2017; J. Smith et al., 2020). However,
their responses to changes in aerosols and the thermodynamic environment (cloud‐controlling factors) are very
uncertain (Myhre et al., 2013). Consequently the corresponding aerosol‐cloud radiative forcing (Bellouin
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et al., 2020; Lund et al., 2019; Seinfeld et al., 2016) and cloud feedbacks (Blossey et al., 2016; Bony &
Dufresne, 2005; Nuijens & Siebesma, 2019; Zhang et al., 2013) are not well understood and significantly
contribute to the uncertainties that persist in climate change projections (Dufresne & Bony, 2008; Peace
et al., 2020). It is crucial that we efficiently use the modeling tools available to narrow this uncertainty in the
outcomes of perturbations and climate feedbacks.

Much of the uncertainty in simulating clouds comes from the large number of interacting cloud‐controlling
factors. Key factors that affect the state and evolution of shallow clouds are local meteorology, large‐scale
forcings, radiative feedbacks and aerosols. Some of these factors, such as thermodynamic properties, can
change on short timescales (hours) and shallow clouds respond quickly because internal changes in cloud
microphysics and precipitation operate on similar timescales. Such cloud‐controlling factors can have a dramatic
effect on cloud properties, such as the rapid change from closed‐to open‐cell cloud structures (Stechmann &
Hottovy, 2016). Other factors, such as large‐scale divergence, operate on longer timescales and it can take 2–
5 days for the cloud to adjust (Bellon & Stevens, 2013). Many of these factors covary and they also have joint
effects on cloud processes, with counteracting effects creating a “buffered system” (Stevens & Feingold, 2009). In
such a complex interacting system, changing one factor at a time to test cloud responses to various drivers cannot
fully capture joint effects and interactions.

Our study has a similar focus to Dal Gesso et al. (2015), a model intercomparison that explored how stratocu-
mulus cloud properties depend on two cloud‐controlling factors (henceforth used interchangeably with “pa-
rameters”): the temperature and humidity differences between the surface and the free troposphere. The initial
profiles of these factors were perturbed over a range of values at discrete Cartesian grid points across the 2‐
dimensional parameter space to study the effect on model outputs, such as cloud cover and liquid water con-
tent. This array of discrete model outputs across the parameter space allowed the model response to be partially
visualized. However, this grid‐point method restricts the information available from the simulation ensemble and,
the number of simulations required to explore n factors also rises with 2n. Additionally, as shown in Feingold
et al. (2016), such a design of simulations may misrepresent the joint effects of factors.

To overcome the limitations of one‐at‐a‐time sensitivity testing and to understand the joint effects of factors, we
use Gaussian process emulation to generate “response surfaces” that describe how cloud properties respond to the
joint effects of multiple cloud‐controlling factors. Gaussian process emulation is a machine learning method to
approximate the relationship between a set of model input parameters and a model output (O'Hagan, 2006).
Compared to other machine learning methods, this requires only a small number of well‐designed model sim-
ulations as training data. The emulator function (the approximated relationship between model outputs and in-
puts) can then be sampled millions of times at a fraction of the computational cost of running the model for the
equivalent points in parameter space. From this dense sampling, we can produce a response surface with an
associated uncertainty at any point in parameter space. The power of emulation is in the ability to study how large
numbers of parameters interact to influence the output of interest and also to visualize all combinations of pa-
rameters within their realistic ranges at comparatively low computational cost. In previous emulation work, the
parameters were often related to uncertain processes in the model, but here the parameters are cloud‐controlling
factors.

Gaussian process emulation has been widely applied in aerosol and aerosol‐cloud science. First, response surfaces
are an effective tool for visualizing the combined effects of the uncertain input parameters and an output of
interest, such as in Marshall et al. (2019, 2021) for volcanic eruptions. Transformations from parameter space to
state space (Glassmeier et al., 2019; Hoffmann et al., 2020) or selection of a few key parameters at once allows
higher dimensions to be visualized (Lee et al., 2011). Second, variance‐based sensitivity analysis based on a large
number of emulator data points rather than the sparse training data is used to understand which parameters
contribute most to the variance in the output of interest (Johnson et al., 2015; Lee et al., 2011, 2013; Regayre
et al., 2014, 2015, 2018; Saltelli et al., 2000). Third, the uncertain parameter ranges can be constrained using
observations of the model outputs (Johnson et al., 2018; Marshall et al., 2021; Regayre et al., 2018, 2020), which
can lead to constraint of additional outputs for which observations are not available.

The first cloud model emulation study was Johnson et al. (2015). They perturbed initial aerosol concentrations
and nine microphysical model parameters in a deep convective cloud microphysics model. Sensitivity analysis
showed that the cloud properties considered were most sensitive to aerosol concentrations and graupel collection
efficiency. This demonstrated the insight that can be gained from emulating cloud models, where buffering can

Journal of Advances in Modeling Earth Systems 10.1029/2023MS004179

SANSOM ET AL. 2 of 17

 19422466, 2024, 9, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023M

S004179 by T
est, W

iley O
nline L

ibrary on [05/09/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



obscure relationships between input parameters and cloud responses. Perturbing multiple input parameters
together reveals how they jointly affect an output and under what conditions certain parameters have a larger
effect than others. Following this work, emulation has been used to analyze the sensitivity of deep convective
cloud properties (Wellmann et al., 2018, 2020) and sea breeze convection (Igel et al., 2018; J. M. Park et al., 2020)
to initial meteorological conditions. Additionally, Glassmeier et al. (2019) and Hoffmann et al. (2020) have used
emulation of state variables to explore cloud‐processes in stratocumulus. Here, we use emulation to study the
covariance of initial meteorological conditions in stratocumulus and, like Johnson et al. (2015) and J. M. Park
et al. (2020), we identify regimes of cloud behavior in parameter space.

