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Abstract

The potential of passively generated big data sources in transport modelling is well-
recognised. However, assessing their accuracy and suitability for policymaking remains
challenging due to the lack of ground-truth (GT) data for validation. This study evalu-
ates the accuracy of inferring human mobility patterns from global positioning system
(GPS), call detail records (CDR), and global system for mobile communication (GSM)
data. Using outputs from an agent-based simulation platform (MATSim) as ‘synthetic GT’
(SGT), synthetic GPS, CDR, and GSM data were generated, considering their positional
disturbances and conventional spatiotemporal resolutions. Mobility information, includ-
ing activity location, departure time, and trajectory distance, derived from the synthetic
data, was compared with SGT to evaluate the accuracy of passive trajectory data at both
disaggregate and aggregate levels. The results indicated a higher accuracy of GPS data in
identifying stay locations at high resolution. But, GSM data at a lower resolution effectively
accounted for over 80% of the variability in stay locations. Comparisons of departure time
distribution and travel distance revealed higher measurement errors in GSM and CDR data
than in GPS data. The proposed simulation-based accuracy assessment framework will aid
transport planners select the most suitable data for specific analyses and understand the
potential margin of error involved.

1 INTRODUCTION

Over the past decade, passively generated spatiotemporal data
have emerged as popular sources for extracting mobility infor-
mation, such as activity location, departure time, and mode
of transportation. Among various types of passive data, the
most commonly used data for understanding travel behaviour
and travel demand modelling include anonymous global posi-
tioning system (GPS), call detail records (CDR), global system
for mobile communication (GSM) data, social media data, and
public transport smart card records [1–4]. These datasets are
typically characterised by their large size and the provision of
updated, near-real-time spatial and temporal information from
a substantial sample size over an extended observation period
[5, 6]. However, utilising such data for transport planning poses
challenges primarily due to their varying degree of spatiotempo-
ral density, restrictions imposed by the General Data Protection
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Regulation (GDPR)1, and the presence of various types of noise
that impact the accuracy and precision of extracted mobility
information [9].

Errors in data can arise from different sources, including the
devices and technology used for data collection, data process-
ing skills, software, and algorithms employed [10]. For example,
multipath interference, sampling bias and satellite errors are
sources of error in GPS data or influence of tower location
density and cell size effect in GSM and CDR data [11–13].
Additionally, noise may appear due to aspects related to users,

1 The implementation of GDPR varies significantly across different regions globally, and its
presence can impact data quality and availability [7, 8]. For example, it might result in the
exclusion of brief and infrequent travel patterns, which could potentially expose personally
identifiable information. In this particular context, the GDPR did not affect the results as
it is not in place in Dhaka (and in many other parts of the developing world).
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such as randomness2 in users’ mobility behaviour, access to the
service (which could be influenced by network coverage and
socio-demographic characteristics), communication, and tech-
nology usage patterns [14–16]. For example, the frequency of
phone calls and the number of users using a single device influ-
ence the quality of CDR data [17, 18]. Other contextual factors
such as land use, topography, vegetation, and urban density can
introduce additional inaccuracies in the data [19–24]. There-
fore, it is essential to assess the reliability and precision of
trajectory information extracted from various passive sources
before employing mobility information for transport planning
and modelling. Such an accuracy assessment is necessary to vali-
date the passive trajectory data as an alternative to conventional
survey data and is particularly important in the context of the
Global South where the collection of survey data is often labour
and resource intensive.

Many studies have focused on the accuracy and precision
of passive trajectory data due to different types of noise and
its determinants, defining three main perspectives: data source
(technology), spatial context, and user attributes. Evaluating
accuracy from the standpoint of data source and spatial context
underscores the crucial significance of temporal and spatial pre-
cision within trajectory data, as these factors directly impact the
validity of research on human mobility [25, 26]. For instance,
when utilising passive data for trip-based demand modelling
as the starting point for generating origin-destination (O-D)
matrices, precise identification of the geo-referenced location
and trip timing is a prerequisite [27]. Similarly, in order to use
passive data in activity- and agent-based demand modelling,
precise information regarding activity locations is necessary to
infer trip purposes and accurately reflect corresponding travel
patterns [28]. While methodologies for assessing the accu-
racy of trajectory data collected by surveys (e.g. manual survey
and smartphone app-based survey) and validating them against
ground truth (GT) are well-established [29–35], there remains a
significant research gap in addressing the specific challenges of
accurately assessing and validating mobility information derived
from anonymous passive data sources [32]. One reason for the
scarcity of accuracy assessment (both positional and temporal)
studies on passive trajectory data is the limited availability of a
suitable GT that is compatible with different passive data types
and their corresponding spatial and temporal resolutions.

In the contemporary literature, GT data used to validate pas-
sive trajectory data can be broadly categorised into two classes:
(1) externally collected data, including census data, travel sur-
veys and traffic counts, and (2) internally collected data, which
includes information concurrently recorded with passive data
through parallel surveys involving subsets of individuals using
GPS or app-based location updates [36–40].

Different studies have attempted to validate passive trajec-
tory data against externally collected GT data. For instance,

2 The randomness in users’ mobility is the intrinsic unpredictability and variability in each
person’s movement pattern. This can be caused by a variety of factors, including impulsive
choices, shifting environmental circumstances, or personal preferences. Even with attempts
to create mobility patterns using transition probabilities, time periods, and association rules,
these models are frequently unable to adequately represent the unpredictable and dynamic
character of user movements [14].

Vanhoof, Lee [41] and Vanhoof, Reis [42] compared home loca-
tion information extracted from mobile phone data with the
cell tower level aggregated population counts. This aggregated
approach avoids the translation error that may emerge from
converting census grid data to cell tower network grid data.
However, the CDR data and geolocated home information were
not from the same time period. While using census data along
with passive trajectory data, such a time lag can also be found
in other similar studies [43, 44]. In all cases, an ad-hoc assump-
tion was made that the population distribution or growth does
not change drastically throughout the course of the time gap.
This assumption may hold true for certain developed coun-
tries where transition and growth are not rapid; however, it
may not be appropriate for rapidly growing developing coun-
tries [45]. Gordon, Koutsopoulos [46] manually collected trace
counts to compare boarding and alighting times, locations, and
interchanges inferred from automatic fare collection (AFC) and
automatic vehicle location (AVL) data. Similarly, manual travel
surveys, conducted independently from the individuals repre-
sented in passive data, are often used to validate the trajectory
information derived from other passive trajectory data sources
such as GPS data loggers [40]. Such validation often requires
spatial and temporal adjustments to make meaningful compar-
isons between travel surveys and passive data. For instance,
conventional travel surveys often provide location and time
information at the traffic analysis zone level (TAZ), while pas-
sive trajectory data (e.g., mobile phone data, smart card data,
etc.) offer individual-level location updates throughout a jour-
ney [47]. Moreover, validation using manual traffic counts or
travel surveys poses a risk of overestimating or underestimat-
ing predicted travel demand. Short trips are frequently omitted
from travel surveys, hence, models built using GPS data may be
labelled as overestimating travel demand because GPS data can
capture information about short stays and visits [48].

To overcome the issues associated with validation against
externally collected data, a few studies have validated passive
trajectory data using internally collected data, where the actual
location (e.g. home or activity location) of a subset of individuals
was known in advance due to their voluntary participation [26,
49, 50]. However, more often than not parallel surveys involving
GPS or apps for individuals can be more complex, costly (par-
ticularly for developing countries), and less feasible for extensive
passive datasets like GSM and CDR data [39]. This is particularly
because passive data acquired through third-party entities, such
as mobile network operators or service providers, are subject to
privacy concerns and data protection regulations. Consequently,
access to passive data is typically granted to transport modellers
in an aggregated and anonymised format. This anonymisation
process complicates the attribution of devices or services to
specific individuals, making it challenging to collect true travel
trajectories associated with a given device or service.

