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Abstract 

Nucleic acid electron density interpretation after phasing by molecular replacement or other methods remains a difficult problem for computer 
programs to deal with. Programs tend to rely on time-consuming and computationally e xhaustiv e searches to recognise characteristic features. 
We present NucleoFind , a deep-learning-based approach to interpreting and segmenting electron density. Using an electron density map from 

X-ra y cry stallograph y obtained after molecular replacement, the positions of the phosphate group, sugar ring and nitrogenous base group can be 
predicted with high accuracy. On a v erage, 78% of phosphate atoms, 85% of sugar atoms and 83% of base atoms are positioned in predicted 
density after giving NucleoFind maps produced f ollo wing successful molecular replacement. NucleoFind can use the wealth of context these 
predicted maps provide to build more accurate and complete nucleic acid models automatically. 

Gr aphical abstr act 

Introduction 

Interpretation of macromolecular electron density maps from 

X-ray crystallography can be trivial for an experienced 
crystallographer but is a conceptually difficult problem for 
computer algorithms to solve. Despite this, many software 
packages have been successful at automatically building 
macromolecular structures into electron density. In protein 
atomic model building, algorithmic approaches that rely on 
orientation-dependent likelihood functions ( 1 ) or free atom 

placement ( 2 ) are mature and work well. However, the elec- 
tron density of nucleic acid-containing structures is often more 
difficult to interpret than that of proteins, especially after 
obtaining phase estimates by protein molecular replacement. 
Nevertheless, automated model building can work well in 
some cases after molecular replacement, but many still require 
further manual attention ( 3 ). 

The technical challenge for a program to understand com- 
plex 3D shapes with high variability between instances fits 
well with the abilities of deep-learning-based methods. In this 

work, we present a set of deep-learning networks for the in- 
terpretation and segmentation of electron density maps that 
originate from structures containing nucleic acids. The net- 
works can positively identify the three constituent parts of 
a nucleotide, the phosphate group, the ribose sugar and the 
nitrogenous base before an atomic model is built. The pre- 
dictions obtained from these networks are beneficial when 
attempting to build nucleic acid features into electron den- 
sity following molecular replacement. The context obtained 
from the predictions has been used to enhance the capa- 
bilities of automated model-building software in historically 
difficult cases, such as when building large protein-nucleic 
acid complexes after molecular replacement using a protein 
template. 

Background 

The neural network architecture at the core of this software 
package is based upon the U-Net architecture ( 4 ). The U-Net 
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is a convolutional neural network that was created to anal- 
yse and segment two-dimensional biomedical images, with a 
strong focus on utilising the relatively limited number of data 
samples in an efficient and effective way. As opposed to tak- 
ing in the entire data sample at once, the U-Net instead re- 
lies on a small portion or ‘chunk’ of data being supplied to 
the network for analysis, the results of which are then com- 
bined to classify the entire data sample. In the original U- 
Net deployment, this data was two-dimensional images, but 
further research expanded the U-Net to the third dimension 
for use in other biomedical areas ( 5 ). The original 3D U- 
Net implementation used a collection of 2D images to gen- 
erate a three-dimensional dataset, however, other 3D datasets 
can be used too, such as a crystallographic electron density 
map. 

This type of convolutional neural network can also be de- 
scribed as an encoder-decoder network with opposing down- 
sampling and upsampling portions. Similar network archi- 
tectures have already been shown to be extremely useful for 
characterising experimental data in structural biology. Harus- 
pex ( 6 ) demonstrated the impressive utility of these convolu- 
tional neural networks by annotating the secondary structure 
of cryo-electron microscopy (cryo-EM) density maps. The net- 
work at the core of Haruspex assigned a probability of each 
point in the density map corresponding to an α-helix, β-sheet, 
nucleotide, or an unassigned feature. The network received 
cubes of density between 40 3 Å3 and 48 3 Å3 in volume as 
input, which allowed for sufficient secondary structure cover- 
age while also minimising model complexity. This annotation 
proved useful in informing downstream automated model- 
building pipelines. 

Since this, approaches which replace the classical algorith- 
mic model-building software pipelines with methods more 
dependent on neural networks have emerged. DeepTracer 
( 7 ) uses four separate encoder-decoder (U-Net) networks to 
obtain precise structural information from cryo-EM density 
alone. The first network categorises each point in the map as 
belonging to specific atom types, while the second analyses 
each point for its proximity to the protein backbone. In a sim- 
ilar way to the network in Haruspex , a third U-Net network 
classifies each point by its secondary structure, and the final 
network assigns each point to an amino acid type. Combin- 
ing the outputs of each of these classifications, in particular, 
the protein backbone and atom-type networks allows for ef- 
ficient chain tracing. Using more classical optimisation algo- 
rithms from the atomic positions and the other classification 
networks, DeepTracer is able to automatically build models 
into cryo-EM density maps quickly. 

