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Abstract. We study elementary properties of Hilbert spaces and bounded operators in the
absence of any form of the Axiom of Choice. A surprising amount of the theory continues to
hold, sometimes with modified proofs, but there are some interesting surprises. It turns out
there is a much greater variety of Hilbert spaces. We also obtain some new and potentially
interesting types of cardinals and relations between them.

This article examines Hilbert spaces constructed from sets whose existence
is incompatible with the Countable Axiom of Choice (CC). Our point of view
is twofold.

(1) We examine what can and cannot be said about Hilbert spaces and
operators on them in ZF set theory without any assumptions of Choice ax-
ioms, even the CC. It turns out that quite a bit can be said in this context,
some of which seems a little counterintuitive. We are especially interested in
Hilbert spaces whose dimension is “finite” in a sense incompatible with the
CC, where strange properties sometimes hold. One philosophical consequence
of not assuming CC is that Hilbert spaces come in a great many more varieties
and are not nearly as homogeneous as normally thought (and are much more
interesting!)

(2) We view Hilbert spaces as “quantized” sets and obtain some set-theoretic
results from associated Hilbert spaces.

The article is written in a partly expository style. Some of the results
were previously obtained, primarily by N. Brunner and coauthors in [7, 6, 9]
(although these papers have a somewhat different point of view and contain
some errors; see the discussion in §6.1.2). Many of our basic results are modest
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and qualify as “low-hanging fruit”; we have certainly not picked all the fruit
and invite other interested readers to join the harvest.

A subsequent article [5] will discuss C∗-algebras without AC, including the
validity of the two Gelfand–Naimark representation theorems.

Caution. Without CC, one must be very careful since many familiar tech-
niques we use, sometimes without much thought, do not work. The principal
tools we cannot use are Zorn’s Lemma, Tikhonov’s Theorem, the Hahn–Banach
Theorem, and the Baire Category Theorem, all of which require some version
of the AC. (Note, however, that we can still make finitely many choices.) Thus
we will have to prove or reprove some “standard” or “well-known” properties of
Hilbert spaces. So we cannot assume we know anything about Hilbert spaces
beyond some basic facts obviously independent of Choice, such as the CBS
inequality and Parallelogram Law. We will use [4] as a convenient reference
for some standard arguments that can also be found elsewhere. We use the
capitalized word Choice to generically refer to versions of the Axiom of Choice
(e.g. “can be proved without any Choice” means “theorem of ZF”), and we
will not assume any Choice without explicit mention.
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Brief summary. In Section 1, we introduce the notion of σ-completeness of
metric spaces and argue that it is the correct notion of completeness in a con-
text where CC fails (see also Example 6.0.6). In Section 2, we establish the the-
ory of Hilbert spaces in this context. Spaces ℓ2(X) are introduced in Section 3,
and in Section 4, we show that the analysis of finite-dimensional and separa-
ble Hilbert spaces is unaffected even if CC fails. Dedekind-finite sets and their
variations are introduced in Section 5. The most important notion for us is that
of a Cohen-finite set (Definition 5.2.3), and a CF set is a Cohen-finite, infinite
set. Simple permanence properties of CF sets are established in Section 5.4.
This includes Lemma 5.4.2, used throughout. Figure 1 represents implications
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between different flavors of Dedekind-finite sets. In Section 6, we establish
basic results on ℓ2(X) spaces for a DF (Dedekind-finite and infinite) set X . In
Proposition 6.0.3, we prove, among other equivalences, that X is Cohen-finite
if and only if the standard basis is a Hamel basis. In Theorem 6.2.3, we find
(using a rather peculiar variant of a Dedekind-finite set, proved consistent with
ZF by J. Truss) a Hilbert space without an orthonormal basis, and even with-
out an infinite orthonormal sequence, and in Example 6.3.1, we prove that if
X is a DF set which is not Cohen-finite, then ℓ2(X) has orthonormal bases of
different cardinalities. The question whether every Hilbert space is (provably
in ZF) isometric to a subspace of one with an orthonormal basis is discussed
in Section 6.4. In Section 7, we turn to the study of bounded linear operators,
and in Section 8, we consider the algebra of bounded linear operators on ℓ2(X)
for a DF set X . If X is CF, then this algebra is non-separable, but it is stably
finite (Corollary 8.1.3) and every compact operator has finite rank (Proposi-
tion 8.2.1). In Section 8.3, we study the Calkin algebra Q(ℓ2(X)) and prove
that it is one-dimensional if X is strongly amorphous (Proposition 8.3.3) and
that it can be non-separable and abelian (Proposition 8.3.8) or nonabelian and
stably finite (Proposition 8.3.9) for specific choices of a CF set X . In Corol-
lary 8.4.3, we prove that, in Solovay’s model, there is a stably finite C∗-algebra
with no tracial states. This example is commutative and it has no nonzero rep-
resentation on a Hilbert space. In Proposition 8.4.4, we show that if there is
a CF set X such that its power set has no finitely additive probability measure
that vanishes on singletons, then B(ℓ2(X)) is stably finite and has no tracial
states, and is therefore not satisfactory (this is an immediate consequence of
a well-known fact that if all sets of reals have the Property of Baire, then
there is no probability measure on P(N) that vanishes on the singletons). In
Section 8.5, we prove that, for a power Dedekind-finite set X , the spectrum of
every bounded linear operator T on ℓ2(X) is finite and every element of the
spectrum is an eigenvalue. In Section 9, we introduce Hilbert space analogs
of principal flavors of Dedekind-finite sets (see Figure 2). Models of ZF used
in the previous sections are constructed in Section 10, and we conclude with
a short list of open problems in Section 11.

1. Completeness and its consequences

The first technicality concerns the “right” notion of completeness for Hilbert
spaces and, more generally, metric spaces. The Cauchy sequence definition
(which we will call Cauchy completeness) turns out not to be useful in the
absence of CC. Instead, the following version of completeness should be used.

1.0.1. Definition. Let (X, ρ) be a metric space.
(i) (X, ρ) is absolutely closed if, whenever φ is an isometric embedding of

(X, ρ) into a metric space (Y, ρ′), φ(X) is closed in (Y, ρ′).
(ii) (X, ρ) is σ-complete if, whenever (An) is a decreasing sequence of non-

empty closed subsets of X with diam(An) → 0, then
⋂

n An is nonempty
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(it is then necessarily a singleton). In [9], spaces with this property are
called Cantor complete.

(iii) (X, ρ) is totally complete if, whenever (Ai) is an indexed set of nonempty
closed subsets of X , directed by reverse inclusion (i.e. Aj ⊆ Ai if and only
if i ≤ j, and for every i, j, there is a k with Ak ⊆ Ai ∩Aj ; the indices run
over an arbitrary directed set) with diam(Ai) → 0 (i.e. for every ǫ > 0,
there is an i0 with diam(Ai0 ) < ǫ and hence diam(Ai) < ǫ for all i > i0),
then

⋂

iAi is nonempty (it is then necessarily a singleton).
(iv) (X, ρ) is uniformly complete if the uniform space defined by the metric is

complete, in the sense that every Cauchy net is convergent.

In the context of the Axiom of Choice, a metric space is uniformly com-
plete if and only if it is Cauchy-complete. However, without CC, in general,
a non-convergent Cauchy sequence cannot be extracted from a non-convergent
Cauchy net (cf. Propositions 6.0.3 and 6.2.7). The following is a theorem of
ZF, i.e. no form of Choice is used. If the CC is assumed, all five conditions are
equivalent. See [4, XII.16.9.5] for a proof.

1.0.2. Theorem. Let (X, ρ) be a metric space. The following are equivalent.
(i) (X, ρ) is absolutely closed.
(ii) (X, ρ) is σ-complete.
(iii) (X, ρ) is totally complete.
(iv) (X, ρ) is uniformly complete.
These conditions imply
(v) (X, ρ) is Cauchy-complete.

We will use the term σ-complete generically for a metric space satisfying
(i)–(iv). A closed subset of a σ-complete metric space is obviously σ-complete.
A compact metric space is σ-complete.

Since every uniform space has an essentially unique completion (cf. e.g. [4,
§XII.16.8], and note that no Choice is used there), we obtain the following
corollary.

1.0.3. Corollary. If (X, ρ) is a metric space, there is a canonical σ-complete
metric space (X̄, ρ̄) containing (X, ρ). If φ : X → Y is an isometry from X to
a σ-complete metric space (Y, τ), then φ extends uniquely to an isometry from
X̄ to the closure of φ(X) in Y . Thus the completion of (X, ρ) is unique up to
isometry which is the identity on X.

2. Hilbert spaces

2.0.1. Definition. A Hilbert space is a complex inner product space which is
σ-complete under the induced norm (almost everything we do works at least
as well for real Hilbert spaces). More generally, a (real or complex) Banach
space is a σ-complete normed (real or complex) vector space.

In the presence of CC, this agrees with the usual definition, and we believe
it is the “right” definition in the general case. Note that a Hilbert space by
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this definition is Cauchy-complete. Every (complex) inner product space has
a canonical σ-completion (Corollary 1.0.3). Since closed bounded subsets of
a finite-dimensional normed vector space are compact (no Choice is needed
to prove this), any finite-dimensional inner product space is a Hilbert space.
The problem with the example in [9] (cf. Example 6.0.6) is that, while it is
Cauchy-complete, it is not σ-complete (and thus not a Hilbert space by our
definition).

2.0.2. The CBS inequality and the Parallelogram Law hold in any inner prod-
uct space (no Choice required), and the following fact (in ZF) is a fundamental
consequence. See e.g. [4, XVI.9.4.2] for a proof.

2.0.3. Lemma. Let C be a nonempty convex set in an inner product space V,
ξ ∈ V, and ǫ > 0. If η, ζ ∈ C with1 ‖ξ − η‖2 < ρ(ξ, C)2 + ǫ and ‖ξ − ζ‖2 <
ρ(ξ, C)2 + ǫ, then ‖η − ζ‖2 < 4ǫ.

The most important consequence of σ-completeness in inner product spaces
is that the following fundamental fact holds (in ZF!). The usual proof uses
Cauchy sequences and requires CC, but there is an alternate proof from σ-com-
pleteness not requiring CC. This proof can be found in some references, but
we give it here to illustrate the use of σ-completeness.

2.0.4. Theorem (Closest Vector Property). Let H be a Hilbert space and C
a nonempty closed convex subset of H. For any ξ ∈ H, there is a unique η ∈ C
such that

‖ξ − η‖ = ρ(ξ, η) = ρ(ξ, C) = inf
ζ∈C

‖ξ − ζ‖ = min
ζ∈C

‖ξ − ζ‖.

Proof. Let r = ρ(ξ, C). For each n ∈ N, let An be the intersection of C with
the closed ball of radius r + 1

n around ξ. Then each An is a nonempty closed
convex set inH, with An+1 ⊆ An, and ρ(ξ, An) = ρ(ξ, C). Lemma 2.0.3 implies
that diam(An) → 0 as n → ∞. Thus, by σ-completeness,

⋂

n An = {η} for
some η ∈ C. Clearly, ‖ξ − η‖ = r and η is the unique vector in C with this
property. �

A key consequence of Theorem 2.0.4 is the existence of orthogonal comple-
ments.

2.0.5. Corollary. Let H be a Hilbert space, and Y a closed subspace of H.
Then every ξ ∈ H can be uniquely written as η + ζ, where η ∈ Y and ζ ∈ Y⊥.
This η is the closest vector in Y to ξ. So Y and Y⊥ are complementary
closed subspaces of H, and in particular, Y has an orthogonal complement,
and (Y⊥)⊥ = Y. There is an orthogonal projection PY from H onto Y with
null space Y⊥.

2.0.6. Theorem (Riesz Representation Theorem). Let H be a Hilbert space,
and φ a bounded linear functional on H. Then there is a unique vector η ∈ H

1We write ρ(ξ, C) = inf{‖ξ − η‖ | η ∈ C}.
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with φ(ξ) = 〈ξ, η〉 for all ξ ∈ H. The map φ 7→ η is a (conjugate-linear)
isometry from H∗ onto H. In particular, H is reflexive.

The standard proofs work verbatim.
We also note the following immediate (actually somewhat nontrivial) con-

sequence of Corollary 1.0.3.

2.0.7. Proposition. Let H and H′ be Hilbert spaces, and H0 a dense sub-
space of H. An isometric linear map T from H0 to H′ extends uniquely to
an isometric linear map T̄ from H to H′. If T (H0) is dense in H′, then T̄ is
surjective.

More generally, since a bounded linear operator is uniformly continuous,
any bounded T : H0 → H′ extends uniquely to H.

3. Orthonormal bases and ℓ2-spaces

One standard property of Hilbert spaces is dramatically absent in our non-
Choice setting: existence of orthonormal bases. Every Hilbert space that has
a well-ordered dense subset has an orthonormal basis, even a well-ordered one
(Theorem 4.1.3). In particular, every separable Hilbert space has an ortho-
normal basis. A Hilbert space with no well-ordered dense subset is non-
separable, and without the Axiom of Choice (or at least the Axiom of De-
pendent Choice), it does not necessarily have a separable infinite-dimensional
subspace (cf. Propositions 6.0.3 and 6.2.7). Because of this, in the non-Choice
setting, a non-separable Hilbert space is not necessarily either “larger” or
“smaller” than a separable one. Not every Hilbert space has an orthonormal
basis without some additional assumptions (Theorem 6.2.3). In this section, we
will examine Hilbert spaces which come equipped with a natural orthonormal
basis, which might be better behaved.

3.0.1. The first thing we need to make precise is the notion of the sum of a func-
tion over a set. We will take it to mean the integral with respect to counting
measure; thus the sum of a nonnegative real-valued function on a set X is the
supremum of the sums over finite subsets of X .

3.0.2. Definition. Let X be a set. Define

ℓ2(X) =
{

η : X → C

∣

∣

∣

∑

x∈X

|η(x)|2 < ∞
}

.

3.0.3. The usual proofs show that ℓ2(X) is a complex vector space under point-
wise operations, and the CBS inequality shows that if η, ζ ∈ ℓ2(X), then the
net

〈η, ζ〉F =
∑

x∈F

η(x)ζ(x)

in C indexed by finite subsets F of X , directed by inclusion, converges to
a complex number we call 〈η, ζ〉, and 〈 · , · 〉 is an inner product on ℓ2(X).
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3.0.4. Proposition. Let X be a set. Then ℓ2(X) is σ-complete, hence a Hilbert
space.

Proof. The proof follows the pattern of the usual proof of completeness. Let
(An) be a decreasing sequence of closed bounded subsets of ℓ2(X) whose di-
ameters go to zero. For each x ∈ X , let Ax

n be the set of x-th coordinates of
elements of An, i.e. A

x
n = Px(An), where Px is the orthogonal projection of

H onto the one-dimensional subspace spanned by ξx. Then (Ax
n) is a decreas-

ing sequence of closed bounded subsets of C whose diameters go to 0; hence
⋂

n A
x
n = {cx} for some cx ∈ C. We claim

∑

x∈X

cxξx ∈
⋂

n

An.

If F is a finite subset of X , set AF
n = PF (An), where PF is the orthogo-

nal projection of ℓ2(X) onto the span YF of {ξx | x ∈ F}. Then (AF
n ) is

a decreasing sequence of closed subsets of YF whose diameters go to zero, so
⋂

n A
F
n = {ηF} for some ηF ∈ YF since YF is finite-dimensional; we must have

ηF =
∑

x∈F cxξx.
Suppose ‖ζ‖ ≤ M for all ζ ∈ A1. It follows that, for each finite subset

F of X , ‖ζ‖ ≤ M for all ζ ∈ AF
1 , so

∑

x∈F |cx|
2 ≤ M2 for any F . Thus

∑

x∈X |cx|2 ≤ M2, so the cx define a vector

η =
∑

x∈X

cxξx ∈ ℓ2(X).

To show η ∈
⋂

n An, let ǫ > 0, and fix m with diam(Am) ≤ ǫ. Let n ≥ m.
If F is a finite subset of X , we have diam(AF

n ) = diam(AF
n ) ≤ ǫ, so for any

ζ ∈ An,

‖PF (ζ) − ηF ‖
2 =

∑

x∈F

|〈ζ, ξx〉 − 〈η, ξx〉|
2 =

∑

x∈F

|〈ζ − η, ξx〉|
2 ≤ ǫ2.