Some studies have also used both externally and internally
collected GT data simultaneously to validate passive trajectory
data. For instance, Toole, Colak [51] leveraged mobile phone call
data records to extract both the origin-destination (O-D) matrix
and routes, incorporating census data and travel diary sur-
vey information. Other studies comparatively analysed different
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ZANNAT ET AL. 3

data sources to assess the relative accuracy of different pas-
sive data sources. Bwambale, Choudhury [18] compared travel
time sensitivity, schedule delay, and stoppage number extracted
using two different data types with different temporal resolu-
tions (GPS and GSM) in the context of departure time choice.
In an experimental study, Forghani, Karimipour [12] compared
trajectories generated from CDR data with a GPS logger. This
approach combines and comparatively assesses the strengths of
different data sources to enhance validation accuracy. Never-
theless, integrating diverse data sets can be challenging due to
differences in data resolution, collection times, and the potential
for inconsistencies.

Evaluating the precision of passive trajectory data against
real-world ground truth data, which accurately reflects the true
trajectories of respondents, is a formidable challenge and a
timely topic that requires detail investigation. Many challenges
related to externally and internally collected GT data such as
temporal and spatial mismatches, high costs, limited sample
sizes, and privacy concerns could be addressed by generating
synthetic ground truth (SGT) data compatible with different
passive data types and their corresponding spatial and tempo-
ral resolutions. SGT data offers distinct advantages by allowing
the formation of a comprehensive range of potential scenar-
ios, including different activity patterns, mode use, and activity
locations, spanning a range of spatial and temporal resolutions
depending on the type of passive data under consideration. This
capability is lacking in both externally and internally collected
GT data. Synthetic data is often used for accuracy assessment
when it is difficult to access real-world data or when true data
is unavailable [52, 53]. Nevertheless, a similar examination of
the relative precision of spatiotemporal data extracted from pas-
sive data sources with appropriate (S)GT is still in its early
stages. Further investigation of positional and temporal accu-
racy assessment with reliable GT is needed to make informed
decisions based on passive data [54].

In this study, we proposed a framework for assessing the
accuracy of passive trajectory data with appropriate GT that
matches the resolution of passive data. We considered three
mainstream passive data types—anonymous data from GPS3

devices, GSM4, and CDR5—for accuracy assessment. In the
absence of real-world disaggregate ground truth data for bench-
marking, we treated outputs generated from an agent-based
simulation platform (MATSim simulation) as the ‘SGT’ for each
traveller. Synthetic GPS, GSM and CDR data corresponding to
this SGT were generated based on the standard spatial and tem-
poral resolutions typical for each type of data. We compared the
statistical and spatial characteristics of individual mobility infor-

3 GPS data is timestamp location data generated by global positioning system satellites.
These satellites emit signals that are received by GPS receivers in devices like smartphones,
GPS trackers, or navigation devices.
4 GSM is a type of mobile phone data that provides triangulated location information when
the mobile phone with a valid sim card is turned on. It offers higher temporal and spa-
tial resolution than CDR data (another type of mobile phone data) as one single call will
generate multiple sightings in GSM data.
5 CDR data is a type of mobile phone data that records locations at the tower level when the
mobile phone is in use (such as during calling and texting). In CDR data, each phone call
generates a single record, representing the location associated with the tower used during
that call.

mation extracted from the GPS, GSM, and CDR data with the
SGT data to assess the accuracy of passive trajectory data at
both the disaggregate and aggregate levels. Also, this work gen-
erated synthetic datasets, allowing us to quantify the magnitude
of errors (due to the added noise) in different travel informa-
tion extracted from passive data compared to GT. Therefore,
our proposed framework can be employed to introduce any
inherent noise (caused by sensor technology, sampling bias, data
loss, or environmental conditions [9]) associated with the data
under consideration, and assess the error level in the travel
attributes compared to the generated GT. It is important to note
that the current study is limited only to examining a straight-
forward type of noise that is, spatial-temporal disturbance that
affects the positional and temporal accuracy of trajectory data.
However, our proposed framework can be employed recur-
sively to incorporate any inherent noise associated with the
data under consideration or arising from different geographical
landscapes which will enable the evaluation of positional and
temporal accuracy and reliability in comparison to the ground
truth generated.

The remainder of the paper is organised as follows: The fol-
lowing section discusses the methodology employed, as well as
the data sources used in this study. Subsequent sections present
the analysis results, followed by a discussion of the findings.
The paper concludes with a summary and directions for future
research.

2 METHODOLOGY

The methodology employed in this article can be categorised
into four main steps: (1) generating synthetic ground truth
(SGT) data; (2) generating corresponding passive mobility data;
(3) extracting mobility attributes from the synthetic trajectory
data and (4) accuracy assessment. The overall methodology of
this study is illustrated in Figure 1.

2.1 Generating synthetic ground truth
(SGT) data

The agent-based simulation tool MATSim (Multi-agent Trans-
port Simulation) was used to generate the SGT data. At its core,
MATSim operates by allowing a group of agents to interact
within a virtual environment. The inputs required for MATSim
simulation include activity plans, transport networks, and con-
figuration files. An activity plan serves as a sequence of actions
that agents are required to perform within this artificial setting.
Typically, such plans are generated using microdata from a
representative sample or synthetic population. In this study,
we employed household-level travel diary data derived from
the subway study by TYPSA (https://www.typsa.com/en/) in
Dhaka. Detailed demographic information about the sample
can be found in supplementary Table S1. We selected this data
from 2019 for two primary reasons: (1) the 2019 dataset was
the most recent available that included trip information across
a wide range of transportation modes, such as ride-hailing
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4 ZANNAT ET AL.

FIGURE 1 Framework to check the accuracy of trajectory data. CDR, call detail records; GPS, global positioning system; GSM, global system for mobile
communication.

services and motorbikes, which have been widely used in
Dhaka, alongside traditional modes of transport and (2) this
data represented a period before the COVID-19 pandemic,
ensuring that it was not influenced by the mobility restrictions
that affected travel patterns during and after the pandemic. This
allowed for an accurate representation of typical working day
travel behaviour in Dhaka.

However, the survey data could not be directly employed as
ground truth because it lacked specific route information. In
contrast, passive data typically contains location records within
the trajectory while agents are traversing. Furthermore, the trip
diary data only offered activity locations at the TAZ level and
provided detailed geographic information solely for each par-
ticipant’s home location. To address this, ArcGIS 10.8 was
employed to randomly allocate activity locations within TAZ
boundaries, ensuring compliance with the user-stated travel time
[55]. Following the assignment of activity locations, an activity
profile was generated for each agent based on trip informa-
tion extracted from the travel diary survey data. Each activity
plan included information regarding the activity’s location (x–
y-coordinate), the end time of the first activity, the chosen ‘leg’
mode, and the maximum duration allocated for that activity.

To represent a virtual urban transport landscape mirroring
Dhaka, this study integrated a road network and available infor-
mation on existing transport services. The road network for the
study area was obtained from the Open Street Map (OSM).
In MATSim, the available modes include car, public transport
(PT), bike, and walking. While Dhaka also features modes such

as auto-rickshaws and motorcycles, these are not predefined
options in MATSim. To account for them, they were modelled
using special vehicular specifications within the existing framework
of MATSim. It is noteworthy to mention that the car category
encompassed various types of private vehicles, including per-
sonal cars, ride-hailing cars, and taxis. Similarly, the motorcycle
category included both personal and ride-hailing motorcycles.
The default configuration settings of the MATSim simulation
were used to generate the SGT data.

In the MATSim simulation, each agent strives to optimise
their actions based on a utility function. During the iterative pro-
cess, a specific proportion of agents are allowed to modify their
typical choices in an attempt to identify strategies with higher
utility. This iterative process continues until the overall score of
the population reaches equilibrium within the simulation. The
strategy adopted by each agent at this equilibrium is intended to
be a realistic approximation of their actual behaviour.

To generate the SGT data in this study, the marginal util-
ity of travel time and cost derived from a joint RP-SP mode
choice model was employed. A study by Zannat, K. E., et al. [56]
described in detail the MATSim model of Dhaka scenario. Sup-
plementary Tables S1 and S2 provide further details on the
RP-SP data and the mode choice model used in the simula-
tion respectively. A predetermined proportion of agents were
allowed to change their trip mode (randomly selecting a leg
mode) and route during the iteration process in an effort to find
strategies with higher utility. All agents made attempts to adjust
their plans to increase their utility by tracking each action chain.
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ZANNAT ET AL. 5

FIGURE 2 Mode statistics from the MATSim simulation.

