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ABSTRACT
In this paper, we report a new algorithm for creating an adaptive basis set in the Multiconfigurational Ehrenfest (MCE) method, which is
termed Full Cloning (FC), and test it together with the existing Multiple Cloning (MC) using the spin-boson model at zero-temperature as
a benchmark. The zero-temperature spin-boson regime is a common hurdle in the development of methods that seek to model quantum
dynamics. Two versions of MCE exist. We demonstrate that MC is vital for the convergence of MCE version 2 (MCEv2). The first version
(MCEv1) converges much better than MCEv2, but FC improves its convergence in a few cases where it is hard to converge it with the help of
a reasonably small size of the basis set.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0221184

I. INTRODUCTION

Multidimensional model systems often serve as testing grounds
for quantum dynamical methods that aim to circumvent the infa-
mous “curse of dimensionality.” Arguably, the most famous model
is the Spin-Boson Model (SBM),1 where two potential surfaces of
two distinct quantum states are coupled to a bosonic bath, which
can be used to represent a rather wide range of phenomena.2–8

The SBM can be used to model many different scenarios in multi-
ple fields. In computational chemistry, the SBM is often thought of
as a two-state electronic “system” coupled to a continuous “bath”
of nuclear vibrational degrees of freedom, and we shall be using
this physical picture throughout this article. Within this picture,
it is natural to discretize the spectrum of the bath and represent
it as a large but still finite number of vibrational modes. A wide
range of methods have been developed, which can simulate quan-
tum dynamics of the SBM. Among them are the techniques based
on approximations, such as semiclassical approximations9–12 or fully

quantum approaches.13–17 However, exact quantum methods are
difficult to converge for high dimensional systems or systems outside
of their ideal parameters. The zero-temperature regime is arguably
the most difficult to simulate, due to the domination of quantum
effects and the high number of modes required for accurate simula-
tion. It acts as a convergence limit for several methods,13 and in the
case of certain methods such as the hierarchical equations of motion,
new extensions have been created to surpass that limitation,18–20

albeit with greater computational costs.21 The multiconfigurational
time-dependent Hartree method (MCTDH)22 and its multilayer
extension23 have both demonstrated their efficiency for the simu-
lations of quantum dynamics of the SBM. MCTDH can converge a
wide range of parameters within this regime,24–26 presenting results
for both weak and strong couplings across multiple characteristic
frequencies. This method uses a basis set of single particle func-
tions to represent the wave function and to accurately treat high
dimensional systems. The bath of the system is handled by a group-
ing of the different modes such that a small amount of flexible and
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complicated time-dependent linear combinations of single particle
functions can handle a significant number of degrees of freedom.
This grouping needs to be done correctly to maintain the method’s
efficiency and its ability to converge at a reasonable cost.

Previously, our group presented the Multiconfigurational
Ehrenfest (MCE) approach, a collection of two methods, called ver-
sion 1 (see Ref. 27) and version 2 (see Ref. 28) (shortened to MCEv1
and MCEv2 for ease). Both MCEv1 and MCEv2 use time-dependent
basis functions called Ehrenfest configurations to exactly represent
the full quantum system. Our approach belongs to the family of
methods based upon the use of trajectory-guided frozen Coher-
ent States (CSs) to describe nuclear motion. The use of the frozen
Gaussian coherent states, originally proposed by Heller in 1981,29

allows for an economically small basis set that is capable of accu-
rately following the quantum system. However, the general idea of
using multiple Gaussians can be traced back to 1973 when Shore and
Sander simulated coupled Einstein phonons with two Gaussians.30

The main difference between coherent state based methods is then
in the choice of trajectory that is used to guide the basis set. Classical
trajectories are the cheapest and the simplest, allowing for methods
such as multiple spawning31–34 to produce results rapidly. How-
ever, these classical trajectories, while being advantageous in terms
of computational time, are prohibited from accessing non-classical
space and therefore sometimes fail to capture quantum effects. This
causes the method to struggle to treat systems described as “highly
quantum” such as the presently considered zero-temperature cases.
If the trajectories are chosen to be entirely quantum and varia-
tional, such as in the Variational Multiconfigurational Gaussians
(vMCG),35 the trajectories often accurately follow the quantum wave
function, but, numerically, vMCG is difficult and expensive. These
disadvantages impose a limit to the dimensionality of the systems
that can be treated, meaning that methods such as these cannot
access the spin-boson systems with a high number of bath modes.
The Ehrenfest trajectories employed by MCE represent a compro-
mise between the simplicity of classical dynamics and the accuracy of
variational methods. The quantum nature of the trajectories allows
them to capture quantum effects while remaining relatively compu-
tationally inexpensive. Although MCEv1 and MCEv2 use the same
Ehrenfest trajectories to guide nuclear motion (bath), they differ by
the dynamics of electronic amplitudes (system) and use different
wave function Ansätze. In MCEv2, only the amplitudes within the
same Ehrenfest configuration are coupled, making the trajectories
independent. In MCEv1, the trajectories are more complicated as
their electronic state amplitudes are coupled across the trajectories,
and therefore, the trajectories interact with each other.

It is also important to note that MCEv1 shares a functionally
identical Ansatz with the multi-D2 Davydov trail states,36 one of
the two multiple Davydov Ansätze (mDA). The mDA are them-
selves a subset of the hierarchy of Davydov’s Ansatz (hDa), with
the original idea of Davydov’s soliton originating in the 1970s.37,38

The hDa methods are extensive, for example after momentum-space
projection, the Davydov D2 results in Toyozawa’s Ansatz.39–41 The
different Davydov Ansätze have been applied to the SBM across
many regimes with notable success.17,42,43 The difference between
the two methods lies in the fact that while the equations of motion
for mDA are purely variational, MCE relies on Ehrenfest trajecto-
ries to propagate the nuclear part of the basis set on a mean field.
The direct consequences of the different choice for the equations

of motion are visible when MCEv1 was directly compared against
the multi-D2 Ansatz when MCEv1 was extended to investigate the
dynamics of a one-dimensional Holstein molecular crystal model,44

where both methods were found to be in great agreement with the
benchmark HEOM for small transfer integrals. For all cases con-
sidered, the multiplicity of the multi-D2 Ansatz ranged from 32 to
56, where the number of configurations for MCEv1 ranged from
the high hundreds to thousands. This stark difference in multi-
plicity demonstrates how relying on a quantum averaged potential
instead of fully variational equations requires a much larger basis set.
However, when approaching larger transfer integrals, beyond the
computational limitations of HEOM, MCEv1 was able to increase
the number of configurations into the thousands and was shown
to be able to converge to the correct dynamical properties of the
Holstein polaron for large transfer integral. As noted in a recent
perspective on the hierarchy of Davydov Ansätze,45 the likeness of
MCE and mDA allows for fairly straightforward transfer of ideas and
frameworks between such methods.

The convergence of trajectory-guided CS-based methods cru-
cially depends on the sampling of initial conditions of trajectories
and on several adaptive basis set recipes that make the basis set fol-
low quantum dynamics more efficiently. In this paper, we develop
further the idea of basis set cloning, a technique that helps describe
the effect of wave packet splitting. The original iteration of cloning,
called Multiple Cloning (MC), intends to correct potential misguid-
ing of the basis set when the Ehrenfest trajectories may not hold
to be a faithful representation of the path of the system. Cloning
has been successfully implemented in MCEv2, where an extra basis
function is created from a misguided basis function after its trajec-
tory passes the region of the nonadiabatic coupling. These created
coherent states are identical in phase space and are differentiated
only in the way that the contribution from each electronic state
(2 in the case of the spin-boson model) is unique to each clone.
Every cloning event increases the basis set size by 1. This procedure
can then be repeated later in the propagation if the clones them-
selves are misguided. The cloning technique in MCEv2 had initial
success in the ab initio version of the method (AIMC)46–52 and later
was applied to the SBM53 where it was shown that this procedure
of growing the basis set by cloning may improve greatly the conver-
gence of MCEv2. The idea of cloning was directly inspired by the
spawning procedure implemented in ab initio multiple spawning
(AIMS),31,33,34 and was developed to be an analog with AIMC and
AIMS being presented as complementary approaches in the orig-
inal paper of AIMC,48 and AIMC was run on a modified version
of the AIMS-MOLPRO package,54 before being officially added to
NWChem51 and NEXMD v2.0.55 AIMC can be seen as a halfway
point between AIMS and the fully quantum-based methods such
as vMCG or mDA, as it combines the best features of both sets
of methods, relatively “cheap” trajectories due to Ehrenfest equa-
tions of motion propagating the basis set without having to resort
to computationally expensive or numerically unstable techniques.
The averaged mean-field potential energy surface used in AIMC,
however, also contains quantum information, and so, in principle,
AIMC is a fully formally exact quantum method. AIMC was shown
to agree with AIMS in the simulation of conjugated molecules,48

and, recently, AIMC has been applied to the simulation of electron
excitation.56 This area of electronic excitation presents a challenge to
AIMS as it requires consistent spawning events to maintain coupling
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between electronic states, an issue bypassed by AIMC as coupling
between the electronic states is included via the construction of the
Ehrenfest configuration.