A similar network, the modified feature pyramid is present 
in the popular software package ModelAngelo . This encoder- 
decoder network characterises each point in a cryo-EM den- 
sity map as either the α-carbon atom in a protein or the phos- 
phorous atom in a nucleic acid in a similar way to the atom- 
type network in DeepTracer . However, while DeepTracer re- 
lies on classical algorithmic model-building methods to trans- 
form the network classifications into accurate protein models, 
ModelAngelo achieves this with a further graph neural net- 
work (GNN). This GNN optimises the positions of the located 
residues using information from the map, the sequence and the 
geometry between neighbours. A big advantage of ModelAn- 
gelo over DeepTracer for model building is the ability to build 
nucleic acids in addition to protein features. 

Recently, another program capable of building nucleic acid 
structures, CryoREAD was released ( 8 ). Again, the U-Net ar- 
chitecture was used to identify and classify parts of the cryo- 
EM density. In this case, the networks classified each point 
in the map as sugar, phosphate, base or none. Following this, 
classical chain tracing and sequence assignment produces an 
accurate full-atom model. The utility of these convolutional 
neural networks in cryo-EM is clear, but their applicability has 
also been shown with protein crystallographic density maps. 
Using a 3D fully-convolutional DenseNet, which has similar 
downsampling and upsampling stages to a basic U-Net, Godó
et al. ( 9 ) segmented crystallographic protein density maps into 
each residue type without requiring sequence information. 

Using a similar network architecture, NucleoFind aims to 
identify the constituent parts of nucleic acid electron den- 
sity from X-ray crystallography, both for nucleic acid-only 
structures and protein-nucleic acid complexes, an area which 
is currently unexplored. NucleoFind outputs these predicted 
maps for each nucleic acid group type as a CCP4 map file. 
These predicted maps are then used to guide fast automated 
model building, but can also be used to aid interactive model 
building. 

Materials and methods 

Neural network architecture 

The network created for nucleic acid semantic segmentation 
is based on the 3D U-Net with slight alterations to the nor- 
malisation functions, shown in Figure 1 . The input to the net- 
work is a cube with three spatial dimensions of length 32 and 
one filter dimension of length 1. In crystallographic terms, the 
spatial dimensions represent a cubic grid of 32 points in each 
dimension with 0.7 Å grid spacing, with the density value at 
each point in the filter dimension. Following the input layer 
is a set of downsampling blocks which encompass a range of 
operations to modify the incoming data to half the number of 
spatial dimensions and twice the number of filter dimensions. 
Given an input data set with shape ( n , n , n , m ), a downsam- 
pling block will transform and return a dataset with shape ( n 2 , 
n 
2 , 

n 
2 , 2 m ). The upsampling blocks operate oppositely, taking 

in a ( n , n , n , m ) input and returning a (2 n , 2 n , 2 n , m 
2 ) output. 

Downsampling 

In the downsampling portion of the model, the inputted elec- 
tron density of shape (32, 32, 32, 1) is transformed into a 
vector representation of shape (1, 1, 1, 512). This is achieved 
through a series of downsampling blocks, the first of which 
changes the number of filters of the inputted data from 1 to 
16. All subsequent downsampling blocks simply double the 
number of values in the filter dimension and halve the spa- 
tial dimensions. Contained within each of these downsam- 
pling blocks are two convolutional blocks followed by a max- 
pooling operation. Each convolutional block comprises a con- 
volutional operation, instance normalisation operation ( 10 ) 
and rectified linear unit activation operation. For each of the 
convolutions, padding was applied so the output was the same 
size as the input, all parameters used in these operations are 
shown in Supplementary Information Section 1.1 . 

Bottleneck 

The vector representation which is the result of the downsam- 
pling portion of the network is then further processed dur- 
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Figure 1 . Sc hematic view of the 3D U-Net arc hitecture. T he encoder-decoder netw ork first do wnsamples the data of shape (32, 32, 32, 1) to a v ector 
form of shape (1, 1, 1, 512). The vector is then upsampled back to an output of shape (32, 32, 32, 2), where the two output channels represent the 
probability of the target group being, or not being, at each point in the output box. 

ing the bottleneck portion of the network. This part of the 
network should theoretically contain almost all of the infor- 
mation required for the network to segment the input map. 
In the bottleneck, two convolutional blocks are applied with 
normalisation operations removed to prevent distortion of the 
critical vector representation. 