The simulation was run until the population achieved an equilib-
rium state, requiring a total of 800 iterations. Figure 2 presents
the mode statistics of the simulation model. We compared the
predicted modal share and preferred departure time with actual
data collected from the 2019 travel diary survey. Additionally,
the modal share of hypothetical passenger trips was compared
with the modal share of the passenger trips collected by the
Japan International Cooperation Agency (JICA) research team
using the inner cordon line survey in Dhaka in 2014, details of
which can be found in supplementary Table S3.

The traffic simulation component was used to ascertain the
“real” travel schedules for cars, motorcycles, and autorickshaws.
As for the bus and human hauler routes, they were simulated
utilising the “teleportation” feature, but with network-derived
journey distances since precise information about these routes
and schedules was lacking. Similarly, non-motorised modes were
also simulated using the “teleportation” feature. Therefore, the
simulation produced event files that comprehensively docu-
mented every specific action taken by agents who exclusively
used motorcycles, autorickshaws, and cars throughout the simu-
lation period. These actions included activity start times, activity
end times, and link-level interactions.

We extracted the complete, unprocessed list of actions carried
out by agents who opted for a car, autorickshaw, or motorcy-
cle during the simulation period from the final event file. This
extraction detailed the entire trajectory and activities of each
agent. In this study, the extracted event file served as the SGT
and the baseline for generating synthetic CDR, GSM, and GPS
data. Notably, since PT users were simulated using the teleporta-
tion feature of MATSim, only the origin and destination, along

with the activity start and finish times, were recorded in their
event files, as opposed to their full trajectories. As a result, we
limited our analyses to private mode users and excluded the PT
users from the comparison.

2.2 Generating detailed trajectory data

Accessing real-world mobility-related passive data can be a
challenging endeavour for transport modellers due to a myr-
iad of concerns including privacy issues, the potential for
re-identification, legal restrictions, data ownership, and data
availability. To address these challenges, significant research
efforts have focused on the generation of synthetic data. Such
efforts aim to obfuscate or mask real-world location data
derived from mobile phones and navigation devices for pri-
vacy and security purposes [52, 57]. In this study, we adopted
the fundamental principles established in previous research
within this domain. These principles underpinned the following
assumptions:

∙ It was assumed that the mobile device remained active
throughout the entire journey and was carried by the
travellers for the duration of their trips.

∙ All agents were presumed to choose the shortest route during
their travels.

∙ The sociodemographic characteristics of the chosen agents
were consistent.

∙ The mobile phone tower network strength within the study
area was assumed to be uniform, with no differentiation
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6 ZANNAT ET AL.

TABLE 1 Overview of global positioning system (GPS) and mobile phone data.

Data Noise source

Positional disturbance range

(approx. values)

Spatial data

density

Temporal data

density Sources

GPS device Orbital error <5 cm to 4 m High High See [58–61] for
further details of each
noise type and
algorithm to filter that
noise

Satellite clock error 3 cm to 150 cm

Ionospheric error ≈5 m

Tropospheric error 1 cm to 2.3 m

Multipath error 10 m to 15 m

Receiver error 0.8 mm to 15 m

Satellite geometry and
availability

1 m to 20 m (when
pseudo-range errora is 1 m)

Interference and signal noise 1 m to 40 m

Mobile phone
data

Signal oscillation Few metres to kilometres Medium to low Medium to low See [20, 62–64] for
further detailsCell tower density

Cellular network size and
coverage

aInaccuracies in the measured distance between a GPS satellite and a receiver.

between 2G, 3G, and 4G networks. Additionally, there were
no gaps or incompleteness in the data due to topographic
features or ‘urban tunnelling’ effects.

Based on these assumptions, we generated synthetic GPS,
GSM and CDR data, taking into account their spatiotemporal
resolutions according to the source type. Table 1 provides an
overview of typical GPS and mobile phone data, including their
temporal and spatial data resolution, as well as the observed
positional disturbances due to the existence of different noises.
It is noteworthy that all positional disturbances of GPS data
mentioned in Table 1 are subject to weather, satellite elevation,
time of day, and the surroundings of the receiver.

2.2.1 Synthetic GPS data

GPS data is generated by smartphones or GPS devices, which
may have varying degrees of measurement noise. These data
typically consist of anonymous timestamped latitudes and longi-
tudes. For this research, we generated synthetic data from GPS
devices. In Dhaka city, where there is no underground or tun-
nel infrastructure, GPS devices can provide relatively accurate
location data when used aboveground. These devices record
positions both outdoors and inside various structures such as
buildings, buses, elevated trains, bridges, and urban canyons
[65]. However, it is important to note that the accuracy of
the recorded data may vary. The accuracy of spatiotemporal
information from GPS devices is influenced by three primary
factors related to the satellite, the GPS receiver, and the sur-
rounding environment (details of errors are shown in Table 1).
Aspects related to these factors are associated with differ-
ent spatiotemporal disturbances in GPS data, which inevitably
result in measurement errors, positioning jumps, and irregular
sampling biases, all of which can lead to poor-quality measure-

ments. Although filtering techniques such as Kalman filters,
carrier smoothing, and moving average filters can mitigate some
of these errors, errors in GPS data can persist despite their appli-
cation. Therefore, to generate synthetic GPS data, we followed
a systematic procedure designed to account for these various
sources of error and ensure the generation of high-quality data.
The MATSim simulation yielded temporal data whenever an
agent interacted with a specific event. In contrast, depending on
the type of GPS receiver and signal strength in the target region,
GPS devices provide more frequent location and time informa-
tion. Therefore, to produce intermediary points that bridge the
gap between the SGT point feature and create more realistic
GPS data, we used linear interpolation. GPS points were gen-
erated at 10 s intervals. Typically, the positioning error for raw
GPS-enabled systems falls within the range of 1–20 m [66–68].
After applying filtering techniques, the amount of residual error
can still range from 3 to 5 m [69]. Therefore, to account for
the geo-positioning noise, we introduced two types of simulated
noise within this range as horizontal positioning disturbance—
random shift and random drift, following the method proposed
by Bösche and Sellam [70].

First, we applied Gaussian noise to the spatial data with a
mean of 0 and a standard deviation of 3 m. A well-designed GPS
receiver generally offers horizontal accuracy of at least 3 m [71].
However, this could lead to abrupt changes in direction between
successive GPS points. To address this issue, we applied shifts
with a probability of 0.05 per second and otherwise, added the
deviation from the previous point to the current point. Sec-
ond, we simulated random drift with a probability of 0.03 per
second, representing shifts perpendicular to the current driving
direction. The maximum drift distance was determined from a
Gaussian distribution with a mean of 0 and a standard devia-
tion of 10 m, as GPS in moving vehicles can achieve dynamic
accuracy of up to 10 m in urban areas [72]. It took precisely
30 s to reach the maximum drift distance, after which the drift
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ZANNAT ET AL. 7

TABLE 2 Summary of parameters used for adding noise while generating
synthetic global positioning system (GPS) and global system for mobile
communication (GSM) data.

Parameter Value

GPS Shift parameter (mean) 0

Shift parameter (standard deviation) 3 m

Shift probability 0.05

Drift parameter (mean) 0

Drift parameter (standard deviation) 10 m

Drift probability 0.03

GSM Shift parameter (mean) 0

Shift parameter (standard deviation) 5 m

Drift parameter (mean) 0

Drift parameter (standard deviation) 15 m

Drift probability 0.03

distance gradually decreased to zero over another 30 s. Table 2
summarises all the parameters selected for adding noise to the
GPS data.