In this paper, we will develop a cloning procedure for MCEv1,
for which the coupled Ehrenfest trajectories present an interest-
ing situation. The “push” experienced between the trajectories in
MCEv1 is advantageous as the trajectories spread out less and
there are some quantum forces between the trajectories included
by construction, which keep trajectories in the nonclassical regions.
This advantage allows MCEv1 to accurately represent the quan-
tum system for longer timeframes. However, the coupling between
trajectories comes with certain drawbacks. The first is that all trajec-
tories must be run simultaneously as each trajectory is dependent
on the rest, which unlike MCEv2 makes MCEv1 difficult for the
use in direct ab initio dynamics. A more notable disadvantage con-
cerning cloning in MCEv1 is that due to the trajectories “pushing”
one another, two coherent states cannot exist in the same phase
space point of nuclear motion, and the existing cloning procedure
in MCEv2 creates a coherent state with identical phase space coordi-
nates. To circumvent this issue, we instead clone the entire basis set
and generate two uncoupled nuclear basis sets with unique contribu-
tions from each electronic state. Then, we propagate them separately
before recombining them with the inclusion of cross terms and
quantum interferences. Even though this form of cloning is more
severe and costly, the coupled trajectories of MCEv1 allow for better
scaling into higher dimensional systems and for larger timeframes
due to less trajectory dispersion. The fact that MCEv1 remains accu-
rate for longer times also lessens the required number of cloning
events. The issue solved by the introduction of cloning is the mis-
guiding of the basis set by the Ehrenfest trajectories which cloning
remedies by allowing the basis set to mimic wave function bifurca-
tion. This combined with the flexible nature of the cloning procedure
allows for the method to achieve results that cannot be produced by a
simple doubling of the initial basis set, such as the simulation of two-
peaked spectra,49,52 whereas MCE even with a large basis set only
produces 1 peak. MCEv1 was shown to be capable of converging a
wide range of SBM cases, and so, the new version of cloning should
be capable of providing paths to convergence for the remaining
outlying cases.

II. FORMULATION OF THE MULTICONFIGURATIONAL
EHRENFEST METHOD

This paper confines the MCE methods and their equations to
two electronic states in order to better represent the spin-boson
model,

∣0⟩ = ∣ϕ{system}
0 ⟩, ∣1⟩ = ∣ϕ{system}

1 ⟩ (1)

although expansion to a generic number of states is possible and
straightforward. Both MCEv1 and MCEv2 are foundationally sim-
ilar in their use of a bath of multidimensional frozen Gaussian
coherent states, which is a product of multiple one-dimensional
coherent states,

∣zn(t)⟩ = Πm=1,M∣z(m)n (t)⟩ (2)

where M is the total number of dimensions, i.e., bath degrees of free-
dom. The label for the coherent state, z, is itself a combination of

real and imaginary parts of its center, representing the parts of phase
space (p, q),

z(m)n (t) =
γ1/2q(m)n + i( γ

−1/2
̵h )p

(m)
n

√
2

, (3)

whereas the whole coherent state is a Gaussian wave packet (in one
dimension),

⟨x∣z⟩ = ( γ
π
)

1/4
exp(γ

2
(x − q)2 + ip(x − q)

h̵
+ ipq

2h̵
). (4)

Here, γ is the width of the envelope applied to the Gaussian wave
packet, which is kept constant to construct “Frozen” Gaussians. The
wave function Ansätze in MCEv1 and MCEv2 are given as

∣Ψ(t)⟩MCEv1 = ∑
n=1,N

(a1n∣1⟩ + a0n∣0⟩)∣zn(t)⟩ (5)

and

∣Ψ(t)⟩MCEv2 = ∑
n=1,N

An(t)(a1n∣1⟩ + a0n∣0⟩)∣ zn(t)⟩ (6)

respectively, where N is the basis set size.
In both versions of MCE, the Ehrenfest trajectories are used to

guide the nuclear coherent state basis functions,

iżn =
∂H{Ehr}

∂z∗n
, (7)

where the Ehrenfest Hamiltonian, HEhr , is the Hamiltonian averaged
over the system configuration n,

H{Ehr}
=

∣a1n∣
2
⟨zn∣Ĥ11∣zn⟩ + ∣a0n∣

2
⟨zn∣Ĥ00∣zn⟩ + 2Re(a∗0na1n⟨zn∣Ĥ10∣zn⟩)

∣a1n∣
2
+ ∣a0n∣

2 .

(8)

Equation (8) is written for the case of the SBM with two system elec-
tronic states only, but it can easily be written for more system states.
Spin-boson model Hamiltonian matrix elements used in this work
can be found in Chap. 2.1 of Ref. 1. Also in Ref. 53, the discretization
of the continuous SBM spectrum into a final set of vibrational modes
is described.

The equations for the amplitudes in MCE can be found in
Refs. 27 and 28 for the two versions, respectively. In the diagrams
shown in Figs. 1(a) and 1(b), we illustrate the main difference in the
structure of equations. In both methods, the full wave function is a
combination of individual Ehrenfest configurations,

∣φEhr
n ⟩ = (a1n∣1⟩ + a0n∣0⟩)∣zn(t)⟩, (9)

in which nuclear coherent state basis functions are split between
electronic states, but MCEv1 and MCEv2 use different coupling
schemes between configurations, which are illustrated in Fig. 1. In
MCEv1, all amplitudes ain are coupled with each other, both within
individual Ehrenfest configurations and across configurations. The
trajectories that result from this way of coupling are not indepen-
dent and “push” each other [see Fig. 1(a)]. In MCEv2, the amplitudes
ain are coupled only within individual Ehrenfest configuration n
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FIG. 1. Coupling between the parameters of the wave function Ansatz in (a) MCEv1 and (b) MCEv2. Only two of many coupled basis set configurations are shown.

and the trajectories zn(t) are independent. In order to account for
the quantum coupling between configurations, additional ampli-
tudes An(t) are introduced [see Fig. 1(b)]. In MCEv2, configurations
(10) are normalized so that for each n, ∣a1n∣2 + ∣a0n∣2 = 1. This is
not the case in MCEv1, where only the whole wave function (6) is
normalized.

The independent nature of trajectories in MCEv2 allows for
easy use of the method in direct dynamics simulations. In the
Ab Initio Multiple Cloning (AIMC) method,48 individual Ehren-
fest trajectories are run independently and coupling between their
amplitudes An(t) is done as post-processing. While independent
trajectories are computationally better suited for larger systems, it
was found that it is much harder to reach the convergence of MCEv2
than of MCEv1. Nevertheless, independent trajectories are fit for
ab initio direct dynamics and several tricks that improve the con-
vergence of MCEv2 have been developed. Meanwhile, MCEv1 was
found to converge well for many cases of SBM, which means that
interacting trajectories follow the quantum wave function much
better than independent trajectories of MCEv2.

Running an ensemble of coupled trajectories ab initio “on the
fly” with MCEv1 is difficult for the moment, but MCEv1 can be used
to simulate the dynamics of model systems, where potential energy
surfaces are known analytically. Sampling techniques have not been
extensively exploited for MCEv1, and in Sec. III, we review the exist-
ing MCEv2 sampling tricks and generalize cloning for the use with
MCEv1.

