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ABSTRACT: Charge transport layers (CTLs) and transparent conductive electrodes
(TCEs) are important constituents of polymer solar cells (PSCs) and perovskite solar cells
(Per-SCs), affecting the efficiency and stability of these devices. We employed density
functional theory to study the structural, optoelectronic, thermal, and elastic properties of
alkaline earth-based titanate perovskite oxides to determine the appropriate compounds for
PSCs and Per-SCs. Based on the calculations, CaTiO3 exhibits a direct band gap of 3.535
eV, while BeTiO3, MgTiO3, SrTiO3, and BaTiO3 displayed indirect band gap energies of
3.618, 4.852, 3.193, and 2.960 eV, respectively. Considering the calculated valence and
conduction band edges and energy band diagram alignment of the perovskite oxide
structures with widely used photoactive layers, SrTiO3, BaTiO3, and CaTiO3 emerge as
promising materials to be applied as electron transporting layer (ETL) in the structure of
the PSCs and Per-SCs. The findings also reveal that SrTiO3 and CaTiO3 exhibit the greatest
electron mobility, making them more appropriate candidates for ETL. The minimal exciton
binding energy found in SrTiO3 signifies its high separability and enhances its suitability for efficient carrier generation as the most
effective ETL. The results obtained from optical parameters confirmed that the investigated compounds are appropriate candidates
for TCE and CTL as they demonstrate low optical conductivity and absorptivity, minimal refractive index, and reflectivity in the
solar range of the light spectrum (1−4 eV). The calculated elastic parameters verified that SrTiO3 and CaTiO3 are mechanically and
thermally stable, which further supports their potential function in solar cells.

1. INTRODUCTION
Research into photovoltaic (PV) technology has progressed
considerably in recent decades because of ever-increasing
interest in renewable energy. The objective is to develop new
nontoxic, and abundant materials that can be applied in the
process of sunlight conversion into electricity.1 Although
crystalline silicon is one of the most heavily investigated PV
materials currently leading the market, the high energy demand
to process it has made PV devices based on crystalline silicon
very costly. For large-scale power generation and small-scale,
portable, and remote technological applications, inexpensive
PV devices are highly appealing. As a result, significant research
is being conducted to find low-cost alternative materials.2

Over the past few years, multiple companies have been
established to pave the way for the development and
commercialization of emerging types of semiconductor-based
solar cells, e.g. perovskite solar cells (Per-SCs) and a particular
type of organic solar cell (OSC) known as polymer solar cells
(PSCs). The architecture of PSCs and Per-SCs consists of a
light-absorbent active layer sandwiched between a bottom
transparent conductive electrode (TCE) and a top metal
electrode (ME).3 The selection of charge transporting layers
(CTLs), including electron transporting layers (ETL) and hole

transporting layers (HTL), is a crucial aspect of the PSC and
Per-SC fabrication process.4 Suitable CTLs can be employed
to adjust the energy level alignment at the electrode/
photoactive layer interfaces and optimize the collection of
charge carriers (e.g., electrons and holes) by adjusting the work
function (WF) of the electrodes.5 They also facilitate charge
extraction by forming an Ohmic contact between the electrode
and the active layer. Moreover, charge carrier recombination at
the interface between the photoactive layer and the trans-
porting layer can be reduced by modifying the interface and
utilizing appropriate CTLs.6 Adding HTL/ETL can regulate
the polarity of electrodes, enhance charge selectivity, and
promote interfacial stability between the active layer and the
electrodes.5,6 Although the fundamental objective of the
electrodes is to collect and transport holes and electrons,
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several other characteristics are equally significant and should
be explored. An efficient TCE should have a number of
features, including high optical transmittance, excellent
electrical conductivity, low sheet resistance, suitable WF,
high mechanical and thermal stability, and low cost, to be
chosen as an appropriate electrode for the device architecture.7

Currently, fluorine-doped tin oxide (FTO) and indium tin
oxide (ITO) are the most commonly used TCEs in the
construction of solar cells.
The overall performance and stability of PSCs and Per-SCs

can be strongly affected by the structures and characteristics of
the CTLs/TCE materials.
Metal oxides, employed as CTL and TCE materials,

represent optimal characteristics such as exceptional chemical
and thermal stability, appropriate dielectric constant, superior
charge mobility, superconductivity, and favorable optical
transparency, meeting the requirements for efficient, stable,
affordable, and solution-processed solar cells.4,6,8 Furthermore,
they can be manufactured from low-cost precursors in a variety
of ways, the majority of which are compatible with low-
temperature processing.9 Metal oxides have been frequently
reported as CTLs,10−13 TCEs,14,15 buffer layers,16,17 and
absorbent materials in the active layer18−20 of the OSCs and
Per-SCs. As already mentioned, favorable energy level
alignment with the active layer, high optical transparency,
and electrical conductivity are the most significant traits that
metal oxides should possess to be classified as appropriate
CTLs and TCEs.21,22 However, their fixed features, such as
bandgaps, energy levels, transmittance, and conductivity are
the main drawbacks. Due to the varying energy levels of active
layer materials, these fixed characteristics cause inflexibility in
most PSCs and Per-SCs applications.5,23 Ternary metal oxides
with tunable band structures can be attractive candidates to
overcome these limitations via alternating their composition.24

Perovskite-type oxides are a class of ternary metal oxides that
have recently received much interest from researchers
worldwide owing to their simple structure and potential for a
wide range of applications.25 The general formula of the
perovskites is ABX3, where A and B are two cations with
different atomic sizes. A is the bigger cation, belonging to the
alkali or alkaline earth metals, B is a smaller transition metal
element, and X represents an anion.25 In an ideal cubic array of
ABX3, the cuboctahedral cavities are occupied by the A-site
cations, while the B-site cations are in the center of the
octahedral sublattice and have the six closest X-anion
neighbors.26 Based on the type of X element, perovskites are
divided into two categories, i.e. perovskite oxides (X = O) and
halide-based perovskites (X = Cl, Br, I).27 Extensive research
has been conducted on perovskite oxides (ABO3) due to their
appealing physical attributes, encompassing ferroelectric,
dielectric, pyroelectric, and piezoelectric activities, along with
notable chemical characteristics, highlighting their substantial
potential for various technological applications.28 Many of
their exciting properties originate from the high sensitivity of
these compounds to chemical tuning, which changes their
physical properties significantly as a result of very tiny changes
in their chemical composition or crystal structure. A wide
variety of modified compounds can be achieved by substituting
A and/or B-site cations of the ABO3 perovskites with different
cations to develop a particular property, such as optical
transparency, conductivity, or catalytic activity.29 Perovskite
oxides exhibit a variety of electrical characteristics, ranging
from insulating to semiconducting to metallic, based on the

band gaps derived from their electronic structures.30,31 As such,
perovskite oxides are promising materials for exploitation in
many emerging technological applications, including water
splitting, fuel cells, environmental catalysis, chemical sensors,
magnetic devices, field-effect transistors, electronic devices, and
energy storage and conversion.32,33

Perovskite-type oxides have been applied in solar cells due to
their low price, high structural and thermodynamic stability,
and exceptional electronic, catalytic, optical, magnetic, ferro-
electric, and magneto-resistance features.34−36 Wide band gap
perovskite oxides (>2 eV) can be employed as CTLs and TCE
in solar cells,37 and a considerable number of investigations
have reported applying ABO3s as CTLs,

38−44 and TCE45−48 in
the Per-SCs and a type of OSCs known as dye-sensitized solar
cells (DSSCs), although only a limited number of works have
reported the utilization of ABO3s in PSCs.