Thus ‖ζ− η‖ ≤ ǫ for all ζ ∈ An. This is true for every ǫ > 0, for all sufficiently
large n. Since the An are decreasing and closed, η ∈

⋂

n An. �

3.0.5. If X is a set, ℓ2(X) has a canonical orthonormal basis {ξx | x ∈ X},
where ξx is the characteristic (indicator) function of {x}. If η ∈ ℓ2(X), then
we have

η =
∑

x∈X

η(x)ξx

in the sense that the sums over finite subsets converge in norm to η. Every
square-summable series occurs: if {cx | x ∈ X} is a square-summable set of
complex numbers, there is a unique η ∈ ℓ2(X) with cx = 〈η, ξx〉 for all x ∈ X .

Conversely, we have the following.

3.0.6. Proposition. Let H be a Hilbert space with an orthonormal basis {ζx |
x ∈ X} for some set X. Then the map ζx 7→ ξx gives an isometric isomorphism
from H onto ℓ2(X).
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Proof. Let H0 be the dense subspace of H of finite linear combinations of
the ζx. The map ζx 7→ ξx defines an isometric linear map of H0 onto a dense
subspace of ℓ2(X). Since ℓ2(X) is σ-complete, this map extends (uniquely) to
an isometric linear map T from H onto ℓ2(X) by Proposition 2.0.7. �

Thus the ℓ2(X) for various X are universal models of Hilbert spaces with
orthonormal bases.

4. Finite-dimensional and separable Hilbert spaces

4.0.1. No Choice is needed to prove the standard results of finite-dimensional
linear algebra. If H is a finite-dimensional inner product space (finite-dimen-
sional means spanned by a finite set of vectors), then
(i) every set of orthonormal vectors can be expanded to an orthonormal basis.

In particular, H has an orthonormal basis.
(ii) H has a well-defined orthogonal dimension n, which coincides with its

linear dimension.
(iii) Every linearly independent set can be orthonormalized (Gram–Schmidt).
In addition, we have (in ZF)
(iv) H is σ-complete.
(v) The closed unit ball of H is compact.

4.0.2. There is a converse to (v): if H is an infinite-dimensional inner product
space, then for any n, there is an orthonormal set of vectors in H of cardinality
n+ 1 made by Gram–Schmidt, so the closed unit ball cannot be covered by n
open balls of radius 1√

2
or less, and thus the closed unit ball of H is not totally

bounded.
(No Choice is needed to show that a compact metric space is σ-complete and

totally bounded, but the converse requires some Choice, cf. [4, XII.16.12.9].)

4.1. Separable Hilbert spaces.

4.1.1. Most of the results about finite-dimensional Hilbert spaces extend to
separable Hilbert spaces (every finite-dimensional Hilbert space is separable),
due to the Gram–Schmidt orthogonalization process where any sequence of
vectors in an inner product space can be orthogonalized into an orthonormal
sequence (or finite sequence) with the same span. The procedure is inductive
(recursive) and requires no Choice and, indeed, no completeness. Using Gram–
Schmidt plus previous results, we have the following theorem.

4.1.2. Theorem. Let H be a separable Hilbert space. Then
(i) H has a countable orthonormal basis.
(ii) Every closed subspace of H is separable (hence has a countable orthonormal

basis).
(iii) Every orthonormal set in H can be expanded into an orthonormal basis.
(iv) Any two orthonormal bases for H have the same cardinality (finite or ℵ0).
Conversely, any Hilbert space with a countable orthonormal basis is separable.
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Proof. (i) is exactly the Gram–Schmidt process. For (ii), if Y is a closed
subspace of H, then there is a projection of norm one from H onto Y (Corol-
lary 2.0.5), and a continuous image of a separable space is separable. For (iii),
let S = {ξx | x ∈ X} be an orthonormal set in H, and let Y be the closed lin-
ear span of S. Then Y⊥ is a separable Hilbert space, hence has a (countable)
orthonormal basis B, and B ∪ S is an orthonormal basis for H. For the con-
verse, finite linear combinations of the basis vectors with coefficients in Q+Qi
are dense, and can be effectively enumerated without any Choice.

(iv) Let H be a separable Hilbert space, and {ξx | x ∈ X} an orthonormal
set in H. Let {ηn | n ∈ N} be a countable dense set in H. For each x ∈ X ,
let n(x) be the smallest n for which ‖ηn − ξx‖ < 1

2 . Then x → n(x) is
injective, so X is countable. If H is finite-dimensional, an orthonormal basis
for H is a Hamel (vector space) basis for H, and the vector space dimension of
a finite-dimensional vector space is well defined by elementary linear algebra
(no Choice needed). If H is infinite-dimensional, then every orthonormal basis
for H is countably infinite. �

Theorem 4.1.2 is about the existence of a well-ordered basis rather than
separability.

4.1.3. Theorem. Suppose that κ is a well-ordered cardinal. Let H be a Hilbert
space with a dense subset of cardinality κ. Then
(i) H has an orthonormal basis of cardinality λ, for some λ ≤ κ.
(ii) Every closed subspace of H has orthonormal basis of cardinality at most κ.
(iii) Every orthonormal set in H can be expanded into an orthonormal basis.
(iv) Any two orthonormal bases for H have the same cardinality.

The proof of this theorem is given below after a definition and a lemma.

4.1.4. Definition. The following describes the transfinite Gram–Schmidt pro-
cess. Suppose that κ is an ordinal and ηα, for α < κ, are nonzero vectors
in a Hilbert space. Define vectors ζα, for α < κ, by transfinite recursion as
follows.

First let ζ0 = η0‖η0‖−1. If ζα, for α < β, have been determined, then
consider the projection of ξβ to the closed linear span of ζα, for α < β,

(1) ξβ =
∑

α<β

〈ηβ , ζα〉ζα.

If ηβ − ξβ is nonzero, let ζβ = (ηβ − ξβ)‖ηβ − ζβ‖
−1. Otherwise, let ζβ = 0.

4.1.5. Lemma. If ζα, for α < κ, are vectors in a Hilbert space indexed by
an ordinal, then the transfinite Gram–Schmidt process results in a well-ordered
orthonormal basis for the closed linear span of these vectors.

Proof. The proof is analogous to one in the finitary case. At the limit stages,
Bessel’s inequality implies that the finite partial sums of the right-hand side
of (1) converge. In the resulting sequence (ζα), the nonzero vectors are well-
ordered by some ordinal κ′ ≤ κ. �
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Notably, the use of completeness at limit stages of the transfinite Gram–
Schmidt process is necessary even if the AC holds; if H is a non-separable
(not necessarily σ-complete) inner product space, then it may not contain an
orthonormal basis (see [11]).

Proof of Theorem 4.1.3. The proof is analogous to the proof of Theorem 4.1.2.
(i) Let ηα, for α < κ, be an enumeration of a dense subset ofH. By applying

the transfinite Gram–Schmidt process and using Lemma 4.1.5, we obtain an
ordinal λ ≤ κ such that H ∼= ℓ2(λ). By re-enumerating, we can assume λ is
a cardinal.

(ii) If H0 is a closed subspace of H, consider the image of a dense subset of
H under the projection to H0 and apply (i).

(iii) Apply (ii) to the orthogonal complement of the span of the given ortho-
normal set.

(iv) By (ii), we need to prove that if κ and λ are well-ordered cardinals and
ℓ2(κ) and ℓ2(λ) are isomorphic, then κ = λ. This is elementary if κ is finite.
For the infinite case, by expanding each basis vector in terms of the other basis
and using that the support of a vector is countable (Proposition 6.0.2, and we
are working in a well-ordered set), we obtain κ ≤ ℵ0 · λ and λ ≤ ℵ0 · κ. But if
κ is a well-ordered infinite cardinal, then κ = ℵ0 · κ. �

5. Dedekind-finite sets of various flavors

In the absence of CC, there can be bizarre sets which are infinite but “almost
finite.” In this section, we survey various types of such sets which exist in some
models of ZF. For more details, see e.g. [21], also Section 10.

We start by making precise the notion of cardinality in the context of ZF.

5.1. Vanilla flavor.

5.1.1. Definition. The cardinality of a set X , denoted |X |, is the equivalence
class of all Y such that there is a bijection between X and Y . (This is a proper
class, but by Scott’s trick, it can be identified with a set.) AC is equivalent
to the assertion that every set can be well-ordered, and one writes κ = |X |,
where κ is the least ordinal for which such bijection exists. We take such κ (if
it exists) as the canonical representative of |X |, and refer to it as a well-ordered
cardinal.

We will use symbols κ, λ to denote cardinals, with understanding that they
are not necessarily well-orderable.

The cardinality of X is less than or equal to the cardinality of Y , in symbols
|X | ≤ |Y |, if there is an injection fromX to Y . If Y is nonempty, then |Y | ≤ |X |
implies that there is a surjection from X onto Y . (To see this, fix an injection
f : Y → X and y0 ∈ Y . Define g : X → Y by g(f(y)) = y and g(x) = y0 if x
is not in the range of g.)
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5.1.2. We use the following notation for a setX . Denote by P(X) the power set
of X , the set of all subsets of X . Let Fin(X) be the subset of P(X) consisting
of all finite subsets of X (set theorists often denote this by [X ]<ω). Seq(X) is
the set of all finite sequences of distinct elements of X (including the “empty
sequence”).

We have |X | ≤ |Fin(X)| ≤ |P(X)| and, of course, |X | < |P(X)| = 2|X|, and
|X | ≤ |Seq(X)|. There is an obvious surjective map from Seq(X) to Fin(X).
We will have use for the following well-known fact, a theorem of ZF (i.e. no
Choice is needed).

5.1.3. Proposition. Let N be the set of natural numbers. Then Seq(N) and
Fin(N) are countably infinite (equipotent with N).

5.1.4. We write |Y | ≤∗ |X | if there is a surjective function from X to Y (or if
Y = ∅). We have |Y | ≤ |X | ⇒ |Y | ≤∗ |X |, and the converse is true under AC
but not otherwise (whether this is equivalent to AC is an old open problem).

The following well-known notion is central to our study.

5.1.5. Definition. A set X is Dedekind-finite if there is no bijection from X
to a proper subset of X , i.e. every injective function from X to X is surjective.
Otherwise, X is Dedekind-infinite. A set is finite if its cardinality is equal to
the cardinality of some natural number. A cardinal κ is Dedekind-finite if it is
the cardinal of a Dedekind-finite set. Say a set X or a cardinal κ is DF if it is
infinite and Dedekind-finite.

While every finite set is Dedekind-finite, the converse fails in some models
of ZF (Proposition 10.0.1). Whether a set X is Dedekind-finite or Dedekind-
infinite depends only on the cardinal of X : if X and Y are equipotent and
one is Dedekind-finite, so is the other. Any subset of a Dedekind-finite set is
Dedekind-finite.

The next result is fundamental.

5.1.6. Proposition. Let X be a set. Then X is Dedekind-infinite if and only
if there is an injective function from N to X (i.e. there is a sequence of distinct
elements of X). A cardinal κ is Dedekind-infinite if and only if ℵ0 ≤ κ.

Proof. If |Y | ≤ |X | and Y is Dedekind-infinite, then so is X ; in particular,
if there is an injection from N into X , then X is Dedekind-infinite. Suppose
that X is Dedekind-infinite and let f : X → X be an injection that is not
a surjection. Choose x ∈ X \f [X ]. Writing fn for the n-fold iteration of f and
f0 for the identity map, g : N → X defined by g(n) = fn(x) is an injection
from N into X .

The second sentence is a restatement of the first. �

5.1.7. Corollary. If X is a proper subset of Y and X is DF, then |X | < |Y |.

If the CC is assumed, a set is Dedekind-infinite if and only if it is infinite, so
a set is Dedekind-finite if and only if it is finite; thus DF sets are incompatible
with the CC.
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The next proposition gives some alternate characterizations of Dedekind-
infiniteness.

5.1.8.Proposition. Let X be a set, and κ = |X |. The following are equivalent.
(i) X is Dedekind-infinite, i.e. there is a proper subset Y of X which is equi-

potent with X.
(ii) κ = κ+ ℵ0.
(iii) κ = κ+ 1.
(iv) If κ = λ+ 1, then λ = κ.
(v) If Y is any set obtained from X by adding or removing finitely many

points, then |Y | = κ.

5.1.9. If we have one DF cardinal, we have many. If X is a DF set and n ∈ N,
let Fn be an n-element subset of X , and κn = |X \ Fn| (note that we can
choose Fn for any particular n, or for finitely many n, but we may not choose
Fn simultaneously for all n, and in particular, we cannot choose the Fn so
that Fn ⊆ Fn+1 for all n). It is easily seen that the cardinality of X \ Fn

depends only on n and not on the choice of Fn, so κn is well defined for each n.
We clearly have κn+1 ≤ κn for each n, and we have κn+1 6= κn since X \ Fn

is DF. Thus there is a strictly decreasing sequence of DF cardinals smaller
than |X |, which dramatically contradicts the Well-Ordering Principle (there is
even a collection of DF cardinals order-isomorphic to R, cf. [4, II.9.5.21]). More
generally, if Y is any proper subset of X , then |Y | < |X |. DF cardinals do not
even form a set in general: in fact, there are models of ZF in which every set is
the image of a DF set. This holds in the “improved Morris model” of [23, §5.8],
and we briefly explain why. It suffices to prove that every rank-initial segment
of the universe, Vα, is the image of a Dedekind-finite set. Proposition 4.2 in [23]
shows that the set of generic branches is Dedekind-finite, and by construction,
it can be mapped onto Vα; as the forcing described in [27] is iterated through
the universe, in the final model, each Vα is the image of some Dedekind-finite
set.

5.1.10. Proposition. A finite Cartesian product of Dedekind-finite sets is
Dedekind-finite. A finite union of Dedekind-finite sets is Dedekind-finite.

Proof. If (xj) is a sequence of distinct elements ofX1×· · ·×Xn, then for some k,
1 ≤ k ≤ n, the sequence of k-th coordinates of the xj must contain infinitely
many distinct elements of Xk; hence Xk is not Dedekind-finite. Similarly, if
X =

⋃n
k=1 Xk, and (xj) is a sequence of distinct elements of X , then infinitely

many of the xj must be in some Xk, so Xk is not Dedekind-finite. �

In particular, if X is Dedekind-finite, then Xn and X × F are Dedekind-
finite for any n and any finite set F . These sets all have different cardinalities
by §5.1.9. By repeating these constructions and taking subsets, a very large
collection of Dedekind-finite cardinals can be obtained.

5.2. Other flavors. Here are some important variations on Dedekind-infinite-
ness.
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5.2.1. Definition. Let X be a set. Then
(i) X is Cohen-infinite if Fin(X) is Dedekind-infinite, i.e. there is a sequence

of distinct finite subsets of X .
(ii) X is weakly Dedekind-infinite P(X) is Dedekind-infinite, i.e. there is a se-

quence of distinct subsets of X .
(iii) X is dually Dedekind-infinite if there is a surjective function from X to X

which is not injective.

5.2.2. We have

(X Dedekind-infinite) =⇒ (X Cohen-infinite)

=⇒ (X weakly Dedekind-infinite)

=⇒ (X infinite)

and

(X Dedekind-infinite) =⇒ (X dually Dedekind-infinite).

5.2.3. Definition. Let X be a set. Then
(i) X is Cohen-finite if Fin(X) is Dedekind-finite.
(ii) X is power Dedekind-finite if P(X) is Dedekind-finite, i.e. if X is not

weakly Dedekind-infinite.
(iii) X is dually Dedekind-finite if it is not dually Dedekind-infinite.

We use the following abbreviations.
• CF means “infinite and Cohen-finite.”
• PF means “infinite and power Dedekind-finite.”
• DDF means “infinite and dually Dedekind-finite.”

We use the term power Dedekind-finite instead of weakly Dedekind-finite for
the negation of weakly Dedekind-infinite since the condition of being power
Dedekind-finite is considerably stronger than being Dedekind-finite (§5.2.14).