III. SAMPLING TECHNIQUES
A. Swarms

Several sampling techniques are greatly important for the
timely convergence of the MCE methods.53,57 Initial coherent states
are created as a “swarm,” with the distribution shown (10), which
is capable of covering the entirety of the initial wave function
(∣Ψ0⟩ = ∣z0⟩), due to a variable compression parameter, ac, con-
trolling the size of the Gaussian distribution used to construct the
swarm,

F(zn)∝ e−ac ∣zn−z0 ∣
2

. (10)

In the cases where certain degrees of freedom can be deemed as
more important, it is possible to partition the total bath modes into

FIG. 2. Graphic showing (a) a singular basis function, (b) a swarm of basic func-
tions within the enclosure governed by the compression parameter ac , and (c) a
pancake of basis functions with a focus on the most important modes.

important and less important modes. Then, by decreasing the com-
pression parameter for the most important modes while increas-
ing the compression parameter for the less important modes, a
“pancake” style distribution is created to sample the most relevant
modes more accurately [see Fig. 2(c)]. These types of distribution of
initial conditions are used for both MCEv1 and MCEv2.

B. Trains
In MCEv2, basis set trains are used in tandem to counteract the

decrease in convergence obtained by the introduction of swarms.
These trains consist of a “line” of basis functions (see Fig. 3) that
are time-shifted along the trajectory, causing the basis set, by con-
struction, to cover a larger area of phase space. This also reduces the
randomness of the swarm of coherent states leading to a higher rate
of convergence. The space between each of the basis functions form-
ing a given train is controlled by an initial spacing parameter, which
can be tuned to a specific system being studied, as the speed at which
the basis functions explore the phase space affects the rate at which
the basis function trains uncouple.

To form the trains, an initial swarm is generated via contin-
uously increasing the compression parameter until a norm of 1 is
achieved, and then for each basis function within that swarm, a
train of time-shifted basis functions is created with the train spac-
ing decided by finding the highest separation distance for the basis
functions constituting the “carriages” of the train while maintaining
the norm. Both of these steps and checks are vital as the norm of the
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FIG. 3. A swarm of trains being guided across potential energy surfaces (blue)
through time via Ehrenfest trajectories (dashed lines). The basis functions within
each train follow the same trajectory, reducing the randomness of the swarm and
allowing for the reuse of electronic structure information.

basis functions and basis set at large is restricted and must be main-
tained at 1 due to the inclusion of the additional coupling parameter
in MCEv2.

C. Bit-by-bit propagator
A useful tool for the propagation of large basis sets is “bit-by-

bit” propagation. If repeat propagations of a smaller basis set are run
differing only by the initial conditions, this can effectively mimic the
propagation of a larger basis set and allow recovering of the pop-
ulations of states 1 and 2 via averaging of these many repetitions
(see Fig. 4). For the specific case of the spin-boson model, it is apt to

FIG. 4. Coherent state “bits” (the basis functions enclosed by dashed circles) are
generated to fully represent the initial wave function. Then, the wave function of
each “bit” is represented on a small basis of coherent states and each “bit” is
propagated separately. This also shows the strength of trajectory-based methods
as the trajectories allow the coherent states to “spotlight” relevant areas of phase
space instead of requiring a grid point for every possible coordinate at all times. In
this paper, “bits” are sometimes referred to as repeats.

apply this through the harmonic oscillator density operator, ρ̂, of the
M coherent states given by

ρ̂ = ∫ ∣zbath⟩ρ(zbath)⟨zbath∣
d2zbth

πM

= ∏
m=1,M

∫ ∣z(m)⟩ρ(z(m))⟨z(m)∣
d2zm

π
, (11)

where d2z(m) = dp(m)dq(m)

2 is phase space integration and zbath is the
multidimensional bath coherent state found as a product of all m
coherent states representing the M degrees of freedom. For a sys-
tem of harmonic oscillators, this operator is a product of 1D density
operators,

ρ(z(m)) = σ(m)e−σ
(m)
∣z(m)

∣

2

. (12)

The initial conditions of the “bits” are therefore sampled from a dis-
tribution around the “origin” of phase space (q, p) = (0, 0) as shown
in Eq. (12). The width of the density matrix, σ(m), is controlled by
the inverse temperature parameter, β, and the frequency of the bath
mode, ω(m),

σ(m) = eβω
(m)
− 1. (13)

In this paper, it is also assumed that initially only the system state
∣1⟩ is populated. Each “bit” is later propagated using a swarm basis
set, as shown in Fig. 4. All “bits” can be propagated in parallel,
which makes MCE very efficient. The “bit-by-bit” propagation has
been used for both MCEv1 and MCEv2. In this work, we follow the
same stratagem, only adding full wave function cloning to MCEv1
as described in Secs. III D and III E.

D. Multiple cloning in MCEv2
A problem suffered by all methods that utilize Ehrenfest tra-

jectories is that of the potential misguiding of the basis once the
trajectories enter a region of strong non-adiabatic coupling between
electronic states. It is common in these regions for wave functions to
undergo bifurcation, causing behavior that can no longer be faith-
fully represented by the average potential followed by Ehrenfest
trajectories. Although, in principle, a very large basis set of Ehrenfest
trajectory-guided CSs would converge, in practice, this represents a
problem as we want to achieve convergence with the smallest pos-
sible basis set size. To rectify this, the computational sampling of
cloning is introduced to MCEv2, where an additional basis function
is created (see Fig. 5) after entering a region of high coupling and the
contribution of the electronic states is split between the two clones,

∣ψ′n(t)⟩ = (An∣an1∣)(
an1

∣an1∣
∣1⟩ + 0∣0⟩)∣zn⟩, (14)

∣ψ′′n (t)⟩ = (An∣an0∣)(0∣1⟩ + an0

∣an0∣
∣0⟩)∣zn⟩ (15)

such that their sum is equal to the contribution of the uncloned
function,

∣ψ′n(t)⟩ + ∣ψ′′n (t) ⟩ = An(an1∣1⟩ + an0∣0 ⟩)∣zn⟩ (16)
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FIG. 5. A swarm of coherent states being guided across potential energy sur-
faces (blue solid lines) through time via Ehrenfest trajectories (dotted lines). After
passing a region of non-adiabatic coupling, only the misguiding trajectories bifur-
cate, increasing the number of basis functions and allowing the basis set to more
accurately capture the entire wave function. In practice, this occurs with trains of
swarms. To avoid uncontrollable growth of the basis set, usually a limit of how
many times original trajectories can clone is introduced.

In MCEv2, cloning of a basis function is done under certain con-
ditions, which are derived from the analysis of the breaking force,
Fbr , experienced by the configuration, k, from each potential energy
surface,

Fbr = ∣a1ka2k∣2∇(V1 − V2). (17)

Due to the nature of the potential energy surfaces in the SBM, the
differential in their potential remains constant, and therefore, the
maximum breaking force is found due to the amplitudes of the con-
figuration only. The theoretical maximum of the breaking force is
found when population is split evenly between the two potential
energy surfaces and so the simplified condition for cloning for ver-

sion 2 applied to the SBM is taken to be ∣a(1)k a(2)k ∣
2
> δ, where δ has

a theoretical maximum of 1
4 since the amplitudes are normalized for

MCEv2. The value of δ can be modified depending on the case stud-
ied (see Ref. 53). To avoid uncontrollable explosive growth of the
basis set size, usually a limit of how many times original trajectories
can clone is introduced.

MCEv2 utilizing a combination of all these sampling tricks
is often named as Multiple Cloning Multiconfigurational Ehren-
fest (MC-MCE) method or Ab Initio Multiple Cloning (AIMC)
when performing as “on-the-fly” direct dynamics. This paper will
refer to MC-MCE as MC-MCEv2 to better differentiate and directly
compare the different versions of MCE.