Upsampling 

From the vector representation, the network upsamples the 
data, such that the output tensor has the same spatial dimen- 
sions as the input tensor. This is completed using five upsam- 
pling blocks. Each upsampling block consists of a transposed 
convolution which doubles the spatial dimensions and halves 
the filter dimensions. This result is then concatenated with 
the corresponding (same spatial dimensions) output from the 
downsampling block and two final convolutional and nor- 
malisation operations are applied which maintain both spa- 
tial and filter dimensionality. This is shown schematically in 
Figure 2 B. 

Output 

Once the network has reached the final upsampling block, a 
final convolution with softmax activation is applied to trans- 
form the filter dimension from 16 to 2 outputs at each of the 
spatial points. The two outputs represent the classification at 
each point, i.e. the probability that this point is and is not 
within 1.5 Å of the target group. 

Overall, the network architecture described is very simi- 
lar to that used in Haruspex , DeepTracer and CryoREAD 

with only slight changes to the input size, number of layers 
and filters, and the normalisation layers used throughout the 
networks. 

Training 

Dataset creation 

The dataset used for the network training originated from the 
Protein Data Bank (PDB) ( 11 ). All structures used were ob- 
tained using X-ray diffraction, with no resolution filter ap- 

plied. From this collection of nucleic acid-containing struc- 
tures in the PDB, 1000 protein-nucleic acid structures were 
reserved for use in later unseen testing. In total, the start- 
ing dataset contained 2711 structures containing only nucleic 
acid and 8369 structures containing both protein and nucleic 
acid polymers. Of the 2711 nucleic acid-only structures, 1558 
were DNA, 1119 were RNA and 34 were DNA / RNA com- 
plexes. Of the 8369 protein–nucleic acid structures, 5754 were 
protein–DNA complexes, 2182 were protein–RNA complexes 
and 433 were protein–DNA / RNA complexes. 

Maps to interpret were taken from the RCSB ( 12 ) using 
phases from the final deposited structure, calculated by the 
RCSB using DCC ( 13 ). To supplement the dataset with more 
realistic model-building cases, the maps of all protein and nu- 
cleic acid-containing models were recalculated to better re- 
semble the output of molecular replacement. To achieve this, 
all non-protein molecules were removed, and the B -factors 
for the remaining protein residues were set to the average B - 
factor value of the remaining model. This model was then 
refined with REFMAC5 ( 14 ) to obtain a more realistically 
phased map. This map in MTZ form and the deposited model 
were then added to the dataset. Histograms showing the dis- 
tribution of resolutions in the training data are shown in 
Supplementary Figures S1 and S2 . 

Dataset preprocessing 

As the neural network receives a cube of electron density as in- 
put, it is important that the grid spacing is consistent through- 
out all of the training datasets. To achieve this, a section of 
map containing the asymmetric unit was first interpolated 
onto a regular orthogonal grid with a spacing of 0.7 Å. From 

this, a map for each target group (phosphate, sugar and base) 
was generated by labelling areas of density within 1.5 Å of a 
target atom in the deposited model. These maps represent the 
desired output that the predictive networks are aiming for. For 
each MTZ file from the dataset, four maps were output, the 
original interpolated map and three target maps, all in CCP4 
map file format. 
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Figure 2. ( A ) Schematic representation of the downsampling block which takes in a tensor of shape ( n , n , n , m ) and downsamples it to a tensor of shape 
( n 2 , 

n 
2 , 

n 
2 , 2 m ) . Each downsampling block contains two convolutional blocks followed by a single pooling operation. ( B ) Schematic representation of the 

upsampling block which takes in a tensor of shape ( n , n , n , m ) and converts it into a tensor of shape ( 2 n, 2 n, 2 n, m 2 ). Each upsampling block contains a 
transpose con v olution doubles the inputted spatial dimensions, f ollo w ed b y a concatenation operation which combines the filter dimensions of the 
corresponding downsampling operation with the filter dimension of the transpose convolution. Following this, are two standard convolutional blocks. 

Training scheme 

Dataset preprocessing yields maps originating from three 
sources: nucleic acid-only structures, protein-nucleic acid 
structures with deposited phases and protein-nucleic acid 
structures with post-molecular replacement-like maps. During 
training, these three map sources were cycled continuously to 
aid the network in learning information about realistic exam- 
ples. At each iteration in training, a random entry was chosen 
from the set of the current map source. Both the input map and 
target map were read using GEMMI ( 15 ), from these maps, a 
random cube of shape (32, 32, 32) was obtained by interpolat- 
ing at a random rotation and random translation. During the 
first 200 epochs of training, the random cube was restricted 
to cubes containing at least one target grid point in the tar- 
get map, if the random selection yielded an empty target cube, 
another was chosen. After 200 epochs, this restriction was re- 
moved and any random cube was allowed to be fed to the 
network for training to emulate better what would be encoun- 
tered during inference. 