The terminology Cohen-finite is justified since, by [24, §6], a set X is CF if
and only if the forcing Add(X, 1) for adding a subset of X by finite conditions
(“adding a Cohen subset of X”) has the property that every statement in the
language of forcing is decided by a finite predense set. This property is also
equivalent to the assertion that X remains DF in the forcing extension by
Add(X, 1).

Any subset of a Cohen-finite (resp. power Dedekind-finite, dually Dedekind-
finite) is Cohen-finite (resp. power Dedekind-finite, dually Dedekind-finite).
The definitions easily imply (X PF) ⇒ (X CF) ⇒ (X DF) and (X DDF) ⇒
(X DF), and §5.2.10 implies (X PF) ⇒ (X DDF). None of these implications
can be reversed (§5.2.11 shows that DF sets are not necessarily DDF, §5.7.2
shows that some DF sets are not CF, and combining Proposition 5.2.5 and
§5.5.2 shows that CF sets are not always PF). In addition to that, (X DDF)
does not imply (X CF), as shown in §5.7.3, nor (X CF) implies (X DDF), as
shown by §5.2.11 when considered in Cohen’s model.

The next result, due to Kuratowski [35, pp. 94–95], gives alternate charac-
terizations of weak Dedekind-infiniteness. See e.g. [4, II.9.5.7] for a proof.
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5.2.4. Theorem. Let κ be a cardinal, and X a set with |X | = κ. The following
are equivalent.
(i) ℵ0 ≤∗ κ, i.e. there is a sequence of pairwise disjoint nonempty subsets

of X.
(ii) ℵ0 ≤ 2κ, i.e. X is weakly Dedekind-infinite.
(iii) 2ℵ0 ≤ 2κ.

5.2.5. Proposition. Let X be an infinite second-countable Hausdorff space
(e.g. an infinite subset of R). Then X is weakly Dedekind-infinite.

Proof. We will prove that X maps onto N. Fix an enumeration Un, for n ∈ N,
of a base for the topology of X with U0 = X . Suppose for a moment that
all points of X are isolated. Then f(x) = min{n | Un ∩ X = {x}} defines a
surjection from X onto an infinite subset of N.

We may therefore assume that X has an accumulation point, x. Recursively
define m(n) ∈ N, for n in N, by m(0) = 0, and if m(n) has been defined, let

m(n+ 1) = min{j | Uj ⊆ Um(n), x ∈ Uj , and (Um(n) \ Uj) ∩X 6= ∅}.

Then the function that sends X ∩ (Um(n) \ Um(n+1)) to n is a surjection. �

See [32] or [4, II.9.5.6] for another proof. Subsets of R are special among all
sets (in the absence of AC) in part because they can be totally ordered.

5.2.6. Proposition. Let X be a CF set. Then every subset of X that can be
covered by a countable union of finite sets is finite.

Proof. Let A =
⋃∞

n=1 An ⊆ X , with each An finite. If A is infinite, then
there must be infinitely many distinct An, hence a sequence of distinct An, so
Fin(X) is not Dedekind-finite. �

5.2.7. While Theorem 5.2.4 (ii)⇒ (i) is quite subtle, its analog for finite subsets
is easily proved by induction. Thus a set is Cohen-finite if and only if it does
not contain a sequence of pairwise disjoint nonempty finite subsets.

5.2.8. Proposition. If X can be linearly ordered, then it is DF if and only if
it is CF.

Proof. Only the direct implication requires a proof, and we will prove the
contrapositive. Assume X is linearly ordered by ≺ and F (n) is a sequence of
distinct nonempty finite subsets of X . By the pigeonhole principle,

⋃

n F (n)
is infinite. We can order

⋃

n F (n) by (writing n(x) = min{n | x ∈ F (n)})

x ≺1 y if and only if n(x) < n(y) or n(x) = n(y) and x ≺ y.

Since each F (n) is finite, this is a well-ordering of the infinite subset
⋃

n F (n)
of X . Therefore, X is not Dedekind-finite. �

We have the following analog of Proposition 5.1.10.

5.2.9. Proposition.
(i) A finite Cartesian product of Cohen-finite sets is Cohen-finite. A finite

union of Cohen-finite sets is Cohen-finite.
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(ii) A finite Cartesian product of power Dedekind-finite sets is power Dedekind-
finite. A finite union of power Dedekind-finite sets is power Dedekind-
finite.

Proof. The proof of (i), and (ii) for unions, is straightforward along the lines
of the proof of Proposition 5.1.10. For products of power Dedekind-finite sets,
it suffices to show the result for the Cartesian product of two power Dedekind-
finite sets X and Y . Suppose f is a surjective function from X × Y to N. For
each x ∈ X , the restriction of f to {x} × Y has finite range Ax since {x} × Y
is power Dedekind-finite. Thus x 7→ Ax is a function from X to Fin(N), which
must have infinite range since the union of the Ax is N. But Fin(N) is countable
(Proposition 5.1.3), contradicting that X is power Dedekind-finite. �

5.2.10. An interesting consequence is that if X and Y are PF, then there is
not a sequence of distinct relations from X to Y , and in particular, there is no
sequence of distinct functions from X to Y .

If X is dually Dedekind-infinite, and f : X → X is surjective but not
injective, then (fn) is a sequence of distinct functions from X to X , and hence
X cannot be power Dedekind-finite. Thus (X PF) ⇒ (X DDF).

5.2.11. If X is DF, then Seq(X) is also DF (a sequence of distinct elements
of Seq(X) can be concatenated, and the pigeonhole principle implies that it
contains a subsequence of distinct elements of X). However, if X is infinite,
Seq(X) is not DDF since there is a surjective and noninjective function from
Seq(X) to itself sending the empty sequence to itself and dropping the first
term in each nonempty sequence. Thus, if there exists a DF set, there exists
a DF set which is not DDF.

5.2.12. The situation with Fin(X) is quite different, even though there is
a finite-to-one surjective function from Seq(X) to Fin(X). If X is DF, then
Fin(X) can be DF, even DDF, or not DF. See [24] for a study. We do have
the following (for n ≥ 1, let Finn(X) be the n-th iterate of the operation Fin).

5.2.13. Proposition. If X is a CF set, then Finn(X) is CF for all n ≥ 1.

Proof. Suppose X is CF. In order to prove that Fin(X) is CF, towards contra-
diction, let Fn be an infinite sequence of disjoint nonempty subsets of Fin(X).
Let Gn =

⋃

Fn. Then Gn are finite subsets of X , and since X is CF, there
is G ∈ Fin(X) such that Gn = G for infinitely many n. However, both P(G)
and P(P(G)) are finite, contradicting the assumption that Fn were pairwise
distinct.

This proves that Fin(X) is CF, and it also provides the inductive step for
the proof that Finn(X) is CF for all n. �

5.2.14. If X is infinite, then P(Fin(X)) (and a fortiori P(P(X))) is always
Dedekind-infinite: the sets An of n-element subsets of X form a sequence of
distinct elements in P(Fin(X)). However, if X is a DF subset of R, then X
is CF (Proposition 5.2.8), and therefore Fin(X) is DF and even CF (Proposi-
tion 5.2.13), although X is not PF (Proposition 5.2.5).
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5.3. Amorphous sets. We now describe some particularly strange DF sets
whose existence cannot be refuted in ZF set theory.2

5.3.1. Definition. An infinite set X is amorphous if X cannot be written as
a disjoint union of two infinite subsets, i.e. every subset of X is either finite or
cofinite.

5.3.2. Any infinite subset of an amorphous set is amorphous. If X is an amor-
phous set, Y an infinite set, and there is a surjective function f : X → Y ,
then Y is also amorphous (if Y is the disjoint union of Y1 and Y2, then X
is the disjoint union of f−1(Y1) and f−1(Y2)). In particular, if X is weakly
Dedekind-infinite, since N is not amorphous,X cannot be amorphous, so if X is
amorphous, then X is PF. Thus amorphous sets are Dedekind-finite in a strong
sense. In particular, amorphous sets are incompatible with the CC.

As an example of how strange an amorphous set is, we have the following
proposition.

5.3.3. Proposition. An amorphous set cannot be totally ordered.

See e.g. [4, II.9.5.13] for a proof.

5.4. Permanence properties of CF sets.

5.4.1. For a relation R ⊆ X × Y , consider its horizontal and vertical sections,
Rx = {y ∈ Y | (x, y) ∈ R} and Ry = {x ∈ X | (x, y) ∈ R}.

5.4.2. Lemma. Suppose that X and Y are sets, and at least one of them is
CF. Also, suppose that R ⊆ X × Y , and all horizontal and vertical sections of
R are finite. Then there are Z and partitions X =

⊔

z∈Z Xz, Y =
⊔

z∈Z Yz

into finite sets such that
⋃

{Rx | x ∈ Xz} ⊆ Yz and
⋃

{Ry | y ∈ Yz} ⊆ Xz for
all z ∈ Z. This implies that both sets are CF.

Proof. Note that all sections of R are finite if and only if all sections of the
inverse relation R−1 are finite. It therefore suffices to prove the case when X
is CF, since otherwise we can exchange the roles of X and Y and consider R−1

instead of R.
Fix for a moment x ∈ X . Recursively define F (n) ⊆ X and G(n) ⊆ Y as

follows. Let F (0) = {x}, and for all n, let

G(n) =
⋃

{Rx′ | x′ ∈ F (n)}, F (n+ 1) =
⋃

{Ry | y ∈ G(n)}.

Clearly, F (n) ⊆ F (n + 1) and G(n) ⊆ G(n + 1) for all n. By induction on n,
one proves that all F (n) and all G(n) are finite, being unions of finitely many
finite sets. Since X is CF, there exists m = m(x) such that F (m) = F (n) for
all n ≥ m. This implies that G(m) = G(n) for all n ≥ m. Let F [x] = F (m)
and G[x] = G(m).

2More precisely, if ZF has a model, then it has a model with an amorphous set. This also
applies to other flavors of DF sets discussed in Section 5.1 and Section 5. The reason why it
is necessary to assume that ZF has a model is that, by Gödel’s Incompleteness Theorem, in
ZF, there is no proof that there is a model of ZF . . . unless ZF is inconsistent.
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Fix x′ ∈ F [x]. By induction on the minimal n such that x′ ∈ F (n), one
proves that F [x′] = F [x], and therefore G[x′] = G[x]. Let Z = {F [x] | x ∈ X}.
For every z ∈ Z, there is a unique finite subset G[z] of Y which satisfies z =
G[x] for some (every) x such that F [x] = z. Then Xz = z and Yz = G[z] define
partitions of X and Y into finite sets. By construction,

⋃

{Rx | x ∈ Xz} ⊆ Yz

and
⋃

{Ry | y ∈ Yz} ⊆ Xz for all z ∈ Z.
To see that Y is CF, fix an increasing sequence of finite subsets of Y , G(n).

Then F (n) =
⋃

y∈G(n)R
y is an increasing sequence of finite subsets of X ;

hence, for some m and all n ≥ m, we have F (m) = F (n). Then G(n) ⊆
⋃

x∈F (m) Rx for all n; hence all G(n) are subsets of a fixed finite set. This
implies that the sequence G(n) eventually stabilizes. Since this sequence was
arbitrary, Y is CF. �

5.4.3. A function is finite-to-one if the preimage of every element of its range
is finite. The following is a notable consequence of Lemma 5.4.2.

5.4.4. Lemma. Suppose f : X → Y is finite-to-one and surjective. Then X is
CF if and only if Y is CF. If Y is DF, so is X, but the converse does not hold
in general.

Proof. Take R ⊆ X × Y to be the graph of f . Then all vertical sections of R
are singletons and all horizontal sections are finite. Thus Lemma 5.4.2 applies
to imply that X is CF if and only if Y is CF.

If there is an injection from N into X , then the composition of this function
with f has an infinite range, and from it, one defines an injection from N

into Y .
Finally, the Russell set (Definition 5.7.1) is DF, and it clearly has N as

a two-to-one image. �

5.5. Examples and constructions.

5.5.1. The first example of a DF set was due to A. Fraenkel [15], who, assum-
ing a certain extension ZFA of ZF is consistent (ZFA was later proved to be
equiconsistent with ZF), constructed a model of ZF containing an amorphous
set X . This X is not only DF, but even PF.

5.5.2. The most famous Dedekind-finite set was constructed by P. Cohen in his
work on the independence of the Axiom of Choice and the Continuum Hypoth-
esis [10]: a canonical infinite Dedekind-finite subset X of R in a certain model
of ZF. This X is weakly Dedekind-infinite (Proposition 5.2.5) and of course
can be totally ordered, hence has quite different properties from Fraenkel’s ex-
ample (although Cohen’s construction was modeled on Fraenkel’s). Also note
that these sets exist in different universes: Fraenkel’s model is a model with
atoms, while Cohen’s model is a model of ZF.

5.6. Rigid sets. Recall that a permutation of a set X is a bijection from X
to X .
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5.6.1. Definition. An infinite set X is rigid if every permutation of X moves
only finitely many elements (i.e. is the identity on the complement of a finite
subset).

5.6.2. Any set equipotent with a rigid set is rigid. A subset of a rigid set is
rigid (since a permutation of a subset extends to a permutation of the whole
set). Since N is not rigid (it has many permutations moving infinitely many
elements, even all elements), a rigid set must be Dedekind-finite. But “most”
Dedekind-finite sets are not rigid (e.g. if X is any infinite set, then X × Y is
not rigid for any Y with more than one element).

Rigid sets are interesting in the context of associated Hilbert spaces since
a permutation of X naturally defines a unitary operator on ℓ2(X); this unitary
is a finite-rank perturbation of a scalar if and only if the permutation moves
only finitely many elements of X .

5.6.3. Being rigid seems to be similar to being amorphous. But it turns out
that the notions are distinct. Say an infinite set X is strongly rigid if, in any
partition of X into nonempty subsets, all but finitely many cells are singletons,
and strongly amorphous if it is amorphous and strongly rigid. A strongly rigid
set is rigid. It can be shown that Fraenkel’s set is strongly amorphous, hence
rigid, and that Cohen’s generic subset of R is rigid, but it is not amorphous.
There are amorphous sets containing infinitely many pairwise disjoint two-
element sets (§6.2.2), and such a set is not rigid (just interchange each pair of
socks). And there are rigid sets which can be written as a countable disjoint
union of three-element sets in some models of ZF.

5.7. Russell sets and Russell cardinals.

5.7.1. Definition. A set X is a Russell set if it is Dedekind-finite but can be
written as a countable union of pairwise disjoint two-element sets (called pairs
of Russell socks). A cardinal κ is a Russell cardinal if it is the cardinal of
a Russell set.

5.7.2. Note that a Russell set X is DF but not CF, and is not amorphous.
There is a permutation of X interchanging each pair of socks, so X is not rigid
either. If κ is a Russell cardinal, then κ ± 1 is not a Russell cardinal, but is
DF and not CF. In fact, κ ± n is a Russell cardinal if and only if n is even.
Russell socks are a graphic example of a countable union of countable, even
finite, sets which is not countable.

5.7.3. If X is a Russell set, then X is DDF. To prove this, let X =
⊔

n∈N
Xn

be the decomposition of X into pairs. Suppose that f : X → X is a surjection.
In order to prove that it is injective, let

A = {m | there exist k ≥ 1 and n such that fk[Xn] is a proper subset of Xm}.

We claim that A is finite. Otherwise, for every m ∈ A, choose the lexicographi-
cally minimal pair k(m), n(m) such that fk(m)[Xn(m)] is a proper subset ofXm.
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strongly amorphous

amorphous strongly rigid

PF

Russell CF DDF rigid

DF

Figure 1. Implications between different flavors of Dedekind-
finite sets discussed in this section. See also Figure 2 in Sec-
tion 9.

Let xm be the unique element of Xm \ fk(m)[Xn(m)]. Then {xm | m ∈ A} is
a countably infinite subset of X ; contradiction.