E. Full wave function cloning in MCEv1
The additional amplitude, An(t), in the MCEv2 Ansatz that

separates the inter- and intra-configuration coupling allows for the
implementation of cloning on an individual basis function as a
consequence of the independent nature of MCEv2 Ehrenfest trajec-
tories. The fact that trajectories “push” each other in MCEv1 due to
the inter-configurational coupling between all quantum amplitudes
prevents the creation of coherent states in the exact same region of
nuclear phase space, disallowing the clones [Eqs. (14) and (15)] used
in MCEv2 to be applicable to MCEv1. Instead, we clone the entire
wave function as shown in Fig. 6 such that two entire basis sets are
created that sum to the original wave function at the time step of
cloning,

∣Ψ(t)⟩ = ∑
{n=1,N}

(an1∣1⟩ + an0∣0 ⟩∣zn(t)⟩)

= ∑
{n=1,N}

(an1∣1 ⟩ + 0∣0 ⟩∣zn0
′(t)⟩)

+ ∑
{n=1,N}

(0∣1 ⟩ + an0∣0 ⟩∣zn
′′(t)⟩. (18)

Due to the lack of requirement for basis functions to be normalized
in MCEv1, it is possible at the time of cloning to assign different
initial values for amplitudes as long as the total populations of each
electronic state are conserved. A convenient construction for this is
through the use of trigonometric functions after random selection of
angle θ,

∣Ψ(t)⟩ = ∑
{n=1,N}

(an1∣1⟩ + an0∣0⟩)∣zn(t)⟩

= ∑
{n=1,N}

(cos2(θ)an1∣1⟩ + sin2(θ)an0∣0⟩)∣zn
′(t)⟩

+ ∑
{n=1,N}

(sin2(θ)an1∣1⟩ + cos2(θ)an0∣0⟩)∣zn
′′(t)⟩. (19)

FIG. 6. A swarm of coherent states being guided across potential energy surfaces (blue solid lines) via Ehrenfest trajectories (dashed lines), which are quantum amplitude
weighted averages of the potential energy surfaces. After passing a region of non-adiabatic coupling, the trajectories bifurcate, creating two basis sets that are guided along
contributions from one potential energy surface initially, representing the rapid swerve of the trajectories toward one of the potential energy surfaces.
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While most Full Cloning (FC) in this paper uses Eq. (18), we have
experimented with angular cloning with randomly generated θ for
some test cases of the SBM.

These two basis sets can then be propagated completely sepa-
rately with the usual MCEv1 equations of motion, and the cloning
procedure can be seen as generating an additional coupled “bit”
repeat. This is due to the clones being orthogonal by construction.
In a full basis, this orthogonality is maintained throughout propaga-
tion. The full cloning procedure simply doubles the computational
efforts. However, if we were doubling the initial basis set size, the
computational cost would grow much more, as the propagation of
two basis sets with n basis functions is significantly computationally
cheaper than the propagation of a single basis set with 2n basis func-
tions. After propagation is complete, the populations of the overall
wave function can be calculated as a post-processing step,

P{1,tot} =
P(1)1 + P(2)1 + CT⟨1∣2⟩1

P(1)1 + P(2)1 + P(1)0 + P(2)0 + CT⟨1∣2⟩
, (20)

P{0,tot} =
P(1)0 + P(2)0 + CT⟨1∣2⟩1

P(1)1 + P(2)1 + P(1)0 + P(2)0 + CT⟨1∣2⟩
, (21)

where the superscript, c, represents the number of the cloned basis
set origin and the probabilities P(c)i are the probabilities of the states
i = 0, 1 within the clone (c). CT is the cross term between the two
cloned basis sets. These cross terms between clones m and l are given
by the following equations:

CT⟨m∣l⟩ = CT⟨m∣l⟩1 + CT⟨m∣l⟩2 , (22)

where

CT⟨m∣l⟩i = 2Re
⎛
⎝∑kj

a∗(m)ki a(l)ji ⟨z
(m)
k ∣z(l)j ⟩

⎞
⎠

. (23)

This form of cloning, akin to the cloning in MCEv2, can be repeated
to create additional basis sets, albeit with additional cross terms
required, but the equations for cross terms between more than
1 set of clones are trivial. However, as with all basis set expan-
sion tricks, excessive cloning events can lead to problematic scaling,
as n cloning events require propagation of 2n basis sets and cal-
culation of (2n)!

(2n−2)! cross terms. This extension of MCEv1 will be
referred to as Full Cloning Multiconfigurational Ehrenfest Configu-
rational version 1 (FC-MCEv1). Unlike other aforementioned sam-
pling techniques outlined in this paper, full cloning has never been
used and represents the main novel methodological contribution of
this paper.

IV. THE SPIN-BOSON MODEL
The SBM is a two-state system coupled to a harmonic bath.

In the computational chemistry context, these diabatic donor
and acceptor states often represent potential energy surfaces. The
Hamiltonian for the SBM is given by

ĤSBM = [
HB +HC + ε Δ

Δ HB −HC − ε
], (24)

where ε and Δ are the bias tuning parameter and the tunneling para-
meter, respectively, and can be taken to be constants for any given
specific case of the SBM. The partial Hamiltonians of the bath and
coupling, HB and HC, contain the frequency of the mode and the
coupling between the system and the bath,

ĤB =∑
m
ω(m)(â∗â + 1

2
), (25)

ĤC =∑
m

C(m)√
2ω(m)

(â∗ + â). (26)

Total information about the bath is contained within the spectral
density function whose many parameters allow the simulation of
many phenomena. This paper reports only on the Ohmic exponen-
tial cutoff form of the SBM spectral density that increases linearly
with frequency until decaying exponentially after the characteristic
frequency, ωc, is reached. The equation for this form of the spectral
density is

J(ω) = π
2
αKωe−

ω
ωc , (27)

where αK is the Kondo parameter, which describes the strength of
the coupling between the system and the bath. See Refs. 27 and
53 and, in particular, Ref. 58 where discretization of the SBM was
outlined in greater detail.

V. RESULTS
We have used “bit-by-bit” propagation similar to Ref. 53 and

simulated several cases of the spin-boson model with both MCEv1
and MCEv2. When necessary to increase convergence, MCEv1 will
be run with full cloning [see Eq. (17)] and MCEv2 will run with
single basis function multiple cloning [see Eqs. (14) and (15)]. In
all cases, even without cloning, MCEv1 is at least semiquantitatively
correct, but the newly presented full cloning makes it even better. We
have used existing benchmarks, but in Sec. VI of this paper, we dis-
cuss the need for an automated way of converging MCEv1 by itself,
which would include a condition, or a set of conditions, for auto-
mated full cloning, similar to those already developed for MCEv2,
and as such FC-MCEv1 is a semi-manual process. Unless explicitly
stated, the full cloning condition for the zero-temperature cases con-
sidered in this work was taken to be when the population difference
was 0.

As has been done previously when introducing new conver-
gence techniques for MCE methods, we consider regimes of the SBM
to test the full cloning technique. In its original formulation, MCEv1
was capable of converging multiple different regimes for varying
timeframes in agreement with the MCTDH used as a benchmark.
The SBM parameters can be described as follows: Δ is the tunnel-
ing parameter (which is often, as in the case here, also used as a
scaling parameter); ωc is the characteristic frequency of the bath;
αk is the Kondo parameter, which describes the coupling between
the system and the bath; ε is the energy shift between the mini-
mum energy of the two different potential energy surface; and β is
the inverse temperature parameter, given by 1

kT . The spectral density
attached to the spin-boson model is the Ohmic bath, and as such, the
lower frequencies increase linearly until the characteristic frequency
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FIG. 7. Symmetrical well spin-boson case with ωc = 2.5, β = 5, and αk = 0.09.
Comparison of MCEv1 cloned propagations with (dashed) and without (dotted)
the inclusion of cross terms to the MCTDH benchmark (solid line). Both MCEv1
propagations performed with Nbf = 50 basis functions and M = 50 bath modes and
converged with 64 repeats or randomly selected “bits.”

ωc is reached, where the spectral density then decays exponentially.
This information combined with the number of basis functions and
bath modes used to discretize SBM spectrum methods is sufficient to
detail all spin-boson cases and MCE results presented in this paper.
For all cases in this paper, the results are taken to be converged when
increasing of any parameter (or decreasing of the time step) does not
result in a change of population difference.