2.2.2 Synthetic GSM data

GSM data comprises the identifiers of all GSM cells that a
mobile phone passes through at regular intervals during its use
[73]. Notably, GSM data offers finer spatial and temporal res-
olution compared to CDR data because it becomes accessible
as soon as the phone, equipped with a valid SIM card, is acti-
vated. In our study, we leveraged the location data from the
SGT to generate synthetic GSM data. The temporal resolu-
tion of the GSM data in our study was set at 60 s, aligning
with the temporal resolution of real GSM data [18]. For each
sighting time, we selected locations from the respondent’s SGT
data while preserving the timestamped location sequence. If the
time interval between two successive SGT points exceeded 60
s, we applied the linear interpolation method to generate inter-
mediary cell points. However, it is crucial to acknowledge that
the positioning accuracy of GSM data can widely vary, ranging
from 1 to 600 m, depending on factors such as the location
type (indoor/outdoor), cell size and data collection techniques
(triangulation, radio camera, signalling messages, and GPS, etc.)
[73–76]. Similar to GPS data, various filtering approaches such
as recursive naïve filters, look-ahead filters, and Kalman fil-
ters have been used to remove noise from mobile phone data.
Empirical investigations have shown that while filtered GSM
data contain significantly less noise than raw mobile phone data,
the noise levels remain higher compared to filtered GPS data.
[77]. Therefore, to generate synthetic GSM data for the densely
urbanised and heavily populated area of Dhaka city, we added
noise to the location points generated from SGT, which was
relatively larger than the noise added with GPS data (GSM data
tends to be noisier compared to GPS data, as per Bwambale,
Choudhury [18]). The summary of parameters used for generat-

ing synthetic GSM is outlined in Table 2. Gaussian noise (with a
mean of 0 and stand deviation of 5 m) was included as position-
ing disturbance. Given that successive GSM points can exhibit
abrupt jumps from one side of the road to the other, we did
not apply corrections for directional deviations in GSM points.
However, similar to GPS data, we introduced random drift for
moving vehicles at a probability rate of 0.03 per second in the
case of GSM data.

2.2.3 Synthetic CDR data

Real-world CDR data includes time-stamped tower locations
whenever a user initiates a phone call, sends a text message, or
accesses mobile Wi-Fi. Table 3 provides an example of CDR
data from various hypothetical users. In Dhaka, the most recent
available CDR data was collected between 19 June, 2012, and
18 July, 2012. For detailed statistics regarding the available CDR
data, refer to [27, 44].

To construct the CDR trajectory for a group of agents, we
leveraged the set of SGT location and time data generated via
the MATSim simulation. Using the distribution of actual call
rate (the average number of calls per hour) observed in real
CDR data, we produced one-day trajectory data, with the hourly
call rate during a typical working day depicted in Figure 3. For
each 10-s interval within this timeframe, we randomly gener-
ated call rates from a normal distribution centred around the
population’s median call rate (0.053 per hour). By using a Pois-
son distribution6, we determined the number of calls for each
10-s interval based on the call rate. Subsequently, we selected
a location for each call from the agent’s SGT data and gen-
erated a call duration ranging from 1 to 60 min, following a
uniform distribution. Call start and end times were then gen-
erated based on these durations. This procedure was repeated
for all 10-s intervals within the specified time period. It is note-
worthy that to generate the synthetic CDR data, SGT locations
were updated to correspond to the nearest mobile phone tower
location (tower locations were extracted from the real CDR data
from 2012).

2.3 Extracting mobility information

In order to assess the relative accuracy of CDR, GPS and GSM
mobility data, we extracted mobility information from the syn-
thetic trajectory. The following paragraphs summarise extracted
mobility information and the methods used.

2.3.1 Stay location

To extract stay locations or points of interest (POIs) such as
congestion stay points and potential activity locations from the

6 Poisson distribution is a discrete probability distribution that can be used to simulate the
number of calls when it is known how many calls are made on average per hour during that
time [78].
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8 ZANNAT ET AL.

TABLE 3 An excerpt from call detail records data in a typical working day.

Unique caller ID Date Time Call duration Latitude Longitude

AAH03JABkAAHvEkAQE 20120622 13:32:38 530 23.7186 90.4494

AAH03JACKAAAgfBALW 20120622 13:41:25 15 23.9139 90.2931

AAH03JAC8AAAbZfAHB 20120622 13:41:49 73 23.7911 90.2603

AAH03JAC5AAAdAkAJZ 20120622 13:45:40 16 23.7172 90.3556

AAH03JAC3AAAdDZAEe 20120622 13:46:22 17 23.1581 90.4119

FIGURE 3 Hourly call rate on a typical working day.

trajectory data, different clustering algorithms have been used
in the literature. These algorithms can be broadly classified
into five groups of methods — partitioning based, hierarchi-
cal based, density based, grid based, and model based [79]. A
summary of these methods is outlined in Table 4. Among these
methods, partition-based algorithms (e.g., K-mean, FCM) are
very straightforward to implement, however, they require the
number of clusters as an input which is difficult to fix before-
hand. As the cluster number affects the granularity of cluster
analysis, arbitrarily fixing this input could affect the clustering
result. Hierarchical clustering builds a tree (dendrogram) of clus-
ters. It does not require the number of clusters to be specified in
advance. Model-based approaches optimise the fit between the
data and pre-defined mathematical models. MCLUST or EM are
widely used model-based algorithms. These algorithms assume
that a collection of observed objects consists of instances drawn
from several probabilistic clusters. Therefore, this method has
the potential to evaluate the likelihood that a given observation
belongs to any of the existing clusters. However, it also neces-

sitates specifying a maximum number of clusters as input. On
the other hand, density- or grid-based methods do not require
the number of clusters to be known in advance. Nevertheless,
grid-based techniques frequently suffer from the “sharp-edge”
problem, in which two closely comparable places could be
split into two distinct zones. Hence, we utilised a geographic
clustering method based on density for GPS and GSM data.
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), a classic density-based algorithm, was selected due
to its ability to identify clusters of various shapes without the
need to specify the number of clusters in advance [80]. Figure 4
shows the conversion process of point density into stop points.
The effectiveness of DBSCAN heavily relies on the appropri-
ate selection of two key parameters: eps (epsilon), which defines
the maximum distance between two points to be considered as
neighbours, and the minPts (minimum points), the minimum
number of points required to form a stay location cluster. For
the GPS dataset, we selected an eps value of 50 m and the
minPts value was set to 5. This choice reflected the precision
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ZANNAT ET AL. 9

TABLE 4 Summary of clustering algorithms.

Clustering

method

Overview of the

method Algorithms Strength Weakness

Literature on

stay locations

Partition based Divide a dataset into a
discrete, non-overlapping
cluster subset (of
spherical shape), with
each data point belonging
to a single cluster

K-means
K-modes
K-medoids
PAM
CLARA
CLARANS
FCM

- Efficient in clustering small-
to medium-size data sets
based on distance division

- Easy to interpret the results

- Require prior knowledge on
number of clusters

- Less flexible for complex
datasets with varying cluster
shapes and densities

[81, 82]

Hierarchical
based

Data organisation follows
a hierarchical approach
based on the medium of
proximity

BIRCH
CURE
ROCK
ECHIDNA

- The number of clusters is not
required a priori

- Effective to reveal the
hierarchical structure of the
data

- Less flexible approach
- The assumption of nested

and hierarchical cluster may
not be appropriate for all data
distribution

[83, 84]

Density based Data objects are divided
according to their
boundary, connectivity,
and density

DBSCAN
OPTICS
DBCLASD
DENCLUE

- The number of clusters is not
required a priori

- Effective at identifying
clusters of arbitrary shapes
and handling noise

- Points on the boundary
between clusters can be
difficult to classify accurately

- Computationally intensive

[85, 86]

Grid based Divide the data into finite
number of cells that form
a grid to separate the
dense grid area from the
less dense ones

Wave-Cluster
STING
CLIQUE
OptiGrid

- Determine clusters of
arbitrary shapes

- Can handle different types of
datasets and remove noise
elements

- Difficult to apply the method
in dimensional space size

- Results are sensitive to the
choice of the grid size

[87]

Model based Using either a statistical
or neural network
approach, this method
automatically determines
the number of clusters
while taking into account
noise

EM
COBWEB
CLASSIT
SOMs

- Have the flexibility to model
clusters of various shapes and
sizes

- Provides a probabilistic
membership for each data
point to each cluster

- Results are sensitivity to
parameter initialisation

- Model selection criteria may
not provide a clear indication
of the optimal clumber of
clusters

[88, 89]

FIGURE 4 Location extraction by density clustering.

and typically close spacing of GPS data points. For the GSM
dataset, we chose a larger eps value of 100 m and the minPts
value was also set to 5. This decision considered the less precise
and more spread-out nature of GSM data.