Shallow clouds often display sharp changes in behavior (between regimes) as cloud‐controlling factors change.
This can make Gaussian process emulation challenging because of the required assumptions about smoothness.
Feingold et al. (2016) found a steep gradient in a study of nocturnal marine stratocumulus clouds in which six
parameters were perturbed. Pope et al. (2021) demonstrated that the steep gradient in this data set could be
emulated using a non‐stationary method, where Voronoi tessellations defined regions of the 6‐dimensional
parameter space where separate, stationary emulators could be applied, which followed the assumption of
smoothness. The discontinuity was primarily caused by perturbations in aerosol concentration, but the high
dimensionality of the parameter space made visualizing the discontinuity difficult. Here, we have visualized a
steep gradient in two dimensions and used adaptive sampling to explore it, but we found that it emulates
reasonably so stationary methods sufficed.

Another challenge in visualizing cloud behavior as a response surface is that some cloud models exhibit a high
degree of internal variability, which may obscure the deterministic behavior that an emulator is designed to
represent. In a purely deterministic model, the emulator function should interpolate exactly through all the
training data. However, due to the nonlinear processes within cloud models, a small change in the initial con-
ditions can lead to much larger changes later in the simulation, making the cloud properties highly dependent on
the initial conditions used for the simulations at each point in parameter space. Internal variability can be averaged
out by running initial‐condition ensembles at each point in parameter space and using the ensemble mean as
training data (Henderson et al., 2009; Johnson et al., 2011; Oyebamiji et al., 2017). For global climate models,
which are resource intensive, this variability is usually estimated using maximum likelihood methods (Pope
et al., 2021; Williamson & Blaker, 2014). Here, we show that the internal variability of our cloud model can be
approximated based on initial‐condition ensembles at just a few points in parameter space.

In this study, we assess the ability of statistical emulation to capture the transition between two regimes of shallow
cloud behavior as initial vertical profiles of two cloud‐controlling factors (parameters) are varied. We then
explore a method to quantify internal variability and account for it when training emulators. We start from a
homogeneous stratocumulus‐topped boundary layer that has steady cloud properties despite environmental
conditions that make the cloud prone to breaking up, as hypothesized by Lilly (1968), Randall (1980) and
Deardorff (1980), before Mellado (2017) later concluded that such cloud break up is not so distinct. Two pa-
rameters are perturbed to identify where cloud breakup does occur across the parameter space. We will answer the
following questions. First, how well can we characterize the change in cloud behavior using statistical emulation?
Second, can we visualize the transition between regimes to discern how distinct they are? Third, how can we
account for the model's internal variability in the emulators so that the response surfaces represent deterministic
cloud behavior rather than single realizations of nonlinear processes?

The remainder of this paper is laid out as follows. Section 2 gives context to the cloud‐breakup region and
Section 3 describes the model simulation setup, the initial simulation and the parameter perturbations. Section 4
discusses the cloud behavior displayed across the perturbed parameter ensemble (PPE) and exploring the model's
behavior around the cloud‐breakup threshold. The model's internal variability will be quantified and included in
the emulation method in Section 5. The results are discussed further in Section 6.

2. Theoretical Context
The simulations are based on observations from the first research flight (RF01) of the Second Dynamics and
Chemistry of Marine Stratocumulus field study (DYCOMS‐II) (Stevens et al., 2003), which took place off the
west coast of California in July 2001. Flight RF01 observed a homogeneous, non‐drizzling stratocumulus cloud
deck over 9 hr through the night. Dropsondes measured a well‐mixed boundary layer up to 850 m initially, but the
boundary layer and cloud layer deepened by 50 m over the course of the flight, resulting in a 250 m thick cloud.
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The well‐mixed stratocumulus‐topped boundary layer was capped by a temperature inversion, where the potential
temperature, θ, increased by 8.5 K and the total water mass mixing ratio, qt, decreased by 7.5 g kg

− 1 within a few
tens of meters of cloud top.

Stevens et al. (2005) conducted a large‐eddy simulation (LES) model intercomparison study based on RF01 to
compare 10 models. Many of the models simulated a more broken cloud than observed, with lower cloud fraction
and lower liquid water path (the vertically integrated liquid water content), and some simulated boundary layer
decoupling, which was not observed. A decoupled boundary layer is no longer well‐mixed and cloud water
content tends to decrease because ocean moisture no longer reaches the cloud layer. Stevens et al. (2005) sug-
gested that differences between the models and observations might partially be because the temperature and
humidity properties of the inversion made the simulations particularly sensitive to a cloud‐dissipating mechanism,
cloud‐top entrainment instability, described below. Other LES studies that have simulated DYCOMS‐II RF01
generally fall within the multi‐model range of the intercomparison study (Ghonima et al., 2015; Pressel
et al., 2017; Xiao et al., 2011; Yamaguchi & Randall, 2008).