Infrastructure 

The network was trained using the TensorFlow library in 
Python. The network was trained for 1000 epochs with 1000 
steps per epoch and 8 samples per batch. Training was run on 
a single NVIDIA A40 GPU and took approximately 60 h for 
each of the three models. The sigmoid focal cross-entropy loss 
function ( 16 ) and Adam optimiser were used for all three net- 
works. To optimise the training speed, the majority of the 
dataset preparation was precomputed to minimise the sam- 
ple generation time between batches. In addition, the Tensor- 
Board package was used to optimally match the floating point 
calculations to the hardware available. 

Inference 

When segmenting the electron density of a new nucleic acid- 
containing structure, a similar workflow is completed to that 
of the network training data. Namely, a section of the map 
covering the asymmetric unit is interpolated onto an orthogo- 
nal grid with grid spacing 0.7 Å before being split into chunks 
of shape (32, 32, 32) with an overlap of 16 points between 
consecutive boxes. A margin consistent with the amount of 
overlap was added to the asymmetric unit so that the network 
predicts at each point more than once. Each chunk is then fed 
to the network and the output of the final layer of the neu- 
ral network can be trivially converted to a classification using 
an argmax function. The predictions for each chunk are then 
reassembled back into the same shape as the interpolated or- 
thogonal grid before being re-interpolated into the original 
asymmetric unit dimensions and spacing using trilinear inter- 
polation. If using the argmax function for classification, each 
point in the output of each predicted chunk will have a value 
of 0 or 1, but averaging overlapping regions during reassem- 
bly back to the orthogonal grid and interpolation onto the 
original asymmetric unit leads to values between 0 and 1 in 
the output prediction maps. 

Uncertainty estimation 

To infer structural information from the predictions outputted 
by NucleoFind , it is often useful to have a measure of uncer- 
tainty of a given prediction. NucleoFind provides a statistical 
approach to highlight areas of disagreement between multi- 
ple predictions, as well as a direct approach using the out- 
put of the deep learning models to highlight low-confidence 
areas. The statistical approach relies on the fact that Nucle- 
oFind predicts at each point in the asymmetric unit multiple 
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times, allowing for a point-wise variance to be calculated. This 
method can be initiated with the ‘-variance’ flag through the 
command line interface. The output map contains the same 
dimensions as a standard predicted map, but where every 
point represents the variance of all of the predictions of that 
point. Areas with high variance indicate more disagreement 
between predictions, which could indicate lower confidence. 
The alternate approach to highlight low-confidence predic- 
tions is based on using the raw predicted values output from 

the deep-learning model. The standard inference procedure 
uses an argmax function to set predictions greater or equal to 
0.5 to the value 1 and points less than 0.5 to the value 0. With 
the ‘-raw’ command line flag, the argmax function is skipped 
and a map is generated using the actual positive (’yes’) pre- 
dicted values in the range 0 to 1. Again, the output map has 
the same dimensions as a standard predicted map, but where 
areas with low absolute map values indicate areas of lower 
confidence. 

Model building 

Following the generation of a predicted phosphate feature 
map, a molecular model can often be built. First, a single, cen- 
tral point for each of the predicted phosphate areas must be 
obtained for use as the starting estimated phosphorous atom 

position. All predicted map grid points which are above a 
threshold value of 0.1 are highlighted. A gradient ascent al- 
gorithm is then used to move highlighted grid points to the 
local maxima predicted map value. From a set of local max- 
ima points, a single position is obtained by averaging all local 
maxima points with other local maxima points within a 1.5 
Å radius. This method produces a single point within each of 
the predicted phosphate feature map areas, this point is then 
refined to the local maxima of the 2 mF o − DF c density whilst 
remaining within the positive predicted region in the phos- 
phate feature map. 