Then, we applied a temporal rule (>10 min) within each
cluster to remove potential congestion stays before extracting
potential activity locations from the cluster data. For the syn-
thetic CDR trajectory generated for a single day, call locations
were assumed as potential stay locations. However, to distin-
guish these potential stay locations from those recorded during
travel, we examined the driving distance between the two loca-
tions and the time lag between call times. If the time lag between
call times exceeded the time required to travel between the two
locations by car, the locations were considered as stay locations.

2.3.2 Home and activity location identification

With GPS and GSM data, which offer records with a high level
of temporal precision, we were able to deduce likely home loca-
tions and other activity places from their trajectories. Home
locations were identified as places where agents revisited mul-
tiple times, with sightings predominantly in the early morning
(before 6:00) and late evening (after 20:00). In contrast, CDR
data recorded very few locations, primarily while calls or texts
were made. Distinguishing home and other activity location
information from CDR data, especially for agents with a sin-
gle day of call data following the median call rate distribution,
posed challenges. In the absence of location data, we made the
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10 ZANNAT ET AL.

assumption that each stay location in the CDR data represented
a potential activity location, aligning with the rule proposed by
Zilske and Nagel [52] for generating synthetic CDR data.

2.3.3 Trip attributes

Following the identification of the stay locations, we extracted
various trip-related attributes—departure time and trajectory
distance, for each trajectory. To extract departure time from
each stay location cluster in GPS and GSM trajectories, we
sequenced the clustered points based on their observed times.
We then examined the first observation and duration within
each stay location cluster point, sequentially capturing different
start times for repeated activities and their corresponding stay
durations. The first observation and corresponding duration in
each cluster were used to find the departure time for each stay
location to travel for the succeeding stay location cluster. CDR
data, however, did not allow for the capture of departure times,
as the call and text times recorded in this data reflected the sight-
ing times at activity locations. To calculate the trajectory distance
from GPS and GSM data, we sequenced the stay location clus-
ters and calculated the Euclidean distance of trip segments,
considering the centroid of each stay location cluster points.
The total trajectory distance for each agent was the sum of these
individual trip segment distances. For CDR data, we sequenced
activity locations based on their sighting times and calculated the
total trajectory distance by summing the individual Euclidean
trip segment lengths.

2.4 Accuracy assessment

To assess the accuracy of passive mobility data, we compared
the statistical and spatial characteristics of individual mobility
information extracted from GPS, GSM, and CDR data with
the SGT data. We assessed the accuracy of the stay locations
(potential activity locations). To achieve this, we created grid
cells of varying resolutions (e.g. 50 m × 50 m, 100 m × 100 m,
200 m × 200 m, 500 m × 500 m) within the study region. For
each synthetic trajectory, we counted the number of stay loca-
tions found within each grid cell. The precision of stay location
estimation was evaluated using bivariate analysis. If xk is the
count of stay location from passive data for grid cell k and yk

is the count of stay locations from SGT for grid cell k, the fitted
linear regression model can be expressed as:

yk = 𝛽0 + 𝛽1xk + 𝜀k (1)

The predicted ŷk and mean counts from passive data and
SGT were used to calculate R2 value, which indicates how well
the counts of stay locations from passive data explain the vari-
ation in the counts from SGT data. Here, the total number
of cell (

∑K

k=1 k) is dependent on the resolution of grid under
consideration.

Furthermore, to understand the spatial distribution pattern
of stay location, we calculated Global Moran’s I index [90],
a measure of spatial autocorrelation, to assess the degree of
clustering or dispersion of stay locations. Using the follow-
ing Equation (2), an index value bounded by −1 and 1 for
each dataset was calculated. The positive index value indicates
a tendency toward clustering, zero suggests a random distribu-
tion with no autocorrelation, and the negative value indicates
dispersion.

I = n

So

∑n

i=1

∑n

j=1 wi, j ziz j∑n

i=1 z2
i

(2)

where zi is the deviation of an attribute for feature i from its
mean (xi − X̄ ), wij is the spatial weight between feature i and j,
n is equal to the total number of features, and So is the aggregate
of all the spatial weights:

So =
n∑

i=1

n∑
j=1

wi, j (3)

Furthermore, local Moran’s I index [91] values were cal-
culated to identify spatial clusters (positive significant values
indicate cluster and negative values indicate outlier) using the
following equation:

Ii =
xi − X̄

S 2
i

n∑
j=1, j≠i

wi, j

(
x j − X̄

)
(4)

where xi is an attribute for feature i, X̄ is the mean of the cor-
responding attribute, wi,j is the spatial weight between feature i

and j, n is the total number of features, and:

S 2
i
=

∑n

j=1, j≠i

(
x j − X̄

)2

n − 1
(5)

Moreover, the cumulative distribution of local Moran’s I

index of identified clusters were further compared using
Kolmogorov–Smirnov (K-S) test. This non-parametric test was
employed to assess the differences between each passive data
source and the ground truth. Unlike other tests, the K-S test
does not assume any specific distribution for the data, making it
widely applicable [92]. The test statistic D can be derived by:

Dn,m = max |F1 (x ) − F2 (x )| (6)

Here, n is the number of observations on passive data and m

is the number of observations in the SGT. F1(x ) is the empirical
cumulative distribution function of the passive data and F2(x ) is
the empirical cumulative distribution function of the SGT. Like
the cluster of stay location, departure time distribution from
GPS, GSM, and sightings from CDR data were compared with
the cumulative distribution of SGT using the K-S test value.
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ZANNAT ET AL. 11

We employed Pearson’s correlation (𝑟) statistic to determine
the relationship between the synthetic trajectory’s distance and
the SGT data. The correlation coefficient was derived by the
following equation:

r =
∑(

Xi − X̄
) (

Yi − Ȳ
)

√∑(
Xi − X̄

)2 ∑(
Yi − Ȳ

)2
(7)

Xi are the individual trajectory distances derived from the
passive data and Yi are the individual trajectory distances derived
from the SGT. X̄ and Ȳ are the means of the X and Y

datasets, respectively. All statistical analysis was conducted using
R (version 4.2.3) programming language. Moreover, for spatial
analysis, ArcGIS 10.8 was used in this study.

3 RESULTS

3.1 Synthetic ground truth (SGT)

The MATSim simulation output mimics real-world agents’
activity, departure times, routes, and mode choices. The out-
put is represented in an ‘events’ file, which comprehensively
documents the movements and activities of each agent through-
out the simulated day. The various event types encompassed in
the MATSim output include “Activity End Event”, “Person Depar-

ture Event”, “Person Enters Vehicle Event”, “Vehicle Enters Traffic

Events”, “Link Leaves Event”, “Link Enters Event”, “Vehicle Leaves

Traffic Event”, “Person Leaves Vehicle Event”,“Person Arrival Event”,
and “Activity Start Event”. A schematic diagram illustrating the
full range of events stored in the MATSim simulation output is
provided in Figure 5a. MATSim output offers comprehensive
situational information about the agents’ actions. For this study,
we extracted activity start and end times, and time-stamped link
IDs, for 9704 agents. An example of the extracted event infor-
mation is demonstrated in Figure 5b. It should be noted that
precise activity location information (exact latitude and longi-
tude) was not saved in the event file; instead, it was derived
from network file using the time-stamped link IDs correspond-
ing to each event. The coordinates of activity start and end
points provided insight into the potential home and activity
locations of agents, while link coordinates depicted locations
during the trips. In total, 20661 unique locations were identi-
fied as potential activity locations, while 269429 locations were
identified as en-route point locations, collectively constituting
the SGT. Figure 6a illustrates SGT data generated from the
MATSim simulation for a single agent.