The stratocumulus‐topped marine boundary layer can persist as a uniform cloud field for days before transitioning
to a cumulus state or breaking up (sometimes entirely) within a couple of hours. Lilly (1968) proposed a theo-
retical mechanism for this rapid change where warm, dry air mixed into the cloud from above (entrainment) leads
to evaporative cooling and enhanced mixing, which may create a positive feedback that can rapidly dissipate the
cloud. Mellado (2017) summarized recent studies that found the feedback is not strong enough under realistic
conditions to dissipate marine stratocumulus clouds, especially alongside other confounding factors.

Randall (1980) and Deardorff (1980) derived an inversion instability parameter, κ, with a threshold beyond which
the cloud‐dissipating feedback occurs,

κ = 1 +
cp
Lv

Δθl
Δqt

, (1)

where cp is the specific heat of air, Lv is the latent heat of vapourization, Δθl and Δqt are the changes in potential
temperature (for liquid water) and in total water mass mixing ratio, both at the inversion. Van Der Dussen
et al. (2014) summarized the Randall and Deardorff criterion as κ = 0.23, which we use as the threshold value
here. Several studies have improved on this derivation and mapped out the dependence of κ on these two pa-
rameters, Δθl and Δqt, using one‐at‐a‐time model sensitivity simulations (Dal Gesso et al., 2015; Kuo &
Schubert, 1988; MacVean & Mason, 1990; Siems et al., 1990; Van Der Dussen et al., 2014; Xiao et al., 2011;
Yamaguchi & Randall, 2008).

Here we simulate DYCOMS‐II RF01 and perturb Δθl and Δqt across a range of values to map out cloud behavior
in their joint parameter space and visualize the transition to a degree that has not been done before.

3. Experiment Design
3.1. Model Description

The LES model used here is the UKMet Office/Natural Environment Research Council (NERC) Cloud (MONC)
model (N. Brown et al., 2020). All simulations were nocturnal and used the longwave cooling parameterization
used in Stevens et al. (2005) and Ackerman et al. (2009), which calculates the net upward longwave flux from the
liquid water mass mixing ratio profile and several tuning parameters, for which we have used the same values as
in Stevens et al. (2005). Horizontal resolution was 30 m and vertical resolution varied between 7.5 m around the
inversion and 10–20 m elsewhere in the boundary layer. The domain size was 250 by 250 grid boxes with 110
vertical layers up to 1,500 m. The subgrid mixing scheme for unresolved turbulence, diffusion and viscosity is an
extension of the Smagorinsky‐Lilly model (detailed in A. R. Brown et al., 1994).

The microphysics scheme used is the Cloud AeroSol Interacting Microphysics (CASIM) model, which is a bulk
scheme that can use up to three moments for each hydrometeor (Dearden et al., 2018; Field et al., 2023; Hill
et al., 2015; Shipway & Hill, 2012). Here we define cloud liquid and rain droplets by two moments: number
concentration and mass mixing ratio.

The particle size distribution is defined as,
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N(r) = N0rμe− γr , (2)

where r is a measure of size, N0 is the distribution intercept parameter, μ is the shape parameter and γ is the slope
parameter (Shipway & Hill, 2012). The kth moment is then defined by,

Mk =∫ rkN(r)dr, (3)

giving the number concentration (zeroth moment) as M0 = N0 and the mass mixing ratio (third moment) is
M3 =

4
3πr

3N0 exp ( 92ln
2 σ) for a lognormal distribution.

Condensation and evaporation were calculated by a saturation adjustment scheme, where any surplus water vapor
in the cloud condenses onto the fixed number of cloud droplets and any deficit evaporates from the droplets,
keeping the relative humidity within the cloud at 100%. Cloud droplets can be autoconverted and collected into
rain droplets, and rain droplets can precipitate and either reach the surface or evaporate in sub‐saturated air below
the cloud base. Condensation of water vapor onto rain cannot occur due to the saturation adjustment scheme (Gray
et al., 2001). Sedimentation was switched on for both cloud droplets and rain, which advects water mass
downwards through the boundary layer. Autoconversion and collection are dependent on cloud water mass
mixing ratio, rain water mass mixing ratio and droplet number concentration (Khairoutdinov & Kogan, 2000).
New air is homogeneously mixed from above the cloud into the cloud layer, which means clear air is mixed into
the cloudy air before evaporation is calculated so all droplets are evaporated equally until saturation is reached.
Thus, there is a reduction in cloud droplet radius, but cloud droplet number is not affected.

3.2. Perturbed Parameter Ensemble

A base simulation was initialized to match the DYCOMS‐II RF01 setup in Stevens et al. (2005). The simulation
was run for 8 hr with initial surface sensible and latent heat fluxes of 15 W m− 2 and 115 W m− 2. The initial
profiles of θ and qt are shown in Figure 1.