The first spin-boson case discussed in this paper is a “simple”
case consisting of low-but nonzero temperature symmetrical wells
that were previously converged by MCEv1 in its initial paper. As the
case is easy to converge, it serves as a great initial demonstration for
the application and technicalities of cloning.

Figure 7 demonstrates the necessity of the inclusion of the cross
terms between the separately propagating clones of FC-MCEv1. As
the clones in full cloning can be regarded as coupled repeats, without
the inclusion of cross terms, the two clones created can essentially be
seen as restarting propagation from the initial population conditions
with misplaced coherent states albeit with opposite starting states, as
the clones contain no contribution from one of the potential energy
surfaces, similar to their initial conditions. Therefore, as the poten-
tial energy wells, in this case, are symmetrical, the propagation of
the two clones follows an opposite path and as such the population
transfer of each clone cancels out when recombined, producing a
flattening of the overall population difference. The remaining muted
oscillations occur due to the population imbalance at the time of
cloning, so the recombination is not a complete annihilation of the
oscillations generated by propagation in this case. Thus, without
cross terms, the populations after full cloning are incorrect despite
the fact that their sum is equal to one. After the inclusion of the cross
terms and the appropriate rescaling of the population, the recom-
bination of the clones is shifted and reproduces a valid population
difference.

MCEv1 requires a basis set of 50 basis functions and 50 bath
modes to converge to the benchmark, an average computational
time per “bit” repeat of 48.54 s. Without cloning, a singular basis

FIG. 8. Symmetrical well spin-boson case with ωc = 2.5, β = 5, and αk = 0.09.
Comparison of MCEv1 cloned propagations with three cloning events (dotted),
nine cloning events (dashed) and without (dotted-dashed) cloning to the MCTDH
benchmark (solid line). All MCEv1 propagations were performed with Nbf = 1
basis function and M = 50 bath modes and converged with 64 repeated randomly
selected “bits.”

function still roughly follows the timing of the oscillations of the
benchmark, but greatly overestimates their intensity, even in the
shortest timeframe. Figure 8 shows that FC-MCEv1 can match the
benchmark with just 1 singular basis function while maintaining the
same number of degrees of freedom as the converged result, and
the timeframe for which this agreement persists can be increased via
increasing the number of cloning events.

With only three cloning events, FC-MCEv1 agrees with the
benchmark for more oscillations before slightly diverging. However,
the propagation is still fairly accurate for the whole propagation.
This is achieved with only three cloning events, all occurring within
the first 0.6 atomic time units, essentially having an overall combined
basis size of eight basis functions per repeat and 28 total cross terms.
Computationally, this costs a fraction of the previous MCEv1 result
with 50 basis functions without cloning with an averaging time per
“bit” of 1.75 s, greatly decreasing the computational time needed.

For the propagation with nine cloning events, the FC-MCEv1
result is practically exact when compared to the benchmark, fully
showing the flexibility of the cloning method. See Fig. 8. However,
this large number of cloning events is excessive and introduces its
own scaling problem as the final propagation consists of 512 clones
and over 250 000 cross terms, with the additional cloning events
being at 0.8, 3.7, 4.5, 5.5, 8, and 9 a.u. The computational cost of
this propagation is still cheaper that of the full basis set consisting
of 50 basis functions, with an average time per “bit” repeat of 36.6 s.
Therefore, for the optimization of harder-to-converge cases, there
will be sensible balance between the number of cloning events and
basis set size. It is also important to note that as the two clones cre-
ated are propagated separately, the computational cost for cloning in
MCEv1 is not identical to that of cloning in MCEv2, with two basis
sets of 50 basis functions being cheaper to propagate than one larger
basis set of 100 basis functions. This is because the computational
cost of propagation scales roughly (Nb f )

3. The cross terms are an
additional cost but not required at the time of propagation and in
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the future can be easily highly parallelized during post-processing.
64 “bit” repetitions were required for convergence.

A. Convergence of MCEv1 and MCEv2
at zero-temperature

Within the zero-temperature regime of the spin-boson model,
the MCE methods converge quicker and more accurately to the
benchmark when the system has both a low characteristic frequency
and a low Kondo parameter. Cases with low coupling have a great
number of oscillations before settling to an equilibrium population
difference (which is 0, presuming that the wells are symmetrical).
As this coupling increases, the oscillations lessen in both frequency
and intensity. Within the MCE methods, the easiest case considered
would be therefore the case containing both features, in this case
ωc = 10 and αk = 0.05.

Due to the number of oscillations in Fig. 9, the time step
required for both MCEv1 and versions of MCEv2 is 0.02, for a total
of 2000 time steps. For MCEv2, the initial propagation matches the
timing of the oscillations while overestimating their strength and
the overall “character” is maintained throughout propagation; how-
ever, even the timing of oscillations is quickly lost. With a smaller
initial basis set of 100 basis functions and no more than four mul-
tiple cloning events per initial basis function, this can be greatly
corrected with MC-MCEv2 such that the initial oscillations are prac-
tically exact and the mismatch in timing occurs when oscillations
are small as the system approaches population equilibrium. More
cloning events would lead to agreement at longer times; however,
the increase in computational cost will be great as after four cloning
events of each initial basis function MC-MCEv2 requires propa-
gation of 1600 basis functions, and allowing an additional cloning
event will double the size of the final basis set, making this option
computationally infeasible.

For the same case, MCEv1 converges very well with a relatively
small basis set, using just 200 basis functions and 200 bath modes.
The agreement with the benchmark also persists for longer than that

of the MC-MCEV2 without a need to increase the basis set fur-
ther. See Fig. 9. The average CPU time per “bit” repeat required
for the MCEv1 and the MCEv2 propagation in Fig. 9 is 0.795 and
0.888 CPU hours, respectively, with both methods using a time
step of 0.02, showing that while the computational cost is compa-
rable and the basis set size is identical, MCEv1 produces a much
more accurate result when compared to the MCTDH benchmark.
Once multiple cloning is allowed, MC-MCEv2 presents a signifi-
cant increase in computational cost with an average CPU time per
“bit” repeat of 47.29 CPU hours. This is because between 87 and
95 basis functions clone on the very first time step and by four
atomic time units, the basis has increased to 1600 basis functions. 64
“bit” repetitions were required for convergence for both MCEv1 and
MCEv2.

Increasing the coupling between the system and the bath via the
Kondo parameter has the effect of reducing the number and strength
of the oscillations, although the same time step of 0.02 is still applied.
Slightly increasing the coupling strength to αk = 0.1 is sufficient of
a difference that MCEv2 becomes less qualitative with more rapid
mistiming of the oscillations and the introduction of a distortion of
the overall dampening of oscillations to the equilibrium population
difference. With the introduction of four cloning events per each ini-
tial basis function, MC-MCEv2 with a final basis size of 1600 basis
functions now correctly simulates the behavior of the system but
consistently slightly underestimates the strength of the oscillations.
Similar to the previous case considered, the cloning events in MCEv2
are entirely contained within the first four atomic time units and the
vast majority of basis functions have their first cloning event on the
first time step, with the computational time increasing again to 46.2
CPU hours from the 0.788 CPU hours per “bit” repeat required for
MCEv2 without trains or cloning.

MCEv1 is once again capable of converging to the accuracy of
the benchmark with the same-sized basis set and without any full
cloning events, with an average computational cost of 0.775 CPU
hours per “bit” repeat (see Fig. 10). 64 “bit” repetitions were required
for convergence for both MCEv1 and MCEv2.

FIG. 9. Symmetrical well spin-boson case with ωc = 10, β = 5000 (as an estimation of infinity), and αk = 0.05. MCEv1 (right, dashed), MCEv2 (left, dotted), and MC-MCEv2
(left, dashed) were all compared to the MCTDH benchmark (solid line). MCEv1 and MCEv2 parameters: Nbf = 200 basis functions and M = 200 bath modes. MC-MCEv2
parameters: Nbf = 100 initial basis functions and M = 200 bath modes. All runs converged with 64 repeats or randomly selected “bits.”
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FIG. 10. Symmetrical well spin-boson case with ωc = 10, β = 5000 (as an estimation of infinity), and αk = 0.1. MCEv1 (right, dashed line), MCEv2 (left, dotted line), and
MC-MCEv2 (left, dashed line) were all compared to the MCTDH benchmark (solid line). MCEv1 and MCEv2 parameters: Nbf = 200 basis functions and M = 200 bath modes.
MC-MCEv2 parameters: Nbf = 100 initial basis functions and M = 200 bath modes. All runs converged with 64 repeats or randomly selected “bits.”