49

The titanate perovskites (ATiO3), which exist in four
isomorphs, i.e. rhombohedral, orthorhombic, tetragonal, and
cubic structures, have been widely studied both computation-
ally,50,51 and experimentally.52,53 Often, first principle calcu-
lations are employed to compute the properties and structures
of these compounds, e.g. their electronic band structure and
ferroelectricity,54,55 but for a number of industrial applications,
e.g. laser technologies (mirrors, lenses, and optical windows),
contactless temperature measurement, optics, heat transfer,
and energy, photovoltaic and aerospace applications, it is also
crucial to gain a comprehensive understanding of the optical
properties (absorption, emission, transmission, and reflection).
The effects of some particular wide band gap titanate-based

ABO3s as CTL and TCE in Per-SCs and DSSCs have already
been investigated,26,27,56 but to our knowledge, there is no
report on employing these compounds in PSCs. ATiO3 must
possess a unique electronic structure, optical transparency, and
mechanical and thermal stability characteristics to be used as a
specific component of PSCs and Per-SCs.
Along with developments in other technologies, flexible solar

panels are anticipated to generate specialized products that
require lightweight, mechanical flexibility, and the capacity to
be molded into complex shapes, such as roof-panels for electric
vehicles, folding umbrellas, and camping tents.57,58 Thin-film
polymer and perovskite solar cells are lightweight and
mechanically flexible, making them suitable for flexible
substrates, where they should tolerate repeated bending
processes.59 However, only a limited number of works have
reported the mechanical and thermoelectric properties of the
titanate-based perovskite oxides studied in this work.
Prior research on titanates with the perovskite structure has

mainly concentrated on the calculation of some properties of a
few specific systems, i.e., CaTiO3,

60,61 SrTiO3,
62−64 and

BaTiO3,
65,66 with different crystal structures but it is not easy

to compare the results directly because each study has used
different computational settings. In this study, ATiO3 (A = Be,
Mg, Ca, Sr, Ba) was chosen to be able to compare the results
through the most stable alkaline earth based titanate perovskite
oxides, where we have employed calculations based on the
density functional theory (DFT) to determine their structural,
electronic, optical, thermal, and elastic properties. The elastic
properties were evaluated to assess the flexibility and thermal
stability of these materials for use in PSCs and Per-SCs
structures to enhance their performance and lifetime. The
findings of these calculations were utilized to evaluate the
possibility of employing any of these perovskite-type oxides as
the CTLs/TCE in PSCs and Per-SCs. Furthermore, in order to
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identify suitable materials for charge transport in collaboration
with photoactive layers to facilitate the efficient separation of
photogenerated charge carriers, we developed and investigated
the consequences of energy band alignment between the
photoactive layer and various ETLs and HTLs. Our results
revealed that some of the studied ATiO3 compounds could be
considered valuable materials for employment in the PSCs and
Per-SCs structures, which would improve their mechanical and
thermal stability and overall performance.

2. METHODOLOGY
In this work, we have employed the Vienna Ab initio
Simulation Package (VASP),67 for the DFT calculations. The
Perdew−Burke−Ernzerhof (PBE) functional for the general-
ized gradient approximation was used for geometry optimiza-
tion to determine the exchange and correlation energies within
the projector augmented wave (PAW) method.68,69 We have
employed Grimme’s DFT-D3 method to include the long-
range Van der Waals (vdW) forces to improve the energy
description of the system.68,70 The electronic properties
including valence band maximum (VBM) and conduction
band minimum (CBM) energy edges of the alkaline earth-
based titanates and their optical properties were predicted
utilizing the HSE06 screened hybrid functional incorporating a
25% Hartree−Fock exchange.71 To identify the valence band
maximum (VBM) in bulk materials, we explored the slab
model method for aligning energy levels in a vacuum from
periodic plane wave calculations.72

The electron wave functions are expanded using plane waves
as basis sets with a cutoff energy of 600 eV. The convergence
criteria for the Hellmann−Feynmann forces and tolerance limit
for energy during structure optimization are set to 0.01 eV/Å
and 10−5 eV, respectively. We conducted a spin-polarized

calculation and observed that it had no impact on the
outcomes.
The elastic coefficients were calculated by generating 7

distorted structures for each strain pattern, including three
positives and three negatives under the maximum strain
amplitude of 0.015, where the structures are optimized with
convergence criteria of total energy within 1 × 10−8 eV/atom,
the ionic Hellmann−Feynman forces within 1 × 10−2 eV/Å
and maximum ionic displacement within 1 × 10−4 Å.
The elastic and thermal properties were calculated using

VASPKIT,73 and the spatial dependence figures of the elastic
properties were visualized by ELATE.74

3. RESULTS
3.1. Structural Properties. The crystal structures of the

studied perovskites are shown in Figure 1. The structures are
taken from the Open Quantum Materials Database (OQMD),
as the most stable structures according to the calculated
formation energies.75 We have studied perovskite oxides with
the general formula ATiO3, where A includes elements of the
second group of the periodic table, including the alkaline earth
metals Be, Mg, Ca, Sr, and Ba. The structures have different
crystal lattices, i.e., orthorhombic (CaTiO3), tetragonal
(BaTiO3), trigonal (BeTiO3, MgTiO3), and monoclinic
(SrTiO3) phases. The structural details and formation energies
of the studied perovskite structures are presented in Table 1.
Our recent findings revealed that some of these features are
very close to what has been found in other studies.
The stability of the perovskite oxide structures is estimated

by the most popular and successful geometric ratio known as
the tolerance factor (t-factor) according to the Goldschmidt
method in eq 176

Figure 1. Crystal structures of the studied perovskite oxides with (a) orthorhombic (CaTiO3), (b) tetragonal (BaTiO3), (c) trigonal (BeTiO3,
MgTiO3), and (d) monoclinic (SrTiO3) lattices. Alkaline earth, oxygen, and titanium atoms are shown in green, red, and gray spheres, respectively.

Table 1. Crystal Structure, Space Group, Volume, Lattice Parameters (a, b, c, α, β and γ), Formation Energy, and t-factor of
Different Perovskite Bulk Crystal Structuresa

formula crystal structures (space group) volume (Å3) a (Å) B (Å) C (Å) Α (deg) Β (deg) (deg) ΔHf (eV/atom)
75,78 t-factor

BeTiO3 trigonal (R3̅c) 91.878 5.405 5.405 5.405 52.45 52.45 52.45 −2.983 0.873
MgTiO3 trigonal (R3̅) 103.902 5.497 5.497 5.497 55.04 55.04 55.04 −3.188 0.845

5.53179 5.53179 5.53179

CaTiO3 orthorhombic Pnma 225.804 5.498 7.653 5.366 90.00 90.00 90.00 −3.367 0.983
5.44080 7.63780 5.37880

SrTiO3 monoclinic (C2/m) 120.929 5.537 5.537 5.557 119.87 119.87 90.00 −3.354 0.997
5.57979 5.57979 5.57979

BaTiO3 tetragonal (P4mm) 65.730 3.999 3.999 4.109 90.00 90.00 90.00 −3.288 0.999
3.99181 4.03581

aThe available results from the literature are presented for comparison.
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= +
+

t
r r

r r2 ( )
A O

B O (1)

where ⟨rA⟩,⟨rB⟩ and ⟨rO⟩ are the averages of the ionic radii of
A, B, and O atoms.
The assessment of stability using the t-factor is often the

initial step in designing novel perovskites for various
applications. This factor predicts whether or not A cations
are capable of entering the areas between generated octahedral
structures to fill the structure corners.26 If the t-factor changes
from 0.8 to 1.1, the perovskite structure could be empirically
formed with appropriate structural stability. While the BX6
octahedra can be tilted, and the symmetry can be reduced in
the lower portion of this range, they may still be distorted in
the upper section. If the t-factor > 1.1, it means that the A site
cation is too big, which usually inhibits the formation of a
perovskite. If the t-factor < 0.8, the A site cation is too small,
which can frequently lead to alternative structures.77 As Table
1 shows, the t-factor is in the range of 0.84−0.99 for the
studied compounds, confirming the stability of the structures.
3.2. Electronic Properties. For application as CTLs,