We perturbed the initial Δθ and Δqt to explore the joint effect of these two parameters, creating a perturbed
parameter ensemble (PPE) in the 2‐dimensional parameter space (Figure 1). The initial profiles were kept the
same up to the inversion at 840 m, where the magnitude of the jump was varied for both. The ranges for these
parameters were chosen based on the ranges outlined in Van Der Dussen et al. (2014):

2 K≤ Δθ ≤ 20 K (4)

− 9 g kg− 1 ≤ Δqt ≤ 0 g kg− 1. (5)

Figure 1. Initial profiles of potential temperature and total water mass mixing ratio for all simulations. Solid lines show the
base simulation values taken from the DYCOMS‐II observational campaign flight RF01, while gray lines show the profiles
for the perturbed parameter ensemble members.
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Theoretically, cloud thickening occurs for conditions below the κ threshold
which is in the region of parameter space where Δθ → 20 K and Δ qt →
0 g kg− 1. Cloud thinning occurs above the κ threshold where Δθ→2K and Δ
qt → − 9 g kg− 1. For a cloud fraction ≈1, cloud thickening is roughly anal-
ogous to an increasing liquid water path throughout the simulation—a posi-
tive liquid water path tendency.

The PPE simulation data were used as training data for Gaussian process
emulation. The combinations of joint values of Δθ and Δqt were defined using
a “maximin” Latin hypercube algorithm comprised of 20 simulations, which
has been shown to be sufficient to create an emulator over a 2‐dimensional
parameter space (Lee et al., 2011; Loeppky et al., 2009; Morris & Mitch-
ell, 1995). The Latin hypercube (Figure 2) is a space‐filling design that
samples the parameter space efficiently to provide as much information as
possible about the model to an emulator. In comparison, regular gridded
(Cartesian) designs are an inefficient way of sampling a high‐dimensional
space. This becomes crucial if the sensitivity to some parameter perturba-
tions is much greater than for others. When this type of design is projected to
lower dimensions, as in Figure 2, design points are not replicated.

Although the 20‐member PPE was sufficient for training an emulator, it lacked data around the particular region
of interest. As will be shown later, the PPEwas supplemented by six additional training points to sample near the κ
threshold and areas where more extreme model output values were observed.

3.3. Gaussian Process Emulation

Gaussian process emulation is a Bayesian statistical approach to generate a mapping between a multi‐dimensional
input space (the parameters) and an output of interest (O'Hagan, 2006). This mapping can be used to predict the
model's output for thousands of new parameter input combinations at a considerably reduced computational cost.
It requires training data, consisting of input settings and corresponding output data from multiple model simu-
lations over the perturbed parameter ranges. Under the Bayesian paradigm, the approach is initiated with a prior
Gaussian process specification for this mapping, which encapsulates any prior knowledge about the model output.
The prior is updated using the training data to create a better estimation of the function representing the model
output response (also of Gaussian form) to the perturbed inputs. This better estimation is a posterior Gaussian
process specification, and is our emulator which can be thoroughly sampled. The uncertainty surrounding each
emulator‐predicted output value is also calculated assuming a Gaussian error structure and based on proximity to
the training data. A second smaller set of simulations is used to validate the emulator to ensure that it is producing
a reasonable representation of the model's behavior.

For constructing the emulator, the prior consisted of a linear mean function and the Matérn 5
2 covariance structure.

The Matérn covariance structures have been found to work well for rougher output. All emulation processes were
calculated using the “km” function of the DiceKriging package (Roustant et al., 2012) in R (R Core Team, 2018).
The emulator fit is described by a set of hyperparameters, which are difficult to specify in the prior so they are
estimated from the training data within the “km” function. Initial values are estimated and then optimized using
the Broyden–Fletcher–Goldfarb–Shanno algorithm (Fletcher, 1987) to maximize the marginal likelihood func-
tion (J.‐S. Park & Baek, 2001; Rasmussen & Williams, 2006). Our estimation of the nugget term, introduced in
Section 5, is compared to the in‐built estimation of the nugget term using this maximum likelihood estimation
(MLE). A validation data set consisting of eight additional simulations was created by augmenting the 20‐point
Latin hypercube design.

4. Results
We focus on the response of in‐cloud liquid water path and cloud fraction to perturbations in cloud‐controlling
factors. The cloud fraction is the fraction of columns with liquid water content greater than 0.01 g m− 3. The liquid
water path and cloud fraction values are calculated as domain means over the final 2 hr of simulation time. The

Figure 2. Latin hypercube design for the PPE. Circles show training points
and squares show validation points. Faded markers show the distribution
along each dimension. The triangle marker is the base simulation.
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tendencies of both are the rates of change over the remaining 6 hr of simulation time, after the 1.5‐hr spin‐up
period.