As the coupling strength increases, it becomes less common
for MCEv1 to be capable of converging perfectly. Moving from
the regime of weak coupling to that of moderate strength requires
the introduction of cloning while utilizing the other sampling tech-
niques of swarms and the search for the optimal compression
parameter. For the case with αk = 0.4, the initial rate of population
transfer from state 1 to state 2 is correct; however, the propagation
slowly drifts away from the equilibrium population difference, at late
times. With a singular angular full cloning event, FC-MCEv1 can
retain the small size of the basis set size with just 200 basis func-
tions and 100 bath modes while better matching the benchmark.
The number of time steps per unit time can be reduced when the
propagation no longer contains a large number of close oscillations,

resulting in a time step of 0.05. The angular cloning event occurs
when the population difference approaches zero from below, and
most of the cloning events occur around time step 105 of 300. Intro-
duction of these cloning events increases the computational time
for the whole run from 4.62 CPU minutes to 7.88 CPU minutes
per “bit” repeat. Despite the fact that full wave function cloning
doubles the number of basis functions, the computational time has
not doubled. This is due to the clones not being propagated as one
doubled basis but instead can be seen as propagating an additional
coupled bit repeat. It is important to note that the times given are per
core and so would only be equal to the elapsed time for the whole
propagation if the clones were propagated one after the other. Since
the cloned basis sets can be run independently in parallel, the true

FIG. 11. Symmetrical well spin-boson case with ωc = 10, β = 5000 (as an estimation of infinity), and αk = 0.4. MCEv1 (right, dotted), FC-MCEv1 (right, dashed), MCEv2 (left,
dotted), and MC-MCEv2 (left, dashed) were all compared to the MCTDH benchmark (solid line). MCEv1 and MCEv2 parameters: Nbf = 200 basis functions and M = 200
bath modes. MC-MCEv2 parameters: Nbf = 100 initial basis functions and M = 200 bath modes. FC-MCEv1 parameters: Nbf = 200 basis functions and M = 100 bath modes.
All runs converged with 64 repeats or randomly selected “bits.”
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elapsed time per “bit” repeat has the potential to be lower. In the
case of MCEv2, this case demonstrates the strength of the different
sampling methods that construct MC-MCEv2 as while the method
is capable of converging relatively close to the benchmark, with-
out these tools MCEv2 is trapped in tiny oscillations starting at the
beginning of propagation, completely unrecognizable to the bench-
mark result. While MCEv2 without cloning is not viable for this
scenario, it can be used on the same increased time step as MCEv1
and so reported an average computational time per “bit” repeat of
4.62 CPU minutes. However, this advantageous time step cannot be
used in MC-MCEv2 as a smaller time step is required for the forma-
tion of trains, returning to the time step of 0.02. This combined with
the limit of the four cloning events allowed significantly increases
the time per “bit” repeat to 10.7 CPU hours. The MC-MCEv2 prop-
agation begins propagation with 100 basis functions, but between
40 and 60 extra basis functions are created on the first time step, and
by eight atomic time units, the final basis set size of 1400–1550 basis
functions has been reached. See Fig. 11. 64 “bit” repetitions were
required for convergence for both MCEv1 and MCEv2.

For a case within the moderate coupling strength regime such
as that of αk = 0.55, it is apparent that while MC-MCEv2 is a great
improvement on standard MCEv2, the method is not able to cap-
ture the full decay to equilibrium population difference. However,
the sampling tricks again transform the result from unrecognizable
to semi-quantitatively correct. This is because even after the time
step is reduced to 0.012 in order to properly form the trains of the
initial basis set, each basis function only clones at most once, and all
cloning events occur before 2.5 atomic time units resulting in a final
average computational time of 0.643 CPU hours per “bit” repeat.
The sampling tricks of MC-MCEv2 increase the cost of the propaga-
tion but as Fig. 12 a single cloning event and trains can significantly
improve the result. Allowing the propagation to therefore start with
a smaller initial basis set can be economical with the MC-MCEv2
propagation taking less computational power than the MCEv2

propagation with an average computational time of 0.911 CPU
hours per “bit” repeat when propagated with the larger basis set
of 200 basis functions and 200 bath modes. Zero-temperature cases
were previously noted as limiting cases for MC-MCEv2,40 and it can
be concluded that the coupling strength limit for MC-MCEv2 at this
characteristic frequency has now been reached.

When looking at MCEv1 in this scenario, the decay of popu-
lation from state 1 is accurately captured but MCEv1 misestimates
the final population and as such the decay persists for longer than
the benchmark. Similarly with MC-MCEv2, the disagreement with
the benchmark at later times is larger for the cases with stronger
couplings. If full cloning is applied here, a singular cloning event
is enough to correct this final population, and FC-MCEv1 can be
converged to the benchmark with a fairly low number of basis func-
tions, with a basis set size of merely 50 basis functions attached to
200 bath modes. This cloning event causes a minimal increase in
computational cost from an average of 2.28–2.69 CPU minutes
per “bit” repeat. This small increase is due to a portion of CPU
time spent generating the initial basis which is completely identical
whether cloning will be used later in propagation or not. Another
large factor is that as MCEv1 requires multiple repeats in order to
average to the correct result, each repeat clones at a different time
step, with most cloning events in this case considered in Fig. 12
ranging from time 7 to 22.5 a.u., with the latest cloning time of 39.8
atomic time and ten repeats that had no cloning event throughout
the whole propagation. See Fig. 12.

The strong to ultra-strong coupling regime can present a diffi-
cult challenge to the MCE methods due to the large number of basis
functions and bath modes required for convergence. MCEv1 in its
original paper was shown to converge to an ultra-strong coupling
of αk = 1.5 for the different characteristic frequencies of ωc = 10,
20 and 40 for a short timeframe. For each characteristic frequency,
there is a value for the Kondo parameter for which the propagation
will not relax to a negligible population difference within 40 atomic

FIG. 12. Symmetrical well spin-boson case with ωc = 10, β = 5000 (as an estimation of infinity), and αk = 0.55. MCEv1 (right, dotted), FC-MCEv1 (right, dashed), MCEv2
(left, dotted), and MC-MCEv2 (left, dashed) were all compared to the MCTDH benchmark (solid line). MCEv1 and FC-MCEv1 parameters: Nbf = 50 basis functions and
M = 200 bath modes. MCEv2 parameters: Nbf = 200 basis functions and M = 200 bath modes. MC-MCEv2 parameters: Nbf = 100 initial basis functions and M = 200 bath
modes. All runs converged with 64 repeats or randomly selected “bits.”
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FIG. 13. Symmetrical well spin-boson case with ωc = 20, β = 5000 (as an estima-
tion of infinity), and αk = 0.4. MCEv1 (right) shows propagation without cloning for
different basis set sizes, compared to the MCTDH benchmark (solid line). All runs
converged with 64 repeats or randomly selected “bits.”

time units, the longest timeframe studied in this paper, meaning that
in the strong coupling regime, a cloning scheme based on popula-
tion difference would not be suitable. Therefore, while several strong
coupling regime scenarios can be converged with MCEv1 without
cloning, a more generalized cloning condition than a population dif-
ference of 0 will have to be derived to apply FC-MCEv1 converge the
cases that are currently inaccessible for other MCE methods.