After obtaining a set of estimated phosphorous points from 

the predicted phosphate map, candidate triplets for library 
fragment superposition are located. Candidate triplets are de- 
fined as three estimated phosphorous points which have a 
maximum inter-point distance of 8 Å and an angle of 150 ◦

± 50 ◦. Trinucleotide fragments from a library structure (PDB 

Code: 1HR2 ( 17 )) are then superimposed over each candi- 
date triplet in both the 3’ and 5’ directions. The best-fitting su- 
perimposed trinucleotide is chosen for each direction, where 
the sum of the 2mFo – DFc map at the atomic positions of 
the phosphate and sugar is used to assess the fit. No refine- 
ment is performed to optimise the rotation and translation of 
the fragment as it was not found to provide any benefit over 
simple superposition over the predicted phosphate positions. 
Consecutive trinucleotides are grouped into chains, both 3’- 
5’ and 5’-3’ chains are assessed and the best-fitting chain is 
accepted, using the average 2mFo – DFc at the atomic po- 
sitions. If either the sugar or base predicted maps are avail- 
able, they can optionally be used to score the candidate trinu- 
cleotides using the formula presented in Supplementary Equa- 
tion 1 . This may help in the unlikely case that the predicted 
phosphate map has produced three false-positive predictions 
with realistic distances and angles to each other. These candi- 
date chains are then grown and processed by the existing al- 
gorithms within Nautilus ( 3 ). The current nucleic acid model- 
building program was replaced with this new model-building 
method in the automated model-building pipeline ModelCraft 

version 5.0.0 ( 18 ), which is scheduled to be incorporated into 
the CCP4 software suite ( 19 ). 

ModelCraft improvements 

Small alterations to the ModelCraft pipeline were necessary 
to fully utilise the increased performance of NucleoFind over 
Nautilus . The current pipeline performs automated protein 
model-building with Buccaneer ( 1 ) before running nucleic 
acid model-building with Nautilus . This scheme was altered 
to run nucleic acid model building with NucleoFind and pro- 
tein building with Buccaneer with the same input map and 
model. The protein regions of the Buccaneer model and the 
nucleic acid regions of the NucleoFind model are then com- 
bined into a single model before refinement. Any clashing re- 
gions between the two models were solved by removing the 
highest average scoring region using Equation ( 1 ). A clash- 
ing region was defined as a collection of contiguous nucleic 
acid residues which were all within 1 Å of a collection of con- 
tiguous protein residues. After this, isolated fragments are re- 
moved, defined as residues with no neighbouring atoms within 
2.5 Å of bonding atoms. 

Score = −
1 
n 

∑ 

i 

∑ 

j 

∑ 

j 

| ρ(i jk ) | (1) 

where: 

ρ is mFo − DFc density with a grid spacing of 1 Å
ijk is within 5 Å of the clashing residue 
n is the number of grid points within 5 Å of the clashing 

residue 

Molecular replacement test set 

A test set was generated to test the performance of Nucle- 
oFind as a tool for building nucleic acids in realistic molecu- 
lar replacement examples. To generate this test dataset, 1000 
protein–nucleic acid X-ray structures that were not part of 
the training set were randomly selected from the PDB. The 
structure factors and sequences for this set of structures were 
downloaded and MrParse ( 22 ) was run to search the Al- 
phaFold Structural Database for search models ( 23 ). Molec- 
ular replacement was run on the highest scoring models from 

MrParse using Slice’N’Dice ( 24 ). The molecular replacement 
solutions were filtered to a minimum protein completeness of 
50 % (i.e. the MR structure has to make up at least 50% of 
the deposited structure), yielding 288 molecular replacement 
examples in the test set with a resolution range of 1.35–4.00 
Å, shown in Supplementary Figure S5 . 

Results and discussion 

Predictions evaluation 

The predictions of all three networks of NucleoFind are 
shown in Figure 3 , from an input map that was generated from 

protein molecular replacement. The predicted phosphate map 
clearly segments the phosphate groups well and the DNA ma- 
jor and minor grooves are evident in the outputted maps. Sim- 
ilarly, the predicted sugar map effectively segments the den- 
sity corresponding to the sugar ring. Both the predicted phos- 
phate and sugar maps predict regions where the input density 
is poorly defined or noisy. Interpreting poor-density regions 
can often be a difficult task for automated software packages, 
so the ability of NucleoFind to provide critical context in these 
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A

C D

B

Figure 3. Output of all three deep-learning models corresponding to phosphate group, sugar group and base group predictions. To generate the input 
density, molecular replacement was performed on a POU DNA binding domain (PDB Code: 3L1P ( 20 ) with data to 2.8 Å resolution) using 1HFO ( 21 ) as a 
molecular replacement model. The placed model was refined with REFMAC5 with a free-R factor of 0.469. The input density, 2mFo – DFc shown in 
black at 1.5 σ, can be seen as the characteristic DNA duplex. However, the density is noisy and discontinuous which often causes automated 
model-building software packages to struggle with locating features. NucleoFind can highlight the phosphate, sugar and base positions well from the 
input density, highlighting the usefulness of the program as a post-molecular replacement tool. 

regions is helpful, especially when attempting to build models 
into maps after protein molecular replacement, as the nucleic 
acid regions of density are often poorly defined. The base re- 
gions of density are most often difficult to observe following 
protein molecular replacement, yet NucleoFind is still able to 
predict the regions of base density well but with less segmen- 
tation between the stacked base-pairs. 