For m ∈ N \ A, let g(m) be the minimal n such that f [Xn] = Xm. Note
that g : (N \ A) → N is an injection. Suppose for a moment that, for some
m0 ∈ N \ A, we have g(m0) 6= m0. Fix x0 ∈ Xm0

, and for k ≥ 1, let xk be
the unique element of Xgk(m0) such that fk(xk) = x0. Since g is an injection,
the sequence (mk) is infinite, and again we have a countably infinite subset
{xk | k ∈ N} of X , a contradiction.

We have proven that the set B = {m ∈ N \A | g(m) = m} is cofinite in N,
and f [Xm] = Xm for all m ∈ B. Therefore, f is an injection on the cofinite
subset

⋃

m∈B Xm of X . Since it is surjection, f is an injection as required.

5.7.4. There are models of ZF containing Russell sets, for example, the sec-
ond Cohen model [21, §5.4]. For a thorough and entertaining description of
Russell sets, including motivation for the sock terminology, see [20]; some re-
sults described there graphically show that the world of DF cardinals (when
they exist at all) is even more bizarre than we have indicated (for example,
there is a family of 2ℵ0 pairwise incomparable DF cardinals). For one inter-
esting observation, if one has a set of Russell socks and adds another pair of
socks, the same number (ℵ0) of pairs of socks, but more socks (a strictly larger
cardinality). The latter fact is a consequence of Corollary 5.1.7.

5.7.5. There are various models of ZF in which all the types of DF sets de-
scribed above occur (assuming there is a model for ZF at all, i.e. that ZF is
consistent); see Section 10. There is even a single model of ZF in which all
such sets occur, including counterexamples for the false implications between
the properties.

5.7.6. Figure 1 shows the flavors of DF sets considered in this paper.
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6. ℓ2(X) for DF sets

If X is a DF set, the Hilbert space ℓ2(X) has some unusual properties
depending on the flavor of DF.

6.0.1. Definition. Let X be a set, η ∈ ℓ2(X), and η(x) = 〈η, ξx〉 the x-th
coordinate of η for each x ∈ X . The support of η is supp(η) = {x ∈ X | η(x) 6=
0}.

For the following, one needs to keep in mind that the union of a sequence
of finite sets need not be countable (see Definition 5.7.1).

6.0.2. Proposition. Let X be a set, η ∈ ℓ2(X), and ηx = 〈η, ξx〉 the x-th
coordinate of η for each x ∈ X. Then supp(η) is the union of a sequence of
finite subsets of X.

Proof. Let ǫ > 0, and set Aǫ = {x | |η(x)| ≥ ǫ}. If B = {x1, . . . , xn} is an
n-element subset of Aǫ, set

ζ =

n
∑

k=1

η(xk)ξxk
.

Then

‖η‖2 ≥ ‖ζ‖2 =

n
∑

k=1

|η(xk)|
2 ≥ nǫ2,

so n ≤
(‖η‖

ǫ

)2
. Thus Aǫ is a finite set. We have supp(η) =

⋃

n A1/n. �

Suppose X is CF. We then have severe restrictions on the support of vectors
(note that (ii) of Proposition 6.0.3 says that the canonical orthonormal basis of
ℓ2(X) is a Hamel basis; we will return to this observation in Proposition 6.2.7).3

6.0.3. Proposition. For every set X, the following are equivalent.
(i) X is Cohen-finite.
(ii) Every vector in ℓ2(X) has finite support.
(iii) Every sequence of disjointly supported unit vectors in ℓ2(X) is finite.
(iv) Every sequence of vectors in ℓ2(X) has finite common support.
(v) The closed unit ball of ℓ2(X) is sequentially compact.
(vi) The standard orthonormal basis for ℓ2(X) is a Hamel basis.

Proof. (i) ⇒ (ii) follows immediately from Propositions 6.0.2 and 5.2.6, and
(vi) is obviously equivalent to (ii).

(ii) ⇒ (iii): If ηn are disjointly supported unit vectors, then

η =

∞
∑

n=0

2−n−1ηn

is a unit vector with infinite support.

3Parts of Proposition 6.0.3 have been proved in [7] in a slightly more general context.
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(iii) ⇒ (i): Suppose X is not CF. Then there is a sequence of pairwise
disjoint nonempty finite subsets of X , F (n) for n ∈ N. For each n, let

ηn = |F (n)|−1/2
∑

x∈F (n)

ξx.

These are unit vectors with disjoint supports.
It remains to prove (iv) and (v) are equivalent to the first three statements.
(iv) ⇒ (ii) is trivial.
(i) and (ii) together imply (iv): If (ηn) is a sequence of vectors in ℓ2(X),

then by (ii), (supp(ηn)) is a sequence of finite subsets of X . Since X is CF,
this sequence can contain only finitely many distinct terms.

(iv) ⇒ (v): If (ηn) is a sequence in ℓ2(X), then the ηn all lie in a finite-
dimensional subspace of ℓ2(X). But the closed unit ball of a finite-dimensional
normed vector space is compact (see §4.0.1 and §4.0.2).

(v) ⇒ (iii): Suppose that (iii) fails. An infinite sequence of unit vectors with
disjoint supports does not have a norm-convergent subsequence (e.g. because
it weakly converges to 0). �

6.0.4. Thus if X is CF, the closed unit ball of ℓ2(X) is a σ-complete metric
space which is sequentially compact but not compact (not totally bounded,
cf. §4.0.2).

6.0.5. In fact, if X is CF, ℓ2(X) is the union of the finite-dimensional subspaces
corresponding to finite subsets of X . There are two natural topologies on
ℓ2(X): the norm topology and the weak topology.4 There is also the inductive
limit topology from the finite-dimensional subspaces. It may be that these
three topologies coincide, at least on bounded subsets of ℓ2(X). (Note that
Tikhonov’s Theorem is needed to prove that the closed unit ball of a Hilbert
space is weakly compact—an instance of the Banach–Alaoglu Theorem—so in
this setting, we do not necessarily have weak compactness of the ball.)

From this, we can obtain a nice example from [9] of an inner product
space which is Cauchy-complete but not σ-complete (another claimed example
from [9] is wrong, cf. §6.1.2).

6.0.6. Example. Let X be a CF set. Every vector in ℓ2(X) is of the form
∑

x∈X

cxξx

with cx ∈ C and only finitely many cx nonzero (Proposition 6.0.3). Let

H0 =
{

∑

x∈X

cxξx ∈ ℓ2(X)
∣

∣

∣

∑

x∈X

cx = 0
}

.

Then H0 is a vector subspace of ℓ2(X). If (ηn) is a Cauchy sequence in H0,
then there is a finite subset Y of X such that all the ηn are supported in the

4This is the pointwise convergence topology when vectors are identified with the associ-
ated linear functionals via the Riesz Representation Theorem, Theorem 2.0.6.
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span Y of {ξy | y ∈ Y }. Since Y is finite-dimensional, ηn → η for some η ∈ Y,
and η ∈ H0. Thus H0 is Cauchy-complete. However,H0 is not closed in ℓ2(X),
and is in fact dense. For if ζ =

∑

x∈X cxξx is in H⊥
0 , all the cx must be equal

(just compare with vectors in H0 which are differences of two standard basis
vectors); hence all cx must be 0, so H⊥

0 = {0}. Alternatively, define a linear
functional φ on ℓ2(X) by

φ
(

∑

x∈X

cxξx

)

=
∑

x∈X

cx.

It can be shown directly that φ is unbounded, and hence H0 = N (φ) (the
kernel of φ) is dense in ℓ2(X). Thus H0 is not σ-complete.

6.1. ℓ
2(X) for Russell sets.

6.1.1. We now let X be a DF set which is not CF, i.e. X contains a sequence
(An) of pairwise disjoint nonempty finite sets. For each n, set

ηn =
1

√

|An|

∑

x∈An

ξx.

Then (ηn) is a sequence of unit vectors in ℓ2(X) with disjoint supports, hence
orthonormal. Thus, although ℓ2(X) has an orthonormal basis whose cardinal-
ity is DF, ℓ2(X) contains an orthonormal sequence of vectors (whose cardinality
is ℵ0, hence not DF). In fact, see Example 6.3.1.

6.1.2. Now let X be a Russell set, with |An| = 2 for all n. Then ηn is the
(normalized) sum of the basis vectors in each pair of socks. Let Y be the closed
subspace of ℓ2(X) spanned by ηn. Then Y is isometrically isomorphic to ℓ2(N).

Let Z = Y⊥. Then Z is the closed span of the differences of the vectors in
each pair of socks. These differences are only well defined up to sign, and there
does not exist a global choice of signs; however, the one-dimensional subspace
spanned by the difference is well defined for each pair. Thus Z is spanned
by a sequence of one-dimensional subspaces, although there is not a global
choice of unit vectors in these subspaces (since we are working with complex
Hilbert spaces, we have a circle of unit vectors in each subspace, but splitting
the circle into left and right halves would give a global choice of signs). But
it seems unlikely that Z has an orthonormal basis; in fact, it seems likely
that any orthonormal set in Z is finite (this is claimed in [9], with reference
to a proof in [8] which we are unable to follow or see its relevance; it is also
claimed that this proof shows that Z is not σ-complete, which is wrong since
it is a closed subspace). So Z may be a Hilbert space in which no infinite-
dimensional subspace has an orthonormal basis. In Theorem 6.2.3, we will
prove that, with a stronger assumption on X , this is indeed the case. By
Theorem 4.1.2, neither Z nor ℓ2(X) is separable, although ℓ2(X) is the “direct
sum” of countably many two-dimensional Hilbert spaces (infinite direct sums
and products, and inductive limits, are not well defined without some Choice,
cf. §7.1.9).
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It may be worth noting that if Z has a basis B, then ℓ2(X) has two bases
of different cardinalities, namely the canonical basis and {ηn | n ∈ N} ∪ B
(compare with Theorem 6.3.2). Moreover, regardless of whether Z has a basis
or not, ℓ2(X) has two bases of different cardinalities; see Example 6.3.1.

Note that there is a self-adjoint unitary operator on ℓ2(X) which inter-
changes the basis vectors in each pair of socks, for which Y and Z are the +1
and −1 eigenspaces respectively.

6.2. Bases in Hilbert spaces.

6.2.1. The Axiom of Choice implies that every Hilbert space has an orthonor-
mal basis, and that all of its bases have the same cardinality. We will see that
the first statement can fail, and give positive and negative results about the
second.

6.2.2. For the following, we need a strong assumption (stronger than the exis-
tence of a Russell set, Definition 5.7.1):

there exists an amorphous set X which can be presented as
X =

⊔

z∈Z Xz, where Z is strongly amorphous and Xz are
pairwise disjoint two-element sets.

In [36, Thm. 6.3], relative consistency of the existence of such X with ZF is
given, but in Proposition 10.0.2, we show why this follows from general theory
as presented in [25]. If X has this property, then there is no choice function
f : Z → X because the range of such function would be an infinite, co-infinite
subset of X . Moreover, X is amorphous. (If Y is a subset of X , then for all
but finitely many z ∈ Z, Y either includes Xz or is disjoint from it. Since
Z is amorphous, the set {z | Xz ⊆ Y } is finite or cofinite; thus Y is cofinite
or cofinite.) Since X is amorphous, it is also CF. It is not rigid because the
permutation that interchanges the elements of Xz for all z has no fixed points.

6.2.3. Theorem. Suppose X is as in §6.2.2. Then the following holds.
(i) ℓ2(X) has a closed subspace Y isomorphic to ℓ2(Z), and there is no injec-

tion from Z into X.
(ii) The orthogonal complement of Y has no basis.
(iii) The orthogonal complement of Y contains no infinite orthonormal set.

Proof. (i) Write X =
⊔

z∈Z Xz . The canonical basis of ℓ
2(X) is ξz,x, for z ∈ Z

and x ∈ Xz. (Clearly, the index z is redundant, but it will come handy in the
proof.) Consider the subspace Y of ℓ2(X) spanned by the vectors

ηz = 2−1/2
∑

x∈Xz

ξz,x.

Since each Xz has exactly two elements, each ηz is a unit vector. These vectors
have disjoint supports and are therefore orthogonal. Clearly, their closed linear
span Y is isomorphic to ℓ2(Z).

Suppose that f : Z → X is an injection from Z into X . Since Z is amor-
phous, the set {z | f(z) ∈ Xz} is either finite or cofinite. By the assumption
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that there is no choice function on Z, it is finite. Therefore, the function
g : Z → Z uniquely defined by the requirement f(z) ∈ Xg(z) has at most
finitely many fixed points. This function also has the property that the preim-
age of every element has at most two points; we will say that g is at most
two-to-one.

For z ∈ Z, consider the forward orbit {gn(z) | n ≥ 1}. It cannot be infinite,
since otherwise there would be an injection from N into Z. Therefore, for
all but finitely many z ∈ Z, there are m(z) < n(z) such that gm(z)(z) =
gn(z)(z). Choose this pair so that (m(z), n(z)) is the minimal possible (in the
lexicographic order). Since Z is amorphous, for every S ⊆ N2, the set

ZS = {z ∈ Z | (m(z), n(z)) ∈ S}

is finite or cofinite. Therefore,

{S ⊆ N2 | ZS is cofinite in Z} = {S ⊆ N2 | ZS is infinite},

and this set is a filter. Since N is not amorphous, it is a principal filter, and
there is a pair (m,n) such that

Z ′ = {z ∈ Z | (m(z), n(z)) = (m,n)}

is cofinite in Z (and therefore amorphous).
We claim that m = 1. For k ≥ 1, let

Z[k] = {z ∈ Z ′ | there exists y ∈ Z such that gk(y) = z}.

If 1 ≤ k, then g[Z[k]] = Z[k + 1]. Since g is at most two-to-one, if m > 1 and
Z[m] is infinite, then Z[m− 1] is infinite as well. By the minimality of m, we
conclude that m = 1.

Therefore, g(z) ∈ Xz for all but finitely many z ∈ Z. This contradicts the
fact that g has at most finitely many fixed points proven earlier.

(iii) We claim that the orthogonal complement of Y in ℓ2(X) includes no
infinite orthonormal set. Assume otherwise and fix one, denoted B. Let

R = {(z, η) ∈ Z × B | 〈η, ξz,x〉 6= 0 for some x ∈ Xz}.

We will use Lemma 5.4.2 and the notation Rz , R
η for horizontal and vertical

sections of R introduced there. Since X is CF, every vector in ℓ2(X) has finite
support by Proposition 6.0.3. This means that, for every η in B, the horizontal
section Rη of R is finite.

We claim that, for every z ∈ Z, the vertical section Rz of R is finite. To
see this, fix z and let Pz denote the projection to the span of ξz,x for x ∈ Xz .
For every n, the set {η ∈ B | ‖Pz(η)‖ > 1/n} is finite. Since X is CF, there is
n such that Pz(η) is nonzero if and only if ‖Pz(η)‖ > 1/n. Since the set of η
such that ‖Pz(η)‖ > 1/n is finite, we conclude that Rz is finite for all z ∈ Z.

Therefore, the assumptions of Lemma 5.4.2 (i) are satisfied. This lemma im-
plies that there are a set W and partitions Z =

⊔

w∈W Zw and B =
⊔

w∈W Bw

into finite sets such that
⋃

{Rx | x ∈ Zw} ⊆ Bw and
⋃

{Rη | η ∈ Bw} ⊆ Zw for all w ∈ W.
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Then Zw, for w ∈ W , are equivalence classes of an equivalence relation
on Z. Since Z is strongly amorphous, all but finitely many of the classes are
singletons. Let Z ′ be the union of the singleton classes. Since ℓ2(Xz) is two-
dimensional, for each z ∈ Z ′, there is a unique η(z) ∈ B with Rη(z) = {z}. For
each z ∈ Z, we have

η(z) =
∑

x∈Xz

λxξz,x.

Since η(z) is orthogonal to

2−1/2
∑

x∈Xz

ξz,x,

we have
∑

x∈Zx
λx = 0. We can therefore define a function f : Z ′ → X by

f(z) = x if and only if 0 ≤ arg(λx) < π.

Then f is a choice function on Z ′. Since Z \Z ′ is finite, it can be extended to
a choice function on all of Z, contradicting our assumption.