perovskite oxides must have a wide bandgap so that more light
can reach the photoactive layer.82 The bandgap is the energy
difference between the valence band maximum (VBM) and the
conduction band minimum (CBM). The bandgap and energy
levels of perovskite oxides directly influence the efficiency of
PSCs and Per-SCs.24 Perovskite oxides possessing a wide
bandgap can be employed as the ETL and HTL in PSCs and
Per-SCs.42,49 DFT calculations were used to estimate the
electronic structure and intrinsic features of the different
perovskite oxides, including energy levels, bandgap, band
structure, Fermi energy, and the density of states.
The HSE06 hybrid functional is used to evaluate the band

structure (BS) and density of states (DOS) of ATiO3 (A = Be,
Mg, Ca, Sr, and Ba) perovskites. Figure 2a−e shows the band
diagrams for all the considered ATiO3 systems. In some of the
calculated band structures, the valence band maxima appear
flat. This phenomenon is not unique to this study and can be

attributed to specific electronic interactions and crystal
structure configurations within the perovskite oxides. Similar
flat bands have been reported in the literature for related
materials, often due to strong electronic correlations and
specific atomic arrangements.83−86 Our findings align well with
previous theoretical predictions, demonstrating consistency
with established results while also providing novel insights into
the electronic properties of these perovskite oxides.83,87−90

Moreover, the energy of the VBM and CBM plus the energy
gap around the Fermi level are summarized in Table 2, where
they are in agreement with the reported band gaps from other
studies.

More information can also be deduced from the direct or
indirect characters of the bandgaps in Figure 2. In CaTiO3,
electrons and holes recombine at the single symmetry point Γ
of the Brillouin zone for the direct energy gap. In contrast,
there are indirect band gaps of Γ → F, Γ → S_0, M_2 → Γ,
and A→ Γ in BeTiO3, MgTiO3, SrTiO3, and BaTiO3,
respectively. The obtained results are comparable with other
works performed in this area.50,54,61,62,64,83,87−89,91,92 All five
compounds behave as semiconductors, and their bandgaps

Figure 2. Band structure for (a) BeTiO3, (b) MgTiO3, (c) CaTiO3, (d) SrTiO3 and (e) BaTiO3. The Fermi level is set to zero. The bandgaps of
semiconductor structures are shown with red dashes.

Table 2. Band Gaps (Eg), and the Valence and Conduction
Band Edges Energies (EVBM and ECBM) in eV of Perovskite
Oxides Structures

formula band gap Eg EVBM ECBM
BeTiO3 indirect 3.618 −7.63 −4.02

3.31−3.6187

MgTiO3 indirect 4.852 −8.03 −3.18
4.491

CaTiO3 direct 3.535 −7.14 −3.60
3.583

SrTiO3 indirect 3.193 −6.86 −3.66
3.289 −6.989 −3.789

BaTiO3 indirect 2.960 −6.67 −3.71
3.2388 7.0588 −3.8288
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increase from BeTiO3 to MgTiO3, while decreasing from
MgTiO3 to BaTiO3. Thus, all studied perovskite oxides with a
wide bandgap could be considered suitable candidates to be
employed as CTL or TCE in PSCs and Per-SCs, since they can
provide high optical transparency, so more incident light can
reach the active layer.
The total and projected DOS plots for the alkaline earth

metal titanate perovskite structures are shown in Figure 3 (a)-
(e). The DOS results of the electronic properties are consistent
with the BS results. As shown in Table 2, the calculated
bandgaps of BeTiO3, MgTiO3, CaTiO3, SrTiO3, and BaTiO3
are 3.618, 4.852, 3.535, 3.193, and 2.960 eV, respectively. The
PDOS plots of ATiO3 (A = Be, Mg, Ca, Sr, Ba) illustrate that
the p orbitals of the O atoms occupy the VB, and the d orbitals
of the Ti atoms have higher peaks in the CB.
3.2.1. Band Alignment and Working Mechanism of PSC

and Per-SC. The structural design of PSCs and Per-SCs
involves a light-absorbing photoactive layer positioned
between TCE and ME. The classification of these devices
into normal or inverted architectures is determined by the
positioning of HTL and ETL and the direction of carriers’
transportation.3 Considering the identical characteristics and
roles of CTLs in PSCs and Per-SCs, a large number of similar
materials, such as nickel oxide and zinc oxide, have been
employed as HTL and ETL in the structure of these
photovoltaic devices, resulting in comparable outcomes.4,5

Figure 4 illustrates the structure of PSC and Per-SC,
incorporating commonly utilized TCEs such as FTO and ITO,
along with MEs (e.g., Ag, Au, and Al), frequently employed
HTLs and photoactive layers during their fabrication process.
The energy band alignment values are derived from both
experimental and computational studies.93−99 By assessing the
energy level alignment of the used photoactive layers and VBM
and CBM energy edges of alkaline earth-based titanates, these
materials can be employed as effective ETL in the construction

of both PSCs and Per-SCs. Since the working mechanisms of
normal and inverted PSCs, as well as Per-SCs, except for
opposing carrier transport directions, are comparable, the
normal structure of these devices is used to illustrate their
operational mechanisms. The inverted structures can be found
in Figure S1a,b. As depicted in Figure 4, all the investigated
compounds, acting as semiconductors, can be utilized as ETLs
in the fabrication of PSCs and Per-SCs. Notably, the CBM
energy edges of CaTiO3, SrTiO3, and BaTiO3 are more closely
aligned with the LUMO energy level of the applied photoactive
layers. This alignment is anticipated to result in improved
charge extraction and transportation from the photoactive layer
to the ETL composed of the examined perovskite oxides as
supported by some of the reported experimental find-
ings.42−44,48,100−103

When the photoactive layer is under light irradiation,
excitons are generated and easily dissociate into free carriers
(electrons and holes) due to the low exciton binding energy of
common absorber materials. Following this, the built-in
electric field and high carrier mobility within the photoactive
layer facilitate the transport of electrons and holes to the
interfaces with the ETL and HTL, respectively. Subsequently, a
well-matched energy level alignment enables the injection of
electrons and holes into the conduction band and valence band
of ETL and HTL, respectively. Ultimately, electrons and holes
are collected at the electrodes, where their WF needs to align
well with the CBM and VBM of ETL and HTL, respectively, to
ensure efficient collection. Throughout the operation of these
devices, processes like charge transport, extraction, and
collection are often accompanied by charge recombination, a
phenomenon closely linked to efficiency and stability. This
strongly emphasizes the pivotal role of different layers energy
level alignment in achieving efficient and stable solar cells.
3.2.2. Charge Mobility. For prospective photoactive

materials, it is crucial not only to possess a compatible energy

Figure 3. Total and Partial density of states for (a) BeTiO3, (b) MgTiO3, (c) CaTiO3, (d) SrTiO3, and (e) BaTiO3. The Fermi level is set to zero.
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level but also to exhibit a reasonably high carrier mobility.
Earlier studies confirmed that elevated electron mobility plays
a pivotal role in swiftly extracting and transporting photo-
generated electrons, enhancing the current density, overall
efficiency, and exceptional photovoltaic properties.104−108

In the realm of inorganic semiconductors, the coherent
wavelength of thermally activated electrons or holes
approaches the acoustic photon wavelength at room temper-
ature, significantly surpassing their lattice constant. In the low-
energy regime, the scattering of thermal electrons or holes is
chiefly influenced by the coupling between electrons and

Figure 4. Energy level diagram of a normal (a) PSC and (b) Per-SC.