4.1. Base Case Simulation

The base simulation has mean liquid water path, L, of 38 g m− 2 (Figure 3a), similar to the multi‐model mean in
Stevens et al. (2005) of 40 g m− 2. The top‐down liquid water path snapshots in Figure 3c (inset) show that the
cloud initializes as homogeneous stratocumulus and the cells grow and thicken slightly over 6 hr. The cloud
boundaries are mostly constant during the simulation, with cloud base at around 600 m and cloud top at 840 m. L
increases through the simulation up to 56 g m− 2, so the L tendency is 2.2 g m− 2 hr− 1, whereas it is slightly
negative in Stevens et al. (2005). Cloud fraction, fc, starts at 0.87 (Figure 3c) and decreases to 0.72 giving a fc
tendency of − 0.02 hr− 1. The initial fc is in the lowest quartile of the multi‐model range in Stevens et al. (2005).
The multi‐model mean fc begins near 1 and decreases to approximately 0.8, with the majority following similar
behavior, but a small number of models simulated a decrease to around 0.2.

4.2. Perturbed Cloud Behavior

Figures 3a and 3c show that there is considerable spread across the PPE for both L and fc. The space is split into
two regions: A where κ is above the threshold, B where κ is below the threshold. In region A, three simulations do
not show any substantial stratocumulus, with L < 25 g m− 2 and fc < 0.5. Four simulations show a very thin
stratocumulus with 25 < L < 50 g m− 2 and initial fc > 0.7. These clouds thicken slightly through the simulation

Figure 3. PPE model output. Liquid water path (a) timeseries post‐spinup to the end of the simulation, the last 2 hr of which is averaged (shaded area) to produce (b) the
training data in joint parameter space, Δθ versus Δqt. Cloud fraction (c) timeseries and (d) training data. The inset in panel (c) shows top‐down snapshots of the liquid
water path for the base simulation. The κ line is the theoretical threshold described in Section 2, which splits the regions into A and B. Simulations from region A are
marked in panels (a, c) with a black dot at the beginning. Initial‐condition ensembles, discussed in Section 5, were run at a selection of training points. The spread of
these ensembles is shown by the shaded ensemble range and their locations in parameter space by the upright triangles.
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with L increasing up to 65 g m− 2 and fc decreasing by 0.1–0.2 as the cloud water aggregates. One point in this
region, at coordinates Δθ= 5 K and Δqt= − 4 g kg

− 1, is better described alongside the simulations in region B and
along the κ line. For those simulations, L begins in the range of 50–80 g m− 2 and increases by 30–120 g m− 2.
These clouds all have initial stratocumulus with fc > 0.9 and most remain in that region or decrease to 0.8.

Low Δθ (a weak temperature inversion) generally produces low L, shown in Figure 3b, which reaches a minimum
of 21 g m− 2 at Δθ= 2.5 K.With a stronger inversion L also generally increases, up to 160 g m− 2 at Δθ= 20 K. For
high Δqt (a moist free troposphere) L is high, up to 185 g m− 2 for Δqt= 0 g kg− 1. With a drier free troposphere L is
generally lower, down to 20 g m− 2 for Δqt= − 8.7 g kg

− 1. The two parameters have a combined effect such that L
is lowest for weak inversions with a dry free troposphere and highest for strong inversions with humidity similar
to the boundary layer.

Low Δθ generally produces low fc, shown in Figure 3d, down to 0.3 at Δθ = 2.5 K. As the inversion gets
stronger, fc generally increases up to 0.9 at Δθ = 20 K. At high Δqt fc approaches 1 for Δqt = 0 g kg− 1.
With a drier free troposphere fc is generally lower, down to about 0.5 for Δqt = − 8.7 g kg− 1. As with L,
the two parameters have a combined effect such that fc is lowest for weak inversions with a dry free
troposphere and highest for strong inversions with humidity similar to the boundary layer.

The spatial distribution of L is shown in Figure 4 at the end of each simulation for the 20‐member PPE. Two of the
simulations that do not form stratocumulus can be seen to the lower left of the figure as small cumulus clouds.
Moving toward higher Δqt and Δθ the plots show stratocumulus with higher L and fc, and in the top row they
become quite thick.

None of the simulations are drizzling significantly, but most region A simulations drizzle two to three orders of
magnitude less than those in region B. The exception is the point at Δθ = 5 K and Δqt = − 4 g kg− 1 previously
identified.

In summary, the PPE simulations show that cloud behavior across parameter space falls into two behavioral
regimes that are approximately separated by the theoretical κ parameter threshold. Above the κ threshold, in
region A, the simulations generally have very thin stratocumulus cloud or small cumulus that show little to no
growth throughout the simulation. On and below the κ threshold, in region B, the simulations have stratocumulus
cloud with a high fc and a medium L that increases throughout the simulation. There is one point in region A at
Δθ = 5 K and Δqt = − 4 g kg− 1 that behaves more like the simulations in region B.

4.3. Response Surface Analysis

Here we show emulator results from the 26‐point training set. We used the PPE to train Gaussian process em-
ulators of L, fc, L tendency and fc tendency. To validate the emulators, we compared the emulator predictions
against model output from the validation runs. For all the emulators, the model values are within the emulator
prediction 95% uncertainty ranges. The validation results can be found in Figure S1 in Supporting Information S1.