3.2 Synthetic trajectory data

Three distinct sets of synthetic trajectory data were gener-
ated, each incorporating different levels of noise (detail in
Section 2.2). For 9704 agents, a total of 19333 CDR trajectory
points, 464253 GSM points, and 30728597 GPS traces were
generated. These trajectory data sets exhibited varying levels

of spatial and temporal granularity for an equivalent number
of agents. Synthetic GPS, GSM, and CDR data for a repre-
sentative agent are shown in Figure 6b–d. Figure 6b exhibits
the accuracy and precision of GPS data, providing precise loca-
tion information along the entire route of the trip (assuming
the device and location apps were active during the journey).
This accuracy was achieved because the synthetic GPS data
in this study did not account for urban canyons and topo-
graphic effects (Dhaka city’s topography is generally flat with
fewer concentrations of skyscrapers). Therefore, the temporal
and spatial resolution of GPS data from GPS-enabled devices
was solely influenced by the GPS receiver’s type in the vehicle
and the satellite network’s availability. Figure 6b,d demonstrates
that GPS and GSM data offered reasonably accurate informa-
tion at coarser spatial resolutions, aligning with the SGT. These
datasets not only illustrated the travel route but also depicted
stopover locations or congested points through point density.
Therefore, low-precision GPS data could provide trip-related
location updates similar to GSM data. Conversely, CDR data
only exclusively presented records at the tower level based on
call times (Figure 6c), resulting in coarser temporal and spatial
precision compared to GPS and GSM data types.

3.3 Analysing the accuracy of different
trajectory data

In order to evaluate how well GPS, GSM, and CDR could
be useful in extracting mobility information, we compared the
information extracted from synthetic data with the MATSim
simulation-generated SGT data. This comparison encompassed
statistical properties of trip-related information and the spa-
tial distribution of location information between synthetic
trajectory data and SGT data.

3.3.1 Stay location accuracy

To evaluate the accuracy of the spatial distribution of stay
locations (includes both home and other activity locations), we
compared the stay locations extracted from SGT data and syn-
thetic passive trajectory data. Figure 7 illustrates the distribution
of stay locations (at a 500 m resolution) obtained from the three
types of passive data in the Dhaka City Corporation (DCC)
region. It is visually evident that the distribution of GPS and
GSM data was closely aligned with the distribution of observed
activity/stay locations within 500 m × 500 m grid cells. In
contrast, the location data from the CDR dataset conformed
to the SGT in central Dhaka, where mobile phone towers were
densely concentrated, but exhibited notable discrepancies in
other areas, such as the outskirts (e.g. the eastern fringe region).
Such discrepancies were more evident when mapping the stay
location distributions in the RAJUK area due to variations in
tower location density between the DCC area and the surround-
ing regions. To measure these differences through quantitative
analysis, the coefficient of determination from the bivariate
analysis of SGT and the stay locations from synthetic passive
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12 ZANNAT ET AL.

FIGURE 5 (a) MATSim events by Axhausen, Horni [93]. (b) Extracted synthetic ground truth information from the event file.

TABLE 5 Summary of bivariate statistical analysis of stay location
capturing accuracy between synthetic ground truth and synthetic trajectory.

Cell size resolution

Data

type

Bivariate

component 50 m 100 m 200 m 500 m

CDR R2 0.0007 0.0071 0.0583 0.305

GSM R2 0.2653 0.478 0.6393 0.8101

GPS R2 0.5502 0.6476 0.7671 0.8979

Abbreviations: CDR, call detail records; GPS, global positioning system; GSM, global
system for mobile communication.

data was compared to assess stay location accuracy, particularly
in Dhaka city’s RAJUK area.

The results of this analysis at different spatial granularities (i.e.
50, 100, 200, and 500 m) are summarised in Table 5. At the finest
spatial resolution (50 m × 50 m grid), only 0.07% of the variance
in the stay locations from the SGT could be explained by the
stay locations extracted from the one-day CDR data. In com-
parison, GPS data demonstrated the highest explanatory power
for stay location distribution at this finer resolution. Indeed, at
the finest spatial resolution (50 m × 50 m grid), the explanatory
power of GPS data for stay location distribution was twice than
that of GSM data (R2 for SGT vs GPS was 0.55, whereas R2 for
SGT vs GSM was 0.27). The explicability of GSM stay locations

TABLE 6 Global Moran’s I value for different dataset.

Global

Moran’s I Remarks p-value

SGT 0.596018 + values indicate a
tendency toward
clustering

1% likelihood that this
clustered pattern
could be the result of
random chance

CDR 0.370308

GSM 0.560002

GPS 0.617444

Abbreviations: CDR, call detail records; GPS, global positioning system; GSM, global
system for mobile communication.

noticeably improved at 100 m resolution, roughly doubling from
the 50 m resolution (R2 for SGT vs GSM = 0.478). As the grid
size increased, GPS and GSM showed comparable explicabil-
ity in stay position. However, even at a 500 m resolution, CDR
data could only explain around 30% of the variation in SGT stay
locations, significantly less than the over 80% achieved by GPS
and GSM data.

After finding 500 m resolution as a better cell size to capture
activity location from GPS, GSM and CDR data, we investigated
their spatial distribution patterns at this scale. The estimated
Global Moran’s I index values are presented in Table 6. For both
SGT and passive data, the estimated values suggested a positive
spatial autocorrelation. In another term, the activity locations in
all datasets tend to be spatially clustered rather than randomly
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ZANNAT ET AL. 13

FIGURE 6 Synthetic ground truth (SGT) and trajectory data (one individual’s trajectory). CDR, call detail records; GPS, global positioning system; GSM,
global system for mobile communication.

distributed or dispersed. Among the three synthetic passive
data, Moran’s I value of GPS data (0.617444) suggested the
highest level of positive spatial autocorrelation among the four
datasets. Like the GPS, the GSM dataset exhibited a moderately
high level of positive spatial autocorrelation.

While there was a possibility for stay locations to be clustered
together in the CDR data, this clustering was not as strong as
in the SGT dataset. To further analyse the clustering pattern of
stay location, local Moran’s I values were estimated, and a map
of distribution has been included in supplementary Figure S1.
The estimated local Moran’s I values of clustered stay locations
were compared using the K-S test. Results from the K-S tests
are summarised in Table 7. The results of the K-S tests demon-
strated that there were significant differences in local Moran’s
I distributions between SGT and passive data compared, with
the most substantial differences observed between SGT and
CDR, followed by SGT and GSM, and the least but still sig-
nificant difference between SGT and GPS. The lowest D value
(0.23437) from the K-S test between SGT and GPS data high-
lighted relatively less difference between the CDFs of the two
samples.

TABLE 7 Comparison of local Moran’s I index of clustered stay location
between synthetic ground truth (SGT) and synthetic passive data using
Kolmogorov–Smirnov (K-S) test.

K-S test (D) p-value

SGT vs GPS 0.23437 2.2e-16

SGT vs GSM 0.66632 2.2e-16

SGT vs CDR 0.86657 2.2e-16

Abbreviations: CDR, call detail records; GPS, global positioning system; GSM, global
system for mobile communication.

3.3.2 Trip-related statistics

Departure time information was extracted from the SGT, GPS,
and GSM trajectories. The end time of each activity served as
the departure time for the subsequent activity in the SGT. For
instance, the beginning of a trip from home to work involved
leaving the house and the end of home-related activity. There-
fore, the end of home activity was the time for departure for
work activity. The method followed to extract departure time
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14 ZANNAT ET AL.

FIGURE 7 Stay-location distribution at the Dhaka City Corporation
(DCC) area. CDR, call detail records; GPS, global positioning system; GSM,
global system for mobile communication; SGT, synthetic ground truth.

TABLE 8 The Kolmogorov–Smirnov (KS) test results from departure
time distribution.

K-S test (D) p-value

SGT vs GPS 0.067797 2.2 × 10−16

SGT vs GSM 0.10054 2.2 × 10−16

SGT vs CDR 0.13309 2.2 × 10−16

Abbreviations: CDR, call detail records; GPS, global positioning system; GSM, global
system for mobile communication; SGT, synthetic ground truth.

from GPS and GSM trajectory is explained in Section 2.3.
Figure 8a,b illustrates respectively the departure time frequency
distribution and CDFs of GPS, GSM, and SGT trajectories.
In both figures, it is evident that GPS data was able to more
accurately capture the variance in departure times during peak
hours and better represented agents’ departure times for dif-
ferent activities compared to GSM data. The K-S test results
are shown in Table 8; the K-S test compared the distributions
of a sample i.e., the passive data and the reference probability
distribution of SGT. The K-S test statistics (D value) indicated
that the maximum difference between the CDFs of the SGT
and GPS datasets was approximately 0.068 suggesting a rela-
tively small difference between the distributions of SGT and
GPS. The SGT versus CDR comparison had the largest D

value (0.133), indicating that the distributions of departure time
in SGT and CDR were the most different (significant at 95%
confidence level). However, in all cases the p-values suggested
that the differences between the distributions were statistically
significant.