(ii) clearly follows from (iii). �

6.2.4. The space without a basis constructed in Theorem 6.2.3 is “equal” to
⊕

z∈Z Hz (recall that infinite direct sums of Hilbert spaces are not really well
defined; we just mean the union of the finite direct sums is dense), where (using
the notation from the proof of Theorem 6.2.3) for every z, Hz = ℓ2(Xz) ⊖
span(

∑

x∈Xz
ξz,x) is a one-dimensional Hilbert space.

6.2.5. Proposition. Suppose that H is a real Hilbert space and there is a fam-
ily Hz, for z ∈ Z, of one-dimensional, pairwise orthogonal, subspaces of H
such that

⋃

F∈Fin(Z) span
⋃

{Hz | z ∈ F} is dense in H. Then H is a subspace
of a Hilbert space with a basis.

Proof. For each z, the unit ball S(z) ofHz has two elements. Suppose that Y =
⊔

z∈Z S(z). Then vz : Hz → ℓ2(S(Hz)) defined by vz(ξ) = 2−1/2
∑

η∈S(z)〈ξ, η〉η
is an isometry for every z, and

⊕

z∈Z vz : H → ℓ2(Y ) is an isometry. �

6.2.6. It is not clear how to extend the argument of Proposition 6.2.5 to any
other space of the form

⊕

z∈Z Hz, even if dim(Hz) = 2 for all z or if dim(Hz) =
1 but it is a complex vector space. (The latter is the case of Theorem 6.2.3,
but the space constructed in this proposition is rather specific.)

Compare the following with Proposition 6.0.3 of which it is a continuation.
Parts of it appear in [7] in a slightly more general context.

6.2.7. Proposition. For every infinite-dimensional Hilbert space H with an
orthonormal basis, the following are equivalent.
(i) H has a CF orthonormal basis.
(ii) Every infinite orthonormal set in H is CF.
(iii) Every orthonormal basis is a Hamel basis.

Proof. (ii) trivially implies (i).
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(i) ⇒ (ii): If (i) holds, then by Proposition 3.0.6, we may assumeH = ℓ2(X)
for a CF set X . Fix an orthonormal set B in H. Let

R = {(x, η) ∈ X × B | 〈ξx, η〉 6= 0}.

For every η ∈ B, the horizontal section Rη is equal to the support of η, and
therefore finite by Proposition 6.0.3.

Fix x ∈ X . We will prove that Rx is finite. Assume otherwise. Since
∑

η∈Rx

|〈ξx, η〉|
2 = 1,

the set G(n) = {η ∈ B | |〈ξx, η〉| ≥ 1/n} is finite for all n. Therefore, it follows
that F (n) =

⋃

η∈G(n) R
η is a nondecreasing sequence of finite subsets of X .

Since X is CF, there exists m such that F (n) = F (m) for all n ≥ m.
Every G ⊆ B is included in the linear span of {ξx | x ∈

⋃

η∈G Rη}. This
implies that |G(n)| ≤ |F (n)| (conveniently, this is the additional assumption
of Lemma 5.4.2 (ii)) which is by the previous paragraph at most |F (m)| for
all n. Since the sequence G(n) is increasing, it stabilizes. Hence its union is
finite, contradicting the assumption that Rx was infinite.

Since x ∈ X was arbitrary, all horizontal sections of R are finite, and Lem-
ma 5.4.2 (ii) implies that B is CF.

(i) ⇒ (iii): Assume (i) and fix an orthonormal basis of H. By (ii), we may
assume H = ℓ2(X) for a CF set X . Proposition 6.0.3 implies that every vector
in ℓ2(X) is a linear combination of finitely many basis vectors.

(iii) ⇒ (i): Assume (i) fails; hence H = ℓ2(X) and X is not CF. By Propo-
sition 6.0.3 (ii) ⇒ (i), some vector in H has infinite support; thus ξx, for x ∈ X ,
is not a Hamel basis. �

6.3. Uniqueness of orthogonal dimension. Can we have a Hilbert space
with bases of different cardinalities? The answer is yes.

6.3.1. Example. Let X be a Dedekind-finite set which is not Cohen-finite, and
let Y be the closed subspace of ℓ2(X) spanned by an orthonormal sequence
(§6.1.1) and Z = Y⊥. Then Y ∼= ℓ2(N). If X ⊔ N is the disjoint union of X
and N, then

ℓ2(X ⊔ N) ∼= ℓ2(N)⊕ ℓ2(X) ∼= ℓ2(N)⊕ Y ⊕ Z ∼= ℓ2(N)⊕ ℓ2(N)⊕Z

∼= ℓ2(N)⊕Z ∼= Y ⊕ Z ∼= ℓ2(X)

since ℓ2(N) ⊕ ℓ2(N) ∼= ℓ2(N). Thus, if X is DF, ℓ2(X) has an orthonormal
basis indexed by the DF set X , and an orthonormal basis indexed by the
Dedekind-infinite set X ⊔ N.

It follows that if Y is X with any finite number of points added or removed,
i.e. |Y | = |X | ± n for some n ∈ N, then ℓ2(Y ) ∼= ℓ2(X). For any n 6= 0,
|Y | 6= |X |. If X is a Russell set, then Y is a Russell set if and only if n is even
(§5.7.2).

The following shows that the cardinalities of orthonormal bases cannot be
too wild.
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6.3.2. Theorem. Suppose that ℓ2(X), ℓ2(Y ) are isomorphic, U : ℓ2(X) →
ℓ2(Y ) is a unitary, and X is CF.
(i) There are a set Z and partitions X =

⊔

z∈Z Xz and Y =
⊔

z∈Z Yz into fi-
nite sets such that U [ℓ2(Xz)] = ℓ2(Yz) (hence |Xz| = |Yz|) for all z ∈ Z.

(ii) If X is in addition strongly amorphous, then |X | = |Y | and there are co-
finiteX ′ ⊆ X, Y ′ ⊆ Y , and a bijection f : X ′ → Y ′ such that Uξx = cξf(x)
for some c ∈ C with |c| = 1, for all x ∈ X ′.

Proof. (i) By Proposition 6.2.7, Y is CF; hence Proposition 6.0.3 implies that
every vector in ℓ2(X) and ℓ2(Y ) has finite support. Therefore, all vertical and
horizontal sections of R ⊆ X × Y defined by

R = {(x, y) ∈ X × Y | 〈Uξx, ξy〉 6= 0}

are finite. Since X is CF, Lemma 5.4.2 implies that there are a set Z and
partitions X =

⊔

z∈Z Xz and Y =
⊔

z∈Z Yz into finite sets such that

⋃

{Rx | x ∈ Xz} ⊆ Yz and
⋃

{Ry | y ∈ Yz} ⊆ Xz for all z ∈ Z.

Then the restriction of U to ℓ2(Xz) is an isometry onto ℓ2(Yz) for all z ∈ Z.
Since these are finite-dimensional spaces, |Xz| = |Yz|.

To prove (ii), use the fact that, since X is strongly amorphous, Xz is a sin-
gleton for a cofinite Z ′ ⊆ Z. Thus Yz is also a singleton for all z ∈ Z ′, and we
have a bijection between cofinite subsets of X and Y . Using |Xz| = |Yz | for all
z again, we extend it to a bijection between X and Y . Since X is amorphous,
for all but finitely many x ∈ X , we have Uξx = cξf(x) for some fixed c ∈ C,
|c| = 1. �

By applying (ii) of Theorem 6.3.2 in the case when X = Y is strongly
amorphous, we obtain the following.

6.3.3. Corollary. If X is strongly amorphous, then every orthonormal basis of
ℓ2(X) includes {cξx | x ∈ Y } for some cofinite subset Y of X and some c ∈ C,
|c| = 1.

6.4. Universality of Hilbert spaces with a basis?

6.4.1. Can one prove in ZF that every Hilbert space is the quotient of a Hilbert
space with a basis, and/or that every Hilbert space is isomorphic to a subspace
of a Hilbert space with a basis? We will see that these two questions are related
(Corollary 6.4.6). The only example of a Hilbert space without a basis known
to us, given in Theorem 6.2.3, is both a subspace and a quotient of a Hilbert
space with a basis (the latter follows by Corollary 6.4.6).

6.4.2. A standard argument shows the following.

6.4.3. Lemma. Every Banach space is the quotient of a Banach space with
a basis.
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Proof. Suppose X is a Banach space, and let Y be the unit sphere of X .
Denoting the canonical basis of ℓ1(Y ) by δy, for y ∈ Y , define T : ℓ1(Y ) → X
by

T
(

∑

y

λyδy

)

=
∑

y

λyy.

To see that T is well defined, note that every
∑

y λyδy satisfies
∥

∥

∥

∑

y

λyδy

∥

∥

∥
=

∑

y

|λy | ≥
∑

y

|λy|‖y‖ ≥
∥

∥

∥

∑

y

y
∥

∥

∥
.

Therefore, we have ‖T ‖ ≤ K.
By the choice of Y , T is surjective. �

6.4.4. There is a lot of room for improvement in Lemma 6.4.3. If X is a Hilbert
space, can we choose Y to be a Hilbert space? If the set Y in the proof of
Lemma 6.4.3 is a dense subset of the unit sphere of X , is the operator T still
surjective (the standard proof of this uses the Axiom of Dependent Choice)?

In order to prove Corollary 6.4.6 below, we need the following fact interesting
in its own right.

6.4.5. Proposition. Every short exact sequence of Hilbert spaces in which the
connecting maps are isometries splits.

Proof. Suppose that 0 → X → H → Y → 0 is a short exact sequence of
Hilbert spaces with isometries as connecting maps. Thus the image of X is
a closed subspace of H. By Corollary 2.0.5, this subspace has an orthogonal
complement X⊥ and there is an orthogonal projection PX from H onto X⊥.
The restriction of the quotient map q : H → Y to X⊥ is a surjective isometry,
and therefore its inverse is continuous. �

It would be of interest to generalize Proposition 6.4.5 to the case when the
connecting maps are arbitrary bounded linear operators. The Polar Decompo-
sition Theorem (Theorem 7.0.6) may be relevant.

The following is an immediate consequence of Proposition 6.4.5.

6.4.6. Corollary. Every Hilbert space which is the quotient of a Hilbert space
with a basis is a subspace of a Hilbert space with a basis. �

7. Bounded operators

If H is a Hilbert space, denote by B(H) the set of bounded operators on H.

7.0.1. Proposition. If H is a Hilbert space, then B(H) is σ-complete (i.e.
a Banach algebra) under the operator norm.

Proof. Let (An) be a decreasing sequence of closed bounded sets in B(H) whose
diameters go to 0. Fix a vector ξ ∈ H, and set Aξ

n = {Tξ | T ∈ An}. Then the
sets (An

ξ) form a decreasing sequence of closed bounded subsets of H whose
diameters go to 0, so

⋂

n An
ξ is a singleton we call Sξ. This defines a function

S : H → H, which is clearly linear. If ‖T ‖ ≤ M for all T ∈ A1, then for any ξ,

Münster Journal of Mathematics Vol. — (—), 199–199



Hilbert spaces without the Countable Axiom of Choice 227

‖Tξ‖ ≤ M‖ξ‖ for all T ∈ A1, and hence ‖Sξ‖ ≤ M‖ξ‖, so S is bounded and
‖S‖ ≤ M . To show S ∈

⋂

n An, let ǫ > 0, and fix m with diam(Am) ≤ ǫ. Let
n ≥ m. If ξ is any unit vector in H, the set An

ξ has diameter at most ǫ; hence
‖Tξ − Sξ‖ ≤ ǫ for all T ∈ An. Thus ‖T − S‖ ≤ ǫ for every T ∈ An. Since the
An are decreasing and closed, S ∈

⋂

n An. �

This result holds more generally if H is just a (σ-complete) Banach space;
in fact, if X and Y are normed vector spaces with Y σ-complete, then B(X ,Y)
is σ-complete.

The next important fact is a corollary of the Riesz Representation Theorem
(Theorem 2.0.6); the standard proof (cf. [4, XVI.9.11.2]) works verbatim.

7.0.2. Corollary. Let H be a Hilbert space, and T ∈ B(H). Then there is
a unique S ∈ B(H) with 〈Tx, y〉 = 〈x, Sy〉 for each x, y ∈ H. Write T ∗ for
this S.

7.0.3. The adjoint operation T 7→ T ∗ has the usual properties [3, I.2.3.1], which
show that B(H) is a C∗-algebra. Corollary 7.0.2 is what allows reasonable
operator theory to be done on H.

7.0.4. In the example of a Cauchy-complete, not σ-complete space H0 ob-
tained from a CF set X in Example 6.0.6, all the conclusions Theorem 2.0.4,
Corollary 2.0.5, and Theorem 2.0.6 fail. Operators on H0 do not have ad-
joints in general, or more precisely, the adjoint of a bounded operator on H0 is
a (bounded) operator on H, the σ-completion of H0. Here is a simple example
of an operator on H0 with no adjoint. Let ζ be a unit vector in ℓ2(X) \ H0,
η a unit vector in H0, and let T (ξ) = 〈ξ, ζ〉η for ξ ∈ H0. This is a rank one
operator on H0, but its adjoint (in B(ℓ2(X))) is a rank one operator whose
range is the span of ζ, so it is not an operator on H0. Note that this example
also gives failure of the Riesz Representation Theorem for H0 and a bounded
sesquilinear form on H0 that does not correspond to a bounded linear operator
on H0.

7.0.5. As usual, we define a positive operator on H to be a T ∈ B(H) with T =
T ∗ and 〈Tξ, ξ〉 ≥ 0 for all ξ ∈ H. If T ∈ B(H), then T ∗T ≥ 0. The converse
also holds: in fact, every T ≥ 0 has a unique positive square root, an S ≥ 0
with S2 = T (write S = T 1/2). This is a special case of continuous functional
calculus of self-adjoint elements. There is a direct proof not requiring any
Choice, cf. [30] or [19].

7.0.6. Theorem (Polar Decomposition Theorem). Let H be a Hilbert space,
and T a bounded linear operator on H. Then there are a unique positive oper-
ator |T | and a partial isometry V such that T = V |T |. If we require V to have
the property that the range of V ∗V is N (T )⊥, then V is unique.

Proof. Set |T | = (T ∗T )1/2. For every vector ξ, by a standard argument, we
have

‖|T |ξ‖2 = 〈|T |ξ, |T |ξ〉 = 〈T ∗Tξ, ξ〉 = 〈Tξ, T ξ〉 = ‖Tξ‖2.
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Thus |T |ξ 7→ Tξ is an isometry from the range of |T | to the range of T ,
and hence by Proposition 2.0.7 extends to an isometry between the closures.
Extend this to V ∈ B(H) by setting V = 0 on Ran(|T |)⊥ = N (T ) (the null
space of T ). Then N (V ) = N (|T |) = N (T ), and Tξ = V |T |ξ for all ξ ∈ H, as
required. �

7.0.7. As a consequence, many other standard properties of B(H) persist in
this setting, such as the following.
(i) Every T ∈ B(H) has left and right support projections.
(ii) The projections in B(H) form a complete lattice.
(iii) The right annihilator of any subset of B(H) is generated by a projection

(i.e. B(H) is an AW∗-algebra).
(iv) B(H) admits not only continuous functional calculus of self-adjoint ele-

ments [5], but even Borel functional calculus; in particular, if T = T ∗ ∈
B(H) and B is a Borel subset of σ(T ), the spectral projection EB(T ) is
well defined with the usual properties.

(v) A bounded increasing net of positive operators converges in the strong
operator topology.

These results will appear in [5].

7.1. Compact operators.

7.1.1. Under usual versions of Choice, there are several equivalent conditions
which characterize compact operators. These conditions may not be equivalent
in the absence of CC, however, so the proper definition must be nailed down.
The following definition seems to be the best and most useful one (whether or
not the AC is assumed).

7.1.2. Definition. Let H be a Hilbert space, and T : H → H a linear operator.
Then T is compact if, whenever A is a bounded subset of H, T (A) is totally
bounded. Denote by K(H) the set of compact operators on H.

7.1.3. If T is a compact operator, the image of the unit ball of H is totally
bounded, hence bounded, so T is bounded, i.e. K(H) ⊆ B(H). Since bounded
sets in a finite-dimensional normed vector space are totally bounded (Choice
is not needed to prove this), every finite-rank bounded operator is compact.
Using our definition, we have the next standard result (it is unclear whether
it holds using other definitions).