The L response surface in Figure 5a follows the behavior described previously by the training data, with low L for
low Δqt, low Δθ (dry, cool free troposphere) and high L for high Δqt, high Δθ (moist, warm free troposphere). But
the response surface reveals that Δqt has the largest effect on L and for high Δqt L becomes invariant to Δθ. There
is a local maximum at Δθ = 15 K and Δqt = − 4.5 g kg− 1, which we will discuss in Section 5. The L tendency
response surface in Figure 5b follows a similar pattern to L. The tendency is most positive where the L is high, that
is, where there is most growth. The tendency is very close to zero where the liquid water path is low. It also shows
a higher dependency on Δqt and has a local maximum in a similar location. Additionally, the emulator predicts
some slightly negative values in the corner of parameter space with low L, however the emulator has limited
information at extremities so large uncertainties exist here.

The fc response surface in Figure 5c also follows the behavior described previously, with low fc for low Δqt, low
Δθ (dry, cool free troposphere) and high fc for high Δqt, high Δθ (moist, warm free troposphere). As with L, Δqt
has a larger effect than Δθ, but it is not as stark as in L. The fc tendency is mostly negative across the parameter
space, with only a slightly positive region at low values of Δqt and Δθ. This is because there are only small
cumulus clouds at start of the simulation (Figure 4) and these are mostly unchanging throughout the simulations,
but increase in cloud cover slightly. Where fc is approximately 1, fc tendency is close to zero and slightly negative.
The rest of the fc tendency surface is very uneven (noisy) since there are only small changes in fc throughout the
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simulations (Figure 3c). Some of the validation points are close in value to the predicted surface, but a few points
are quite contrasting, which suggests that the surface is not very representative of the model behavior at these
points.

The κ threshold separating regions A and B approximately follows the surface contours, except for fc tendency.
The surfaces show a smooth gradient between these regions of parameter space rather than a discontinuity. In the
cloud behavior analysis in Section 4.2, there was a single point in region A at Δθ = 5 K and Δqt = − 4 g kg

− 1 that
did not fit with the other points in terms of behavior. We can now see in Figures 5a and 5b that the contours curve
round in this part of parameter space.

5. Internal Variability
Clouds and cloud models contain many interacting nonlinear processes that make them sensitive to small vari-
ations in initial conditions. The output of two PPE members that are close together in parameter space may be
quite different due to this internal variability, that is, only some portion of the difference is caused by perturbing
the parameters. This variability creates a “bumpy” response surface because the output is affected by non-
linearities in any direction from a single point on the surface, and the emulated function interpolates through each

Figure 4. Liquid water path for the last timestep of the first 20 training simulations. Plots are ordered approximately by
location in parameter space. The null value (dark blue) shows where liquid cloud droplet mass mixing ratio <0.01 g kg− 1 at
all levels.
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point exactly (see Figure 6a). In attempting to fit training data, the mean function may also distort in areas lacking
data, creating additional extrema that are not based on the model's deterministic output. An example is the
maximum around Δθ = 15 and Δqt = − 4.5 in Figure 5a. These bumps and extrema do not allow the emulator to
accurately represent the deterministic cloud behavior that we aim to capture with response surfaces.

We can quantify the internal variability affecting each model output by running “initial‐condition” ensembles,
where instead of perturbing cloud‐controlling factors we slightly perturb the turbulence structure at the start of a
simulation. Turbulence is initiated in MONC and other LES models by imposing small random temperature

Figure 5. Response surfaces produced from emulator mean predictions. (a) Liquid water path, (b) liquid water path tendency, (c) cloud fraction and (d) cloud fraction
tendency.

Figure 6. Schematic of the effect of adding a nugget term on the response surface smoothness. (a) The purple response surface
interpolates exactly through the blue and green training points so the emulator residuals are zero. (b) The response surface is
smooth after adding a nugget term, so the surface interpolates through a prescribed buffer around the blue and green training
points. The nugget term is appropriately large when the distribution of model residuals matches the emulator residuals.
Initial‐condition ensembles have been run at a selection of points (orange) to gauge the nugget term.
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fluctuations during simulation initialization. To make simulations repeatable, the randomization is usually
seeded. However, by truly randomizing them, without changing the cloud‐controlling factors, we can gauge how
much fluctuation in the output is due to internal variability. Ideally, we could run initial‐condition ensembles at
every training point and build an emulator using the mean values at each point, but this is computationally
expensive for many climate models. We therefore explore using a small number of initial‐condition ensembles to
estimate the variability and incorporate it into the emulator builds using a hyperparameter called a “nugget term.”
Instead of interpolating the training data exactly, it allows the mean function to pass within a buffer either side of
the output value creating a much smoother response surface.

In the posterior Gaussian process, the covariance function estimates the uncertainty for any predicted point
depending on its distance from the training data. In this study, the covariance between any two points is,

V(xj,xk) = σ2K(xj,xk), (6)

where σ2 is the variance of the Gaussian process and in this caseK(xj, xk) represents theMatérn class of covariance
functions. The covariance function can be extended to include the nugget term, σ2N ,

V(xj,xk) = σ2K(xj,xk) + σ2N δj,k, (7)

where δj,k is the Kronecker delta function, which equals 1 for j = k and equals 0 otherwise. The nugget term is
often included to alleviate numerical issues in deterministic models, but there are additional benefits to adding one
(Andrianakis & Challenor, 2012; Gramacy & Lee, 2012). Practically, the nugget term is a variance that is added at
each training point allowing the mean function to vary within that range and no longer interpolate exactly through
that point.