Moreover, as shown in Figure 8a, both GPS and GSM
trajectories substantially understated early morning departure
times compared to the SGT. Conversely, GPS and GSM
trajectories overrepresented late morning and late afternoon
departure times. Consequently, the disparity between the SGT
and GPS/GSM trajectories was more pronounced during the
morning peak and late afternoon hours (In Dhaka, the morning
peak starts from 8:00 to 10:00 and afternoon peak from 16:00 to
18:00 [94]) (Figure 8b). This variation may be attributed to the
merging of activity or stay clusters near the journey’s origin with
the nearby congestion clusters, leading to over or underrepre-
sentation during peak hours. Extracting agents’ departure times
from the one-day synthetic CDR data was challenging. There-
fore, the distribution of sighting times (call/text times) extracted
from the CDR data is presented in Figure 8. The sighting distri-
bution from the one-day CDR data markedly differed from the
SGT departure time distribution which was also supported by
the K-S test results.

In addition to departure time, we compared trajectory dis-
tances derived from SGT and synthetic passive data. Figure 9
depicts the bivariate relationships and correlation coefficients
(r) between the SGT trajectory and passive trajectories (GPS,
GSM, and CDR). GPS trajectories exhibited the highest cor-
relation (r = 0.77, p-value 2.2 × 10−16), followed by the GSM
trajectories (r = 0.55, p-value 2.2 × 10−16), and CDR trajectories
(r = 0.47, p-value 2.2 × 10−16). GPS devices provided frequent
(10 s intervals), accurate, and precise location and time infor-
mation, likely contributing to the stronger association between
the GPS and the SGT trajectory. In contrast, GSM provided
triangulated approximate location data (60 s intervals), influ-
enced by the network strength and mobile phone tower density,
resulting in a moderate degree of correlation between synthetic
GSM trajectories and the SGT trajectory. The lower spatial res-
olution of the CDR data (attributable to the lack of location
records when the mobile phone was not in use) likely accounted
for the low correlation coefficient between the CDR trajec-
tory and the SGT. Furthermore, identifying home and possible
activity locations using one-day CDR data proved challenging.
This difficulty arose because sighting locations in the CDR
data could represent locations observed during trips rather than
end points. Additionally, capturing stay locations from CDR
data was influenced by variations in mobile phone usage fre-
quencies among users. Conversely, GPS and GSM data, along
with their corresponding trajectories, featured finer temporal
and spatial granularity, simplifying the identification of starting,
intermediate, and ending locations within the trajectory.

4 DISCUSSION

In this study, we introduced a comprehensive framework for
assessing the relative accuracy of mobility information extracted
from passive trajectory data, taking into account the limitations
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ZANNAT ET AL. 15

FIGURE 8 Time dimension of global positioning system (GPS), global system for mobile communication (GSM), call detail records (CDR) and synthetic
ground truth (SGT) trajectory. (a) Frequency distribution of agents’ departure time; (b) cumulative distributions of departure time (for GPS, GSM and SGT the time
dimension shown in the figure are departure time while for CDR is the sighting time).

FIGURE 9 Correlation between SGT and synthetic traversed trajectory distance (Euclidean distance).
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16 ZANNAT ET AL.

of conventional ground-truth data. We utilised MATSim sim-
ulation to generate synthetic ground truth (SGT) data. The
mobility profile obtained from the MATSim simulation pro-
vided the essential inputs, such as information of individual
geocoded activity location, and potential traversed route infor-
mation, necessary for generating synthetic trajectories using a
conventional trajectory generation module. The generation of
synthetic data is a crucial step in the field of transport planning,
as it allows for the testing of the accuracy and applicability of
developed models with reproducible data [95]. Additionally, the
generated SGT enabled us to evaluate the accuracy of mobil-
ity information from three different passive data sources (GPS,
GSM, and CDR) at both disaggregate and aggregate levels.

Our assessment of stay location accuracy using GPS, GSM,
and CDR data revealed that higher accuracy was associated with
lower spatial resolution. Patrick [96] also emphasised the impact
of CDR data resolution on the accuracy of mobility informa-
tion derived from CDR trajectories. Bwambale and Choudhury
[18] noted that when GSM cell sizes decrease, GSM time lags
also reduce. We found at the finest resolution of 50 m, both
CDR and GSM data exhibited poor performance in explain-
ing the variability of SGT stay locations compared to GPS data.
However, at a lower resolution of 500 m, both GPS and GSM
accounted for over 80% of the variability in stay locations. These
findings reinforced the notion that GSM data can effectively
serve as a source of mobility information for evaluating activity
profiles at coarse spatial resolution. A compromise in the res-
olution of the scale of analysis has the potential to reduce the
measurement error of different passive data.

Moreover, the spatial autocorrelation test results highlighted
the potential clustering of stay locations both in the SGT and
synthetic passive data. The aggregated index values (Global
Moran’s I) confirmed the presence of clustering in stay location
both in SGT and passive data which is supported by the empir-
ical study related to identifying temporal and spatial regularity
in travel trajectory [97]. On the other hand, the distribution of
local Moran’s I values for different passive datasets was signifi-
cantly different from those of the SGT data. For the GSM and
CDR data, the method used to derive stay locations—whether
through triangulation or at the cell tower level [20, 63]—could
result in different local area clustering values compared to the
SGT data. On the other hand, the high resolution of GPS
data and the extraction of longer congestion points as potential
stay locations could also account for the differences in cluster
indices.

Furthermore, the findings of this study shed light on the
reliability of passive data in describing mobility profiles dur-
ing various times of the day, including peak and off-peak
hours. Notably, we observed that GPS and GSM data exhib-
ited discrepancies (e.g. either understated or overstated) in the
departure time distribution during peak hours (both in the early
morning and late afternoon), potentially attributed to conges-
tion near activity locations. However, it is important to note
that GSM data exhibited a significantly higher measurement
error compared to GPS data. The largest difference in depar-
ture time distribution between SGT and GPS data was about
3% (with a standard deviation of ± 0.78), while the differ-

ence between GSM and SGT departure time distribution was
about 4.5% (with a standard deviation of ± 0.98). The K-S test
results also supported these findings. Interestingly, Bwambale
and Choudhury [18] reported that GSM data exhibited greater
accuracy than GPS data when studying departure time choices
in southwestern Switzerland. This discrepancy can be mainly
attributed to observed GPS data in areas where topographi-
cal factors, dense foliage, and human factors (e.g. deactivated
location service, and battery power loss) resulted in larger time
gaps. Additionally, when compared to GPS and GSM, the time
distribution generated from CDR data showed a larger devia-
tion from the SGT time distribution, with a maximum deviation
of approximately 5% (with a standard deviation of ± 1.5).
This difference can be explained by the fact that one-day CDR
data reflects sighting distribution rather than the departure time
distribution when a text message or phone call is made [20].
However, it is worth noting that as mobile phone internet usage
(e.g. calls, texts, and browsing) increases, CDR data is evolv-
ing towards continuous data, which could eventually achieve a
temporal precision comparable to that of GSM data. Addition-
ally, the statistically significant difference between the departure
time distributions of the SGT and GPS data (particularly in
the Dhaka case) can be attributed to the long-duration conges-
tion detected as stay locations. The departure times extracted
from these stay locations likely influenced the K-S test results.
Such differences were also highlighted in the local Moran’s I

distribution of stay location cluster in SGT and GPS data.
The results of the one-to-one comparison between passive

data and SGT also revealed that GPS data exhibited the highest
level of agreement with the SGT when estimating travelled tra-
jectory distance. Conversely, CDR data demonstrated the lowest
level of agreement with the actual trajectory distance. Saarik [98]
further emphasised the error in constructing mobility patterns
due to the tower-level resolution of CDR data. Since we cal-
culated the trajectory distance in this study as the sequenced
Euclidean distance, accuracy depended on the sequencing and
retrieval of the activity or stay locations from passive trajectory
data. The sequence of activities in CDR data might not match
the actual trajectory because locations are only recorded when
the mobile phone is in use. While increased mobile phone usage
frequency could potentially improve the sequencing of missing
activity locations, the trajectory distance would still be limited to
tower positions. Similarly, a weaker association between GSM
trajectory distance and SGT, compared to GPS and SGT, can
be attributed to the triangulated approximation of stay location
information in GSM data.