To ensure that these trends are consistent across a range 
of examples, metrics were calculated for all maps predicted 
from a test set of 288 protein molecular replacement exam- 
ples which were randomly selected from the PDB and not in- 
cluded in the deep-learning network training, with run times 
shown in Supplementary Figures S3 and S4 . The accuracy of 
the networks evaluated to 98% or over in all models, not be- 

cause the networks are almost perfectly accurate, but because 
the data samples predicted are highly imbalanced. The major- 
ity of space sampled corresponds to areas where none of the 
target groups are present, thus, statistics can become mislead- 
ing. Furthermore, statistics which only consider the relatively 
small prediction area (32, 32, 32) may fail to properly encom- 
pass the accuracy of the entire predictive map this software 
provides. Thus, the evaluative metrics shown in Table 1 are 
calculated using the output predicted maps, which encompass 
the entire predictive workflow. Further statistics are available 
in Supplementary Information Section 1.2 . To calculate these 
metrics, all points in the asymmetric unit of the predicted map 
within 1.5 Å of the target group were labelled. Each labelled 
point was then compared to that of the predicted map at the 
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Table 1. Metrics for the network calculated as an average from a test set of 288 real molecular replacement solution maps 

Model Atom Inclusion (%) Accuracy (%) Precision (%) Recall (%) F1 score (%) 

Phosphate 77.6 ± 23.7 99.3 ± 0.4 42.3 ± 10.6 72.3 ± 24.9 52.2 ± 14.9 
Sugar 85.1 ± 18.6 98.2 ± 1.1 54.1 ± 11.7 81.2 ± 19.6 64.1 ± 14.3 
Base 83.1 ± 19.2 98.4 ± 1.1 63.7 ± 13.7 84.0 ± 20.1 71.6 ± 15.7 

Uncertainty here is represented as the standard deviation across the samples. 

Figure 4. Atom inclusion scores of 20 NucleoFind predictions of DNA-bound DNA topoisomerase str uct ures deposited in the PDB with resolutions from 

2.11 to 6.35 Å. Maps fed to NucleoFind were calculated using only the protein portion of the protein-nucleic acid complex to emulate molecular 
replacement. NucleoFind is able to predict well even at low resolutions. 

same location and marked as either a true positive, true nega- 
tive, false positive or false negative. Positive predictions were 
taken as any grid point with a value > 0. 

The statistics of the network are largely acceptable, with 
all networks exhibiting good recall and satisfactory precision 
scores. Achieving both high recall and high precision is an in- 
herent difficulty when predicting such a large number of data 
points (32 3 ) per prediction, and a trade-off is often seen be- 
tween precision and recall. Nevertheless, it is important to re- 
member the purpose of the network, to segment and inter- 
pret electron density, therefore a more useful metric would be 
to calculate how many of the target groups were within the 
correctly segmented density. This ‘atom inclusion’ score was 
simply calculated as the percentage of atoms which were po- 
sitioned in positive predicted density. The ability of all three 
models to predict on average 77% of the target atoms or 
greater with maps generated from molecular replacement is 
very promising. This, coupled with a good recall score for all 

of the models suggests that these maps will be very helpful for 
model building after molecular replacement. 

Resolution dependence 

To test the resolution dependence of NucleoFind , predictions 
were run on twenty DNA-bound DNA topoisomerases pro- 
teins in the PDB which have been resolved at varying resolu- 
tions between 2.11 and 6.35 Å. Maps were calculated using 
only the protein domains of the protein-DNA complex to em- 
ulate a post-molecular replacement starting map. NucleoFind 
performed well in this test predicting the majority of phos- 
phate, sugar and base atomic positions correctly in structures 
with resolutions better than 4 Å, shown in Figure 4 . Inter- 
estingly, the atom inclusion scores of the predicted base and 
sugar positions tend to be higher for any given structure. This 
trend is slightly counterintuitive as the more electron-dense 
phosphorous atoms are often observed to have the strongest 
features in an electron density map, however the strong atom 
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Figure 5. Nucleic acid completeness after five cycles of ModelCraft with NucleoFind (version 5.0.0) against five cycles of ModelCraft with Nautilus 
(version 3.3.0), both with default parameters. ModelCraft version 3.3.0 contains Nautilus as the only nucleic acid model building software which runs 
after protein model building with Buccaneer . ModelCraft version 5.0.0 contains NucleoFind as the only nucleic acid model building software which is run 
alongside protein model building with Buccaneer and the results combined. The 288 protein–nucleic str uct ures used in this test were generated by 
protein molecular replacement. 

inclusion scores even at very low resolution for the sugar and 
base predictions demonstrate the ability of NucleoFind to be 
useful throughout a range of resolutions. 