7.1.4. Proposition. Let H be a Hilbert space. Then K(H) is a two-sided ideal
in B(H), and is the norm-closure of the set of finite-rank operators on H.

Proof. Since bounded operators send bounded sets to bounded sets and totally
bounded sets to totally bounded sets, K(H) is closed under left and right
multiplication by bounded operators. Obviously, K(H) is closed under scalar
multiplication. If S and T are compact operators, A is a bounded subset of H,
and ǫ > 0, cover S(A) by open balls of radius ǫ

2 centered at {x1, . . . , xn} and
cover T (A) by open balls of radius ǫ

2 centered at {y1, . . . , ym}; then the open
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balls of radius ǫ centered at the xj + yk cover S(A) + T (A) ⊇ (S + T )(A). So
S + T is compact. Thus K(H) is a two-sided ideal in B(H).

Let T be in the norm-closure of K(H), A a bounded subset of H, and ǫ > 0.
Choose S ∈ K(H) with ‖S − T ‖ < ǫ

2 . Cover S(A) with open balls of radius ǫ
2

centered at {x1, . . . , xn}. Then the balls of radius ǫ centered at {x1, . . . , xn}
cover T (A). Thus T ∈ K(H). So K(H) is norm-closed.

Finally, let T ∈ K(H) and ǫ > 0. Cover the image of the closed unit ball of
H under T by open balls of radius ǫ

2 centered at {x1, . . . , xn}. Let P be the
orthogonal projection of H onto the finite-dimensional subspace spanned by
{x1, . . . , xn}. (Existence of P follows from Corollary 2.0.5, but there is a more
elementary argument: any finite-dimensional subspace of an inner product
space has an orthogonal complement by applying the Gram–Schmidt process
to an orthonormal basis of the subspace and a given vector in the space.) Since
P has norm 1, it follows that ‖PT − T ‖ < ǫ, and PT has finite rank. Thus T
is in the closure of the finite-rank operators. �

7.1.5. Corollary. Let H be a Hilbert space, and T ∈ K(H). Then T ∗ is also
in K(H).

7.1.6. Thus K(H) is a C∗-subalgebra of the C∗-algebra B(H). (Actually, any
closed two-sided ideal in a C∗-algebra is a C∗-subalgebra, but this is an ele-
mentary observation in the case of K(H).)

A C∗-algebra is AF (approximately finite) if it is an “inductive limit” of
a directed system of finite-dimensional C∗-algebras (since inductive limits are
tricky and not well defined by Bratteli diagrams without the AC, we will take
this to mean there is a system of finite-dimensional C∗-subalgebras, directed
by inclusion, whose union is dense).

7.1.7. Proposition. If H is a Hilbert space, then K(H) is a simple C∗-algebra,
which is nonunital if H is infinite-dimensional. For every set X, K(ℓ2(X)) is
an AF algebra.

7.1.8. We may more generally define adjoints and compactness for operators
between two Hilbert spaces in the same way, with analogous properties.

7.1.9. If X is a set of Russell socks, then X is the union of an increasing
sequence of finite sets, and hence there is an increasing sequence of finite-
dimensional matrix algebras, each embedded as a corner in the next, whose
union is dense in K(ℓ2(X)). Then K(ℓ2(N)) has a seemingly identical such
sequence. But K(ℓ2(X)) is not isomorphic to K(ℓ2(N)); in fact, K(ℓ2(X)) is
not separable since no countable set can approximate the rank one projections
onto the spans of the standard basis elements (cf. the proof of Theorem 4.1.2).
Thus inductive limits of sequences of C∗-algebras, even finite-dimensional ones,
are not well defined in the usual sense without CC.

7.1.10. There is a notable analogy of §7.1.9 to a result of Katsura [26, Thm. 6]
showing that nonisomorphic non-separable AF-algebras may have the same
Bratteli diagram.
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8. B(ℓ2(X)) for DF sets

8.0.1. IfX is a set, then the Hilbert space ℓ2(X) and the C∗-algebras B(ℓ2(X)),
K(ℓ2(X)), and the Calkin algebra Q(ℓ2(X)) = B(ℓ2(X))/K(ℓ2(X)) are invari-
ants of the cardinal |X |, along with associated objects like the lattice of ideals
of B(ℓ2(X)). Properties of these objects reflect properties of |X |, in a more
interesting and varied way than in the AC case.

We now examine properties of B(H), K(H), and the Calkin algebra Q(H)
for H = ℓ2(X), X DF.

A prominent open problem in theory of C∗-algebras is whether every stably
finite C∗-algebra has a tracial state; we recall the definitions for the benefit of
the readers with stronger background in set theory than in operator algebras;
note the analogy with the definition of Dedekind-finiteness.

8.0.2. Definition. Suppose that A is a unital C∗-algebra. It is called finite if
there is no v ∈ A such that 1A = v∗v and vv∗ 6= v∗v,5 infinite if it is not finite,
and stably finite if Mn(A) is finite for all n. It is properly infinite if there are
no v and w in A such that v∗v = w∗w = 1A and v∗w = 0.

See [3, V.2.1] for more information.
One might hope (and we did hope) that if H = ℓ2(X) for a DF set X , then

B(H) would be finite, i.e. have no nonunitary isometries (even stably finite
since Hn ∼= ℓ2(Y ) with Y = X × {0, . . . , n− 1} which is also DF). But things
are not so simple.

8.0.3.Example. LetX be a set which is DF but not CF. Then ℓ2(X) ∼= Y⊕Y⊥

(§6.1.1), where Y ∼= ℓ2(N). The unilateral shift S is a nonunitary isometry on
ℓ2(N), so S ⊕ I is a nonunitary isometry in B(Y ⊕ Y⊥) = B(ℓ2(X)).

By replacing S by an isometry with infinite codimension, we obtain a nonuni-
tary isometry in Q(H). It is unclear whether B(H) or Q(H) is properly infinite,
or whether Q(H) is simple: it could be that every bounded operator from Y to
Y⊥ is compact, and if true, then Q(H) ∼= Q(Y)⊕Q(Y⊥). See however Corol-
lary 8.1.3 and Section 8.4.

8.1. B(ℓ2(X)) for CF sets. Now suppose X is CF. Then every operator on
ℓ2(X) has a lot of finite-dimensional invariant subspaces.

8.1.1. Lemma. Let X be a CF set, m ≥ 1, and T1, . . . , Tm ∈ B(ℓ2(X)).
Then every finite subset E of X is contained in a finite subset F such that
span{ξx | x ∈ F} is invariant under T1, . . . , Tm (by abuse of terminology, we
say F is invariant under T1, . . . , Tm).

Proof. Let E be a nonempty finite subset of X (e.g. a singleton). Set F0 = E,
and inductively let Fn+1 be the union of Fn and the supports of Tkξx for all
x ∈ Fn and all k (these supports are finite by Proposition 6.0.3). The Fn form
an increasing sequence of finite subsets of X , and hence must stabilize since X
is CF. If F is the final Fn, then F is invariant under T1, . . . , Tk. �

5Such v, if it exists, is called a proper isometry since its image under any GNS represen-
tation is a proper isometry.
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8.1.2. Proposition. Let X be a CF set, and let T1, . . . , Tm ∈ B(ℓ2(X)). Then
X partitions into the disjoint union of finite subsets, each invariant under
T1, . . . , Tm.

Proof. Replacing each Tj by its real and imaginary parts, we may assume
the Tj are self-adjoint. Define a relation ∼ on X by x ∼ y if there are n
and x = x1, x2, . . . , xn = y such that, for each k, 1 ≤ k ≤ n − 1, there is
a j with 〈Tjξxk

, ξxk+1
〉 6= 0 (j can vary with k). This relation is symmetric

since Tj = T ∗
j for all j, transitive, and reflexive (if Tj 6= 0 for some j). Thus X

partitions into ∼-equivalence classes. If X is CF, each equivalence class is finite
by Lemma 8.1.1. Each equivalence class is invariant under T1, . . . , Tm. �

8.1.3. Corollary. Let X be a CF set. Then B(ℓ2(X)) is stably finite.

Proof. Let T be an isometry in B(ℓ2(X)). Suppose T is not unitary, i.e. not
surjective, and let η be a vector not in the range of T . Let E be the support
of η, and let F be a finite set containing E invariant under T . Then the
restriction of T to Y = span{ξx | x ∈ F} is an isometry in B(Y). But Y is
finite-dimensional, so T |Y is unitary, i.e. surjective, contradicting that η ∈ Y is
not in the range of T . Thus T is unitary. We conclude that B(ℓ2(X)) is finite.
Since X × {0, . . . , n− 1} is also CF for any n, B(ℓ2(X)) is stably finite. �

Although a stably finite C∗-algebra can have an infinite quotient (e.g. the
cone over the Toeplitz algebra), we can even conclude that the Calkin algebra
Q(ℓ2(X)) is stably finite (cf. Proposition 9.1.8).

8.2. K(ℓ2(X)) for CF sets.

8.2.1.Proposition. Let X be a CF set. Then every compact operator on ℓ2(X)
has finite rank.

Proof. Let T ∈ K(ℓ2(X)). For ǫ > 0, set

Aǫ = {x ∈ X | ‖Tξx‖ ≥ ǫ}.

Then Aǫ is a finite set: if F is a finite subset of X with ‖T − TPF ‖ < ǫ, and
x /∈ F , then

‖Tξx‖ = ‖Tξx − TPF ξx‖ ≤ ‖T − TPF ‖‖ξx‖ < ǫ,

so Aǫ ⊆ F . Then (A1/n) is an increasing sequence of finite subsets of X , which
must stabilize at some finite A since X is CF. The range of T is contained in
span{ξx | x ∈ A}. �

8.3. How big is Q(ℓ2(X))?

8.3.1. One might expect that if X is sufficiently DF, then Q(H) (H = ℓ2(X))
might be “small.” We could even potentially have Q(H) ∼= C, i.e. B(H) =
K(H) + C1. (Note that if H is any infinite-dimensional Hilbert space, the
identity operator on H is not compact since the closed unit ball of H is not
totally bounded, cf. §4.0.2). This could potentially happen, though, only if X
is rigid.
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8.3.2. Any permutation π of a set X defines a unitary operator Uπ on ℓ2(X)
by

Uπ

(

∑

x∈X

cxξx

)

=
∑

x∈X

cxξπ(x).

If π moves infinitely many elements of X , then Uπ is not a compact pertur-
bation of a scalar. Thus permutations of X moving infinitely many elements
define nontrivial unitaries in Q(ℓ2(X)).

8.3.3. Proposition. If X is strongly amorphous, then B(ℓ2(X)) is equal to
K(ℓ2(X)) + C1; hence Q(ℓ2(X)) is one-dimensional and B(ℓ2(X)) is an AF
algebra.

Proof. Let T ∈ B(ℓ2(X)). By Proposition 8.1.2,X partitions into finite subsets
invariant under T . All but finitely many equivalence classes must be singletons,
i.e. all but finitely many ξx are eigenvectors, so T is a compact perturbation
of a diagonal operator. All but finitely many of the diagonal eigenvalues must
be the same since X is amorphous. Thus T is a compact (even finite-rank)
perturbation of a scalar operator.

The last sentence follows by Proposition 7.1.7. �

There is an interesting reinterpretation of this result.

8.3.4. Corollary. Let X be a strongly amorphous set, and H = ℓ2(X). Then
H is infinite-dimensional, and every closed subspace of H has either finite
dimension or finite codimension.

8.3.5. This is a “hereditarily indecomposable Hilbert space,” a Hilbert space
version of [17], where (under AC) a hereditarily indecomposable Banach space
is constructed. In fact, it is “better” since, under AC, every infinite-dimensional
Banach space has an infinite-dimensional closed subspace of infinite codimen-
sion (an indecomposable Banach space is just one where no infinite-dimensional
closed subspace has a closed infinite-dimensional complement). OurH also has
the property that every compact operator on H has finite rank; under CC, ev-
ery infinite-dimensional Banach space has an infinite-rank compact operator.
(However, by [2], there is a separable Banach space such that every opera-
tor on it is of the form scalar + compact.) Of course, H only exists under
set-theoretic assumptions analysts might find objectionable.

It is possible that “closed” can be removed from the statement of Corol-
lary 8.3.4 (note that H has nonclosed subspaces by Example 6.0.6). This is
just a vector space problem since H is a complex vector space with a Hamel
basis indexed by X .

8.3.6. In the situation of Proposition 8.3.3, B(ℓ2(X)) is also peculiar. By a
classical result of Szankowski [34], B(ℓ2(N)) does not have the Approximation
Property for Banach spaces. (Recall that a Banach space X has the Ap-
proximation Property if the identity operator on X can be approximated by
finite-rank operators uniformly on compact sets.) This implies that if H has
a closed subspace isomorphic to ℓ2(N), then B(H) does not have the Approxi-

Münster Journal of Mathematics Vol. — (—), 199–199



Hilbert spaces without the Countable Axiom of Choice 233

mation Property. However, if X is strongly amorphous, then Proposition 8.3.3
implies that B(ℓ2(X)) is AF. In this case, conditional expectations to finite-
dimensional C∗-subalgebras witness the Approximation Property of B(ℓ2(X)).

8.3.7. If X is a strongly amorphous set, and Y = X × {0, . . . , n − 1}, then
Q(ℓ2(Y )) ∼= Mn(C). The most interesting case may be if X is CF but far
from rigid, i.e. has many nontrivial permutations; then Q(ℓ2(X)) is infinite-
dimensional and stably finite. It is hard to see how such a Q could have any
natural traces. (Our original motivation for this work was to try to find an ex-
ample of a stably finite unital C∗-algebra without trace, although it now does
not seem promising that such an example can be constructed by these meth-
ods unless we give up the Hahn–Banach Theorem, without which functional
analysis is essentially impossible.)

However, there is no reason to believe that Q(H) is necessarily simple (in
the case where X is DF of some kind). Even in the presence of AC, the Calkin
algebra associated to a non-separable Hilbert space is not simple: the lattice
of closed ideals of Q(ℓ2(κ)) is isomorphic to the poset of infinite cardinals at
most κ (see e.g. [12, §12.3.1]). Something similar, but more complicated, may
be true for Q(ℓ2(κ)) for κ DF (if κ is DF, ℓ2(κ) is non-separable). In the
absence of CC, there may even be Hilbert spaces which are so different that
every operator between them is compact. For such pair of spaces, the Calkin
algebra of their direct sum is the direct sum of their Calkin algebras, and
therefore non-simple and even with nontrivial center. Therefore, direct sums
of such Hilbert spaces would have non-simple Calkin algebras (ℓ2(X), when X
is a Russell set, may have this property; see §6.1.1).

Actually, this happens. The following uses a property of Cohen’s original
CF set [10] that sits between being rigid and strongly rigid and whose proof is
included in Proposition 10.0.3.

8.3.8. Proposition. If X is the CF set that has the property that, for every
partition of X into nonempty finite sets, all but finitely many cells are single-
tons, then the Calkin algebra Q(ℓ2(X)) is a non-separable abelian C∗-algebra.

Proof. We first prove that Q(ℓ2(X)) is equal to its commutative subalgebra,
ℓ∞(X)/c0(X). Fix T ∈ B(ℓ2(X)). Then Proposition 8.1.2 implies that X can
be partitioned into finite sets (Xi) such that ℓ2(Xi) is a reducing subspace for
T for all i. By the assumption, all but finitely many of the Xi are singletons.
This implies that T is a compact perturbation of a diagonal operator. Since T
was arbitrary, Q(ℓ2(X)) is included in ℓ∞(X)/c0(X), and therefore equal to it.