Table 3. Calculated Effective Mass (m*/m0), Deformation Potential Constant (E1), 3D Elastic Constant (C3D), Carrier
Mobility (μ), Relaxation Time (τ), and Exciton Binding Energy (Eb) for Electrons and Holes along the Transport Direction

structure type m*/m0 E1 (eV) C3D (GPa) μ (cm2 s−1 V−1) τ (fs) Eb (meV)

BeTiO3 electron 2.193 −11.35 490.71 32.66 40.72 307.81
hole 2.216 −7.72 490.71 68.82 86.71

MgTiO3 electron 3.412 −8.30 375.02 15.45 29.97 1856.11
hole 7.317 −7.25 375.02 3.01 12.53

CaTiO3 electron 0.715 −9.23 308.20 309.27 125.72 235.39
0.254118 233.5118

hole 2.586 −5.89 308.20 209.60 308.18
SrTiO3 electron 0.455 −9.41 401.86 608.81 157.49 129.12

00−1500119

hole 1.252 −6.76 401.86 429.58 305.79
BaTiO3 electron 2.544 −9.04 298.16 21.59 31.23 258.28

2.82120

hole 0.721 −6.59 298.16 950.24 389.54
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acoustic phonons.109,110 This interaction can be evaluated

using the deformation potential (DP) theory formulated by

Bardeen and Shockley.111 Building upon the effective mass

approximation, the mobility (μ) of carriers in three-dimen-

sional materials can be mathematically represented as

= *
eC

m k T E
(8 )

3( ) ( )
D

D
3

1/2 4 3

5/2
B

3/2
1

2 (2)

where e is the electronic charge, ℏ is the reduced Planck
constant, kB is the Boltzmann constant, and T is the room
temperature (T = 300 K). m* is the charge carrier effective
mass in the transport direction, which can be calculated by the

Figure 5. Correlation between total energy and lattice dilation along the transport direction for (a) BeTiO3, (b) MgTiO3, (c) CaTiO3, (d) SrTiO3,
and (e) BaTiO3.

Figure 6. Shifts in band energies, including VBM and CBM, in response to uniaxial strain along the transport direction, for (a) BeTiO3, (b)
MgTiO3, (c) CaTiO3, (d) SrTiO3 and (e) BaTiO3.
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finite difference method using the equation m* = ℏ2/(∂2 E(k)/
∂k2), where Ek is the band-edge eigenvalues, and k is the wave
vector magnitude. The 3D elastic constant, denoted as C3D, is
defined as the second derivative of the total energy (E) with
respect to the applied uniaxial strain (δ), divided by the
equilibrium cell volume (V0). In mathematical terms, it can be
expressed as C3D = [(∂2 E/∂δ2]/V0, where V0 represents the
volume of the cell at equilibrium, E is the total energy, and δ is
the applied uniaxial strain.
The DP constant, denoted as E1, is a proportionality

constant linked to the shift in the band edge caused by an
applied strain along the transport direction. Mathematically, E1
is defined as ΔEi/(ΔL/L0), where ΔEi represents the energy
change of the ith band resulting from lattice dilation ΔL/L0
along the transport direction. This calculation is performed
with a step size of ±1.0%.
As indicated in eq 2, the effective mass plays a crucial role in

determining carrier mobility. The computed values for the
electron and hole effective masses (m*/m0) along the transport
direction for each structure are presented in Table 3, which
agree with those of other available studies presented in the
Table for comparison. All structures have larger hole effective
masses than those of electrons, which means their electron
transport abilities are better than their hole transport abilities
except BaTiO3, with larger electron effective mass. The
electron effective mass of MgTiO3 is determined to be
3.412m0, making it the highest and leading to lower electron
mobility. Conversely, SrTiO3 exhibits the smallest electron
effective mass, measuring 0.455m0, resulting in the highest
electron mobility.
Carrier mobility is also significantly influenced by the 3D

elastic constant (C3D) and DP constant (E1). To calculate C3D
and E1, the lattice cell has been subjected to both a 5% dilation
and compression along the transport direction. Total energies
and positions of the VBM and CBM are determined
concerning the extent of dilation and compression. At each
step of dilation and compression, all atomic positions are fully
relaxed. Electronic energies are obtained using the HSE06
hybrid functional. In Figure 5, the total energy variation is
illustrated concerning applied uniaxial strain along the lattice
direction. The determination of C3D involves fitting the curve
depicting energy versus strain. Figure 6 displays the shifts in
both VBM and CBM as a function of uniaxial strain. The
calculation of E1 involves determining the slope of the fitted
lines in this representation. With the determined values for m*,
C3D, and E1, the calculated electron mobilities for all structures
are presented in Table 3, where they are compared with the
results of the available studies. Based on the results, the
electron mobilities for MgTiO3 and SrTiO3 are shown to be
15.45 and 608.81 cm2 s−1 V−1, which means that MgTiO3 and
SrTiO3 have the lowest and highest electron transport abilities,
respectively. The results also indicate that the lowest and
highest hole mobilities and transport abilities belong to
MgTiO3 and BaTiO3, with hole mobility values of 3.01 and
950.24 cm2 s−1 V−1, respectively.
It is noteworthy to mention that the calculated carrier

mobilities of these alkaline earth titanate oxide perovskites are
comparable with those of many presently popular solar
absorbers and semiconductor materials, including Si (1.5 ×
103 cm2 s−1 V−1),112 TiO2 5.24 × 10−2 cm2 s−1 V−1),113 CsPbI3
430 cm2 s−1 V−1,114 PbSe (1140 cm2 s−1 V−1),115 and PbTe
(1508 cm2 s−1 V−1).116 In summary, when compared to

existing materials, these materials are anticipated as promising
candidates to replace traditional semiconductors as the CTL.
The anisotropic relaxation time (τ) can be determined by

utilizing the elastic constant (C3D), the DP constant (E1), and
the effective mass (m*). The relationship is expressed as τ =
μm*/e. The calculations for carrier mobility and relaxation
time are conducted at room temperature, typically set at 300 K.
The results are consistent with the calculated results of
electron mobility, where the longest and shortest relaxation
time belong to SrTiO3 and MgTiO3 with values of 157.49 and
29.97 fs, respectively.
To enhance the investigation of carrier mobility, we

additionally compute the exciton binding energy. This energy
is determined using the Wannier−Mott formula117
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e h y

0 e h s
2 (3)

In the given context, the variables are defined as follows: εs
represents the static dielectric constant (the value of the
dielectric function at zero energy), me and mh stand for the
electron and hole effective masses in the transport direction,
and Ry is the Rydberg energy constant with a value of 13.6057
eV. As per the information presented in Table 3, it is observed
that the exciton binding energy in the SrTiO3 is merely 129.12
meV, making it the most easily separable and conducive to
carrier generation. In contrast, the exciton binding energy in
MgTiO3 is the highest, with the value of 1856.11 meV, posing
challenges in separation and exerting a negative impact on
carrier mobility. These findings align with the calculated results
of carrier mobility, where SrTiO3 and MgTiO3 have the
highest and lowest values, respectively.
3.3. Optical Properties. Optical properties are directly

influenced by fundamental features such as the material’s
bandgap. Therefore, in addition to the investigation of the
electronic structure, it is crucial to understand how electro-
magnetic radiation interacts with materials, i.e., absorption,
transmission, reflection, and emission. Investigating the optical
characteristics of solids is a valuable method to interpret their
interaction with incident photon energy, which offers a
predictive route to using new materials in photovoltaic
devices.1,121 In contrast to the extensive experimental efforts,
few simulations on electrical and optical properties have been
performed to optimize the ETL and HTL features to enhance
device performance, even though the photovoltaic perform-
ance of PSCs and Per-SCs is highly dependent on the optical
and electronic characteristics of CTLs.122,123

Since optical properties depend upon the dielectric constant,
we discuss the dielectric constants ε(ω) with real, ε1(ω), and
imaginary parts, ε2(ω), along with other important optical
parameters, including the refractive index, n(ω), extinction
coefficient, k(ω), reflectivity, R(ω), energy loss function, L(ω),
adsorption coefficient, α(ω), and optical conductivity, σ(ω),
where ω is the angular frequency of phonon.124

