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Abstract—Swarm algorithms are being increasingly investi-
gated as potential solutions for addressing distributed, complex
problems across various domains. However, developing and
testing these algorithms remains challenging due to the lack
of robust and flexible testbeds. Moreover, efficiently tuning the
parameters of swarm algorithms to suit specific situations is
a significant challenge. This artifact paper presents SALSA, a
comprehensive and extensible framework designed to streamline
the development and evaluation of swarm algorithms - designed
with ease of use in mind. Our testbed enables users to define
custom swarm algorithms, drone types, targets to detect, and
agent interaction processes. It also allows for dynamic parameter
updates, providing instant feedback to optimize algorithm perfor-
mance. Additionally, the testbed supports both user-defined and
automated data collection, ensuring that users can gather relevant
data efficiently. Overall, SALSA enhances research effectiveness
by reducing the time and effort required to set up and test swarm
algorithms.

Index Terms—Swarms, Aerial Swarms, Multi-Agent Systems,
Self-Organizing Systems, Simulation, Testbed

I. INTRODUCTION

In recent years, drone swarms have received significant

attention due to their promising results and unique approaches

when tackling a range of complex challenges in extensive

fields. Examples of such applications are in wildfire monitor-

ing [1]–[3], environmental monitoring [4], [5], search and res-

cue operations [6]–[8], among many more [9]–[11]. This evo-

lution of swarms from simple object-avoiding, flocking [12]

systems to drones working collectively to locate targets is a

process that current simulation software lacks coverage of.

Swarms have shown how effective a collection of agents can be

when working towards a common goal. Consecutively, despite

the increased attention that these systems have received, the

rapid iteration, parameter tuning and development of these

algorithms remain difficult tasks, partially due to the absence

of an adequate, versatile, and quick to use testing environ-

ments. There are very few options for frameworks that exist

when wanting to have a platform to quickly iterate new ideas

specifically in swarm related systems, and existing systems

were often not created to work this way. SALSA distinguishes

itself by offering extreme configurability, modularity, and ease

of use. It allows users to actively modify parameters and

collect data, facilitating rapid prototyping and collecting large

amounts of data from multiple tests - an essential feature that

is not fully supported by existing platforms like SwarmLab.

These factors place SALSA in a unique position within the

current landscape, effectively addressing the limitations of

existing simulators and filling an important gap in current

simulation technologies. SALSA is a product of research

that utilized aerial swarms for investigating trees for forest

health maintenance and this artifact has the following key

components:

1) A lightweight and flexible simulator, allowing users to

visually see their simulations, and also allowing real

time changes to parameters with the GUI; SALSA can

also be adapted with respect to the individual agent’s

properties and the problem itself.

2) Multiple inbuilt swarm algorithms a user can already

experiment with, or use for comparison against their own

developed algorithms; these are flocking, pheromone

avoidance, dynamic space partitioning, and random

walking.

3) A testbed which can facilitate complex experiments

automatically, and store a variety of data that can be used

for further analysis, which includes testing over a variety

of algorithms for performance comparative purposes.

In this paper we show the capabilities and features of

SALSA, as well as demonstrate the key components with the

forest health maintenance scenario.

II. RELATED WORK

A plethora of robotic simulators exists, and most can be

used for the modeling of single and multi agent systems.

Robotic simulators: Gazebo [13]–[15], CoppeliaSim [16],

and WeBots [17] are commonly used 3D robot simulators that

are predominantly designed for ground robots and complex

robotic interactions in 3D space. There are specialized simu-

lators for investigating aerial drones, such as AirSim [18] and

is specifically designed for drones and autonomous vehicles.

It provides real-world testing through its hardware-in-the-

loop capabilities. ARGroHBotS [19] and USARSim [20] are

examples of specialized simulators for specific aerial drone

research, including the interactions between aerial and ground

robots, and providing a realistic simulation environment for

urban search and rescue operations.

Robot swarm simulators: ARGoS [21] is a robot swarm

simulator that stands out due to its scalable architecture,

allowing the user to configure the environment and physics

engines using dynamically loadable plugins; aiming to provide

a good balance between extensibility and scalability. Though



the current variety of robotic models is limited. Breve [22]

is another 3D simulator that focuses on multi-agent systems,

with the aim to effectively research artificial life.