Figure 13 displays a sensitivity to the MCEv1 method in that
surprisingly the smallest basis set converges closest to the MCTDH
benchmark, without the need for cloning. This phenomenon is not
as contradictory as it seems at first glance as the increase in basis set
size follows the increase in the number of bath modes, which can in
turn demand an even larger number of basis functions. This growth

in required basis functions is not guaranteed to be linear and so the
larger basis functions cannot be considered fully converged inter-
nally within MCEv1, i.e., converged to the number of repeats, but
not to the number of basis functions. A certain care must be taken
therefore when increasing both the number of modes in SBM dis-
cretization and the basis set size to ensure convergence of all basis
set parameters. The computational time for the MCEv1 results con-
sidered in Fig. 13 also demonstrates the advantage of basis set growth
at pivotal points of propagation instead of propagating a larger basis
set for the entire timeframe. The smallest basis set of 100 basis func-
tions and 100 bath modes requires only an average of 3.56 CPU
minutes per “bit” repeat, whereas the medium basis set of 300 basis
functions and 300 bath modes requires and an average of 1.16 CPU
hours per “bit” repeat. The cost of increasing the basis set by another
200 basis functions and bath modes essentially quintuples as the
MCEv1 propagation with 500 basis functions and 500 bath modes
requires an average of 5 CPU hours of computational time per “bit”
repeat. 64 “bit” repetitions were required for all MCEv1 results for
convergence.

With an increase in characteristic frequency to ωc = 20 and a
return to the weak coupling regime, MCEv1 is once again capable of
converging exactly to the benchmark of MCTDH without the need
for any cloning events. As MCEv1 can match the MCTDH bench-
mark of this increased characteristic frequency without a need to
increase the basis set, the computational cost required is roughly
equal to that of Figs. 9 and 10 with an average “bit” repeat time
of 0.73 CPU hours. MCEv2 can also produce better results once
again in the weaker coupling cases although due to increased char-
acteristic frequency, the deformation of the oscillations occurs more
readily and more often, even in the weakest case studied with
αk = 0.05, cloned swarms of trains are required to maintain full oscil-
lations. MC-MCEv2 is still unable to converge correctly after four
cloning events in this case, matching the initial oscillations within
the region of cloning before too quickly settling to the equilibrium,
where additional cloning events would be required. The MCEv2 and

FIG. 14. Symmetrical well spin-boson case with ωc = 20, β = 5000 (as an estimation of infinity), and αk = 0.05. MCEv1 (right, dashed), MCEv2 (left, dotted), and MC-MCEv2
(left, dashed) were all compared to the MCTDH benchmark (solid line). MCEv1 and MCEv2 parameters: Nbf = 200 basis functions and M = 200 bath modes. MC-MCEv2
parameters Nbf = 100 initial basis functions and M = 200 bath modes. All runs converged with 64 repeats or randomly selected “bits.”
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FIG. 15. Symmetrical well spin-boson case with ωc = 20, β = 5000 (as an estimation of infinity), and αk = 0.1. MCEv1 (right, dashed), MCEv2 (left, dotted), and MC-MCEv2
(left, dashed) were all compared to the MCTDH benchmark (solid line). MCEv1 and MCEv2 parameters: Nbf = 200 basis functions and M = 200 bath modes. MC-MCEv2
parameters Nbf = 100 initial basis functions and M = 200 bath modes. All runs converged with 64 repeats or randomly selected “bits.”

MC-MCEv2 results shown also have similar averaged computational
times to previous cases of 0.962 and 47.06 CPU hours per “bit” repeat
respectively, with the cloning in MCEv2 taking on the “usual” behav-
ior for these zero-temperature cases. See Fig. 14. 64 “bit” repetitions
were required for convergence for both MCEv1 and MCEv2.

With the increased characteristic frequency, MCEv2 quickly
returns to the behavior of high-frequency oscillations where the pop-
ulation is trapped on the first state at the weak coupling strength of
αk = 0.1, with an average computational time of 0.974 CPU hours
per “bit” repeat. This is also the first case for MC-MCEv2 that it
fails to capture at least the qualitative behavior as no oscillations
are present, although it does converge to the correct final population

difference, despite the four cloning events occurring and the average
computational time per “bit” repeat increasing to 46.42 CPU hours.
MCEv1 performs similarly to the previous case in that it still can
converge accurately and quickly to the benchmark without any need
for cloning, with an average computational time of 0.73 CPU hours
per “bit” repeat. See Fig. 15. 64 “bit” repetitions were required for
convergence for both MCEv1 and MCEv2.

Figure 16 shows that for MCEv1 αk = 0.4 once again acts as the
threshold for when cloning is necessary for the method to converge
with a reasonably sized basis set. With the increase of the character-
istic frequency, the time spent with a negative population difference
extends while the magnitude of the most negative population dif-

FIG. 16. Symmetrical well spin-boson case with ωc = 20, β = 5000 (as an estimation of infinity), and αk = 0.4. MCEv1 (right, dashed), FC-MCEv1 (right, dotted), and MCEv2
(left, dotted) were all compared to the MCTDH benchmark (solid line). MCEv1 and FC-MCEv1 parameters: Nbf = 200 basis functions and M = 100 bath modes. MCEv2
parameters: Nbf = 200 basis functions and M = 200 bath modes. All runs converged with 64 repeats or randomly selected “bits.”
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ference decreases. Despite the lack of oscillations, the increased
characteristic frequency prohibits larger time steps and so the time
step remains 0.02. MCEv1 is capable of matching the initial popu-
lation descent but moves away from the benchmark after crossing
into negative population difference and mistakenly introduces very
weak and wide oscillations. With a single cloning event, FC-MCEv1
continues to match the benchmark for longer before eventually, the
population begins to transfer to state 1 and follow closer to the origi-
nal MCEv1 propagation without cloning. However, with two cloning
events, the converged result follows significantly closer to the bench-
mark for much longer, with a basis set size of 200 basis functions and
100 bath modes. The cloning condition for this case was the overall
population difference reached 0. Figure 16 encapsulates the increas-
ing cost of full cloning. The FC-MCEv1 propagation with only one
cloning event increased the average computational time from 0.244
to 0.394 CPU hours per “bit” repeat. This cloning event occurred
very consistently across the repetitions with almost all events occur-
ring between 3.7 and 4.2 atomic time units. The second cloning event
is also fairly consistent with almost all second cloning events occur-
ring between 8.4 and 10.2 atomic time units and introducing the
second cloning event increases the computational cost to 0.84 CPU
hours per “bit” repeat. This is because after the second cloning event,
FC-MCEv1 requires propagation of four clones along with six sets of
cross terms. For MCEv2, the method struggles to generate a correct
train-spacing parameter without severely decreasing the time step
and therefore inversely increasing the computational time causing
the train technique to be unfeasible. Cloning within this case also
becomes near impossible as without a sufficiently spaced train, no
basis functions reach even a lowered condition for cloning and so
without cloning events or train spacing, MCEv2 and MC-MCEv2
become identical and therefore αk = 0.4 can be described as a limit
of the MC-MCEv2 method for ωc = 20. 64 “bit” repetitions were
required for convergence for both MCEv1 and MCEv2.

Similar to the previous case presented in Fig. 12 cloning is
required when the Kondo parameter, αk, is increased to 0.5 in Fig. 17.
However, unlike the previous case, the higher characteristic fre-
quency results in the propagation diverging from the benchmark
before the population difference reaches 0. For FC-MCEv1 to match
the MCTDH benchmark, it is necessary to enact full cloning events
of both forms described in Eqs. (17) and (18). A slight deviation in
the descent of population difference is corrected by an angular full
cloning event [Eq. (19)] when the population difference is 0.1. Then
in order to maintain the equilibrium population difference, a stan-
dard full cloning event occurs when there is 0-population difference,
as with other cases presented in this article. This divergence from
our normal cloning condition highlights the need for a more auto-
matic acknowledgment of when cloning is needed. For all cases, a
sufficiently large basis set of MCEv1 will be accurate for short times.
However, the strength of MCEv1 lies with its coupled Ehrenfest
trajectories and as propagation continues, these trajectories slowly
uncouple explaining why MCEv1 struggles more with cases with
higher dimensionality or stronger coupling as this decoupling pro-
cess happens more readily. This case shows that for difficult cases it
is possible to converge to a benchmark via increasing the number
of cloning events instead of increasing the basis set size and as such
the basis set size for this case remains small with 50 basis functions
and 200 bath modes. FC-MCEv1 is also economical as the average
computational cost is 4.81 CPU minutes per “bit” repeat, compared

FIG. 17. Symmetrical well spin-boson case with ωc = 20, β = 5000 (as an esti-
mation of infinity), and αk = 0.5. MCEv1 (dashed), FC-MCEv1 was compared to
the MCTDH benchmark (solid line). Both MCEv1 propagations had the following
parameters: 50 basis functions and 200 bath modes. All runs converged with 64
repeats or randomly selected “bits.”

to 2.81 CPU minutes for an MCEv1 propagation without cloning.
The reason for the smaller increase in computational time compared
with Fig. 16 is while the propagation allowed for two cloning events
and every “bit” repeat had an initial cloning event, only 86 of the
128 clones created initiated the cloning procedure again, with the
time of second cloning widely ranging from 6.5 to 17.5, there were
also repetitions who did not undergo the first angular cloning event
until late into propagation, with the latest angular cloning event
occurring at 16.4 atomic time units, with more common angular
cloning events in the range of 6–11. See Fig. 17.