The sections below discuss these properties and where they
are linked to each other, as explained by relevant equations.
Some of the optical properties have already been studied for a
few of the alkaline earth titanate perovskites, which will be
helpful for the evaluation of our results.51,62,125,126 The focus of
the our evaluation has been on the 1−4 eV range, recognized
as the solar range, encompassing the visible region that
constitutes the primary segment of sunlight. The inverse
relation between photon energy (in eV), and wavelength (in
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nm) could be expressed as: =E(eV) 1240
(nm)

.1 Consequently,

the visible region spans approximately from 1.77 to 3.10 eV.
3.3.1. Dielectric Function. The dielectric function is a key

characteristic that is associated with the rate of charge-carrier
regeneration in certain materials used in solar cells. The
provided information offers a comprehensive understanding of
the operational characteristics and efficiency of optoelectronic
devices. Recombination rates in PSCs and Per-SCs could be
reduced by increasing their dielectric constant.127

The frequency-dependent dielectric function comprises two
well-known components, the real and imaginary parts, which
are related to each other by ε(ω) = ε1 (ω) + iε2 (ω).
The absorptivity of the material can be predicted through

the imaginary part, ε2(ω), by using the eq 4128
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where e and m are the charge and mass of an electron,
respectively, P⃗ indicates the momentum operator, and e ̂j
denotes the unit vector designating the direction of the
external electromagnetic field of energy. Eυ and ψυ are the
related valence energy and vacant wave function, respectively,
whereas Ec and ψc are the conduction energy and filled wave
functions, respectively.
The real component, ε1(ω), characterizes the dispersion and

polarization characteristics of electromagnetic radiation and is
calculated using ε2(ω) via the well-known Kramers−Kröning
relation as shown in eq 5:129
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where P is the principal value of the integral.
The real dielectric constants for all studied structures are

illustrated in Figure 7 (a). The static values of the dielectric
constants at zero energy, ε1(0) are listed in Table 4. At low
photon energies, the real part of the dielectric function displays
a greater value, and as the photon energy increases, this value
falls quite sharply. Following a further increase in photon
energy from the visible region to UV, negative values of ε1(ω)
appear, suggesting that perovskite structures demonstrate a
notable reflection of incident light and poor transmission
through their surface in the UV region, as reported in other
studies.92,130 The studied semiconductors consisting of alkaline

earth based titanates show a favorably positive value of the real
dielectric constant in the solar range, consequently reflecting
less from their surface. MgTiO3 demonstrates the lowest ε1(0)
and for all the investigated compounds, including MgTiO3, this
value remains nearly constant across the solar range. Therefore,
among the suggested compounds in the electronic structure
section (Section 3.2), SrTiO3 and CaTiO3 exhibit the greatest
transparency in the solar range, making them more suitable
choices for CTL and TCE.
The behavior of the imaginary component of the dielectric

function, ε2(ω) in energy values of 0−18 eV is depicted in
Figure 7b. The presence of various peaks in the spectrum could
be attributed to the formation of electron−hole pairs for
conduction, interband optical transitions occurring between
the valence and conduction bands, and the collection of
excitons from the free carriers. The last peak seen in higher
energy regions is often referred to as the plasma frequency,
with the corresponding peak being denoted as the plasmon
peak. The variation in band gaps among these materials could
be attributed to their inconsistent light responses.127 In all
structures, the positive values of ε2(0) and observed peaks in
the UV region indicate interband transitions of electrons from
their filled VB to the empty CB and the absorptive behavior of
the compound. The intraband transitions have been ignored
for these materials, as they were in former studies.131,132 All
studied compounds demonstrate light absorption in the middle
section of the UV area. However, the imaginary part of the
dielectric function exhibits a diminishing trend toward zero
within a larger range of photon energy of the UV spectrum,
indicating less interaction between materials and incident light
in this region. In the instance of MgTiO3, the value of ε2(ω)
exhibits an increase slightly beyond the photon energy of 4 eV,

Figure 7. Real (a) and imaginary (b) dielectric constants for ATiO3 (A: Be, Mg, Ca, Sr, and Ba).

Table 4. Values of Dielectric Constant, ε1(0), Refractive
Index, n(0), and Reflectance, R(0), at Zero Energy and
Maximum Values of Absorption Coefficient, αmax(ω),
Optical Conductivity, σmax(ω), and Energy Loss Function,
Lmax(ω)

name ε1(0) n(0) R(0)
αmax(ω)
(104/cm)

σmax(ω)
(1016/s) Lmax(ω)

BeTiO3 3.82 1.95 0.10 143.98 4.48 0.45
MgTiO3 2.42 1.55 0.04 148.48 6.15 0.47
CaTiO3 2.84 1.68 0.06 107.45 4.21 6.54
SrTiO3 2.92 1.71 0.06 108.54 4.39 3.96
BaTiO3 4.07 2.01 0.11 162.33 5.39 1.09
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and the absorption of other examined semiconductors also
proves to be zero in most parts of the solar range and rises
slightly before 4 eV, effectively covering the solar range. This
unique behavior renders previously proposed compounds of
SrTiO3 and CaTiO3 as almost transparent materials within this
range, positioning them favorably for use as CTL and TCE
components in PSCs and Per-SCs. Light absorption is
considered a limiting factor to applying these perovskite
oxides as CTLs or TCEs.
3.3.2. Refractive Index and Extinction Coefficient. The

refractive index is a crucial parameter in solar applications,
significantly influencing how incident light interacts with
materials and is essential for assessing the transparency of
materials and their behavior when exposed to light.92,131 The
refractive index, n(ω), is calculated using the eq 6
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The spectra of the calculated refractive indices as they vary
with photon energy are displayed in Figure 8a. The static
refractive indices of the structures at zero energy, n(0), are
given in Table 4. Due to the relations between the real
dielectric constant and the refractive index, variations in their
values were expected to follow the same trends.130 The gradual
increase in the refractive index of the studied compounds is
indeed a trend that has already been observed for the dielectric
constants. Based on its electronic structure among all studied
perovskite oxides, MgTiO3, SrTiO3, and CaTiO3 show the
lowest refractive index in the solar range, while MgTiO3
demonstrates the highest value in the UV region at energy
edge of 7.8 eV, which is consistent with ε1(ω). In contrast,
BeTiO3 exhibits the greatest value at the energy edge of 4.2 eV.
As photon energy rises to higher values (>8 eV), n(ω) exhibits
a steep decline across all examined structures, indicating
reduced interactions between incoming light and the materials.
The largest value of n(ω) indicates that there could be
significant interaction between incoming light photons and
valence electrons during transmission, leading to significant
polarization in the materials. Therefore, the smaller the value
of n(ω) the higher the transparency, which is in accordance
with the role of a material as CTL or TCE. Therefore, it can be
concluded that the proposed function of SrTiO3, and CaTiO3
with a semiconductor nature as ETL in PSC and Per-SCs is

confirmed by the highest transparency observed in the solar
range based on the refractive index calculations.
Furthermore, the ability of the surfaces of the studied

materials to absorb incident photons at specific wavelengths of
light is controlled by the extinction coefficient, k(ω) which can
be calculated by the eq 7131,133
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The extinction coefficient, k(ω), versus the photon energy, is
shown in Figure 8b, and it reflects the transition of the
electrons from the VB to the CB in dielectric materials.125 As
can be seen, for all of the investigated compounds, k(ω)
remains almost zero in the most area of the solar range
followed by several peaks throughout the UV region, indicating
that the photons of incident light in the solar range are not
alleviated, while the incident light has maximum diffusion into
the compound in the UV region. As shown in Figure 8 (b),
throughout the solar range, the lowest value of k(ω) remained
almost constant for the preferred compounds of SrTiO3, and
CaTiO3, indicating the lowest absorption of incident radiation.
The calculated k(ω) emphasizes that the indicated compounds
are promising ETL or TCE candidates for the PSCs and Per-
SCs. These findings are in good agreement with previously
reported results.62,92 The calculated refractive index n(ω) and
extinction coefficient k(ω) of the pure material are in
agreement with experimental results.134