Lightweight simulators: Listed so far are simulators which

targets to capture realism to a significant degree. Therefore

these are intrinsically complex meaning that they have dif-

ficulty in scaling as well as needing significant effort to set

up and execute experiments. Lightweight simulators are useful

for performing extensive experiments. Stage [23], for example,

efficiently supports large-scale 2D multi-agent systems, and is

often used alongside the Player project, which provides an

interface to control each simulated robot using real robot con-

trol algorithms. Enki [24] is geared towards 2D simulations of

ground based, wheeled robot swarms. Though these simulators

are not easily transferable to aerial systems currently.

Aerial swarm simulators: Less plentiful are aerial swarm

simulators, but those that do exist also fall on the spectrum of

realism, flexibility, and practicality. Examples of 3D simulators

include robotsim [25], [26] and the simulator provided by

D’Urso et al. [27] which supports basic robot modeling,

environmental physics, and sensor simulations. These sim-

ulators align closer with real-world applications rather than

rapid prototyping. SwarmLab [28] is a drone swarm simulator

that can be considered on the other side of this spectrum.

SwarmLab is a testbed written in Matlab that offers tools for

simulating and analyzing collective behaviors. It focuses on

simplicity and ease of use, and like SALSA is targeted towards

allowing the prototyping of algorithms.

SALSA’s contribution: SwarmLab is, to the best of our

knowledge, the nearest in functionalities to SALSA, however

the use cases are slightly different. SwarmLab offers move-

ment in 3D space, whereas SALSA is just 2D. In comparison,

SwarmLab, which mirrors the objectives of our proposal,

contains crucial differences in operation and execution. Whilst

it enables the incorporation of user defined novel swarm

algorithms and drone specifications, it lacks the capabilities to

conduct tailored experiments through the Test Queue system

towards specific scenarios. A defining feature of SALSA is its

flexibility in configuring swarms through dynamic, real time

parameter adjustments, based on observation and analytics, a

functionality that is not provided by SwarmLab. Moreover,

SwarmLab’s capabilities are predominately tied to its graphical

user interface, limiting the configurability and modularity the

system provides. In contrast, SALSA separates its testbed

and simulation library, offering users the possibility to cus-

tomize or extend the testbed according to their specific needs,

within an established framework. Notably, drone swarms have

demonstrated prowess in their ability to locate targets, which

is a feature that is not present in SwarmLab. The immediate

functionalities of SwarmLab do not entirely encompass what

a user may require from a swarm simulation testbed, and

therefore there is a gap in the simulation system environment

which SALSA aims to fill.

Generally, the majority of the simulators detailed have the

goal of providing realistic simulations, and typically towards

single agent systems. They require at least some level of
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Fig. 1. Architecture Model and Implementation Diagram

configuration for multi agent systems, making them less suited

to rapid algorithm development and analysis. There are limited

simulators for aerial swarms, though most were designed for

a use case that is non-generic. These are difficult to adapt into

the methods that are required for aerial simulations, or for

a different problem. Additionally they lack the specific opti-

mizations and features of SALSA such as extensible behaviors

and dynamics of the agents, flexible problem setup, and the

comprehensive testbed for extensive experimentation. This

highlights a pressing need for a versatile, high-performance

simulator tailored to the dynamic requirements of multi-agent

systems. SALSA, along with information on user support and

how to contribute, is available on GitHub: https://github.com/

joelbeedle/salsa. A permanent link to SALSA is available on

Zenodo: https://zenodo.org/doi/10.5281/zenodo.13151118

III. ARCHITECTURE AND IMPLEMENTATION

SALSA is structured into two primary components: the

Library and the Testbed. Fig. 1 contains an overview of

the architecture. This structure is tailored for modularity and

ease of use, enabling users to interface, modify, and extend

functionalities as per their individual requirements. The core of

SALSA is the Swarm Simulator Library, designed for modu-

larity through Object Oriented Programming design, alongside

the use of common Design Patterns. SALSA is built upon

the Box2D physics engine (https://box2d.org/), which comes

with a testbed already that SALSA extended. The Testbed

acts as a practical application layer/wrapper that utilizes the

Library. It adds GUI capabilities and rendering functionalities,

providing an interactive and visually responsive platform for

simulations. In essence, the Testbed is a direct wrapper around

the Simulation class, enabling interaction and modification of

the Simulations.