In order to prove that this algebra is non-separable, we recall that X is a set
of reals and consider it with the subspace topology. We first note that X has at
most finitely many isolated points,6 and we can therefore assume that X has no
isolated points. We may also assume X is bounded, and therefore the closure
X of X is a perfect subset of R. For every function f : X → C, the operator
with eigenvalue f(x) corresponding to the eigenvector δx for x ∈ X belongs to

6As a matter of fact, by construction, X has no isolated points.
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ℓ∞(X)/c0(X). For c ∈ X, let fc be the characteristic function of the interval
(−∞, c). If c < d, then X ∩ (c, d) is infinite; hence, with π : B(ℓ2(X)) →
Q(ℓ2(X)), we have that ‖π(fc − fd)‖ = 1. Therefore, {π(fc) | c ∈ (a, b)} is an
uncountable discrete subset of ℓ∞(X)/c0(X), as required. �

The following complements Proposition 8.3.8.

8.3.9. Proposition. If there exists a CF set, then there exists a set X such
that B(ℓ2(X)) is stably finite and Q(ℓ2(X)) is noncommutative.

Proof. If Y is CF, then so is X = Y × Y (Proposition 5.2.9), and B(ℓ2(X))
is stably finite (Corollary 8.1.3). We will prove that Q(ℓ2(X)) contains an
isomorphic copy of Mn(C) for every n ∈ N. Fix F ⊆ Y of cardinality n. Every
permutation π of F defines a permutation π̃ of X that agrees with π × idY
on F × Y and fixes all points in (Y \ F ) × X . This defines a unitary Uπ

on B(ℓ2(X)). Similarly, every g ∈ ℓ∞(F ) defines an element of ℓ∞(X) by
Tg((a, b)) = g(a) if a ∈ F and Tg((a, b)) = 0 otherwise. The algebra generated
by all Uπ and all Tg is isomorphic to the subalgebra of Mn(C) generated by
all permutation matrices and all diagonal matrices, which is Mn(C). Since
Y is infinite, the quotient map acts on this algebra as an isometry, and this
concludes the proof. �

8.4. Stably finite C∗-algebras with no quasitraces. The original impetus
for this work came from one of the most notorious open problems on C∗-alge-
bras (see [18]): Does every stably finite C∗-algebra have a tracial state? In
the absence of the Axiom of Choice, we provide two examples of stably finite
C∗-algebras without tracial states (and even without quasitraces) of varying
levels of satisfactoriness.

8.4.1. Known results provide an easy example of a C∗-algebra which is stably
finite but has no quasitraces in every model from the most studied family of
models of ZF in which the Axiom of Choice fails. In the original Solovay model
in which all sets of reals are Lebesgue measurable [33], and in other models of
the Axiom of Determinacy (see e.g. [22]), all sets of reals have the Property
of Baire. (Notably, unlike the statement that all sets of reals are Lebesgue
measurable, the assertion that all sets of reals, and all subsets of any Polish
space, have the Property of Baire does not require an inaccessible cardinal. By
[31, §7], the consistency of ZFC implies the consistency of ZF + “all sets of
reals have the property of Baire.”)

8.4.2. Lemma. The C∗-algebra ℓ∞(X)/c0(X) has a state if and only if there
is a finitely additive probability measure on P(X) that vanishes on singletons.

Proof. Identify P(X) with the lattice of projections of ℓ∞(X). We claim that
finitely additive probability measures on P(X) are in a bijective correspondence
with states on ℓ∞(X). The restriction of a state of the latter gives a finitely
additive probability measure. Conversely, a finitely additive probability mea-
sure on P(X) can be linearly extended to a state on the ∗-algebra of all finite
linear combinations of projections in ℓ∞(X). This state has norm 1, and the
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set of linear combinations of projections is dense in ℓ∞(X), and therefore its
continuous extension is a state on ℓ∞(X).

Finally, a finitely additive measure on P(X) vanishes on the singletons if
and only if the associated state vanishes on c0(X), and this completes the
proof. �

8.4.3. Corollary. If all sets of reals have the Property of Baire then the com-
mutative C∗-algebra ℓ∞(N)/c0(N) has no nontrivial bounded linear functionals.

In particular, it does not have a nontrivial representation on a Hilbert space,
and it is not isomorphic to C(X) for a compact Hausdorff space X.

Proof. As pointed out without a proof in [33, p. 3], if all sets of reals have the
Property of Baire, then there is no finitely additive probability measure on
P(N) that vanishes on singletons (for a proof, see e.g. [28, (8) on p. 206]). This
implies that the commutative C∗-algebra A = ℓ∞(N)/c0(N) has no nontrivial
bounded linear functionals.

Suppose that π : A → B(H) is a nontrivial representation on some Hilbert
space H. Then there are ξ ∈ H and T in the image such that 〈Tξ, ξ〉 6= 0, and
therefore ϕ(a) = 〈π(a)ξ, ξ〉 is a nontrivial state on A, a contradiction.

Finally, suppose that A is isomorphic to C(X) for a compact Hausdorff
space X , or even that Φ : A → C(X) is a nontrivial *-homomorphism. Then,
for some x ∈ X , the composition of Φ with the evaluation functional on C(X)
is a nontrivial state on A, a contradiction. �

Corollary 8.4.3 is not satisfactory since the reason for the absence of tracial
states in ℓ∞(N)/c0(N) is the failure of the Hahn–Banach Theorem. The as-
sumption that all sets of reals have the Property of Baire implies that B(ℓ2(N))
has a unique pure state, up to the unitary equivalence [12, Ex. 12.6.6], making
it a counterexample to Naimark’s Problem (see [1] and [12, §11.2]).

We do not know whether the assumption of the following proposition is
relatively consistent with ZF (see Question 11.0.2).

8.4.4. Proposition. Suppose that there is a CF set X such that P(X) has
no finitely additive probability measure that vanishes on singletons. Then
B(ℓ2(X)) is stably finite, it has no tracial states, but its states separate the
points.

Proof. Since X is CF, B(ℓ2(X)) is stably finite by Corollary 8.1.3. Suppose τ
is a tracial state of B(ℓ2(X)). We claim that τ vanishes on compact oper-
ators. Otherwise, since projections of finite rank form an approximate unit
in K(ℓ2(X)), we can fix a projection p of rank one and n ≥ 1 such that
τ(p) > 1/n. Since X is infinite, we can find n orthogonal projections of rank
one in B(ℓ2(X)), p1, . . . , pn. All of these projections are Murray–von Neu-
mann equivalent, and therefore τ(pj) = τ(p) > 1/n for all j. This implies
τ(
∑

j pj) > 1, contradicting the assumption that τ is a state.

Therefore, the restriction of τ to ℓ∞(X) defines a state on ℓ∞(X)/c0(X).
Since no finitely additive measure on P(X) vanishes on singletons, we have
a contradiction by Lemma 8.4.2.
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Finally, any two distinct operators in B(ℓ2(X)) are separated by a vector
state associated with some ξ ∈ ℓ2(X), and this completes the proof. �

8.5. Spectrum of operators.

8.5.1. If X is sufficiently DF, one might expect operators on H = ℓ2(X) to
have small spectrum. For example, if X is CF, Proposition 8.2.1 implies that
the spectrum of every compact operator on H is finite.

8.5.2. Theorem. Let X be a power Dedekind-finite set, and T ∈ B(ℓ2(X)).
Then σ(T ) is finite, and each λ ∈ σ(T ) is an eigenvalue.

Proof. We may assume X is infinite (PF) since the finite case is well known.
Thus X is CF, so by Proposition 8.1.2, it follows that X partitions into finite
subsets {Xi | i ∈ I} whose spans Hi are invariant under T . There is a finite-
to-one function f : X → I. Let Y ⊆ C be

⋃

i∈I Si, where Si is the (finite) set
of eigenvalues of the restriction of T to Hi.

We claim Y is finite. If not, then there is a partition of Y into a disjoint
sequence of nonempty subsets Yn (Proposition 5.2.5). For each n, let In be
the set of all i ∈ I such that Si ∩ Yn 6= ∅. Since Si is finite, each i ∈ I is in
only finitely many In. But

⋃

n In = I, an infinite set, so there are an infinite
number of distinct In. If An = f−1(In), then each An is a subset of X , and
infinitely many are distinct, contradicting that X is PF.

Now we claim that Y is the entire spectrum of T . Let λ ∈ C\Y . Then T−λ1
is bounded below on Hi for each i ∈ I. For each n, let Jn be the set of i ∈ I
such that T − λ1 is bounded below by 1

n on Hi, and let Bn = f−1(Jn) ⊆ X .
We have Jn ⊆ Jn+1 and hence Bn ⊆ Bn+1 for all n;

⋃

n Jn = I, so
⋃

n Bn = X .
Since X is PF, we must have Bn = X for some n, i.e. T −λ1 is bounded below
by 1

n on all of ℓ2(X) and hence invertible. �

The conclusion of Theorem 8.5.2 does not imply that every operator is the
sum of a scalar and a compact operator. For example, if X =

⊔

z∈Z Xz, where
Z is strongly amorphous, is a set as in §6.2.2, then the permutation that swaps
each of the pairs Xz moves all points of X , and therefore defines a unitary
which is not a compact perturbation of a scalar (§8.3.2).

8.5.3. If X is weakly Dedekind-infinite, there are operators on H = ℓ2(X) with
large spectrum. Write X as a countable union of pairwise disjoint nonempty
sets An. If K is a separable compact subset of C (separability of subsets of R or
C is not automatic without CC, but there are many separable compact subsets,
e.g. the closure of any countable bounded subset), then there is a diagonal
operator T on H whose spectrum is K, defined by taking a dense sequence
(an) in K, for x ∈ X setting n(x) the n for which x ∈ An, and setting

T
(

∑

x∈X

cxξx

)

=
∑

x∈X

an(x)cxξx.

If all the An are infinite (which can be arranged by combining them), the
spectrum of the image of T in Q(H) is also K.
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8.5.4. Let X be a CF set which is not PF, and write X as a disjoint union of
a sequence (An) of nonempty subsets. Let T be the operator on ℓ2(X) which
is 1

n times the identity on the span of An. Then T is bounded (‖T ‖ = 1) and
injective, and is also surjective since every vector in ℓ2(X) has finite support
(Proposition 6.0.3). But the inverse T−1 is not bounded. Thus the Bounded
Inverse Theorem, Open Mapping Theorem, and Closed Graph Theorem all fail
in this situation.7 By considering the finite truncations of T−1, a sequence of
pointwise bounded but not uniformly bounded operators is obtained, showing
that the Uniform Boundedness Theorem also fails. The usual proofs of these
theorems use some version of the Baire Category Theorem, equivalent to the
Axiom of Dependent Choice, which implies CC and thus is incompatible with
the existence of DF sets.

There is another similar example: the Banach spaces ℓp(X), 1 ≤ p < ∞,
are all the same set of functions, and the norms are comparable but pairwise
nonequivalent.

8.5.5. It would also be interesting to study the properties of B(H), etc., for
Hilbert spaces H which do not have orthonormal bases. It is difficult to find
tools to analyze these cases, however. Even a Hilbert spaceH with an orthonor-
mal basis may have closed subspaces without one (Theorem 6.2.3 (ii)); hence
B(H) can have corners without sufficiently many rank one projections.

9. New size and comparison relations on Hilbert spaces and sets

9.1. Hilbert Dedekind-finiteness. There are Hilbert space analogs of the
principal flavors of Dedekind-finiteness, which lead to potentially new flavors
on the set-theoretic level.

9.1.1. Definition. Let H be a Hilbert space. Then
(i) H is Hilbert Dedekind-infinite if H is isometrically isomorphic to a proper

subspace of itself. Otherwise, H is Hilbert Dedekind-finite.
(ii) H is Hilbert Cohen-infinite ifH has a sequence of mutually orthogonal non-

zero finite-dimensional subspaces. Otherwise, H is Hilbert Cohen-finite.
(iii) H is Hilbert dually Dedekind-infinite if B(H) contains an operator which is

surjective but not injective. Otherwise,H is Hilbert dually Dedekind-finite.
(iv) H is Hilbert weakly Dedekind-infinite if H has a sequence of mutually

orthogonal nonzero subspaces. Otherwise, H is Hilbert power Dedekind-
finite.

(v) H is Hilbert-amorphous if H is infinite-dimensional and does not contain
two orthogonal infinite-dimensional subspaces, i.e. every closed subspace
either has finite dimension or finite codimension.

IfX is a set, sayX is Hilbert Dedekind-finite, etc., if ℓ2(X) is Hilbert Dedekind-
finite, etc.

7It is known that the Open Mapping Theorem is roughly equivalent to the Countable
Axiom of Choice [14].
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Notation. For a Hilbert space, HDF (resp. HCF, HDDF, HPF) means “infinite-
dimensional and Hilbert Dedekind-finite (resp. Hilbert Cohen-finite, Hilbert
dually Dedekind-finite, Hilbert power Dedekind-finite), and similarly for a set.

9.1.2. It is clear that Hilbert-amorphous ⇒ HPF ⇒ HCF ⇒ HDF (cf. Propo-
sition 9.1.3) and that, for sets, HDF ⇒ DF, HCF ⇒ CF, HPF ⇒ PF, and
Hilbert-amorphous ⇒ amorphous (the usual notions are the special cases of
the Hilbert versions for subspaces spanned by sets of standard basis vectors).
Also, H is Hilbert Dedekind-finite if and only if every isometry in B(H) is
unitary, i.e. if and only if B(H) is finite.

There is considerable collapsing among these notions, particularly the set
ones.

9.1.3. Proposition. Let H be a Hilbert space. The following are equivalent.
(i) H contains an infinite orthonormal sequence.
(ii) H is Hilbert Dedekind-infinite.
(iii) H is Hilbert dually Dedekind-infinite.

Proof. (i) ⇒ (ii): If H contains an orthonormal sequence, then H contains a
closed subspace isometrically isomorphic to ℓ2(N), and there is a nonunitary
isometry on this subspace, which can be expanded to a nonunitary isometry
on H by making it the identity on the orthogonal complement.

(ii) ⇒ (i): If V is a nonunitary isometry in B(H), and Y is the range of V ,
let ξ be a unit vector in Y⊥. Then ξ, V ξ, V 2ξ, . . . is an orthonormal sequence
in H.

(ii) ⇒ (iii): If V is a nonunitary isometry in B(H), then V ∗ is surjective
but not injective.

(iii) ⇒ (ii): If T is surjective but not injective, let Y = N (T )⊥. Then the
restriction of T to Y is an injective map from Y to H, so if T = V |T | is the
polar decomposition of T , then V is a coisometry, and V ∗ is an isometry from
H onto Y. �

9.1.4. Corollary. Let X be an infinite set. The following are equivalent.
(i) X is CF.
(ii) X is HDF.
(iii) X is HDDF.

Proof. By Proposition 9.1.3, (ii) ⇔ (iii).
(ii) ⇔ (i): By Proposition 9.1.3, X is not HDF if and only if ℓ2(X) con-

tains a countably infinite orthonormal sequence. By Proposition 6.2.7, this is
equivalent to X not being CF. �

9.1.5. It is unclear whether HCF is equivalent to CF (and hence to HDF and
HDDF) for sets (but see Propositions 6.0.3 and 6.2.7). HPF is distinct from
the conditions of Corollary 9.1.4 for sets since HPF ⇒ PF and there are sets
which are CF but not PF. It is unclear whether HPF is the same as PF since
closed subspaces of ℓ2(X), X PF, are potentially skew from the standard basis.
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strongly amorphous

Hilbert-amorphous

HPF amorphous strongly rigid

HCF PF

Russell CF = HDF DDF rigid

DF

Figure 2. Implications between different flavors of Dedekind-
finite sets discussed in this section. Hilbert-amorphous, HPF,
HCF, and HDF will be defined in Section 9.

Thus HPF is potentially a Dedekind-finiteness condition on sets strictly more
restrictive than PF, and HCF is also a potentially new condition.

9.1.6. Similarly, Hilbert-amorphous is potentially strictly stronger than amor-
phous for sets. However, by Corollary 8.3.4, a strongly amorphous set is
Hilbert-amorphous. The converse is quite unclear. Thus Hilbert-amorphous is
potentially a Dedekind-finite condition strictly between being amorphous and
strictly amorphous.

Figure 2 is an extended version of Figure 1 from Section 5.7.
A simple but interesting observation is the following.