3.3.3. Absorption Coefficient. The absorption coefficient
α(ω) is widely acknowledged as the most important optical
characteristic in determining solar cell performance.127 The
power conversion efficiency of the resultant solar cell is
strongly influenced by the absorption coefficient of the
materials used in its fabrication. The rapid and efficient
capture of incoming light is crucial in the active layer of PSCs
and Per-SCs, necessitating a high absorption coefficient. On
the other hand, in the case of CTLs and TCEs, it is desirable to
have a low absorption coefficient, as this enables a larger
portion of light to transmit through the layer and ultimately
reach the active layer.127,135 The absorption coefficient, α(ω),
describes the efficiency of the materials in absorbing photons
of light with an energy of ℏω, as given in eq 8.136

Figure 8. Refractive index (a) extinction coefficient (b) for ATiO3 (A: Be, Mg, Ca, Sr, and Ba).
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Figure 9a shows the absorption spectra of all considered
materials. It has been demonstrated that for all studied
compounds, there is zero or negligible absorption in the solar
range. This observation indicates that these materials,
specifically the suggested compounds of SrTiO3, and CaTiO3
are transparent, allowing most of the light in this region to pass
through. Consequently, they are excellent candidates for use in
ETL and TCE.130,137 As can be seen, σ(ω) increases gradually
with increasing energy of the light in the UV region. Among
the materials studied, BaTiO3, revealed the maximum
absorption within the UV region at the energy edge of 12.5
eV. Therefore, it is the most absorptive material among all the
studied perovskite oxides in the UV region of the electro-
magnetic spectrum, and as such, could be used as UV
absorbers in photovoltaic and optoelectronic devices (see
Table 4).
3.3.4. Optical Conductivity. When incident light interacts

with the material surface, it leads to the generation of
photoelectrons as a result of bond breaking. The conduction of
these photoelectrons within the material is regulated by the
optical conductivity, denoted as σ(ω).135 The optical
conductivity parameter, σ(ω), as a function of photon energy
is illustrated in Figure 9b, characterizing the conductivity of the

material due to optical excitation caused by photons.138 It is
determined from the following eq 9139

= n c
( )

( ) ( )
4 (9)

The value of σ(ω) is zero or negligible in the most range of
solar range for all of the studied alkaline earth titanates,
indicating no optical interaction and excitation for these
materials, in this region of the electromagnetic spectrum. The
results obtained for σ(ω) agree with the optical parameters
discussed above, confirming the potential application of
investigated compounds as ETL and TCE in the PSCs and
Per-SCs. The σ(ω) values are consistent with the extinction
coefficient and rise to higher values in the UV region. The
maximum optical conductivities for all materials are listed in
Table 4. MgTiO3 can be considered the most conductive
compound in this region of the electromagnetic spectrum,
possessing the highest optical conductivity of 6.15 × 1016.
3.3.5. Reflectivity. Reflectivity R(ω), plays a vital role as an

optical property in determining the surface characteristics of
materials employed in solar cell technology.127 The reflectance
behavior of photons at the material is explained by the R(ω),
describing the portion of light reflecting from the material, as
shown in Figure 10a and calculated from eq 10
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Figure 9. Absorption coefficient (a) optical conductivity (b) for ATiO3 (A: Be, Mg, Ca, Sr, and Ba).

Figure 10. Reflectivity and (a) and energy loss function (b) for ATiO3 (A: Be, Mg, Ca, Sr, and Ba).
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The static values of reflectivity at zero energy, R(0), for all
mentioned materials, are listed in Table 4. Based on the
obtained data, the reflectivity is very low for all the studied
perovskite compounds in the solar range, while MgTiO3,
SrTiO3, and CaTiO3 demonstrate the lowest amounts of R(ω)
in this area. The data in this segment validates our prior results
for other optical properties. As SrTiO3 and CaTiO3 display the
lowest R(ω), and consequently, the highest transmission
among all five semiconductors, it reinforces their proposed role
in PSCs and Per-SCs.
The reflectivity of all studied perovskite oxides increases in

the UV region, with BeTiO3 perovskites exhibiting the highest
reflectivity at the energy edge of 11 eV. Therefore, in the UV
region, all studied compounds reflect a considerable portion of
the incident light.
3.3.6. Energy Loss Function. Ultimately, the dissipation of

optical energy, whether through scattering, heating, or
dispersion, is governed by the energy loss function L(ω), as
illustrated in Figure 10b. The energy loss function is a
representation of the energy lost by swiftly moving electrons
because of the impact of electromagnetic light on materials.
Plasma oscillations induce the separation of fast-moving
electrons at lattice positions. When the maximum value of
the energy loss function is reached, the electrons in this energy
range are free to perform plasma oscillation rather than being
confined to their lattice locations in response to incident
light.132,135,140 The energy loss function, L(ω), is calculated
using eq 11

=
+

L( )
( )

( ) ( )
2

1
2

2
2 (11)

The peaks in the L(ω) spectra represent the plasma
resonance, where their associated frequencies are the
corresponding plasma frequencies. Figure 10b shows that
there are several loss peaks in the UV region of the electron
energy loss (EEL) spectrum, while no peak is observed in the
visible region for all studied compounds. The increments in
photon energy lead to an increase in L(ω), indicating higher
energy losses in the UV region. The maximum peaks for all
structures are listed in Table 4. As can be observed, the most
intensive plasmon peak of 6.54 at 10.12 eV is observed for
CaTiO3 in the UV region.
The EEL spectrum has two distinct sections: the low-loss

region (up to around 50 eV in energy loss) and the high-loss
zone. Analysis in the valence region (<50 eV) provides
information similar to that offered by optical spectroscopy.141

Band structure and dielectric characteristics of the sample may
be deduced from the low-loss spectrum, which includes the
zero-loss peak and the plasmon peaks.141,142 Following the
previously described optical characteristics, the EEL spectrum
shows no prominent plasmon peaks in the solar range for any
of the studied semiconductors, making it clear that no
interaction occurs between these compounds and the incident
light in this region. As shown in Figure 10b, the EEL spectra
for the proposed compounds of SrTiO3 and CaTiO3 stay zero
in the whole range of the solar range and rise slightly
thereafter. These calculations confirm our previous suggestions
that these materials could be appropriate candidates to be used
as CTL or TCE in solar cells.
Thus, the overall optical characteristics of the investigated

materials, including minimum absorption, reflectivity, optical

conductivity, and least energy loss, make them promising
compounds for applications in photovoltaic devices.
3.4. Elastic and Thermal Properties. While Per-SCs and

PSCs have not yet provided their theoretical maximum
efficiency, most research efforts in recent years have shifted
from boosting efficiency to addressing the critical issue of
device stability.143 The stability of solar cells is affected by two
major factors: (i) the thermal and humidity stability of the
active layer, and (ii) the structural and mechanical stability of
the solar cell constituents, primarily including the TCE and
CTLs of the device structure which should be stable under
external factors such as high pressure and elevated temper-
atures.10,143 How a material responds when exposed to external
factors such as pressure and strain is governed by the elastic
properties of the material. Elastic constants are the dimensional
constants that determine the relationship between stress and
strain in a material. When a material is subjected to stress, its
deformation can be estimated via the elastic constants.144 Since
stability is a major concern for the commercialization of PSCs
and Per-SCs, the elastic constants and the derived elastic
moduli were calculated for each of the perovskite oxides to
evaluate their mechanical stability. Elastic constants are
fundamental for understanding a material’s mechanical proper-
ties and their impact on mechanical stability, hardness, plastic
deformation, as well as properties like rigidity, strength,
resilience, and ductility.135 Less rigid materials with a lower
modulus of elasticity are rubber-like; they distort quickly but
rapidly return to their original shape. In contrast, stiffer
materials with a higher modulus are dense and can absorb
heavy loads.145 As already mentioned, PSCs and Per-SCs must
incorporate flexible materials into their structure to enable
them to be used in new applications, such as roof panels for
electric vehicles and folding umbrellas.
Each crystal structure with a certain symmetry has different

numbers of independent elastic constants. The inverse of each
stiffness tensor, cij, is the compliance tensor, sij = cij−1. The
crystal bulk modulus (B), shear modulus (G) Young’s modulus
(E) and Poisson’s ration (v) were calculated according to the
Voigt, Reuss, and Hill approximations.146−148 According to the
Hill approximation, the bulk modulus (BH) and shear modulus
(GH) are calculated according to eqs 12 and 13 as