The Library defines a Simulation as a collective structure

containing drones, an active swarm behavior, targets for the

drones to seek (if any), a map, and a data collection system.

The key components of the Library can therefore be identified

as: the Simulation class, the Drone and Target classes, and the

Behavior class. Registries are used extensively, such as in the

creation of behaviors, contact listeners, targets, and maps, in
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Fig. 2. Overview of the update simulation step. After logging data, a new
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order to ensure modularity: modules interface with each other

through these registries.

A. Simulation

The most important feature of the Library is the Simulation

class, which collates all other elements, such as Drones,

Targets, and Behaviors, to create a simulation platform. No-

tably, the Simulation does not invoke a ‘Step’ in the world,

allowing freedom for users to define when the world takes a

step compared to the simulation. Fig. 2 shows an overview

of this simulation cycle. The central control point of the

Simulation is the update function, which first calls each

Drone’s update function, which uses the execute Behavior

method to control movement (this is completely defined by the

individual algorithm), manages targets (updating an internal

list of those found), and controls data logging. Data can be

captured every step, or at step intervals decided by the user.

The simulation uses asynchronous logging, flushing to the

output file every 3 seconds. The simulation employs the use

of observers. Drone observers (by default, the data collection

logger) are notified of drone positions and velocities, followed

by notifying the simulation observer to log general simulation

data, such as the total number of targets found at that time-step.

A Simulation can either be instantiated with all parameters

set via a Test Configuration, or with minimal parameters:

initial drone and target counts, and a map. This design ensures

efficiency, as only the current Simulation being rendered is

instantiated, with future simulations’ parameters stored in the

test queue. During the simulation, any parameters can be

changed, including the number of drones (they will need to

re-spawn), swarm algorithm parameters, drone parameters, the

map, and more. The Contact Listener monitors collisions,

executing user-defined Collision Handlers, when collisions

between defined types (Drones, user Targets) are detected.

The Testbed application seen in Fig. 1 provides a pre-built

interface to interact with and control a Simulation, operating

with a GUI or headless. Headless mode allows simulations to

execute at maximum speed without frame rendering delays.

The Simulator modes in the Testbed provide a comprehensive

way to interact with the simulation. In sandbox mode, users

can test and debug algorithms, visualizing issues instantly.

Even in visual modes, simulations can run faster than real-

time, either accurately (calling multiple entire steps per frame)

or inaccurately (increasing the size of a time step), facilitating

rapid development. Accurate faster-than-real-time running is
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Fig. 3. SALSA Testbed Modes can be switched instantly. GUI and Test
Queue are controlled by the Testbed, and Simulation Library code is in purple.

only provided by the headless mode. After developing algo-

rithms, users can switch to queue mode, to set pre-defined

tests or create permutations for algorithm parameter values.

The test queue outputs data for each simulation, with data

output controlled via the GUI. Plots are generated at the end of

each simulation, for informative visualization. The GUI allows

users to select a swarm behavior, dynamically change behavior

parameters, control visual settings (e.g. drone sensor ranges,

target visibility), and edit drone configuration settings (e.g.

sensor ranges, maximum speeds, and forces). In queue mode,

the simulation test queue is displayed, enabling users to add,

remove, reorder, and edit tests.

B. Drones and Targets

Drones and Targets are extensions of the base Entity class.

An Entity defines standard features for dynamic entities,

including observer notifications, IDs, radius, and color. The

Drone class builds on this by adding movement, behaviors,

and drone sensors, while Target is a virtual class intended for

further extension by the user (e.g. we used Trees as a subclass

of Targets).

Drones are modeled as circles based on quad-copters,

featuring omni-directional movement controlled by a swarm

algorithm. Their movement is restricted by maximum speed,

forces, mass, and radius. Drones have sensors for obstacle,

target, and neighboring drone detection. Users can modify the

drones’ attributes such as size, ranges for sensors, maximum

speed, and force, either through the GUI or with the Drone

Configuration structure, set beforehand in the test queue.

During simulation, each drone’s pointer is set to the current

Behavior instance, and the execute function of the behavior is

called to determine the drone’s movement for each step.