For the response surface to most‐realistically represent the model's deterministic behavior, we hypothesize that
the variance added with the nugget term should be equal to the variance of the model's internal variability. In
Figure 6a, the emulator mean function interpolates exactly through the training points resulting in a bumpy
response surface, where the residuals between the emulator mean function (the response surface) and model
outputs are zero. However, each training point is a single draw from the initial‐condition ensemble (Figure 6b).
With a nugget term that represents the variance of the initial‐condition ensemble, the emulator residuals at
training points vary around zero. Following our hypothesis, we aim to create a surface for which the distribution
of emulator residuals at training points has a similar spread to the distribution of the initial‐condition members,
which represent the internal variability.

We ran 5‐member ensembles at nine training points, which were selected to cover the parameter space well, with a
particular focus on sampling the range of output values. The timeseries evolution of the ensembles is shown in
Figure 3 and the intra‐ensemble differences in the simulated final cloud fields are shown in Figure 7. Figure 8
shows that the variance increases with the mean value, which indicates the internal variability varies across
parameter space. We make the assumption that the variance of one initial‐condition ensemble is representative of
the variance in nearby parameter space and can be applied to other training data in that area. The small sample size
lowers the accuracy of the ensemble variances, however, we must approximate the variance because it is un-
feasible to run larger ensembles at each point. There may be more appropriate methods to gauge the variance, for
example, for some outputs it may be suitable to calculate the variance across the domain or timeseries.

We use the variance of the “model” residuals (difference between each ensemble member and the ensemble
mean) to estimate an appropriate nugget term for the L emulator. For each of the training points, Zi, in the training

data set Z1, …, Zl, running initial‐condition ensembles gives a set of estimates, (Z(1)i ,…,Z(k)i ) , for k ensemble

members at Zi. The ensemble means and residuals are calculated as

Zi =
1
k
∑
k

j=1
Z( j)i (8)

r( j)i = Z( j)i − Zi. (9)
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The nugget term is applied as a vector, V = (v1, …, vl), where vi is the variance of each ensemble, σ2i , that
should be applied at each Zi. We compared using all nine ensemble variances, applied to their nearest
neighbors, against using just one ensemble variance for each regime. We used the Kolmogorov‐Smirnov (KS)
two‐sample test to test whether these samples are statistically likely to be from the same distribution. For

those with a p‐value less than 0.05 we must reject the null hypothesis that
the samples could be drawn from the same distribution.

For L, Figure 9 shows that just two ensemble points, one from each region,
can be used to calculate the nugget vector and provides a similar result to
using all nine ensembles. Without any nugget term applied, in Figure 9a, the
response surface has an unfounded maxima. Using MLE to estimate the
nugget term (Figure 9b) does not help to smooth the surface and does not
make the two histograms comparable as the surface is still forced to pass too
closely to the training output. We have shown the results for 9 (column c) and
2 (column d) ensemble points here. Most other combinations of points were
sufficient, and many of the variances could be used as a single nugget term for
all training points. The exceptions were the two ensemble points in the
extremely low L corner of parameter space. If only these two were used, the
nugget term was not sufficiently large. Figure 9e shows a nugget term that has
been adjusted to be too large. Here, the response surface begins to default to
the prior mean function and information about the relationship is lost, such as
the lack of dependence on Δθ at low values.

Figure 10 shows the results using minimal ensemble points for the other
emulators. For L tendency (column a) and fc (column b), 2 ensemble points
were sufficient, but it produced a better result for fc when the parameter space
was split at the steeper gradient, with 1 point for the 3 values in the low fc
corner and 1 point for the rest. There is not much visible smoothing in the
response surface suggesting that an ensemble member with larger variance in
region B might give a better result. For the fc tendency, at least 5 ensemble
points were required for an appropriate nugget term. In this case, the variance
in the output is quite changeable across parameter space so more sampling is
required than for the other outputs. For response surfaces with the nugget term

Figure 7. In‐cloud liquid water path in the final timestep for each five‐member ensemble simulation.

Figure 8. Initial‐condition ensemble variance. (a) The 5‐member ensemble
model values and (b) the residual values against the nine ensemble mean
values.
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added, the behavior across parameter space remains approximately as described in Section 4.2, but it is smoother
and represents the model's general behavior better. Figure S2 in Supporting Information S1 shows the validation
results of these response surfaces.

This analysis shows that smoother, more deterministic response surfaces can be produced by estimating the
internal variability from initial‐condition ensembles. If the internal variability is sampled in areas that capture the
range of output behavior, or over distinct regimes, fewer points are needed. For smoothly varying output, just one
initial‐condition ensemble may suffice. With more regions of differing behavior and a less well‐behaved (more
noisy) surface then neither 2 nor 5 ensemble members is likely to be enough.

6. Discussion and Conclusions
We have used Gaussian process emulation to analyze and visualize the dependence of stratocumulus clouds on the
initial profiles of two cloud‐controlling factors with a relatively small computational cost.