= +B B B
1
2

( )H V R (12)

= +G G G
1
2

( )H V R (13)

where the two parameters of the bulk modulus and shear
modulus, according to the Voigt and Reuss approxima-
tions147,148 BV, BR, GV and GR, are averaged by employing
eqs 14 to 17 as
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(17)

The Young’s modulus (EH) and Poisson’s ratio (vH) are
calculated using the bulk modulus (BH) and shear modulus
(GH) from the Hill scheme, using the following eqs 18 and
(19)
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2(3 )H

H H

H H (19)

Using the calculated Young’s modulus (EH) and Poisson’s
ratio (vH) and crystal structure parameters, the theoretical
minimum thermal conductivity (kmin) was obtained as the
lowest limit of the thermal conductivity value.149−151

According to the Clarke model,152 the theoretical minimum
thermal conductivity can be calculated via eq 20
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where kB refers to the Boltzmann’s constant, E is Young’s
modulus, ρ is the density of each perovskite crystal, NA is
Avogadro’s number, M is the molecular weight, and n is the
number of atoms. In this study, we have used the modification
by Liu et al.149,150 to the Clarke model through eq 21, which
was proposed for the calculation of the minimum thermal

conductivity from DFT calculations of the elastic parameters
(h is the Plank’s constant)
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Another critical constant of thermal properties, the Debye
temperature, is derived from eq 22153
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where vm, the average sound velocity, is calculated by the eq 23
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The calculated values of elastic constants for each of the
studied materials with specific crystal structures are shown in
Table 5.
The following stability criteria for each of the crystal phases

have been demonstrated to be satisfied by the estimated values
of these elastic constants.

Table 5. Calculated Elastic Constants (Cij, in GPa), Bulk Modulus (in GPa), Young’s Modulus (in GPa), Shear Modulus (in
GPa), Poisson’s Ratio, Minimum Lattice Thermal Conductivity (in W m−1 K−1), and Debye Temperature (in K) Obtained
from Hill Approximation of ATiO3 (A = Be, Mg, Ca, Sr, and Ba)

elastic parameters BeTiO3 MgTiO3 CaTiO3 SrTiO3 BaTiO3
C11 441.23 330.60 320.76 326.74 299.13
C12 186.39 145.29 109.01 84.91 111.98
C13 141.97 96.48 135.48 121.00 87.00
C14 5.54 13.04
C15 0 5.12 −30.40
C22 343.53 326.79
C23 109.41 120.73
C25 3.96
C33 307.03 269.82 305.11 346.14 123.22
C35 −28.66
C44 116.84 81.59 103.65 90.86 65.35
C46 1.75
C55 110.16 84.27
C66 127.42 92.65 117.12 108.59 121.02
bulk modulus (BH) 231.42 176.49 186.32 181.24 129.23

245.4054 193.4954 189.6154 184.2654 178.5254

Young’s modulus (EH) 305.47 228.87 268.67 252.74 185.47
302.8554 233.3754 280.8654 288.2254 284.7954

shear modulus (GH) 119.32 89.13 106.65 99.70 73.55
116.9954 89.8354 112.0754 116.2854 115.3854

Poisson’s ratio (νH) 0.28 0.28 0.26 0.27 0.26
0.29 0.30 0.2554 0.24 0.23

Pugh’s ratio 1.94 1.98 1.75 1.82 1.76
Cauchy’s pressure 69.55 63.70 5.36 −5.95 46.63
anisotropy factor 0.91 0.88 0.98 0.75 0.69
Debye temperature (θD) 888.60 732.70 761.70 641.80 603.00
minimum thermal conductivity (κmin) 0.20 0.19 0.36 0.28 0.18
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BaTiO3, with a tetragonal crystal structure in the space
group P4mm has six independent elastic constants, including
C11, C12, C13, C33, C44, and C66. The values of these elastic
constants satisfy the Born-Stability criteria for tetragonal crystal
structures based on the below equations154
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CaTiO3 with orthorhombic crystal structure with the space
group pnma has 9 elastic constants C11, C12, C13, C22, C23, C33,
C44, C55, and C66. The Born stability criteria for the
orthorhombic system are well-known154
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The trigonal structures of MgTiO3 with space group R3̅
possesses 8 elastic constants of C11, C12, C13, C14, C15, C33, C44,
and C66, while BeTiO3 with r3̅C symmetry has 7 elastic
constants C11, C12, C13, C14, C33, C44, and C66. In the case of a
trigonal crystal, the assessment of mechanical stability requires
three essential requirements, which could be described as
follows155
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The monoclinic structure of SrTiO3 with space group C2/m
is characterized by a total of 13 elastic constants, including C11,
C12, C13, C15, C22, C23, C25, C33, C35, C44, C46, C55, and C66. Due
to the complexity of the derived equations for the mechanical
stability criterion of this crystal structure, they are provided in
the supplementary file (see Text S1).156

The findings suggest that all compounds have some
mechanical stability. This is because the calculated values for
elastic stiffness constants satisfy the criteria for the mechanical
stability of their corresponding crystal structures.
The main elastic parameters for studied perovskite oxides,

including the bulk modulus, shear modulus, Young’s modulus,
Poisson’s ratio, along with Minimum thermal conductivity and
Debye temperature, plus the available results from other
studies are listed in Table 5. The magnitude of the indicated
moduli for studied perovskite oxides follows the sequence of
BeTiO3 > CaTiO3 > SrTiO3 > MgTiO3 > BaTiO3.
As can be observed, BeTiO3 has the greatest bulk, Young’s,

and shear moduli (231.42, 305.47, and 119.32 GPa,
respectively), whereas BaTiO3 possesses the lowest values for
the indicated moduli (129.23, 185.47, and 73.55 GPa,
respectively). On the other hand, the bulk, Young’s, and
shear moduli of CaTiO3 (186.32, 268.67, and 106.65 GPa,
respectively) are higher than those of SrTiO3 (181.24, 252.74,
and 99.70 GPa, respectively) and MgTiO3 (176.49, 228.87,
and 89.13 GPa, respectively).
The degree of incompressibility is directly proportional to

the magnitudes of the (B) and (G) values.157,158 When three

mutually perpendicular stresses of equal intensity are applied
to a structure, the ratio of direct stress to the corresponding
volumetric strain is defined as the bulk modulus for the
material. The volume strain is the ratio of the change in
volume to the original volume when the pressure is applied
uniformly over the entire material surface.159 Therefore, the
strength of a crystal could be evaluated by determining its bulk
modulus. The structure will have a high compression strength
and low compressibility if the bulk modulus is high.157 Based
on the data provided in Table 5, BeTiO3, with the greatest (B),
exhibits the greatest compression strength, while BaTiO3, with
the lowest (B), demonstrates the highest compressibility. The
shear modulus, which exhibits resistance to plastic deforma-
tion, is the ratio of the shear stress to the shear strain of
material, where shear stress is the tangential force applied per
unit of surface area. When an external force is applied
tangentially to the surface of a body, while the opposite surface
remains fixed, the body changes shape, but its volume remains
unaltered. The face to which the force is applied is displaced in
the direction of the applied force, which leads to shear strain
within the material.160 As can be seen in Table 5, the greatest
and lowest values of (G) is obtained for BeTiO3 and BaTiO3,
respectively. The ratio of the longitudinal stress to the
longitudinal strain is defined as Young’s modulus of elasticity.
The change in length per unit length is the longitudinal strain,
and the force acting per unit area of the cross-section of the
material is the longitudinal stress.161 The Young modulus
illustrates how readily a substance may be stretched or
deformed. The high value of the Young modulus proposed that
this compound was stiff and could not be stretched or
distorted readily.162 The value of (E) for the investigated
structures is in the order of BeTiO3 > CaTiO3 > SrTiO3 >
MgTiO3 > BaTiO3. Poisson’s ratio is an elastic constant as the
ratio of lateral strain to longitudinal strain.163 Poisson’s ratio
indicates the flexibility of the compound, and its ideal value
ranges from 0 < (v) < 0.5. The smaller the Poisson’s ratio, the
greater the plastic behavior, and vice versa, allowing us to
conclude that the investigated compound was inherently
elastic.158 According to the information presented in Table 5,
BeTiO3 and MgTiO3 exhibit the greatest (v) value of 0.28,
while SrTiO3 displays a (v) value of 0.27. In contrast, CaTiO3
and BaTiO3 demonstrate the lowest value of 0.26.
An analysis has been conducted to determine the ductility