In addition to device performance, the results showed that
location errors in GPS and GSM data also depended on exter-
nal factors such as road congestion and the relative distance
between activity locations and congested roadways. As a result,
deriving activity and travel locations from GPS and GSM data
can introduce additional errors beyond positional shift, drift,
and discontinuity noise. This may have a significant effect on
the methods for location extraction [80]. Thus, it can be difficult
to distinguish short stays (e.g., pick-up or drop-off locations)
and activity locations from congestion stays when using GPS
and GSM data. This has been particularly problematic in the
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ZANNAT ET AL. 17

context of this case study due to the mixed land use and
on-street parking facilities on most of the roads in Dhaka. Com-
bining passive trajectory data with secondary data on traffic,
land use, weather, and parking could help differentiate various
types of stay locations, a potential avenue for future research.
Additionally, conducting further research with multi-day pan-
els of GPS and GSM data could aid in better distinguishing
activity locations from long stay points resulting from traffic
congestion.

Eventually, the proposed simulation-based framework effec-
tively demonstrated the impact of various errors that cause
positional disturbances and affect the accuracy of spatiotempo-
ral mobility attributes from passive trajectory data. While this
study specifically highlighted the effects of positional distur-
bances on mobility attributes, the use of different passive data
sources with varying temporal resolutions also underscores the
framework’s effectiveness in assessing the impact of sampling
bias on extracting mobility information from passive trajectory
data.

5 CONCLUSION

This article introduced a comprehensive four-step framework
for assessing the accuracy of mobility information extracted
from trajectory data. We employed this framework to gener-
ate finely detailed SGT data and synthetic trajectory data (GPS,
GSM, and CDR) infused with realistic noise using MATSim
simulation. The use of simulation-based GT allowed us to pre-
cisely evaluate multiple passive trajectory data sources and their
accuracy in depicting mobility information. Through both visual
and statistical analysis, we compared the statistical attributes
and accuracy of trip-related factors (e.g. stay location, depar-
ture time, and travel distance) extracted from synthetic GPS,
GSM, and CDR data with those from SGT. Our findings high-
lighted that the generated synthetic data had the potential to
closely resemble real-world GPS, GSM, and CDR data. Further-
more, when considering the additional positional disturbance,
GPS data outperformed GSM and CDR data in terms of deriv-
ing departure time, trajectory distance, and activity location
information.

We also demonstrated empirically that the accuracy of pas-
sive data depends on various assumptions made during their
evaluation, such as assuming the mobile device remained active
throughout the journey. External factors, such as congestion
and the relative distance from the road to the activity locations,
also influenced accuracy. Additionally, the proposed framework
offers several key advantages:

∙ Importance of SGT: This study underscored the significance
of having SGT that closely matches the spatial and temporal
granularity of passive data sources. We tested its significance
with three mainstream passive data. Also, SGT facilitated pre-
cise and rigorous comparisons between passive data (from
different sources) and a reliable reference in a controlled
environment, enabling researchers to assess how accurately
these sources capture human mobility patterns and choose
the most suitable data source for their specific needs.

∙ Addressing challenges with real-life data: While real-life
datasets are essential for accuracy assessment, they pose
challenges in distinguishing relative inaccuracies caused by
different noise levels and their impact on model uncertainties.
The proposed framework would allow researchers to isolate
and assess the influence of various types of noise, beyond
positional disturbance, validating the stability of model out-
puts derived from passive data and their sensitivity to error
size and extraction assumptions.

∙ Alignment with other accuracy assessments: The accuracy
assessment results aligned closely with those from other
assessments using travel diary surveys, census, or other GT
sources. This alignment underscores the suitability and signif-
icance of the proposed SGT for future accuracy assessment
studies. Additionally, the framework’s versatility enables the
assessment of passive trajectory data accuracy at both the
individual and aggregate levels.

Finally, this framework provides a foundation for bench-
marking models developed with passive data, aiding in the
evaluation of various data management solutions. The results
from the comparative analyses can help identify data require-
ments for different scales of transport planning and modelling.
Additionally, accuracy assessments of passive data with appro-
priate GT have the potential to address challenges related to
data collection, processing, and model specification complexi-
ties. They can reveal the most suitable passive data source for
specific concerns, such as using GSM data instead of GPS data
[25].

It is important to note that the findings deduced from
the MATSim-based study using the Dhaka network may not
be applicable universally. The accuracy level of passively gen-
erated data is affected by local factors like the topology of
the transport network, topographic characteristics of the area
(e.g. if the area is flat or mountainous), the presence of clus-
ters of high-rise buildings, and coverage of the mobile phone
network. For instance, in Dhaka, the mobile phone tower loca-
tion density was notably seen to influence the accuracy of
CDR data in the eastern part of the city. However, this effect
and its magnitude may not hold true for cities in developed
countries. Considering such contextual factors is imperative
when utilising this framework for accuracy assessment. Further-
more, it is essential to have a comprehensive MATSim model
realistically representing agents’ activity and travel behaviour
prevailing in the selected context for conducting such accu-
racy assessments, which entails substantial data requirements
(e.g. MATSim model inputs such as network, activity plans,
behavioural model), and complex technology-dependent sim-
ulations (e.g. high-performance computer to run the scenarios).
These factors can introduce additional noise during the event
file generation stage. For example, if there is no potential route
between the specified origin and destination, agents will end up
teleporting without traversing the network. This will generate
misleading trajectories in the event file.

Moreover, this study investigated the accuracy of three main-
stream passive data sources with a standard positioning (random
shift and drift) and temporal resolution. Future research should
explore the sensitivity of these data sources to different noise
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18 ZANNAT ET AL.

levels, including sampling bias, variations in shift and drift
parameters, tower density, call rate, and location update fre-
quency. The accuracy of mobile phone CDR data was assessed
only using the distribution of calls. CDR data may include a vari-
ety of records beyond just calls, such as text messages, mobile
data usage, and location updates, which collectively contribute
to a richer dataset. Incorporating these diverse types of CDR
records can significantly enhance the resolution of the data and
the accuracy of the extracted mobility information. For exam-
ple, by combining records of calls, texts, and data usage, we
can obtain a more comprehensive view of both specific activ-
ities and continuous movement patterns. While this approach
can resemble low-resolution GPS data, it is important to note
that the locations provided by CDR data are still at the tower
level. Therefore, as our findings highlighted, the density of
mobile tower locations remains a critical factor in determining
the accuracy of the data.

Additionally, the impact of noise, arising from external
sources such as land use, built environment, and topographic
conditions etc., on trajectory data can be explored using the pro-
posed framework. This can be achieved by generating synthetic
passive data with added noise from external sources through
integrating MATSim event files with external data sources, such
as land use maps or weather data. The impact assessment of
different types of noise (both internal and external) on trajec-
tory data will also enable the assessment of the effectiveness
of different data processing algorithms for extracting trajectory
information from passive data sources. Similar investigations
can assess the accuracy of other passive data sources, such as
smart card data and automatic vehicle location information.
Expanding this research to compare model outputs derived
from different passive data sources, such as the value of travel
time (VTT), is also a valuable avenue for exploration. Addi-
tionally, conducting a comparative analysis between outputs
obtained from MATSim simulation and real GPS, GSM, and
CDR data collected from the same sample used for calibrating
MATSim can also provide insights into the influence of other
factors like traffic density and congestion on assessing the accu-
racy of mobility information obtained from passive data. While
this work focused on checking stay location accuracy at vari-
ous spatial resolutions (50–500 m), future research can delve
into comparing the relative accuracy of real-time passive tra-
jectory positions and related link/lane level locations by testing
various map-matching algorithms [67, 99]. Ultimately, the pro-
posed framework holds the promise for generating trajectory
data in data-scarce cities and validating them with appropriate
GT information to make informed decisions based on validated
models developed using passive data. The research community
can further enhance and develop new datasets according to their
specific requirements.
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