De no v o nucleic acid building post molecular 
replacement 

Molecular replacement is a critical method used to obtain 
phase estimates during structure solution of nucleic acid- 
containing macromolecules. In particular, this method is par- 
ticularly useful when attempting to phase protein-nucleic acid 
complexes as homologous protein models can be obtained 
readily in many cases, from databases or in-silico predictions. 
After successful molecular replacement, running automated 
model-building tools can be an efficient way to model the 
structure of the nucleic acid region. However, the current gen- 
eration of nucleic acid-building methods in crystallography 
often struggles with poorly phased data resulting in noisy, 
hard-to-interpret regions of density. In contrast, NucleoFind 
is often able to provide insightful context describing likely nu- 
cleic acid features. The predicted phosphate positions are the 

most useful for model building since they are most often well 
resolved with respect to each other, allowing for the nucleic 
acid topology to be observed. Since the base and sugar groups 
are larger, the predicted density can become hard to separate, 
which can cause issues with pinpointing a distinct sugar or 
base group as a starting point for model building, shown in 
Figure 3 . Nevertheless, the base and sugar groups are use- 
ful when determining the likelihood that built fragments are 
correct. 

A test of 288 molecular replacement examples showed im- 
proved automated model-building performance compared to 
the current generation of methods in the vast majority of cases, 
the completeness after five cycles of ModelCraft with default 
parameters is shown in Figure 5 . On average, the new ver- 
sion of ModelCraft with NucleoFind built 61.1% of residues 
within 1.5 Åof the deposited model, whereas ModelCraft with 
Nautilus was only able to build 20.7% of residues on average. 
NucleoFind has the ability to build a large portion of the un- 
modelled nucleic acids into realistic density in seconds, allow- 
ing for better phase estimates to be obtained with little input 
from the user. Incorporating this new tool into ModelCraft 
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can allow for high-throughput structure solution, as may be 
more commonly required in the future with developments in 
methods such as serial crystallography. 

Case study 1: de no v o building of Thermus thermophilus 30S 
ribosomal subunit 

Understanding ribosomal structure has provided crucial in- 
sight into the biochemistry underpinning protein synthesis 
( 25 ). One of the many challenges faced when attempting 
to solve the structure of such large complexes is obtain- 
ing sufficiently good phase estimates. Multiple experimen- 
tal phasing strategies were employed when solving riboso- 
mal subunits which primarily relied on heavy atom soak- 
ing ( 26 ). To test the ability of NucleoFind to build riboso- 
mal RNA after protein molecular replacement, the structure 
solution process of the 30S ribosome was repeated, starting 
with 3.37 Å resolution merged reflection data from PDB entry 
1IBK ( 27 ). 

A homologous protein model, 2PQE ( 28 ), was found us- 
ing MrBump ( 29 ), and molecular replacement was performed 
with Phaser ( 30 ). The molecular replacement model was then 
run through 5 cycles of ModelCraft which contained Nucle- 
oFind as the only nucleic acid model builder with default pa- 
rameters. In this test, ModelCraft with NucleoFind produces 
an outstanding result, building 1014 sugar-phosphate groups 
out of the 1525 nucleic acids in the deposited model with 
a maximum atomic position deviation of 1.5 Å, shown in 
Figure 6 . The previous generation method, ModelCraft with 
Nautilus struggles, building only 119 sugar-phosphate groups 
within 1.5 Å of the deposited model. The order of magnitude 
improvement between the two methods is primarily due to 
the deep-learning prediction aiding the location of potential 
phosphate group sites. The model output by ModelCraft with 
NucleoFind provides a substantially improved phase estimate 
and model-building starting point in just three hours of au- 
tomated computation time with commodity hardware, with 
each run of NucleoFind taking only ten minutes. The regions 
where NucleoFind was unable to confidently build were areas 
of weaker density far removed from protein, it is likely that 
NucleoFind could build into this area provided relaxation of 
the building cutoff thresholds, however, by default these cut- 
offs are quite strict to ensure any fragments built are of rela- 
tively high confidence. 