and brittleness of these materials using several parameters,
including the (B)/(G) ratio (Pugh ratio), and Poisson’s ratio
(υ). In contrast to brittle materials, which would alter the
volume under stress, ductile materials would merely be
deformed.158 According to Pugh’s criteria, a material is
considered to exhibit ductile behavior if the ratio of (B)/(G)
exceeds 1.75. Conversely, if this ratio is less than 1.75, the
material is classified as brittle.157 As indicated in Table 5, the
Pugh’s ratio values for all the investigated compounds are
≥1.75. Consequently, they are all categorized as ductile
materials, with the highest value observed in the case of
MgTiO3. Poisson’s ratio (v) is another crucial factor for
determining whether a material is ductile or brittle. Based on
the Frantsevich rule, a material will exhibit a ductile nature if
(v) > 0.26 and a brittle behavior if (v) < 0.26.164 The displayed
values of (v) for the studied materials clearly demonstrate that
all of them could be classified as ductile structures (see Table
5). In addition, (v) is involved with the bonding characteristics
of a substance. If (v) is less than 0.10, the substance is
covalent; between 0.25 and 0.33, it is ionic; beyond 0.33, it is
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metallic.165 Therefore, based on this criterion, it can be
concluded that the analyzed compounds should be categorized
as ionic compounds.
The crystal elastic anisotropy factor indicated by A has

significant implications in scientific study. To provide a
quantitative assessment, the calculations (A = 2C44/(C11 −
C12)) have been performed to determine the anisotropy factor.
In the case when A is equal to 1, it could be inferred that the
material has elastic isotropic characteristics. Conversely, if A
deviates from this value, it signifies that the material possesses
an anisotropic nature.166

As determined by the provided formula, the calculated A
factor for all the studied compounds is below 1. This
observation affirms the anisotropic nature of these compounds,
as demonstrated in Table 5. Specifically, the A value for
CaTiO3 stands at 0.98, which is the closest value to 1. This
suggests that CaTiO3 exhibits characteristics that are relatively
close to isotropic.
Surface contours of the spatially dependent Young’s

modulus from the Hill scheme for each crystal structure,
showing the anisotropy for different perovskite materials, are
illustrated in Figure 11, whereas the surface contours of spatial
dependence of the shear modulus and Poisson’s ratio of all
structures are shown in Figures S2−S11.
The Debye temperature (θD), commonly referred to as the

characteristic temperature, is a parameter significantly
correlating with various physical properties, including the
melting point, specific heat, Debye frequency, and elastic
constants.166 Elastic data can provide a precise method for
predicting the Debye temperature. Additionally, a high Debye
temperature is indicative of strong bonding within a material,
owing to the connection between interatomic forces and the
Debye temperature in solid material.167 Based on the data
presented in Table 5, all the investigated compounds exhibit
high Debye temperature values exceeding 600, signifying
strong bonding within these materials. In terms of this
parameter, the compounds can be arranged as follows:
BeTiO3 > CaTiO3 > SrTiO3 > MgTiO3 > BaTiO3.
The minimum thermal conductivity of the perovskite oxides

has been used to evaluate their thermal stability. The thermal

conductivity of a material is the number of Watts conducted
per meter of material thickness per degree of the temperature
differential between two sides. Generally, the lower the thermal
conductivity of a material, the better, as it conducts less heat
energy.168 The minimum lattice thermal conductivities (κmin)
are 0.36, 0.28, 0.20, 0.19, and 0.18 W·m−1·K−1 for CaTiO3,
SrTiO3, BeTiO3, MgTiO3, and BaTiO3, respectively (see Table
5). Therefore, the compounds with lower minimum thermal
conductivity could improve the thermal stability of the cells
upon their application in the structure of solar cells.
In conclusion, the performed elastic calculations confirmed

the mechanical and thermal stability of SrTiO3, and CaTiO3,
reinforcing their suitability as ETL candidates.
These findings have been confirmed by other studies that

have obtained elastic properties of titanium-based perovskite
oxides.54,64,169

4. CONCLUSION
The structural, optoelectronic, magnetic, thermal, and elastic
properties of the ATiO3 (A = Be, Mg, Ca, Sr, and Ba)
perovskite oxides in different phases have been investigated
using ab initio methods based on the density functional theory
to gain insight into their potential application in polymer solar
cells (PSCs) and perovskite solar cells (Per-SCs). The
calculated tolerance factor confirms the stabilities of the
compounds for each structure.
BeTiO3, MgTiO3, SrTiO3, and BaTiO3 show semiconductor

behavior, resulting in indirect band gaps of 3.618, 4.852, 3.193,
and 2.960 eV, respectively, whereas a direct band gap energy of
3.535 eV is calculated for the CaTiO3 compound. The PDOS
results of the compounds reveal that O(2p) orbitals occupy the
VB, whereas the contribution of Ti(3d) orbitals is prominent
in the CBM. Considering the assessed electronic structures and
the alignment of energy levels among diverse elements in the
PSCs and Per-SCs, it is evident that all investigated
compounds possess the capability to serve as electron transport
layers (ETL) in the architecture of both devices. Notably,
BaTiO3, SrTiO3, and CaTiO3 exhibit the most favorable
energy level alignment with commonly employed photoactive
layers. Charge mobility results highlight that SrTiO3 and

Figure 11. Calculated surface contours of spatial dependence of Young’s modulus (in GPa) obtained from Hill approximation of the (a) BeTiO3,
(b) MgTiO3, (c) CaTiO3, (d) SrTiO3, and (e) BaTiO3.
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CaTiO3 demonstrate superior electron transport mobilities,
positioning them as suitable choices for ETL. The minimal
exciton binding energy observed in SrTiO3 emphasizes its ease
of separation and underscores its suitability for efficient carrier
generation. These properties are expected to result in
enhanced charge extraction and transportation from the
photoactive layer to the ETL in the studied perovskite oxides,
as evidenced by experimental results.
Furthermore, electronic structure along with optical findings,

suggest that SrTiO3 and CaTiO3 should be the most fitting
candidates for use as the ETL and TCE in solar cells. This is
also attributed to their wide bandgap, higher transparency, low
optical conductivity and absorptivity, minimal refractive index,
and reflectivity of the light in the solar range.
Important elastic and thermal parameters, including the bulk

modulus, shear modulus, Young’s modulus, Poisson’s ratio,
Debye temperature, and minimum lattice thermal conductiv-
ities, were also calculated to evaluate the mechanical and
thermal stability of the compounds. According to the results,
all the investigated structures exhibit superior elastic and
thermal properties, contributing to enhanced performance and
stability of the solar cells.
In summary, we suggest that SrTiO3 and CaTiO3

compounds are suitable candidates for applications in CTLs
and TCEs in PSCs and Per-SCs devices.
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