We found there are two distinct behavioral cloud regimes in the explored parameter space, with a smooth
transition between them. Our findings agree with Mellado (2017), in that cloud‐top entrainment instability is not
strong enough to break up the cloud by itself, and there is no distinct point beyond which the cloud rapidly breaks
up, as hypothesized by Lilly (1968), Randall (1980) and Deardorff (1980). However the κ parameter does
approximately mark a behavior change between region A (Figure 5), which has thin stratocumulus cloud (or small
cumulus) and very little growth, and region B, which has stratocumulus that starts with high cloud fraction,
moderate liquid water path, and grows throughout the simulation.

Internal variability presents a challenge for training an emulator that describes the deterministic response of cloud
fields to cloud‐controlling factors. Failure to account for variability resulted in bumpy response surfaces.

Figure 9. The mean liquid water path emulator with nugget terms applied. (a) No nugget term, (b) maximum likelihood estimation, (c) 9 ensemble points (d) 2 ensemble
points, and (e) a term that is only just too large. Top row: emulator predicted response surfaces with transect line. Orange circles indicate which ensemble points were
used in the nugget term calculation. Middle row: transects along orange line showing mean emulator function and associated uncertainty. Bottom row: histogram
comparison of emulator and model residuals (Figure 6). The RMSE, Kolmogorov‐Smirnov p‐values, and overlap fractions are given for each nugget term.
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Although previous studies have used initial‐condition‐ensemble means as training data at each point (Johnson
et al., 2011) this is not feasible with cloud or climate models. Our approach showed that sampling the internal
variability in each distinct regime was usually sufficient to approximate the size of the nugget term. However, for
more variable output more initial‐condition ensembles are likely necessary to capture how the variance changes
across the parameter space. Additionally, sometimes the small ensemble number will not give an accurate
variance at a training point. For the fc emulators, there was one ensemble point that had a much smaller variance
and thus did not produce a large enough nugget term when used with all 9 members. This method is dependent on
the training data and the chosen ensembles, and may require some adjustment of the nugget term on inspecting the
emulator. Assessing the emulator performance, the detail in the response surface (whether it could be physical or
not), the validation result, as well as the error bars are all part of checking whether a nugget term is appropriate.

Without including aerosol processes in the simulation some cloud breakup mechanisms are not accounted for in
our simulations, such as rain‐depletion feedbacks (Goren et al., 2019). We also used a lower fixed droplet number
concentration than Stevens et al. (2005), however we repeated the simulations with a higher fixed concentration
and found the general behaviors in each region aligned with the lower concentration case shown here. The lack of
rapid cloud breakup fits with the conclusion in Mellado (2017) that the feedback mechanism is too weak to break
up the cloud by itself.

One unexpected benefit of producing a response surface from a PPE and emulator was the ability to identify
outliers in the data. Against the backdrop of the PPE and the emulated surface these simulations clearly stand out,
allowing further investigation into why they do not fit with the rest of the data. In some cases, this could identify
an interesting region of parameter space in the real world, or an internal variability extremity that could be
investigated with a small ensemble, or perhaps a collection of parameter settings for which the model is unstable.
Otherwise, it may simply be a corrupted value in the model and can be discarded. Another benefit of emulation is
the ability to constrain the output using history matching, a method where emulator predictions are compared with
observations, which has been used to constrain aerosol forcings (Johnson et al., 2018; Regayre et al., 2020, 2023;
Watson‐Parris et al., 2020). Implausible regions of parameter space can be “ruled out” using reanalysis‐derived
values of the input parameters and satellite retrievals of the outputs, allowing for emulator uncertainty, obser-
vational uncertainty and model structural errors.

Figure 10. Cloud property emulators with and without nugget terms applied. (a) Liquid water path tendency, (b) cloud fraction and (c) cloud fraction tendency. Top row:
emulator predicted response surfaces. Orange circles indicate which ensemble points were used in the nugget term calculation. Middle row: transects along the orange
line in top row showing mean emulator function and the associated uncertainty. Bottom row: histogram comparison of emulator and model residuals (Figure 6). The
RMSE, Kolmogorov‐Smirnov p‐values, and overlap fractions are given for each nugget term.
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As climate models get more complex, machine learning is an invaluable tool for understanding processes. The
number of simulations required to fully explore uncertainties and certain aspects of models is already infeasible,
particularly with the nonlinear behavior of clouds. Statistical emulation has already proven to be immensely
useful for sensitivity analysis of model parameters in climate studies. Here we have shown it in a different ca-
pacity by perturbing cloud‐controlling factors, which has only recently begun to be explored. We believe this is a
unique method for exploring cloud processes, and it can be expanded to include changes in aerosol concentra-
tions, parameterization coefficients and more meteorological parameters.

Data Availability Statement
The PPE data from the MONC model can be found on Zenodo at https://doi.org/10.5281/zenodo.10036710
(Sansom, 2023). All code used in the analysis can be found on GitHub, licensed under MIT, at https://github.com/
eers1/dycoms_analysis, with version 1 archived on Zenodo at https://doi.org/10.5281/zenodo.11204877 (San-
som, 2024). All analysis was done using Python which is Open Source. A version of the MONC model is also
available on GitHub at https://github.com/Leeds‐MONC.
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