ωc = 40 is the largest characteristic frequency studied in this
paper and presents a significant challenge to the MCE methods due
to the computational cost required. This increase in cost from lower
characteristic frequencies is twofold, the most obvious is that cases
with larger characteristic frequencies require more degrees of free-
dom in order to properly converge, and so the required basis sets
are larger. The second is that of the viable time step. As the char-
acteristic frequency increases, the smaller the time steps required to
maintain the stability of MCE equations of motion. In practice, the
largest viable time step for a case with ωc = 40 is ∼4 times smaller
than the largest time step in the ωc = 10 cases. 64 “bit” repetitions
were required for convergence.

The increase in bath modes required to discretize the spectrum
of SBM in Fig. 18 is a direct result of the increase in characteristic
frequency. MCEv1 is still capable of matching the benchmark, with
a slight disagreement increasing every oscillation. However, even at
late times, the difference between MCEv1 and the MCTDH bench-
mark is not large, and the propagation is quantitative for all times.
Due to the high characteristic frequency of this case, the time step
has to be reduced to 0.01 and 4000 total time steps are required and
the computational cost is 2.61 CPU hours per “bit” repeat. 64 “bit”
repetitions were required for convergence. This is the weakest cou-
pling case, and the subsequent increase in the coupling strength
dramatically increases the number of modes required, with cases in
the moderate coupling regime for ωc = 40 requiring up to 1000 s
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FIG. 18. Symmetrical well spin-boson case with ωc = 40, β = 5000 (as an
estimation of infinity), and αk = 0.05. MCEv1 (dashed) was compared to the
MCTDH benchmark (solid line). MCEv1 parameters: Nbf = 200 basis functions and
M = 300 bath modes. All runs converged with 64 repeats or randomly selected
“bits.”

of modes, increasing significantly further the CPU times. We are
working on the convergence of this most computationally demand-
ing case; however, it is clear that further enhancements to the full
cloning procedure will be necessary to address this challenge, for
instance by introducing more flexible cloning conditions. Therefore,
a further study into the coupling strength limit of FC-MCEv1 will be
performed after said condition is established.

VI. CONCLUSIONS AND DISCUSSIONS
The zero-temperature spin-boson regime was explored through

the lens of both MCEv1 and MCEv2. The coupling limit for each
characteristic frequency for the MCEv2 was discovered, showing
where the computational tricks such as trains and cloning begin to
break down. MCEv1 was shown to be capable of converging to the
MCTDH benchmark for more cases than MCEv2. During several
cases considered in this paper, it was noted that even with a low-
ered cloning condition, MC-MCEv2 had a significant portion of its
basis function clone at the same time step. This could suggest that
a full cloning approach to cloning in MCEv2 could be economical
and may be beneficial in the convergence of these difficult cases.
The formal introduction of the cloning sampling technique was
implemented into multiconfigurational Ehrenfest version 1 and was
proven to be a valuable tool in the convergence of several additional
cases. Due to the lack of a flexible full cloning parameter, the results
presented are considered preliminary “proof-of-concept” results and
future work will involve converging more zero-temperature cases
with higher characteristic frequency and other regimes of SBM.
Cloning in MCEv1 has the potential to be cheaper than the ver-
sion present in MCEv2 in situations where a large percentage of the
basis functions need to be cloned as propagating two parallel basis
sets separately is computationally cheaper than propagating a basis
that has doubled in size. Theoretically, the greatest limiting factor
for excessive cloning events in MCEv1 is in the interacting cross
terms. However, it is also important to note that the computational
times provided are given per CPU core as each “bit” repeat occupies

one core, and in practice, the different repeats are run in parallel.
This parallelization could be taken further by running the basis sets
created after a full cloning event in parallel, further reducing real
time computational cost compared to the cloning in MC-MCEv2.
In practice, however, the current greatest limit of FC-MCEv1 is the
lack of an automatic cloning parameter that can be used so that the
method itself can recognize when cloning is required without user
input. In almost all cases here, we have done cloning at the point of
equal population of the two electronic states, but a systematic study
of other potential full cloning conditions is required. The general
process for converging a result from the MCE methods is as follows:
first, the number of “bit-by-bit” repetitions and the time step can be
considered trivial to converge. Then, the basis set size is increased
and finally the number of cloning events. Therefore, the develop-
ment of such a procedure is a vital step of the future development
of the method and will be derived after a systematic review of full
cloning across many cases.

The increased characteristic frequency and therefore the
required dimensions to converge the result as αk increases beyond
very weak coupling has been prohibitive to continuous testing of
the full cloning procedure on further ωc = 40 cases. An issue was
also encountered where a cloning event could be required after suf-
ficient propagation time, and therefore, the trajectories that guide
the initial basis set would have traveled sufficiently that the Ehren-
fest configurations and trajectories could be taken to be uncoupled.
If this happens and a full cloning event occurs, the newly generated
basis sets will continue to be uncoupled and therefore will not be
faithful to the system they are attempting to represent. This suggests
that full cloning for cases for systems with very high dimensionality
or cases that require cloning at late times may also require resam-
pling to reestablish coupling. The nature of this procedure will be
investigated as future work.

There is also interest in exploring more regimes that are yet
to be studied with the MCE methods. Most MCE papers have cen-
tralized on the exponential cutoff applied to the Ohmic spectral
density, but there are a multitude of different methods that inves-
tigate sub and super-Ohmic cases with spectral density with a Drude
Lorentzian cutoff, often studied by the hierarchical equations of
motion.18–20 A more generally applicable full cloning MCEv1 should
be capable of converging high dimensionality cases with relatively
small basis sets such as the case shown in Fig. 17.

While for the moment the coupled trajectories of MCEv1 make
its application to ab initio “on-the-fly” dynamics difficult, with some
effort, it may be used in the future for direct dynamics. The vMCG
community has recently presented developments of such an ab initio
extension of their method.59 A comparable effort could be made to
construct an extension for MCEv1, and the Ehrenfest trajectories
that guide the basis set would be computationally advantageous, due
to avoiding the complexity and instabilities of variational trajecto-
ries. However, now, it is an efficient method for simulating systems
where the potential energy surfaces are well known. The method is
well suited to future applications in the study of biological molecules
where potential energy surfaces are commonly found by “spin-
boson-like” models such as the linear vibronic coupling60,61 model,
and recently, extensions have been made to the MCEv1 method to
study the Holstein polaron44 and to simulate time- and frequency-
resolved four-wave-mixing signals.62 The quantum dynamics for
these molecules are often performed with multi-layer MCTDH,23
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but hopefully, MCEv1 also becomes a useful tool. The choice of
potential methods to tackle these problems is limited as the high
dimensionality required often out scales the viability of most quan-
tum dynamic methods. Our hope is that with a more generalized
full cloning, MCEv1 could join the list of potential methods for these
molecules. MCEv2 has already proved to be a useful method for non-
adiabatic molecular dynamics with the AIMC-MCE approach.55 The
current work reinforces the understanding of MCEv2 convergence
properties and shows that with the right sampling, it is capable of
delivering good results in complicated zero-temperature quantum
regimes.
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