Targets are user-defined, as they vary greatly depending on

the scenario. All targets must have a world, position, and id,

with custom parameters defined as needed. Once complete,

targets are registered in the Target Factory, with the user

specifying any parameters they have added to their extension,

and what these values should be set to.



C. Swarm Behaviors

The Behavior class provides the interface for users to create

custom algorithms for Drones. It contains useful functions

such as obstacle avoidance, steering, and drone avoidance.

Users can add new algorithms by extending the Behavior

class, implementing the execute function to update the Drone’s

movement, and registering it in the Behavior Registry. More

details of this can be done are are provided in the SALSA Git

repository. Inheriting from existing algorithms is also possible

to reduce code reuse. The Testbed includes examples such

as Flocking, Random Walking, Dynamic Space Partitioning

(DSP), and Pheromone Avoidance, showcasing the simula-

tor’s flexibility - custom algorithms only need to override

execute, allowing for diverse implementations. For instance,

in Pheromone Avoidance, a drone can detect pheromones

by accessing a shared list of points - this could have been

done dynamically using AABB detection [29], illustrating the

design freedom available. In DSP, the simulation space is

divided into regions, assigning each drone a point to head

towards, and then walk randomly around it upon arrival.

Flocking implements Reynold’s Boids [12], where each drone

computes separation, cohesion, and alignment vectors, in order

to determine acceleration. Random Walking involves drones

moving randomly without communication. These example

algorithms were developed in the Testbed using the same

methods available to users.

D. Testbed Implementation

The Testbed, seen in Fig 3, is a versatile example of the

extension and use of the SALSA Library, featuring a GUI for

dynamic parameter changes, and multiple extensible modes

to operate in. Sandbox and Queue modes interface directly

with the SALSA API, while the Map Creation mode enables

users to design maps for use in simulations. User code should

be written in user.cpp, and custom behaviors and targets

should be defined in their respective folders. Within user

code, tests are created and added to the Test Queue, contact

listeners are created and assigned contact managers to handle

collision between types, and configurations are created. When

the Testbed is ran, it executes user code followed by the

Testbed code. Although it requires a full rebuild for any

changes, this process is quick. In Sandbox mode, the Test

Queue GUI supports creating and modifying tests and the

queue. It allows for parameter exploration: users can create

permutations of different parameters, and export them to a

JSON file. Plots are automatically generated after each test

run, with options for which to plot available in the GUI. The

Testbed can also run headless, executing pre-defined tests from

the Test Queue, and can be set to generate plots or to not. Plots

are automatically generated using a Python script, which is an

example of how a user might use the result logs.

IV. TESTBED WORKFLOW

The Testbed workflow involves two distinct stages: con-

figuration, and development. The configuration stage involves

users creating systems and foundations for their simulations,

such as creating custom maps and targets. Then, users define

collision listeners to handle interactions between drones and

their custom targets, configurations for drones, and, if desired,

various instances of their targets. After this stage, the Testbed

has the structure in place to run user simulations, and record

data for analysis and evaluation purposes. Workflow then

enters the second stage, development. Users begin a cycle,

developing custom swarm algorithm, evaluating them, and

then improving them. At first, this likely takes place in

the Sandbox mode of the Testbed. Sandbox mode allows

users to evaluate their algorithm visually across various maps,

swarm sizes, drone configurations, and algorithm parameters,

via dynamic updates using the GUI. Once an algorithm is

perceived to be working as expected, users can switch the

Testbed to Queue mode to extensively test their algorithm’s

performance in various scenarios. The Test Queue can be

used to run multiple simulations with various parameters,

collecting performance data. SALSA can also generate graphs

for important performance data within the context of forest

health maintenance, many of which are typical for evaluating

swarm algorithms. Currently SALSA can plot drone speed

and distance, heatmap and trace of drone positions, and

targets detected over time for each simulation. Fig. 4 contains

output from simulating an aerial swarm employing the flocking

algorithm. Furthermore, the Test Queue can be used to permute

algorithm parameters to ascertain the best settings for optimal

performance. Once satisfied with the algorithm development,

users can move it to a realistic simulator (examples listed in

Sec. II), where using SALSA initially will have saved time

implementing a realistic controller for an algorithm that has

not been perfected or fully understood.