9.1.7. Proposition. A finite direct sum of HDF Hilbert spaces is HDF.

Proof. Let H1, . . . ,Hn be Hilbert spaces. Suppose (ξj) is an orthonormal se-
quence in H = H1 ⊕ · · · ⊕ Hn. Then the subspace of H spanned by the ξj is
infinite-dimensional. For each k ≤ n, let (ξj,k) be the sequence of k-th coor-
dinates of ξj , and let Xk be the closed subspace of Hk spanned by the ξj,k.
The Xk cannot all be finite-dimensional, so there is a k such that the sequence
(ξj,k) contains a linearly independent subsequence, from which an orthonormal
sequence can be made by Gram–Schmidt. Thus Hk is not HDF. �

9.1.8. Proposition. Let H be a Hilbert space. Then the following are equiva-
lent.
(i) B(H) is finite.
(ii) B(H) is stably finite.
(iii) Q(H) is finite.
(iv) Q(H) is stably finite.
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Proof. Since Mn(B(H)) is isomorphic to B(Hn), (i) ⇔ (ii) follows from Propo-
sition 9.1.7.

(i) ⇔ (iii): If B(H) is infinite, then by Proposition 9.1.3, H contains an
orthonormal sequence, hence an isometry of infinite codimension, whose image
in Q(H) is a nonunitary isometry, so Q(H) is also infinite. Conversely, if v
is a nonunitary isometry in Q(H), let T ∈ B(H) have image v. If T = V |T |
is the polar decomposition, then the image of V is also v. Further, V is
a partial isometry whose source projection V ∗V has finite codimension and
range projection V V ∗ has infinite codimension. There is thus a partial isometry
W ∈ B(H) with W ∗W = 1 − V ∗V and WW ∗ ≤ 1 − V V ∗ (any infinite-
dimensional Hilbert space has closed subspaces of any finite dimension), and
V +W is a nonunitary isometry in B(H), so B(H) is also infinite.

This also proves (ii) ⇔ (iv) and completes the proof. �

9.2. Quantum cardinals. Here is another interpretation of our set-up. Con-
sider the categories Set of all sets with injective maps as morphisms and
Hilbert of all Hilbert spaces with isometries as morphisms. Then F (X) =
ℓ2(X) is a functor between these categories. The AC implies the following.
(i) F is a bijection on the objects (although it is not an equivalence of cate-

gories since Hilbert spaces have many more morphisms).
(ii) |X | ≤ |Y | if and only if ℓ2(X) is isomorphic to a closed subspace of ℓ2(Y ).
One of the facets of our project is the study of this functor in the context when
the AC fails. Naturally separating (i) into the statements “F is surjective” and
“F is injective”, we will see that both can fail: there can be a Hilbert space
without a basis (Theorem 6.2.3), and a Hilbert space can have orthonormal
bases of different cardinalities (Example 6.3.1).

In order to discuss (ii), we consider the following, potentially new, relation
between cardinals based on Hilbert spaces.

9.2.1. Definition. Let X and Y be sets, and κ = |X |, λ = |Y |. We write
λ � κ if ℓ2(X) contains a (closed) subspace isometrically isomorphic to ℓ2(Y ),
or equivalently (Proposition 3.0.6) ℓ2(X) contains an orthonormal set of car-
dinality λ.

9.2.2. The relation � is clearly transitive, and λ ≤ κ ⇒ λ � κ. But � is much
weaker than ≤.

9.2.3. Examples. (i) If X is DF but not CF, then ℵ0 � |X | and ℵ0 6≤ |X |
(Example 6.3.1).

(ii) If X is DF but not CF, then |X | ± n � |X | for any n (the extra finite-
dimensional space can be absorbed into an ℓ2(N) summand; see §5.7.2).

(iii) By Theorem 4.1.2, |X | � ℵ0 if and only if |X | ≤ ℵ0. By Theorem 4.1.3,
if κ is a well-ordered cardinal, then |X | � κ if and only if |X | ≤ κ.

The relation � is not antisymmetric (Example 9.2.3 (ii)), but there is a par-
tial result. We have the following Hilbert space version of the Schröder–
Bernstein Theorem; the proof (in ZF) is a simple modification of Bernstein’s
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proof of the set-theoretic result, and this Hilbert space result may have been
previously noted (although under AC it is a trivial consequence of the existence
and uniqueness of orthogonal dimension).

9.2.4. Theorem. Let H and H′ be Hilbert spaces. If each is isometrically
isomorphic to a (closed) subspace of the other, then H and H′ are isometrically
isomorphic. In particular, for all sets X and Y , if |X | � |Y | and |Y | � |X |,
then ℓ2(X) ∼= ℓ2(Y ).

Proof. Let T : H → H′ and S : H′ → H be isometries (not necessar-
ily surjective). Let X1 = [S(H′)]⊥ and Y1 = T (X1), and recursively define
Xn+1 = S(Yn) and Yn+1 = T (Xn+1) for each n. The Xn are mutually orthog-
onal subspaces of H, and the Yn mutually orthogonal subspaces of H′.

Let X be the closed span of
⋃

n Xn and Y the closed span of
⋃

n Yn. Then T

maps X isometrically onto Y. We claim that S maps Y⊥ isometrically onto X⊥.
If Z is the closed span of

⋃∞
n=2 Xn, then S maps Y isometrically onto Z, and

so maps Y⊥ onto X⊥
1 ∩ Z⊥ = X⊥.

Let U : H → H′ be equal to T on X and S−1 on X⊥. Then U is an isometry
from H onto H′. �

9.2.5. Thus we also obtain a new equivalence relation ∼ on cardinals, where
|X | ∼ |Y | if ℓ2(X) ∼= ℓ2(Y ).

9.2.6. For a partial characterization, say a set X finitely covers a set Y if
there is a finite-to-one function from X onto Y . By the argument of Propo-
sition 6.0.3 (iii) ⇒ (i), if a subset of a set X finitely covers a set Y , then
|Y | � |X |. The converse, however, seems doubtful, and we do not know
a purely set-theoretic characterization of either � or ∼. It may be that, for
sufficiently Dedekind-finite cardinals, � coincides with ≤, and thus ∼ is just
equality.

10. Models of ZF

In this section, we collect set-theoretic results used in the earlier sections.
The following is taken from [10].

10.0.1. Proposition. If ZF is consistent, then so are the theories ZF + “there
exists a DF set X” and ZF + “there exists a CF set X.”

We proceed to describe constructions of models of ZF used in previous
sections that cannot be found in the literature. By using the method of [23],
one can construct a single model of ZF in which all instances of the failure of
the Axiom of Choice used in the present paper appear. First we prove the result
used in §6.2.2, after recalling some definitions. Given a discrete structure A,
the definable subsets are the subsets of A definable by a first-order formula,
possibly with parameters in A. Thus these are the sets of the form

ϕA,b̄ = {a ∈ A | A |= ϕ(a, b̄)},
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where ϕ(x, ȳ) is a first-order formula in the signature of A and b̄ is a tuple in A
of the same sort as ȳ. Definable subsets of Ak for k ≥ 2 are defined analogously.
The family of definable subsets of A or Ak for k ≥ 2 does not depend on the
extent of choice available because each ϕA,b̄ corresponds to a pair ϕ, b̄.

10.0.2. Proposition. If ZF is consistent, then so is the theory ZF + “there
exists an amorphous set X which can be presented as X =

⊔

z∈Z Xz, where Z
is strongly amorphous, and Xz are pairwise disjoint two-element sets.”

Proof. We use the ideas and terminology from [25, §3]. There, [25, Thm. 3.2]
allows us to take a structure from a model of ZFC and create a model of ZF in
which there is a copy of the structure where all the subsets are definable. So
our goal shifts to finding an infinite structure A with the following properties:
(i) the definable subsets of A are finite or cofinite,
(ii) A can be partitioned into pairs (i.e., there is an equivalence relation on A

such that each equivalence class has exactly two elements), and
(iii) any partition of the equivalence classes must be almost entirely into sin-

gletons.
In addition, the requirements of [25, Thm. 3.2] include identifying a group of
automorphisms of the structure and an ideal of subsets, which in our case will
be the ideal of finite subsets.

Let R be the equivalence relation on N defined by R(m,n) if and only if
⌊m/2⌋ = ⌊n/2⌋. In other words, R is the equivalence relation whose classes
are the sets {2n, 2n+ 1} for n ∈ N. Let G be the group of automorphisms of
(N, R); we will say that a subgroup of H is large if there is some m ∈ N such
that the group Hm = {π ∈ G | π(n) = n for all n < 2m} is included in H.
In other words, if the subgroup fixes pointwise the first m equivalence classes.
The family of large subgroups is closed under subgroups and intersection, as
well as under conjugation (by automorphisms from G). In the terminology of
[25, §2.2], the large groups form a normal filter of subgroups of G.

For any fixed k ≥ 1 and π ∈ G, πk is the naturally defined automorphism
acting on Nk. We will say that A ⊆ Nk is stable under a subgroup H of G if
πk[A] = A for all π ∈ H, and we say that A is stable if there is some large
subgroup under which it is stable.

The following observations are immediate.
(iv) If A ⊆ N is stable, then it is finite or cofinite.
(v) If in addition A is a union of R-equivalence classes, then A/R is finite or

cofinite (in N/R).
(vi) Moreover, suppose that E is an equivalence relation on N which is de-

finable over (N, R) (with parameters, perhaps) such that E is stable and
R ⊆ E; then there is some m such that, for n ≥ 2m, the E-equivalence
class of 2n is either {2n, 2n + 1} or N \ {0, . . . , 2m − 1}. In particular,
the equivalence relation E induces on N/R has only finitely many non-
singleton equivalence classes.

Given a countable transitive model of ZF and applying [25, Thm. 3.2], we ob-
tain a forcing extension and an intermediate model V ⊆ W ⊆ V [G] such that,
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in W , there is a structure (X,S) for which, in V [G], there is an isomorphism
(X,S) ∼= (N, R) and any A ⊆ X such that A ∈ W is the image of some stable
subset under the isomorphism. Clearly, X is a union of unordered pairs in W .
By (iv), X must be amorphous in W . By (v), Z = X/S is amorphous as well,
and by (vi), it is in fact strongly amorphous, as any partition of Z can be made
into a partition of X . Therefore, the equivalence relation it defines on X must
be one which extends S. �

Proposition 10.0.3 below completes the proof of Proposition 8.3.8. We
briefly recall the basic Cohen model [21, §5.3] with a CF set. Let P be the
forcing for adding side-by-side Cohen subsets of N, ẋn, for n ∈ N. The condi-
tions in P are the finite partial functions from N2 into {0, 1}, and P is ordered
by extension. If G ⊆ P is sufficiently generic, then

⋃

G is a function from
N2 into {0, 1}, and the interpretation of m is defined by ẋĠ

m(n) = Ġ(m,n) for
all m and n (see e.g. [24, 2 (a)] for additional details). As customary, ẋĠ

m is
identified with the subset of N that it is the characteristic function of.

Let G denote the group of all finitary permutations of N. Consider the action
of G on P defined as follows. A permutation g ∈ G sends s ∈ P to g.s ∈ P,
where dom(g.s) = {(g(m), n) | (m,n) ∈ dom(s)} and g.s(g(m), n) = s(m,n)
for all (m,n) ∈ dom(s). This action naturally extends to LP (the set of P-
names in Gödel’s constructible universe L; any other model of ZFC would do
in place of L) so that g.ẋm = ẋg.m for all g and m.

For each m ∈ N, let Gm be the subgroup of G consisting of permutations g
that fix all n ≤ m. Then, for all m and g ∈ G, there exists n such that
gGmg−1 ⊆ Gn. Therefore, these groups form a filter of subgroups of G. Con-
sider the set of all symmetric names LP-names

Sym = {ȧ ∈ LP | there exists m such that g.ȧ = ȧ for all g ∈ Gm}.

Recursively define the set of hereditarily symmetric names HSym to be the set
of all names ẋ such that ẋ is forced to be a subset of Sym and it belongs to
Sym. Note that this includes canonical names for all elements of L. If Ġ ⊆ P

is generic over L, then [21, Thm. 5.19] implies that the set of all Ġ-evaluations
of hereditarily symmetric names

M = {ȧĠ | ȧ ∈ HSym}

is a model of ZF that contains X = {ẋĠ
m | m ∈ N}, and X is CF in this model.

The following folklore proof was communicated to A.K. by Andreas Blass.

10.0.3. Proposition. With the notation from the previous paragraph, the set
X has the property that, for every partition of X in M into nonempty finite
sets, all but finitely many cells are singletons.

Proof. Suppose that π̇ is a P-name, and that some condition p ∈ P forces that
it is a name for a partition of X into nonempty finite subsets that belongs
to N . In this proof, we write xn = ẋĠ

n and π = π̇Ġ. It will be convenient to
write i ∼ j if xi and xj belong to the same piece of π. Fix m such that g.π = π
for all g ∈ Gm. Since all pieces of π are finite, we can find an extension q ≤ p
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that decides k ≥ m such that, for all i ∈ N, if some extension of q forces that
i ∼ j for some j < m, then i < k.
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We claim that q forces that, for k ≤ min(i, j), i ∼ j implies i = j. Assume
otherwise, and fix a condition r ≤ q that decides k < i < j such that i ∼ j.
Since the support of r is finite, we can find permutations gl ∈ Gm, for l ∈
N, such that gl(i) = i, gl(j) 6= gl′(j) when l 6= l′, and the supports of the
conditions gl.r, for l ∈ N, form a ∆-system and are pairwise compatible. Note
that rl forces i ∼ gl(j) for all l. By genericity, r forces that the set {l | rl ∈ Ġ}
is infinite, and therefore the piece of the partition π to which i belongs is
infinite, a contradiction. �

11. Problems

We conclude with a short list of select open problems. Paragraph 9.1.5
contains several interesting problems that we will not repeat here.

The following question gave the original impetus to this project.

11.0.1. Question. Is the existence of a Hilbert space H such that B(H) is
stably finite but it has no tracial states relatively consistent with ZF?

By Corollary 8.4.3, the existence of an abstract unital C∗-algebra that is
stably finite but has no tracial states is relatively consistent with ZF. However,
these algebras have no states (and therefore no nontrivial representations on
a Hilbert space) at all. On the other hand, B(H) is already represented as
a concrete C∗-algebra, and a positive answer to Question 11.0.1 would be
more interesting.

A positive answer to the following would imply that the assumption of
Proposition 8.4.4 is relatively consistent with ZF, and that Question 11.0.1
has a positive answer.

11.0.2. Question. Is the existence of a CF set X such that no finitely addi-
tive probability measure on P(X) vanishes on singletons relatively consistent
with ZF?

By the main result of [29], there is a model of ZF in which, for every infinite
set X , no finitely additive probability measure on P(X) vanishes on singletons.
However, this model satisfies the Axiom of Dependent Choice and therefore
has no DF sets.

11.0.3. Problem. Study von Neumann algebras in ZF.

There is an ample supply of von Neumann algebras in every model of ZF.
For example, the easy direction of von Neumann’s double commutant theorem
implies that the double commutant of any self-adjoint subset of B(H) is closed
in the weak operator topology. More interesting examples of von Neumann
algebras are group algebras [3, §III.3.3] and it would be interesting to see how
their rich structure behaves in a choiceless setting.

An interesting source of Hilbert spaces is given by the following.

11.0.4. Problem. For a Boolean algebra B with finitely additive probability
measure µ, define and study the Hilbert space L2(B, µ).
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The methods of this paper clearly cannot give an example of a Hilbert space
that is not included in a Hilbert space with a basis (see Section 6.4), but it is
not obvious whether L2(B, µ) is included in a Hilbert space with a basis for
every measure algebra (B, µ). The results of [16, §56] may be relevant, and [16,
Ex. 561Y(c) and (i)] gives a glimpse into the richness of spaces of this sort.
See [13] for an elaboration on this and reformulations of the assertion that the
union of a countable collection of finite sets is countable.

11.0.5. Problem. Compute the K-theory and nonstable K-theory of B(H)
and Q(H) for various Hilbert spaces H.

The answer will be dependent on the model of ZF used.

Acknowledgments. We would like to thank the anonymous referee for a very
useful report.
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[32] W. Sierpiński, Cardinal and ordinal numbers, second revised edition, Monogr. Mat. 34,
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