Case study 2: de no v o building of CRISPR—Cas12c1 DNA–
RNA ternary complex after AlphaFold 3 prediction 

The CRISPR–Cas12c1 system is an example of a complex 
protein-nucleic acid system which is useful for guided genome 
editing. The Cas12 protein is able to bind two forms of nu- 
cleic acid, a single guard RNA (sgRNA) and a target double- 
stranded DNA (dsDNA) ( 31 ). Structural insight of the com- 
plex is imperative to convert this system into an efficient and 
effective gene editing tool. The structure was solved at 3.20 
Å resolution using single-wavelength anomalous diffraction 
(SAD) with a selenomethionine derivative (PDB Code: 7VYX). 

Predictive tools like AlphaFold 3 ( 32 ) and RosettaFold2NA 

( 33 ) aim to produce predictive models of difficult protein- 
nucleic complexes. If a sufficiently good prediction can be 
obtained, these models can be used wholly or in parts in 
molecular replacement, however in many cases accurate pre- 
dictions of protein-RNA / DNA complexes remain challeng- 
ing. Performing molecular replacement with erroneous pre- 

A

B

C

Figure 6. ( A ) Protein only molecular replacement solution solved with 
Phaser (PDB Code: 2PQE). ( B ) Model built with automated model 
building software package ModelCraft with NucleoFind . A large 
proportion of the model is built from the molecular replacement starting 
point in a short amount of time. ( C ) Deposited model (PDB Code: 1IBK). 
The green colour represents protein and the purple colour represents 
nucleic acid. Additional images are shown in Supplementary Figure S6 . 
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dicted models often leads to difficulty finding a solution, how- 
ever taking only the confident regions of a prediction can be 
a viable strategy to obtain a modelling starting point from 

which automated model building may be able to progress the 
model further. To test this, AlphaFold 3 was used to predict 
the structure of the CRISPR–Cas12c1 system in complex with 
sgRNA and dsDNA. The AlphaFold 3 predicted model con- 
tains 1310 amino acid residues with an average pLDDT of 
78.5 and 190 nucleic acid residues with an average pLDDT 

of 35.0. 89.3% of the amino acid residues have a pLDDT 

> 60, whereas only 15.2% of nucleic residues are above the 
same level. Attempting molecular replacement with the full 
AlphaFold 3 model does not yield a molecular replacement 
solution with Phaser , however, trimming the model to con- 
tain residues with a pLDDT > 60 allows a solution with an 
R-free value of 0.504 to be found. 200 cycles of jelly-body re- 
finement with Refmacat ( 34 ) reduces the R -free value to 0.43. 
The resulting model after 10 cycles of ModelCraft with Nu- 
cleoFind built 49.6 % of the nucleic acid residues, a 39.3 per- 
centage point increase over the resulting model after 10 cy- 
cles of ModelCraft with Nautilus (version 3.3.0). The major- 
ity of the dsDNA and parts of the sgRNA chains are well- 
modelled which provides a substantially better starting point 
than previous versions of ModelCraft . Images are shown in 
Supplementary Figure S7 . 

Conclusions 

In conclusion, NucleoFind is able to interpret and segment 
nucleic acid electron density. It produces feature maps iden- 
tifying three key components of nucleotide structure. These 
feature maps provide exceptional context for automated nu- 
cleic acid model-building software, and NucleoFind can utilise 
this for significant improvements in model-building capabil- 
ity. This work has only reported examples of protein-nucleic 
acid complexes solved by protein molecular replacement, but 
we expect NucleoFind to also give an improvement after ex- 
perimental phasing or molecular replacement with a partial 
nucleic-acid structure. In addition to automated model build- 
ing, the predicted maps generated by NucleoFind can be used 
as a guide for interactive nucleic acid model building, which 
may particularly benefit less experienced users. 

One of the features identified by this software is the ribose 
ring of the nucleotide backbone. Another future application 
of this approach will be the adaptation of this feature to the 
determination of carbohydrate ligands and modifications. The 
software is openly available for reuse in other packages and 
can be routinely installed as a Python package. We welcome 
its use in other software pipelines in whatever form is useful. 

Data availability 

All code used to generate datasets, train deep-learning net- 
works and perform model inference are available on Zenodo 
(10.5281 / zenodo.12527875). The released version of Nucle- 
oFind is available at https:// github.com/ Dialpuri/ NucleoFind . 

Supplementary data 

Supplementary Data are available at NAR Online. 
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