V. EVALUATION

To demonstrate SALSA we evaluated various swarm al-

gorithms tasked with continuous monitoring for forest health

maintenance. We evaluated swarm techniques based on how

many trees were successfully detected. For this we considered

quad-copter drones, and the Drone configurations abstracted

the different sensor packages required. We extended the Target

class into Trees, and registered a contact manager that told the

program whenever a drone sensor covered a tree, to consider

TABLE I
TESTBED PERFORMANCE

No. Drones No. Targets Real Time Factor (RTF)a

10

100 0.0017± 0.0003

1000 0.0046± 0.0005

10, 000 0.0291± 0.0024

100

100 0.0250± 0.0025

1000 0.0413± 0.0023

10, 000 0.0919± 0.0468

500

100 0.2139± 0.0238

1000 0.2872± 0.0208

10, 000 0.5280± 0.0666

1000

100 0.5668± 0.0217

1000 0.5134± 0.0336

10, 000 0.9392± 0.0864

aRTF =
simulated time

real time



Fig. 4. ‘Flocking’ behavior test results. The drones spawn at the top right (the black cross), then travel towards a location in the bottom left. (a) Example
view from the simulator: targets are green if found, red otherwise. Drones are pink circles, and obstacles are green shaded areas. (b) Percentage of targets
found over time (c) Paths of the drones over time through the entire test (c) Drone speeds over time (e) Drone Distances to nearest neighbors over time (f)
A heat-map showing the concentrations of drone positions in each section for the entire simulation, normalized from 0 to 100. A video is available on the
SALSA repo demonstrating the simulator.
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Fig. 5. Experimental results, created using the test queue (a) Box plot
showing the number of trees found per behavior for varying swarm sizes.
Each algorithm and swarm size were tested 5 times, automated using the test
queue. (b) Trees found for a swarm size of 10 (c) Trees found for a swarm
size of 30

the tree found. We tested the simulation with 5 different

algorithms, each 5 times for 10, 20, 30, 40, and 50 drones,

for a total of 125 different tests, and 50, 000 trees in a 2km2

area. Each simulation ran for 20 minutes in real time.

The running of and data collection for large amounts of

tests were performed using the Test Queue, with the results

in Fig. 5. The results indicate that the pheromone avoidance

algorithm performs consistently the best and can achieve nigh

complete coverage with 30 drones. The pheromone avoidance

algorithm also has the smallest error bars for all swarm

sizes. This most likely due to the pheromones encouraging

drones to avoid visiting areas that has already been visited

by another drone, thus less randomness with the individual

drone’s behavior. The ability to replicate these tests is shown

in the README file.

The performance of SALSA and the Testbed was also

analyzed by measuring the time taken to simulate between

10 and 1000 drones, and for each number of drones between

100 and 10, 000 targets, modeled as our trees. The simulation

space was an empty 2km2 map, with the drones using our

‘Flocking’ behavior and spawning in the center, and ran for

100 seconds. The Testbed on average performed all simula-

tions faster than real time, the results are shown in Table I.

SwarmLab reported results of a RTF of 0.02s-11s for 2-1024

drones [28], indicating SALSA has greater scaling capability.



A 2021 MacBook Pro Laptop with an M1 Apple processor

and 32GB memory was used for these experiments.

VI. CONCLUSION

The proposed SALSA Library and Testbed provides func-

tionality for rapid development of swarm algorithms. Dynamic

and responsive interactions allow users to visualize their algo-

rithms and how parameters change the behavior in a unique

way, and allows for a deeper understanding in the ways these

parameters affect a swarm algorithm. By giving users freedom

to create the algorithms however they want, with the only

limitation being to implement a single function means that

SALSA is easy to learn, and effective to use - we believe

there will be little significant overhead spent learning how to

use the system. Furthermore, custom testbeds could be created

using the Library for purposes other than aerial drones, such

as terrestrial robots. Future work includes extending the base

simulator, perhaps implementing drone controllers, different

drone types, involving real drone components, adding weather,

or perhaps a damage or drop out system, in order to enable

users to keep developing within SALSA for longer before

moving towards a more realistic simulation. The integration

of SALSA into development pipelines - primarily in the algo-

rithm design stage - would streamline workflows, and therefore

future work should also be spent trying to specialize SALSA

to fit and work with realism-focused simulation software. A

sophisticated comparison of SALSA to other swarm simulators

in terms of efficiency and scalability would also be important

in the future.
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